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Abstract

The optimal k-restricted 2-factor problem consists of �nding, in a complete

undirected graph K

n

, a minimum cost 2-factor (subgraph having degree 2 at every

node) with all components having more than k nodes. The problem is a relaxation

of the well-known symmetric travelling salesman problem, and is equivalent to it

when

n

2

� k � n � 1. We study the k-restricted 2-factor polytope. We present a

large class of valid inequalities, called bipartition inequalities, and describe some

of their properties; some of these results are new even for the travelling salesman

polytope. For the case k = 3, the triangle-free 2-factor polytope, we derive a

necessary and su�cient condition for such inequalities to be facet inducing.

�
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1 Introduction

A 2-factor of an undirected graph G = (V;E) is a spanning subgraph H of G that has

degree 2 at each node. Equivalently, it is a set of node-disjoint circuits that include all

of the nodes. Of course, a special case is a Hamiltonian circuit of G. Deciding whether

G has a Hamiltonian circuit is a well-known NP-complete problem, whereas deciding

whether G has a 2-factor can be done in polynomial time, due to its equivalence to

problems in matching. We consider a class of problems intermediate in di�culty to these

two problems. A 2-factor H is k-restricted, (or just restricted), for k an integer, if each

component of H has more than k nodes. If k = n � 1 (in fact, if n=2 � k � n � 1),

then any restricted 2-factor is a Hamiltonian circuit. If k = 0, then every 2-factor is a

restricted 2-factor.

In fact, much is known about the complexity of determining whether a given G has

a restricted 2-factor. For k = 0; 1; 2, matching techniques due to Edmonds can be used

to answer the question e�ciently. (Note that these problems are all equivalent if the

graph has no loops or multiple edges, but otherwise there are di�erences.) For k = 3

(\triangle-free 2-factors"), Hartvigsen [9] gave an e�cient algorithm. His solution is

di�cult. On the other hand, for k � 5 the problem has been proved to be NP-complete

by Papadimitriou; see [3]. So from the point of view of computational complexity, only

the case k = 4 remains open.

The optimal restricted 2-factor problem is, given G = (V;E) and edge weights (c

e

:

e 2 E), to �nd a maximum-weight restricted 2-factor. Of course, this optimization

problem is at least as hard as the corresponding decision problem discussed above. So

it is NP-hard for k � 5. In fact, Vornberger [10] has proved that the optimization

problem is NP-hard for k = 4 also. So from the complexity point of view, the only

open case is k = 3, the \optimal triangle-free 2-factor problem". If one assumes that

the graph is complete and the weight function satis�es the triangle inequality, then the

optimization problem remains NP-hard for k � 4. However, under this assumption there

is a polynomial-time algorithm that guarantees to �nd a solution of weight at most twice

optimal; see Goemans and Williamson [6].

In this paper we study these problems from a polyhedral viewpoint. There is a great

deal of evidence that this approach can lead to linear-programming based techniques that
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provide excellent bounds and even provably optimal solutions. An example, which has

received a lot of attention, is the (symmetric) travelling salesman problem (TSP). One

motivation for polyhedral results on restricted 2-factors is that they generalize results for

the TSP. Another is the open case k = 3 for which (unlike the NP-hard cases) we may

hope for a complete description of the polyhedron. A third is that there seems to be a

sense in which for smaller values of k the polyhedron is better-behaved.

We consider mainly the \bipartition inequalities", a class of inequalities that was

introduced for the TSP by Boyd and Cunningham [1]. They include well-known earlier

classes like subtour elimination, comb, and clique-tree inequalities. They extend the

clique-tree class by dropping the restriction to a tree structure, and by allowing some

of the \teeth" to be \degenerate". There is a natural way to choose a subfamily of

bipartition inequalities for each k, namely, by requiring teeth to have size at most k, and

this restricted family, called \k-bipartition inequalities", turns out to be valid for the

restricted 2-factor problem for that k. We prove that for a k-bipartition inequality to be

facet-inducing for the restricted 2-factor polytope, it must satisfy a certain connectivity

condition, namely, it can have no cutset consisting of degenerate teeth. This result is

new even for the TSP polytope. Moreover, for k = 3, we obtain necessary and su�cient

conditions for a k-bipartition inequality to be facet-inducing. The resulting class is large,

but it has a nice structure. However, it is unfortunately not complete; we also show that

even for k = 3, there are facet-inducing inequalities that are not in this class.

The paper is organized as follows. Section 2 consists of some preliminaries. In Section

3, we describe the class of bipartition inequalities and prove their validity for the k-

restricted 2-factor polytope. In Section 4, we prove necessary conditions for a bipartition

inequality to be facet inducing, and conjecture that they are su�cient. In Section 5 we

deal with the triangle-free 2-factor problem, that is, with the case when k = 3. We

characterize the facet-inducing bipartition inqualities for this case. In fact, we prove the

conjecture of the previous section for k = 3. Our results also show that, for k = 3, the

characterization is a good one, as the conditions can be checked by solving a few bipartite

matching problems. Finally, we show that the known classes of inequalities are still not

su�cient to de�ne the the triangle-free 2-factor polytope.
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2 Preliminaries

We shall use the word factor to mean k-restricted 2-factor, whenever it is possible to do

so without confusion. It is convenient to treat the optimal factor problem as a problem

on a simple complete graph. This has the slight disadvantage that we lose the distinction

among the cases k = 0; 1; 2, but our contributions do not apply to these cases anyway.

So we work with the complete graph K

n

= (V;E), where jV j = n � 4, and we write

elements of E as (i; j) or ij. Notice that ij = ji.

For S � V , we denote V nS by S. For S; T � V , E(S : T ) denotes fij 2 E : i 2 S; j 2

Tg. For S � V , E(S) denotes E(S : S) and �(S) denotes E(S : S). For v 2 V , we may

abbreviate �(fvg) to �(v). For B � E and x 2 R

E

, x(B) denotes

P

(x

ij

: ij 2 B). We

may write x(S) instead of x(E(S)) for S � V whenever no confusion arises. Generally,

we do not distinguish between a subset C of E and its incidence vector x 2 f0; 1g

E

de�ned by x

ij

= 1 if and only if ij 2 C.

Given c 2 R

E

, the following is an integer linear programming formulation of the

optimal factor problem.

minimize

P

(c

ij

x

ij

: ij 2 E)(1)

subject to

(1a) x(�(v)) = 2; v 2 V ;

(1b) x(S) � jSj � 1; S � V and 2 � jSj � k;

(1c) x

ij

� 0; ij 2 E;

(1d) x

ij

integer, ij 2 E:

The constraints (1a) are called degree constraints and (1b) are called subtour elimination

(SE) constraints. A factor is the union of node-disjoint cycles, called subtours, covering

all nodes in K

n

, and moreover, each subtour contains more than k edges.

The convex hull of feasible solutions to (1) is a bounded polyhedron, which we denote

by P

k

. An inequality fx � f

0

is said to be valid for P

k

if fx � f

0

holds for all x 2 P

k

.

The inequality fx � f

0

is face inducing if it is valid and there exists a point x

�

2 P

k

such that fx

�

= f

0

. If, moreover, there exists an a�nely independent set of dim(P

k

)

such points, then it is facet inducing.
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3 Bipartition inequalities

In this section, a large class of inequalities, called bipartition inequalities, will be shown

to be valid for P

k

. This class was �rst introduced by Boyd and Cunningham [1] for the

TSP polytope as a generalization of the clique-tree class.

Let H = fH

1

; : : : ;H

h

g be a collection of mutually disjoint subsets of V called handles,

and let T

1

; T

2

; : : : ; T

t+m

be mutually disjoint proper subsets of V called teeth. A tooth

is called degenerate if it is contained in the union of the handles; otherwise it is called

nondegenerate. Assume that no T

j

is contained in any H

i

, and that T

j

is nondegenerate

if and only if 1 � j � t. Assume also that each handle H

i

intersects 2k

i

+1 teeth, where

k

i

is a positive integer, and d

j

denotes the number of handles intersected by tooth T

j

for

all j; 1 � j � t+m. The bipartition inequality associated with these handles and teeth

is given by

h

X

i=1

x(H

i

) +

t

X

j=1

x(T

j

) +

t+m

X

j=t+1

d

j

d

j

� 1

x(T

j

)(2)

�

h

X

i=1

jH

i

j+

h

X

i=1

k

i

+

t

X

j=1

(jT

j

j � d

j

� 1) +

t+m

X

j=t+1

d

j

d

j

� 1

(jT

j

j � d

j

):

Notice that in the special case when h = 0, t = 1, and m = 0, the bipartition

inequality is just an SE inequality. In the special case when h = 1 and T

j

\ H

1

6= ;

for all j, is the well-known comb inequality. Finally, when m = 0 and the intersection

graph of the H

i

and T

j

form a tree, we have the clique-tree inequalities of Gr�otschel and

Pulleyblank [8]. Recently, Carr [2] has shown that, when the number of handles and

teeth are �xed, there is a polynomial-time algorithm to solve the separation problem for

bipartition inequalities.

