Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Tin dioxide-carbon heterostructures applied to gas sensing: Structure-dependent properties and general sensing mechanism

MPG-Autoren
/persons/resource/persons22243

Willinger,  Marc Georg
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Marichy, C., Russo, P. A., Latino, M., Tessonnier, J.-P., Willinger, M. G., Donato, N., et al. (2013). Tin dioxide-carbon heterostructures applied to gas sensing: Structure-dependent properties and general sensing mechanism. The Journal of Physical Chemistry C, 117(38), 19729-19739. doi:10.1021/jp406191x.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0014-45F4-E
Zusammenfassung
Carbon materials such as carbon nanotubes (CNTs), graphene and reduced graphene oxide (RGO) exhibit unique electrical properties, which are also influenced by the surrounding atmosphere. They are therefore promising new sensing materials. Despite the existence of studies reporting gas sensing properties of metal oxide (MOx) coated nanostructured carbon, an incomplete understanding of their sensing mechanism remains. Here we report a systematic study on the preparation, characterization and sensing properties of CNT and RGO composites with SnO2 coating. Atomic layer deposition (ALD) was applied to the conformal coating of the inner and outer walls of CNTs with thin films of SnO2 of various thicknesses, while nonaqueous sol-gel chemistry assisted by microwave heating was used to deposit tin dioxide onto RGO in one step. The sensing properties towards NO2 target gas of SnO2/CNTs and SnO2/RGO heterostructures were investigated as a function of the morphology and density of the metal oxide coating. The general sensing mechanism of carbon based heterostructures and the role of the various junctions involved are established.