Figure 1 represents two bipartition inequalities. The hollow nodes, labelled v

0

and v

0

0

in the handles, represent optional nodes that may or may not exist. In the case when the

optional nodes do not exist, both inequalities have right-hand side c

0

= 8. The coe�cient

c

e

of the left-hand side depends on the total weight of the sets that contain e. Weights of

1 are omitted for simplicity, and thus only the weights of degenerate teeth are given. For

instance, c

vv

0

= c

ss

0

= 2 for the inequality on the left and c

vv

0

= 2; c

ss

0

= 0 and c

rw

= 1

for the one on the right.
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Figure 1: Two bipartition inequalities

A k-bipartition inequality is one for which every tooth has size at most k. The main

result of this section is the following.

Theorem 3.1 Any k-bipartition inequality cx � c

0

is valid for P

k

.

For the remainder of this section cx � c

0

denotes a k-bipartition inequality de�ned

by (2). Consider the following maximization problem:

z

�

(c) = maxfcx : x 2 P

k

g:(3)

A factor x

�

is said to be c-optimal if cx

�

= z

�

(c), and is c-tight if cx

�

= c

0

. The

inequality cx � c

0

is valid for P

k

if and only if z

�

(c) � c

0

and is face-inducing if and

only z

�

(c) = c

0

. We will show the validity of cx � c

0

by induction on the number of

handles de�ning cx � c

0

. To do so, we �rst apply a procedure to transform a c-optimal

factor x

�

to into a c-optimal factor x̂ having a special structure. Then, we \decompose"

cx � c

0

with respect to x̂ into two bipartition inequalities with smaller number of de�ning

handles, and use induction.

For any factor x, let �(x) denote the number of subtours in x. Given any subset S

of V and a factor x such that x(E(S)) < jSj � 1, we can apply the following procedure

2OPT . This will be used repeatedly in our polyhedral proofs. It is analogous to the

well-known local optimization procedure of the same name. In fact, we will need it only
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for the case where S = T

j

or S = H

i

\ T

j

, where T

j

is a tooth and H

i

is a handle of the

bipartition inequality cx � c

0

.

Procedure 2OPT

Given: a vector c 2 R

E

, a factor x, and a subset S of V such that x(E(S)) < jSj � 1.

Step 0. If there is exactly one subtour of x that visits S, then go to Step 1; else go to

Step 2.

Step 1. A subtour of x contains a path uv � � � pq � � �u

0

v

0

such that v; p; v

0

2 S and

u; q; u

0

2 S. Replace uv, u

0

v

0

in x by uu

0

and vv

0

to obtain �x. STOP.

Step 2. Choose a pair of edges uv; u

0

v

0

that are in di�erent subtours of x, with v; v

0

2 S

and u; u

0

2 V n S, such that c

uv

+ c

u

0

v

0
is minimum over all such pairs. Replace uv and

u

0

v

0

by uu

0

and vv

0

to obtain �x. STOP.

It is easy to see that 2OPT has the following property.

Proposition 3.2 2OPT terminates with a factor �x such that �x(E(S)) > x(E(S)) and

�(�x) � �(x). Moreover, c�x � cx if and only if c

uv

+ c

u

0

v

0

� c

uu

0

+ c

vv

0

.

Lemma 3.3 If T is a tooth and H is a handle of a bipartition inequality cx � c

0

and

2OPT is applied with x a c-optimal factor x

�

and S = T \ H, then 2OPT replaces an

edge in E(T \H : TnH) and an edge in E(T \H : HnT ) by an edge in E(T \H) and

an edge in E(TnH : HnT ). The resulting factor x̂ is also c-optimal.

Proof: 2OPT replaces a pair of edges uv and u

0

v

0

in �(S) with uu

0

and vv

0

, where

vv

0

2 E(S). By de�nition of c, c

uv

+ c

u

0

v

0

� c

vv

0

. Since x

�

is c-optimal, this inequality

must hold with equality, and moreover c

uu

0

= 0. It follows that uu

0

2 E(H n S : T n S),

proving the lemma.

Lemma 3.4 Let x

�

be a c-optimal factor. Then there exists a c-optimal factor x̂ such

that

(a) x̂(H

i

\ T

j

) = jH

i

\ T

j

j � 1 for all i and j with H

i

\ T

j

6= ;;

(b) x̂(H

i

) = x

�

(H

i

) and x̂(T

j

) = x

�

(T

j

) for all i and j;
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(c) x

�

(�(H

i

) \ fe : c

e

= 0g) � x̂(�(H

i

) \ fe : c

e

= 0g) for all H

i

2 H.

Proof: Apply 2OPT with S = H

i

\T

j

for any handle-tooth pair violating (a). It follows

from Lemma 3.3 that (b) and (c) are satis�ed by the resulting factor x̂. We can repeat

this until (a) is also satis�ed.

For any S � V , a factor x is said to saturate S if x(S) = jSj � 1. We say that a

factor x̂ is simple if it satis�es condition (a) of Lemma 3.4.

We describe a decomposition of cx � c

0

relative to a �xed handle H and a �xed

c-optimal simple factor x̂. This construction will be used not only in the proof of Theo-

rem 3.1, but in the proofs of subsequent results. Let D be the index set of the degenerate

teeth, and let N be the index set of the nondegenerate teeth. For a �xed H 2 H, de�ne

S

j

� T

j

\ H for all j with T

j

\ H 6= ;. Let J

0

denote the index set of the teeth that

intersect H, and de�ne J to be fj 2 J

0

: d

j

� 3; or d

j

= 2 and j 2 Ng. With respect

to the factor x̂ and H, de�ne J

0

(x̂) to be fj 2 J : x̂(S

j

: T

j

n S

j

) = 0g, and J

+

(x̂) to

be JnJ

0

(x̂). De�ne the following set of teeth relative to x̂ and H: for every j 2 J

0

(x̂),

T

0

j

= S

j

[fv

j

g, where v

j

is a �xed element of T

j

nS

j

; for every j 2 J

+

(x̂), T

0

j

= S

j

[fv

j

g,

where v

j

is the element of T

j

n S

j

satisfying x̂

v

j

s

= 1 for some s 2 S

j

, and T

0

j

= T

j

for all

j 2 J

0

nJ . By de�nition and the property of x̂, we have

x̂(T

0

j

) = x̂(S

j

) = jS

j

j � 1 = jT

0

j

j � 2; for all j 2 J

0

(x̂);(4)

x̂(T

0

j

) = jT

0

j

j � 1 = jS

j

j; for all j 2 J

+

(x̂):(5)

We now construct two bipartition inequalities from cx � c

0

. Let ax � a

0

be the

bipartition inequality obtained from cx � c

0

by deleting the handle H and all the teeth

that intersect only H, and replacing T

j

by T

j

n S

j

for each j 2 J

0

(x̂): Let bx � b

0

be a

comb inequality de�ned by the handle H and all teeth T

0

j

. So ax � a

0

and bx � b

0

are

k-bipartition inequalities with fewer than h handles.

Using (4) and (5), we can now express cx̂ and c

0

in terms of ax̂ + bx̂ and a

0

+ b

0

,

respectively, as follows

cx̂ = ax̂+ bx̂+ 

1

+ 

2

+ 

3

; where



1

�

X

 

�

x̂(T

j

n S

j

)

(d

j

� 1)(d

j

� 2)

+

x̂(T

0

j

)

(d

j

� 1)

: j 2 J

0

(x̂) \D

!

;
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2

�

X

 

x̂(T

j

)

d

j

� 1

� x̂(T

0

j

) : j 2 J

+

(x̂) \D

!

;



3

�

X

�

�x̂(T

0

j

) : j 2 J

+

(x̂) \N

�

:

c

0

= a

0

+ b

0

+ 

0

1

+ 

0

2

+ 

0

3

; where



0

1

�

X

 

d

j

d

j

� 1

(jT

j

j � d

j

)�

d

j

� 1

d

j

� 2

(jT

j

n S

j

j � d

j

+ 1)� jS

j

j+ 1 : j 2 J

0

(x̂) \D

!



0

2

�

X

 

d

j

d

j

� 1

(jT

j

j � d

j

)� jT

j

j+ d

j

� jS

j

j+ 1 : j 2 J

+

(x̂) \D

!

;



0

3

�

X

�

�jS

j

j : j 2 J

+

(x̂) \ N

�

Lemma 3.5 Let x̂ be a simple c-optimal factor. Suppose that ax̂ � a

0

and bx̂ � b

0

hold.

Then cx̂ � c

0

also holds, and moreover, cx̂ = c

0

if and only if ax̂ = a

0

, bx̂ = b

0

and



i

= 

0

i

for i = 1; 2; 3.

Proof: It su�ces to show that 

i

� 

0

i

; i = 1; 2; 3. Note �rst that by (5), 

3

= 

0

3

. Next,

observe that for j 2 D \ J

0

(x̂), we have

x̂(T

j

n S

j

) �

X

(jT

j

\H

i

j � 1 : H

i

2 H n fHg;H

i

\ T

j

6= ;) = jT

j

n S

j

j � d

j

+ 1:(6)

It follows from (4) that



1

�

X

 

�

jT

j

n S

j

j � d

j

+ 1

(d

j

� 1)(d

j

� 2)

+

jS

j

j � 1

(d

j

� 1)

: j 2 J

0

(x̂) \D

!

= 

0

1

;(7)

and from (5) that



2

�

X

 

jT

j

j � 1

d

j

� 1

� jS

j

j : j 2 J

+

(x̂) \D

!

= 

0

2

:(8)

Lemma 3.5 seems to say that there are other inequalities that hold with equality

whenever cx � c

0

does. However, what it really says is that for each factor satisfying

cx � c

0

with equality, one can de�ne other inequalities that the same factor also satis�es

with equality. The new inequalities depend on the given point. We are now ready to

prove the validity of the bipartition inequalities.
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Proof of Theorem 3.1. We prove the theorem by induction on the number h

of handles de�ning cx � c

0

. For h = 0, the inequality is the sum of SE constraints

x(�(T

j

)) � jT

j

j � 1, where jT

j

j � k. For h = 1, the inequality cx � c

0

is a comb with a

handle H intersected by all teeth T

1

; : : : ; T

2k

h

+1

of size at most k. To prove its validity,

we use the usual technique known for the TSP. We add the inequalities:

1

2

x(�(v)) = 1; for all v 2 H;

1

2

x(T

j

) �

1

2

(jT

j

j � 1); j = 1; : : : ; 2k

h

+ 1;

1

2

x(T

j

nH) �

1

2

(jT

j

nHj � 1); for all j such that jT

j

nHj � 2,

1

2

x(T

j

\H) �

1

2

(jT

j

\Hj � 1); for all j such that jT

j

\Hj � 2.

Taking the integer part of each coe�cient and the right-hand side of the resulting in-

equality yields cx � c

0

.

Assume now that the theorem holds for the number of handles less than h. By Lemma

3.4, it su�ces to check the validity of cx � c

0

for any simple c-optimal solution x̂ to (3).

With respect to x̂, we can construct as above ax � a

0

, bx � b

0

, as well as 

i

; 

0

i

; i = 1; 2; 3:

By the induction hypothesis, ax � a

0

and bx � b

0

are valid for P

k

, and therefore cx � c

0

is valid by Lemma 3.5.

Similar methods allow us to establish some further properties of c-tight factors. These

properties will be useful later. They are new even for the TSP. The �rst one indicates

that there are exactly two ways for a tight factor to traverse a degenerate tooth. These

are indicated in Figure 2.

Theorem 3.6 Let T be a degenerate tooth, let H

1

;H

2

; : : : ;H

d

be the handles intersecting

T , and let x

�

be a c-tight factor. If x

�

does not saturate T , then

x

�

(T ) = jT j � d and x

�

(T \H

i

) = jT \H

i

j � 1 for i = 1; : : : ; d.

Proof: First, we show that x

�

(T ) = jT j � d. Let x̂ be the simple factor produced from

x

�

via Lemma 3.4. It will be enough to prove that x̂(T ) = jT j � d. We may assume that

10
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Figure 2: The two ways of traversing a degenerate tooth

d 6= 2, since if d = 2, then x̂(T ) = jT j � 2, and we are done. Since x̂ does not saturate

T , there is a proper nonempty subset A of T such that x̂(A : TnA) = 0. Suppose �rst

that both A and TnA intersect at least two handles. Form the bipartition inequality

c

0

x � c

0

0

by replacing the tooth T by the teeth A;TnA. It is easy to see that c

0

0

= c

0

, so

c

0

x̂ � c

0

, by Theorem 3.1. But it is also easy to see that c

0

x̂ > cx̂, since the coe�cient of

any edge e 2 E(T ) for which x̂

e

> 0 has increased. This contradicts the c-tightness of x̂.

Therefore, we may assume that one of A or TnA, say A, is of the form H \ T for some

handle H. For this H we can apply the decomposition procedure to cx � c

0

, and we will

have T = T

j

, where j 2 J

0

(x̂). By Lemma 3.5, we have 

1

= 

0

1

, and thus by (4), (7), x̂

satis�es (6) with equality. Finally, using Lemma 3.4, we have

x

�

(T ) = x̂(T ) = x̂(A) + x̂(T nA) = (jAj � 1) + jT nAj � d + 1 = jT j � d;

as required.

Now suppose that x

�

(T \H

i

) < jT \H

i

j�1 for some H

i

intersecting T . Apply 2OPT

relative to x

�

and S = T \H

i

. Note that by Lemma 3.3, the resulting �x must contain an

edge e

0

2 �(T ) with c

e

0

= 0, and moreover satisfy c�x = cx

�

and �x(T ) = x

�

(T ) < jT j � 1.

So we can apply 2OPT again relative to �x and S = T . Then 2OPT replaces e

0

, e

1

2 �(T )

with e 2 E(T ) and e

0

2 E(V n T ). Since

c

e

0

+ c

e

1

� 1 <

d

j

d

j

� 1

� c

e

+ c

e

0

;

the new factor ~x 2 P

k

satis�es c~x > c�x = c

0

, a contradiction.

The second result states that there are just two ways in which a tight factor can

traverse a handle, which we indicate in Figure 3.
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Figure 3: The two ways of traversing a handle

Theorem 3.7 Let x

�

be a c-tight factor, let H be a handle, and let 2k

h

+1 be the number

of teeth intersecting H. Then exactly one of the following is true:

(a) x

�

(H) = jHj�k

h

�1, x

�

(�(H)) = 2k

h

+2, and jfe 2 �(H) : x

�

e

> 0 < c

e

gj � 2k

h

+1;

(b) x

�

(H) = jHj � k

h

, x

�

(�(H)) = 2k

h

, and jfe 2 �(H) : x

�

e

> 0 < c

e

gj = 2k

h

.

Proof: It is easy to see that, if the simple c-tight factor x̂ obtained from x

�

via Lemma 3.4

satis�es the conclusions of the theorem, then so too does x

�

. Therefore, we deal with

x̂. If we decompose cx � c

0

relative to x̂ and the handle H, we get the comb inequality

bx � b

0

de�ned by

x(H) +

2k

h

+1

X

j=1

x(T

0

j

) � jHj+

2k

h

+1

X

j=1

(jT

0

j

j � 1) � k

h

� 1:(9)

Let s

�

be the number of teeth T

0

j

satisfying x̂(T

0

j

) = jT

0

j

j � 1. Then s

�

� x̂(�(H)), and

also from its de�nition, s

�

� 2k

h

+ 1. By Lemma 3.5, bx̂ = b

0

, that is, (9) holds with

equality for x = x̂, so

x̂(H) = jHj � k

h

� 1 +

2k

h

+1

X

j=1

�

jT

0

j

j � 1 � x̂(T

0

j

)

�

(10)

� jHj � k

h

� 1 + (2k

h

+ 1� s

�

) = jHj+ k

h

� s

�

:

Therefore, 2s

�

� 2k

h

� 2x̂(H) + 2jHj = 2k

h

+ x̂(�(H)) � 2k

h

+ s

�

. It follows that

s

�

� 2k

h

, and therefore that s

�

= 2k

h

or 2k

h

+1. If s

�

= 2k

h

, then from (10), we get that

x̂(H) = jHj�k

h

, and then from the identity x̂(H)+x̂(�(H)) = 2jHj, that x̂(�(H)) = 2k

h

,

so (b) holds. If s

�

= 2k

h

+ 1, then we can show in the same way that (a) holds.
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4 Degenerate cuts

In this section we describe an important necessary condition for a bipartition inequality

to be facet-inducing. We begin with some simple examples.

Suppose that the intersection graph of the H

i

; T

j

is not connected, for example, that

there is no handle and more than one tooth. Then it is easy to see that the inequality

is the sum of the inequalities corresponding to the connected components, and thus is

contained in the faces induced by those inequalities. There is one very special case in

which such a bipartition inequality can be facet-inducing, namely, if there are just two

teeth which are complements of each other. Then the inequality induces the same face

as does the SE inequality determined by one of the teeth.

As a second example, suppose there are just two handles and every tooth intersecting

both of them is degenerate. Then it is easy to see that the inequality is the sum of two

comb inequalities, each de�ned by one of the handles and the teeth that intersect it.

Again, there is one case in which such an inequality can be facet-inducing, namely, when

the two handles are complements of each other, for then the inequality induces the same

face as each of the comb inequalities.

The above examples both have the property that there is a set W � V such that

each of W;W contains at least one node in some tooth or handle, and no handle or

nondegenerate tooth intersects both W and W . In this situation we call the set of

degenerate teeth intersecting both W and W a degenerate cut. The main result of this

section is the following.

Theorem 4.1 Let cx � c

0

be a bipartition inequality that does not have two complemen-

tary handles or teeth. If cx � c

0

has a degenerate cut, then it does not de�ne a facet of

P

k

.

Notice that it follows from the theorem that a bipartition inequality having a tree as

its intersection graph and having a degenerate tooth (and not having two complementary

handles), cannot be facet-inducing. It is possible to prove this fact by showing that such

an inequality is a non-negative linear combination of d other bipartition inequalities,

where d is the number of handles intersected by the degenerate tooth. For more general

bipartition inequalities, it need not be true that if there is a degenerate cut, then the

13



inequality is a non-negative combination of other bipartition inequalities. This may

suggest why the proof of Theorem 4.1 is more di�cult than one might expect.

For the remainder of this section, cx � c

0

denotes a bipartition inequality containing

a degenerate cut determined by W � V . Let C be the index set of the teeth intersecting

both W and W . For each j 2 C, let d

0

j

denote the number of handles that are intersected

by T

j

and contained in W , and let d

00

j

denote the number of handles that are intersected

by T

j

and contained in W . Clearly, d

j

= d

0

j

+ d

00

j

. De�ne ax � a

0

to be the bipartition

inequality whose handles are the handles contained in W and whose teeth are the teeth

not contained in W , and bx � b

0

to be the bipartition inequality whose handles are the

handles contained in W and whose teeth are the teeth not contained in W . It is easy to

verify that cx � c

0

can be represented as:

ax+ bx�

X

 

d

j

� 2

d

j

� 1

x(T

j

) : j 2 C

!

� a

0

+ b

0

�

X

 

d

j

� 2

d

j

� 1

(jT

j

j � 1) : j 2 C

!

:(11)

Lemma 4.2 Any c-tight solution x

�

satis�es

ax

�

+ 2bx

�

�

X

 "

d

00

j

� 1

d

j

� 1

+ 2

d

0

j

� 1

d

j

� 1

#

x

�

(T

j

) : j 2 C

!

(12)

= a

0

+ 2b

0

�

X

 "

d

00

j

� 1

d

j

� 1

+ 2

d

0

j

� 1

d

j

� 1

#

(jT

j

j � 1) : j 2 C

!

:

Proof: Let I(x

�

) denote fj 2 C : x

�

(T

j

) = jT

j

j � d

j

g. By Lemma 3.6, we have

x

�

(T

j

) = jT

j

j � 1 for all j 2 CnI(x

�

), and x(T

j

\H

i

) = jT

j

\H

i

j � 1 for all j 2 I(x

�

) and

i such that H

i

intersects T

j

.

For every j 2 I(x

�

), choose a handle H

i

� W such that H

i

intersects T

j

and de�ne

T

0

j

to be (T

j

\W ) [ H

i

. De�ne âx � â

0

to be the bipartition inequality obtained from

ax � a

0

by replacing T

j

by T

0

j

for each j 2 I(x

�

). Notice that x

�

(T

0

j

) = jT

0

j

j � d

0

j

� 1 for

all j 2 I(x

�

). Also notice that each T

0

j

is a nondegenerate tooth of âx � â

0

. Therefore,

âx is just ax+

P

(x(T

0

j

)�x(T

j

) : j 2 I(x

�

)) and â

0

is just a

0

+

P

(jT

0

j

j� jT

j

j : j 2 I(x

�

)).

Since âx

�

� â

0

, we have

ax

�

� â

0

�

X

(x

�

(T

0

j

)� x

�

(T

j

) : j 2 I(x

�

))

= a

0

+

X

(jT

0

j

j � jT

j

j : j 2 I(x

�

))�

X

(jT

0

j

j � d

0

j

� 1 � (jT

j

j � d

j

) : j 2 I(x

�

))

= a

0

�

X

(d

j

� d

0

j

� 1 : j 2 I(x

�

))

= a

0

�

X

(d

00

j

� 1 : j 2 I(x

�

)):

14



Therefore

ax

�

� a

0

�

X

(d

00

j

� 1 : j 2 I(x

�

)):(13)

By symmetry we have

bx

�

� b

0

�

X

(d

0

j

� 1 : j 2 I(x

�

)):(14)

Adding (13) and (14), we get

ax

�

+ bx

�

� a

0

+ b

0

�

X

(d

j

� 2 : j 2 I(x

�

)):(15)

Since cx

�

= c

0

, we have from (11) that

ax

�

+ bx

�

�

X

 

d

j

� 2

d

j

� 1

x

�

(T

j

) : j 2 C

!

= a

0

+ b

0

�

X

 

d

j

� 2

d

j

� 1

(jT

j

j � 1) : j 2 C

!

:

Since x

�

(T

j

) = jT

j

j � 1 for all j 2 CnI(x

�

), it follows that (15) holds with equality, and

therefore that (13) and (14) also hold with equality. Now from this and the facts that

x

�

(T

j

) = jT

j

j � 1 for j 2 CnI(x

�

) and x

�

(T

j

) = jT

j

j � d

j

for j 2 I(x

�

), the truth of (12)

follows by a straightforward calculation.

We have shown that each point x

�

of P

k

such that cx

�

= c

0

satis�es an additional

equation (12), which we denote as gx = g

0

. We can show that the set F of such points is

not a facet, by showing that gx = g

0

is not a linear combination of cx = c

0

and equations

that are satis�ed by all points of P

k

. The latter equations are described as follows.

Lemma 4.3 The degree constraints (1a) constitute a minimal equality system for P

k

.

Proof: It is well known (and easy to prove) that the degree constraints de�ne a minimal

equality system for the TSP polytope. Since P

k

contains the TSP polytope and the degree

constraints are valid for P

k

, the result follows.

Proof of Theorem 4.1: Let A be the node-edge incidence matrix of K

n

, so Ax = 2 is

the system of degree constraints. We must show that g, or equivalently g

0

= c� g, is not

in the row space of

�

A

c

�

. Notice that

g

0

x = (c� g)x = bx�

X

j2C

d

0

j

� 1

d

j

� 1

x(T

j

):

15



Let H

1

be any handle in W with intersecting teeth, say T

1

, T

2

and T

3

, and choose nodes

v 2 H

1

\ T

1

; u 2 H

1

\ T

2

; w 2 H

1

\ T

3

. Let c

0

x � c

0

0

be obtained from cx � c

0

by

complementing H

1

, that is,

c

0

= c�

1

2

X

(A

i

: i 2 H

1

) +

1

2

X

(A

i

: i 2 V nH

1

); c

0

0

= c

0

+ jV nH

1

j � jH

1

j;(16)

where A

i

is the row of A indexed by node i. So we only need to show that g

0

is not in

the row space of

�

A

c

0

�

.

Consider B = fvv

0

: v

0

2 V n T

1

g [ fuw; uu

0

: u

0

2 T

1

n fvgg: Notice that B consists

of a spanning tree and an additional edge forming a triangle with jBj = jV j, and so

the columns of A indexed by B are linearly independent, that is, B forms a basis of E.

Further observe that g

0

e

= c

0

e

= 0 for all e 2 B, and so what remains to show is that c

0

and

g

0

are linearly independent. Since cx � c

0

does not have two complementary handles, by

symmetry we may assume without loss of generality that W itself is not a handle. Let

w

0

2 W nH

1

and choose �w 2

�

W with c

w

0

�w

= 0. The proof is complete since c

0

w

0

�w

6= 0 and

g

0

w

0

�w

= 0.

Now we describe a second necessary condition for a bipartition inequality to be facet-

inducing. It is simpler than the degenerate cut condition. However, it is not clear that

it can be checked e�ciently. The valid inequality ax � a

0

is dominated by the valid

inequality bx � b

0

if every x 2 P

k

satisfying ax = a

0

also satis�es bx = b

0

. (Equivalently,

the face induced by ax � a

0

is contained in the face induced by bx � b

0

.)

Lemma 4.4 Let cx � c

0

be a k-bipartition inequality. If cx � c

0

is dominated by the

nonnegativity constraint �x

e

� 0 for some e 2 E, then it is not facet inducing for P

k

.

Proof. No subtour elimination constraint is dominated by �x

e

� 0. So cx � c

0

is de�ned by at least one handle. If cx � c

0

has at least two handles, we choose a

handle, say H

1

such that e 62 E(H

1

). If cx � c

0

is a comb inequality, then we can

assume that it is de�ned to have handle H

1

with e 62 E(H

1

). Let T

1

, T

2

and T

3

be the

teeth intersecting H

1

. Since e 62 E(H

1

), there exist two teeth, say T

1

and T

2

, such that

e 62 �(T

1

\H

1

)[�(T

2

\H

1

). Let c

0

x � c

0

0

be obtained from cx � c

0

by complementingH

1

,

see (16). Let u 2 T

1

\H

1

; v 2 T

2

\H

1

; w 2 T

3

\H

1

. So B = fvv

0

: v

0

2 V nT

1

g[fuw; uu

0

:

u

0

2 T

1

n fvgg forms a basis with c

0

h

= 0 for all h 2 B. Since e 62 B by construction of

16



B and c

0

x � c

0

0

is not a multiple of �x

e

� 0, cx � c

0

is not equivalent to �x

e

� 0. It

follows that cx � c

0

is not facet inducing.

We conjecture that the two necessary conditions are together su�cient for a biparti-

tion inequality to be facet inducing.

Conjecture 4.5 Let cx � c

0

be a k-bipartition inequality having no complementary han-

dle or tooth. Then cx � c

0

is facet-inducing for P

k

if and only if it has no degenerate

cut and it is not dominated by a non-negativity inequality.

In the next section we prove this conjecture for k = 3. In the process, we show that

the second necessary condition can be checked e�ciently.

5 Facet-inducing bipartition inequalities for k = 3

In this section we characterize the 3-bipartition inequalities that induce facets of P

3

. In

fact, we prove Conjecture 4.5 for the case when k = 3.

Theorem 5.1 Let cx � c

0

be a 3-bipartition inequality having no complementary handle

or tooth. Then cx � c

0

is facet-inducing for P

3

if and only if it has no degenerate cut

and it is not dominated by a non-negativity inequality.

It is not at all obvious that the above characterization is a good one, in that it is not

clear how easy it is to see that a given 3-bipartition inequality is not dominated by a non-

negativity inequality. We are going to show that this property is equivalent to a matching

condition in a certain bipartite graph. This is Theorem 5.3 below. Theorem 5.3 not only

shows that Theorem 5.1 is a good characterization; it also is essential in its proof.

For the remainder of this section cx � c

0

denotes a 3-bipartition inequality. The

condition that cx � c

0

is not dominated by a non-negativity inequality is equivalent to

the condition that, for every edge e; there is a c-tight factor using e. As a preliminary to

�nding a condition for this, let us consider the problem of determining whether there is a

c-tight factor at all. (In other words, is the inequality supporting, that is, does it induce

a non-empty face?) We have a necessary condition from the results of Section 3. Let T

17



be a (degenerate) tooth meeting three handles. If there exists a c-tight factor, then by

Lemma 3.4, there is a one, x, that saturates T . Therefore, there is a handle H meeting

T for which x(H \ T : TnH) � 2. We will say in this case that T occupies H (with

respect to x). It follows from Theorem 3.6 that no other tooth can occupy H. Therefore,

the number of teeth meeting three handles cannot exceed the number of handles. (As an

example of a 3-bipartition inequality that cannot be supporting because it violates this

condition, consider the one having three handles of size �ve, and �ve teeth of size three,

such that each tooth intersects each handle in a single node.) More generally, there must

be an injection from the set of such teeth to the set of all handles so that each such tooth

is mapped to a handle that it meets. This condition can be described in terms of the

existence of a matching in a bipartite graph, where there is a node for each handle and

a node for each tooth meeting three handles, and adjacency corresponds to non-empty

intersection.

The above necessary condition for a bipartition inequality to be supporting is almost

su�cient, but it needs to be amended to handle some exceptions. To give one example of

such an exception, consider the bipartition inequality having three handles of size three

and three teeth of size three, such that each tooth meets each handle in exactly one node,

and there are ten nodes in total. Here we see that the matching condition is satis�ed; in

fact, if there were nine nodes only, the inequality would be supporting. However, there

must be a subtour through the node that is in no handle, and this makes it impossible

to obtain a tight factor. Notice that this di�culty persists if there are one, two, or three

nodes not in any handle, but disappears if there are four or more. We can deal with the

exceptions by modifying the de�nition of the bipartite graph mentioned above.

Given the bipartition inequality cx � c

0

, let n

T

denote the number of pendent teeth,

and let n

0

denote the number of isolated nodes, that is, nodes in no handle or tooth, let

V

H

denote fH

i

: 1 � i � hg, let

S =

8

>

>

>

<

>

>

>

:

fv; v

0

g; if n

T

= 0 and jV

H

j � 2 with 1 � n

0

� 3;

fvg; if n

T

= 1 and jV

H

j � 2;

;; otherwise,

and let V

T

denote fT

j

: d

j

= 3g [ S. We de�ne the graph G(c) to have nodeset V

H

[ V

T

,

with node H

i

adjacent to a node T

j

if and only if H

i

\ T

j

6= ; and every node of S

18



adjacent to every handle node H

i

: (There are no other adjacencies.) Note that G(c)

is bipartite with bipartition fV

H

; V

T

g. In particular, no matching of G(c) can have

cardinality larger than V

T

. Whether this bound is tight or not determines whether the

inequality is supporting. (We remark that it is easy to check that every bipartition

inequality having fewer than two handles is supporting.)

Theorem 5.2 Let cx � c

0

be a 3-bipartition inequality having at least two handles. Then

cx � c

0

is supporting for P

3

if and only if there exists a matching in G(c) of cardinality

jV

T

j.

A 3-bipartition inequality is not dominated by a non-negativity inequality if and only

if for every edge, there is a tight factor using the edge. Therefore, it should not be too

surprising that a further re�nement of the matching approach allows us to characterize

such inequalities. We state this result next. (Notice that it does provide the promised

good characterization, and hence shows that Theorem 5.1 is also a good characteriza-

tion.) In fact, we will not actually prove Theorem 5.2, since we do not need it, and its

proof is similar to the proof of Theorem 5.3. (Again, it is easy to check that a biparti-

tion inequality having fewer than two handles cannot be dominated by a non-negativity

inequality.)

Theorem 5.3 The 3-bipartition inequality cx � c

0

is not dominated by a non-negativity

inequality if and only if there exists a matching of cardinality jV

T

j in G(c)nfH

i

;H

l

g for

every pair of nodes H

i

;H

l

in V

H

.

The proof of this theorem requires some technical ideas that will also be useful later.

A node v is a tip of cx � c

0

if it is in a tooth but in no handle. A factor x

�

is said to

strongly saturate a tooth T

j

of cx � c

0

if it saturates T

j

and, if d

j

= 2, T

j

= fp; q; rg,

and q is a tip, then x

�

pq

= x

�

qr

= 1. A factor is special if it is c-tight, simple, and strongly

saturates every tooth.

Lemma 5.4 Let cx � c

0

be a supporting 3-bipartition inequality, and let x

�

be a c-tight

simple factor. Let

~

E = fe 2 E : c

e

= 0 and e is not incident to any tip g: Then there

exists a special factor ~x such that for all e 2

~

E, ~x

e

= 1 whenever x

�

e

= 1.
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Proof: Let x

�

be a c-tight simple factor. Suppose that there exists a tooth T not strongly

saturated by x

�

. Let d be the number of handles intersected by T . We demonstrate below

how a new c-tight simple factor x̂ can be constructed from x

�

such that the new factor

satis�es x̂

e

= 1 for all e 2

~

E with x

�

e

= 1 and strongly saturates T as well as all teeth that

are strongly saturated by x

�

. By repeating this process, we can construct ~x, as required.

We distinguish four cases:

Case 1. d = 1. Then there exists a tip u 2 T such that x

�

contains e = uv with c

e

= 0.

Applying 2OPT with respect to T , we obtain x̂ from x

�

by replacing e and another edge

e

0

2 E(H) (since otherwise c

e

0

> 0 implies cx̂ > c

0

), where H intersects T , with an edge

in E(T

j

) and some other edge, as required.

Case 2. d = 2. Let r 2 H

1

\ T and r

0

2 H

2

\ T . If T is degenerate, then c

rr

0

= 2.

Applying 2OPT with respect to T , we obtain x̂ from x

�

by replacing some edges rv and

r

0

v

0

in x

�

with rr

0

and vv

0

. Since cx̂ � c

0

, we must have c

rv

= c

rv

0

= 1 and c

vv

0

= 0, and

the required x̂ is obtained.

Now consider T = fr; w; r

0

g with a tip w, and consider the subcases:

Case 2a. If x

�

satis�es x

�

rr

0

= x

�

rw

= 1, then we have some q 62 T with x

�

wq

= 1, and

replacing rr

0

and wq with wr

0

and qr yields the desired x̂.

Case 2b. If x

�

rr

0

= 1 and x

�

rw

= x

�

wr

0

= 0, then applying 2OPT results in a factor

violating cx � c

0

, a contradiction.

Case 2c. If x

�

rw

= 1 and x

�

rr

0

= x

�

wr

0

= 0, then applying 2OPT with respect to T gives

the desired x̂.

Case 2d. If x

�

rw

= x

�

rr

0

= x

�

wr

0

= 0, then applying 2OPT with respect to T yields a new

factor. Set the new factor to be x

�

, and we are in the Case 2c.

Case 3. d = 3. Let r

i

2 H

i

\ T , i = 1; 2; 3. So by Theorem 3.6 x

�

e

= 0 for e 2 E(T ).

First, let C

i

be the subtour in x

�

that contains v

i

r

i

and r

i

s

i

, and 2k

i

+ 1 be the

number of teeth intersectingH

i

. By Theorem 3.7, at least one of c

v

i

r

i

and c

r

i

s

i

is positive.

Further, since x

�

is simple, either c

v

i

r

i

= 0 or c

r

i

s

i

= 0 implies by (a) of Theorem 3.7 that

jfe 2 �(H) : x

�

e

> 0 < c

e

gj = 2k

i

+1, which is impossible, since x

�

(T ) = 0. So v

i

; s

i

2 H

i

.

Next, let v

0

v

i

; s

0

s

i

2 C

i

. Here we may assume without loss of generality that there

exist no four distinct nodes u; v; s; r in any handle H such that c

uv

= c

sr

= 1, and

uv and sr belong to di�erent subtours in x

�

. (If this is the case, then replace uv and
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sr by us and vs, and call the new factor x

�

.) So all edges in E(H

i

) covered by x

�

belong to C

i

. Notice that if jC

i

j = 4, then v

0

= s

0

, and by Theorem 3.7, all edges

of C

i

are in E(H

i

) and C

i

contains no nodes in any tooth except r

i

. It follows that

jC

i

j = x

�

(H

i

) = jH

i

j � k

i

� 2k

i

+ 1 + 3 � k

i

� 5, a contradiction.

Since jC

i

j � 5 for i = 1; 2; 3, the required ~x can be constructed by replacing v

1

r

1

; r

1

s

1

;

v

2

r

2

; r

2

s

2

; v

3

r

3

with v

1

s

1

; v

2

s

2

; r

1

r

2

; r

2

r

3

; r

1

v

3

.

The proof is complete.

We are now able to prove that the matching condition of Theorem 5.3 is necessary.

Proof of necessity in Theorem 5.3. Let H

i

and H

l

be handles. Let v

i

2 H

i

\ T

j

and

v

l

2 H

l

\ T

p

be a pair of nodes satisfying c

v

i

v

l

= 0. Since cx � c

0

is not dominated by a

non-negativity inequality, there exists a c-tight factor x

�

such that x

�

v

i

v

l

= 1. Moreover,

since v

i

v

l

2

~

E, by Lemma 5.4, there exists a special factor ~x with ~x

v

i

v

l

= 1. This implies

that no degenerate tooth can occupyH

i

or H

l

and subtour C

0

of ~x containing any isolated

node or a tip cannot contain a node in H

i

or H

l

. (Otherwise by Theorem 3.7, ~x is not

c-tight.) Now we construct a matching M in G(c)nfH

i

;H

l

g.

We begin with M = ;. For every degenerate tooth T

j

that occupies a handle H

i

in ~x, we put the corresponding edge (T

j

;H

i

) into M . As observed above, M remains a

matching. If S = ;, we are done. So we just have to handle the two special cases.

Case 1. n

T

= 0 and jV

H

j � 2 with 1 � n

0

� 3:

Let C

0

be a subtour of ~x containing at least one isolated node. Since n

0

� 3; ~x is

special, and n

T

= 0, C

0

must contain at least one node from some handle H

i

. we have

c

e

= 0 for every edge e of C

0

in �(H

i

). If H

i

is the only handle having a node in C

0

,

then ~x uses two edges in �(H

i

) for which c

e

= 0, and by Theorem 3.7, ~x is not c-tight,

a contradiction. So C

0

visits two handles, say H

1

, H

2

, that are not occupied by any

degenerate tooth T

j

. (For otherwise we can show by Theorem 3.7 that ~x is not c-tight.)

We add the two edges (v;H

1

); (v

0

;H

2

) to M , where fv; v

0

g = S.

Case 2. n

T

= 1 and jV

H

j � 2.

Let T

1

= fv

1

; t

1

g be the pendent tooth with tip t

1

and v

1

2 H

i

. Let C

0

be the subtour

of

~

C containing v

1

t

1

. Clearly, C

0

has to meet one handle H

l

, possibly l = i, that is not

occupied by any other degenerate tooth. (Isolated nodes, if any, can also be visited by

C

0

. So we set jSj = 1.) Add the edge (v;H

l

) to M , where fvg = S.
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The following construction, called the C-construction, will be useful in the sequel.

Let M be a matching of G(c) of cardinality jV

T

j. For each tooth T

j

, construct a path P

j

of length jT

j

j � 1 in T

j

such that

(i) If T

j

intersects a handle H

i

in two nodes r; s, then rs is an edge of P

j

;

(ii) P

j

enters and leaves a handle H

i

if and only if H

i

T

j

2M .

Then for each handle H

i

, there are 2k

i

+ 1 paths of G(V;C) visiting H

i

, and at least 2k

i

of them have an end in H

i

. Choose 2k

i

such nodes and k

i

paths Q

i`

joining them in pairs,

so that every node of H

i

not in any P

j

is in exactly one of these paths. De�ne the set C

to be the union of the edge sets of all of the P

j

and all of the Q

i`

. Note that G(V;C) has

no vertex of degree more than two, it has a node of degree 1 in each handle not covered

by M , and jC \ E(H

i

)j = jH

i

j � k

i

� 1 for each handle H

i

. Also,

c(C) =

h

X

i=1

(jH

i

j � k

i

� 1) +

t

X

j=1

(jT

j

j � 1) +

t+m

X

j=t+1

d

j

d

j

� 1

(jT

j

j � 1)

=

h

X

i=1

(jH

i

j � k

i

� 1) +

t+m

X

j=1

d

j

+

t

X

j=1

(jT

j

j � d

j

� 1) +

t+m

X

j=t+1

d

j

d

j

� 1

(jT

j

j � d

j

)

=

h

X

i=1

jH

i

j+

h

X

i=1

k

i

+

t

X

j=1

(jT

j

j � d

j

� 1) +

t+m

X

j=t+1

d

j

d

j

� 1

(jT

j

j � d

j

):

This construction allows us to construct (many) special factors. In particular, if

G(c)nfH

p

;H

q

g has a matching of cardinality jV

T

j, then G(V;C) will have a node of

degree 1 in each of H

p

;H

q

. This allows us to add edges to C to form a special factor.

Besides the exibility in the choice of p; q, there may be exibility in the choice of the

paths P

j

, of the 2k

i

nodes in H

i

for each i, and of the Q

i`

. We use this construction

repeatedly to prove both Theorem 5.3 and Theorem 5.1.

Proof of Theorem 5.3. We have already proved the necessity of the matching condition.

For su�ciency, we need to show that for any edge uv, there exists a tight factor using

uv. For many choices of uv, this is easy.

If uv 2 E(H

i

) for some i, we �rst choose M so that H

i

is not covered. Then it is easy

to ensure that uv is an edge of some P

j

or some Q

i`

.

If uv 2 E(T

j

) for some j, then it is easy to ensure that uv 2 P

j

, with two exceptions.

In the �rst exceptional case, d

j

= 2. Say that T

j

= fu; v; wg, and H

i

is the handle
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containing v. We choose M so that H

i

is not covered. Then P

j

will use uv. In the second

exceptional case, T

j

= fu; v; wg, with w a tip, u 2 H

i

and v 2 H

m

. Then we choose M

so that H

i

is not covered, and choose the Q

i`

so that u has degree one in G(V;C). Then

the special factor resulting contains vw;wu and an edge us such that c

us

= 0. Replacing

vw and us by uv and ws gives the required tight factor. (It is not special.)

If c

uv

= 0 it is easy in most cases to construct C so that u; v both have degree one

or zero in G(V;C). We treat only the cases where it is not. One case is where u, say,

is a node of some handle H

i

but of no tooth. We choose M so that H

i

is not covered,

and construct C. Then u is incident with two edges su; ur of C and there is a w 2 H

i

incident to just one edge of C. We replace su; ur in C by sr; wu. The other case is where

u, say, is a tip of a tooth T

j

= fu; a; bg with a 2 H

i

and b 2 H

m

. We choose M so that

H

m

is not covered, and choose the Q

i`

so that b has degree one in G(V;C). Then we

replace ub by ab in C. Notice that we can apply these last techniques independently for

either of u or v, since we can choose M to miss any two handles.

We are now ready to prove the main result of this section, Theorem 5.1. Since the

necessity of the conditions follows from Theorem 4.1, Lemma 4.4, and Theorem 5.3, we

need to prove su�ciency. We consider only the case where the number h of handles

de�ning cx � c

0

is more than 1, for otherwise cx � c

0

is an SE constraint or a comb

inequality, and hence the theorem holds by the well known polyhedral results for the

travelling salesman polytope P

n

. Since cx � c

0

is not dominated by a non-negativity

inequality, by Theorem 5.3, there exists a matching of cardinality jV

T

j missing any two

handles H

p

;H

q

. We will use these matchings and the C-construction to obtain tight

factors containing speci�c edges.

Since there are at least two handles and no degenerate cut, there exist handles H and

H

0

and a tooth T such that T = fr; w; r

0

g, T \H = frg, and T \H

0

= fr

0

g. Let T

0

be a

tooth di�erent from T that intersectsH

0

, and let s

0

2 H

0

\T

0

. Note that T

0

may intersect

H. Let T

00

be a tooth di�erent from T that intersects H. Figure 4 gives a picture of the

situation, but it is not completely general. Choose a node s 2 H \T

00

. We de�ne B to be

frs

0

; r

0

s; ss

0

g [ fwv : v 2 V nfr; r

0

gg. Thus, B forms a basis and c

e

= 0 for all e 2 B. Let

fx � f

0

be a facet-inducing inequality that dominates cx � c

0

with f

e

= 0 for all e 2 B.

Let � = f

rr

0

. We successively derive all values of f

e

by comparing tight factors, that is,
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Figure 4: Proving su�ciency.

given tight factors x; x

0

, using the fact that 0 = cx � cx

0

= fx � fx

0

to derive values

for the f

e

. For a factor x, x4 (e

1

; : : : ; e

l

; e

0

1

; : : : ; e

0

l

) denotes the factor obtained from x

by replacing edges e

1

; : : : ; e

l

with e

0

1

; : : : ; e

0

l

. (That is, we take the symmetric di�erence

of the factor x and the edge set fe

1

; : : : ; e

l

; e

0

1

; : : : ; e

0

l

g, but our notation makes explicit

which edges are in and not in x.)

Claim 5.5 f

e

= � for all e 2 E(T ).

Proof: It is easy to arrange in the C-construction for C to contain rw and wr

0

and for

r and s

0

to be incident with exactly one edge of C. Therefore, there is a tight factor x

using rw; wr

0

; and rs

0

. Comparing x with the tight factor x4 (rs

0

; wr

0

; rr

0

; ws

0

) gives

f

wr

0

= �. Similarly, we have f

wr

= �, and f

rr

0

= � by de�nition.

Claim 5.6 f

e

= 0 for all e 2 �(T ) with c

e

= 0.

Proof: For any node u such that c

ur

= 0, it is easy to arrange in the C-construction

for C to contain rw and wr

0

, and for u and r to be incident with at most one edge from

C. Thus there is a tight factor x using rw, wr

0

, and ur. Comparing x with the tight

factor x4 (ru;wr

0

; rr

0

; wu) gives f

ru

= 0. Similarly, for each u such that c

r

0

u

= 0, we

have f

r

0

u

= 0. Finally, for every u such that c

wu

= 0, we have f

wu

= 0 by de�nition.

Claim 5.7 If e 2 E(H) [ E(H

0

) with c

e

= 1, then f

e

= �.
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Proof: As before, we can construct a tight factor x using ss

0

; rw;wr

0

. Notice that x

0

=

x4 (ss

0

; rw;ws

0

; rs) is also a factor, since by Theorem 3.7, x contains edges su 2 E(T

00

)

and s

0

u

0

2 E(T

0

), but neither ur nor s

0

r

0

. So, comparing x and x

0

yields f

rs

= �:

Next, consider any pair of nodes u; v 2 H n frg. We can construct a tight factor x

using uv; rs

0

; rw;wr

0

. (The C-construction will automatically use the last two edges, and

we can arrange that uv is in some Q

i`

, and that r and s

0

be incident to exactly one edge of

C.) Observe that x

0

= x4 (uv;wr; rs

0

;ur; vr; ws

0

) and x

00

= x4 (uv; rs

0

; wr

0

; vr;wu; r

0

s

0

)

are also tight factors, and thus comparing x

0

and x

00

yields f

ur

= f

r

0

s

0

. So we can derive

that f

r

0

s

0

= f

ur

= f

rs

= � for all u 2 H n frg. Now comparing x and x

0

gives f

uv

= �. It

follows that f

e

= � for all e 2 E(H) with c

e

= 1. By symmetry, f

e

= � for all e 2 E(H

0

)

with c

e

= 1.

Claim 5.8 If e 2 �(H) [ �(H

0

) with c

e

= 0, then f

e

= 0.

Proof: By Claim 5.6 and the symmetry between H and H

0

, we need only consider

e = uv with v 2 H and fu; vg \ T = ;. Suppose that there exists a tight factor x that

uses uv; qr; rw;wr

0

for some q 2 H, and moreover, uses edges qq

0

and vv

0

, where q

0

; v

0

are distinct and di�erent from q; v; r. Then x4 (uv; qr; qv; ur) is also a tight factor, and

by Claims 5.5, 5.6, and 5.7, comparing it with x shows f

uv

= 0. Now we explain how to

construct x.

If v is contained in some other tooth, then by Theorem 3.7, a tight factor x containing

uv; rw;wr

0

satis�es the desired property and such an x is easily constructed using the

C-construction.

If v is in no tooth, let x

0

be a special factor containing uu

0

for some u

0

2 H \

^

T with

c

uu

0

= 0. Then let v : : : v

l

be a path of all nodes in H that are not covered by any tooth

(v

l

may be v itself), and the required x can be contructed from x

0

by inserting v : : : v

l

between uu

0

in x

0

and removing those nodes from other positions in x

0

.

Now suppose that T

0

is intersected by another handle H

00

with fs

00

g = T

0

\H

00

and w

0

is

a tip in T

0

.

Claim 5.9 There exists some scalar �

0

such that f

e

= �

0

for e 2 E(T

0

);
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Proof: Let �

0

= f

s

0

s

00

. By the C-construction, we obtain a special factor x containing

rs

0

; s

0

w

0

; w

0

s

00

. Comparing x with x4 (rs

0

; w

0

s

00

; rw

0

; s

0

s

00

) implies by Claim 5.6 f

w

0

s

00

=

�

0

. Similarly, let x be a special factor containing r

0

s

00

; s

0

w

0

; w

0

s

00

; comparing x with

x4 (r

0

s

00

; w

0

s

0

; r

0

w

0

; s

0

s

00

) implies f

w

0

s

0

= �

0

.

Claim 5.10 f

e

= 0 for all e 2 �(T

0

) with c

e

= 0.

Proof: By Claims 5.5-5.8 we only need to consider edges e = uv with c

uv

= 0, v 2

fw

0

; s

00

g and u 62 T [H [H

0

. Let x be a special factor containing us

0

; s

0

w

0

; w

0

s

00

. Using

Claim 5.9, comparing x with x 4 (us

0

; w

0

s

00

;uw

0

; s

0

s

00

) yields f

uw

0

= f

us

0

= 0. Now

consider us

00

. Since c

us

00

= 0, u =2 H

00

. Let x

0

be a special factor containing us

00

; s

00

w

0

; w

0

s

0

;

comparing x

0

with x

0

4 (us

00

; w

0

s

0

;uw

0

; s

0

s

00

) shows f

us

00

= f

uw

0

= 0.

Now, notice that f

e

's for e 2 E(T

0

) [ �(T

0

) are proportional to those for e 2 E(T ) [

�(T ), and so we can apply Claim 5.7 with respect to T

0

. It follows that � = �

0

. Since

cx � c

0

has no degenerate cut, by repeated applications of Claims 5.6{5.10, we derive

that for any handle

^

H and any nondegenerate nonpendent tooth

^

T ,

f

e

= �; 8e 2 E(

^

H) [ E(

^

T ) with c

e

= 1, and

f

e

= 0, 8e 2 �(

^

H) [ �(

^

T) with c

e

= 0.

The above properties of f are used implicitly in the sequel.

Let

~

T be any pendent tooth intersecting some handle

~

H, and u 2

~

T nH

0

.

Claim 5.11 f

e

= �c

e

for e 2 E(

~

T ).

Proof: We may assume without loss of generality that H

0

=

~

H. Suppose fvg =

~

T \H

0

.

Then let x be the special factor containing vr; rw;wr

0

and r

0

v

0

. Clearly, if jT j = 2, x

contains uv. For j

~

T j = 3, let q 2

~

T nH

0

, and we may assume that this x contains qu, uv.

Comparing x with x4 (vr; uv; r

0

v

0

;ur; r

0

v; vv

0

) implies f

uv

= �. If j

~

T j = 3, by symmetry,

we derive f

qv

= �. Then comparing x with x4 (vr; uq;ur; vq) yields f

uq

= �.

Now suppose that fv; qg =

~

T \ H

0

. First, let x be a special factor containing

rv; rw;wr

0

; vq; qu and r

0

v

0

2 E(H

0

). So comparing x with x4 (rv; qu; r

0

v

0

; ru; r

0

v; qv

0

)

implies f

uq

= �. By symmetry f

uv

= �. Next, observe that there exists a special factor

x

0

containing r

0

u; rw;wr

0

; vq; qu, and x

0

must contain vv

0

for some v

0

2 H

0

. Comparing

x

0

with x

0

4 (ur

0

; vq;uv; qr

0

) implies f

vq

= 2�.
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Claim 5.12 f

e

= 0 for e = uu

0

with u

0

in any pendent tooth di�erent from

~

T .

Proof: If u

0

is contained in a handle, then f

uu

0

= 0 by previous derivations. So suppose

that u

0

is contained in no handle. If

^

T is the tooth containing u

0

, then there exists a special

factor x

0

containing u

0

v; u

0

u

00

; r

0

w;wr; v

0

r

0

, where u

0

u

00

2 E(

^

T ), v 2 H

0

\

~

T and v

0

2 H

0

. If

x contains uu

00

, then comparing x with x4 (u

0

v; uu

00

;uu

0

; vu

00

) shows f

uu

0

= 0. Otherwise

we have two cases. First, if

~

T \H

0

= fvg, then assume that x contains uv, and comparing

x with x4 (u

0

v; uv; r

0

v

0

;uu

0

; vr

0

; vv

0

) gives f

uu

0

= 0. Second, if

~

T \fv; qg, we may assume

that x contains vq; uq, and then comparing x with x4 (u

0

v; uq; r

0

v

0

;uu

0

; vr

0

; qv

0

) yields

f

uu

0

= 0.

Claim 5.13 For any degenerate tooth

~

T , f

e

= �c

e

for all e 2 E(

~

T ).

Proof: First, suppose that

~

T intersects two handles H

1

and H

2

with u

i

2 H

i

\

~

T ,

i = 1; 2. Assume without loss of generality that H = H

1

since each handle inter-

sects a nondegenerate tooth that connects two handles. There exists a special factor x

containing ru

2

; rw;wr

0

, and some edge u

0

v

0

2 E(H

2

). For j

~

T j = 2, comparing x with

x4(ru

2

; u

0

v

0

; u

1

u

2

; ru

1

; u

0

u

2

; v

0

u

2

) yields f

u

1

u

2

= 2�: For j

~

T j = 3, we may assume without

loss of generality that fu

2

; qg =

~

T \H

2

. The factor x then contains u

2

q; qu

1

. Comparing

x and x 4 (ru

2

; qu

1

; u

0

v

0

; ru

1

; u

0

u

2

; v

0

q) implies f

u

1

q

= 2�. By symmetry, f

u

1

u

2

= 2�.

Finally, let q

0

2 H

2

\

^

T with

^

T 6=

~

T , and x

0

be a special factor containing u

1

q

0

. So x

0

contains u

1

q; qu

2

. Comparing x

0

with x

0

4 (u

1

q

0

; u

2

q;u

1

u

2

; qq

0

) yields f

qu

2

= 3�:

Second, suppose that T intersects three handles, say H

1

;H

2

;H

3

, and let r

i

2 H

i

\

~

T ,

i = 1; 2; 3. By the C-construction, there exists a special tight factor x containing

v

1

r

2

; r

2

r

3

; r

3

r

1

; r

1

s

1

where v

1

; s

1

2 H

1

, and v

1

and s

1

are each contained in teeth. Further-

more, there exist nodes v

2

; s

2

2 H

2

and v

3

; s

3

2 H

3

such that x contains v

2

s

2

and v

3

s

3

.

Since x is special, then x

�

= x4 (v

1

r

2

; r

2

r

3

; r

3

r

1

; v

2

s

2

; v

3

s

3

; v

1

r

1

; v

2

r

2

; r

2

s

2

; v

3

r

3

; r

3

s

3

) is

a tight factor. Comparing x with x

�

implies f

r

1

r

3

+ f

r

2

r

3

= 3�. By symmetry, we have

f

r

1

r

2

+ f

r

2

r

3

= f

r

2

r

1

+ f

r

3

r

1

= 3�. It follows that f

e

=

3

2

� for e 2 E(

~

T ).

Let V

0

be the collection of all nodes not contained in any handle or tooth, and T

0

be

the collection of all nodes contained in some pendent tooth but in no handle.

Claim 5.14 f

e

= 0 for all e 2 E(V

0

) [ E(V

0

: T

0

).
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Proof: Let x be a special factor containing rs

0

. (Recall r 2 H \ T , s

0

2 H

0

\ T

0

.) For

any uv 2 E(V

0

), if x contains uv, let x

�

= x. Otherwise let x

�

be obtained from x by

applying 2OPT with respect to S = fu; vg. So x

�

is a special factor containing rs

0

, uv.

Now observe that either x

�

4 (uv; rs

0

;ur; vs

0

) or x

�

4 (uv; rs

0

;us

0

; vr) is a tight factor,

and comparing the resulting factor with x

�

yields f

uv

= 0.

Next, consider any u 2 V

0

and v 2 T

0

. Assume that v is contained in pendent tooth

^

T , and v

0

2

^

T \H

0

. We distinguish the following two cases:

CASE 1: If

^

T is the only pendent tooth, let x be a special factor containing vr

0

; r

0

w;wr

and vv

0

with v

0

2 H

0

\

^

T . Thus we may assume that x contains some uu

0

with u

0

in some

handle, and hence f

uu

0

= 0. Further, note that x4 (uu

0

; vr

0

; vv

0

; v

0

r

0

; uv; vu

0

) is a tight

factor, and so comparing it with x implies f

uv

= 0.

CASE 2: Let T

00

be another pendent tooth, and v

00

2 T

00

\ H

00

. Let x be a special

factor containing v

0

v

00

. Set x

�

= x if x contains uv. If not, let x contain vq with

c

vq

= f

vq

= 0, and replace vq with some subpath containing u to obtain x

�

containing

uv. Now comparing x

�

with x

�

4 (uv; v

0

v

00

;uv

0

; vv

00

) shows f

uv

= 0.

Combining the above lemmas, we have f

e

= �c

e

for all e 2 E. It follows that cx � c

0

induces a facet.

6 Another facet

Since the problem of existence of a restricted factor is solvable in polynomial time when

k = 3, we may hope that the optimal restricted factor problem is solvable in this case.

Hence, we may hope that one could �nd a complete description by linear inequalities

for P

3

. A natural �rst candidate for such a description is the set of all degree, non-

negativity, and 3-bipartition constraints. However, this list is not su�cient in general.

Consider the inequality cx � c

0

indicated in Figure 5, where numbers on edges are

coe�cients, missing edges have coe�cient zero and the right-hand side is 16. Let us �rst

explain where this inequality comes from. There is a 3-bipartition inequality dx � d

0

having the same support, having three handles, and four degenerate teeth, one of size

three and the others of size two. This inequality has a degenerate cut, and so is not

facet-inducing by Theorem 4.1. In fact, the proof of that result allows us to identify a
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comb inequality px � p

0

inducing a facet that properly contains the face F of P3(9)

induced by dx � d

0

. Of course, there must be other inequalities inducing faces properly

containing F . One of them can be obtained as follows. Consider the inequalityqx � q

0

de�ned to be dx � �px � d

0

� �p

0

, where � is chosen as large as possible so that it is

valid for P

3

(9). Then qx � q

0

is equivalent to the inequality of Figure 5.

Proposition 6.1 The inequality cx � c

0

of Figure 5 is facet-inducing for P

3

(9), and is

not equivalent to any non-negativity or bipartition inequality.

The proof of this result is elementary, but not particularly short or illuminating, so it

is not included here. It is not at all clear to us what class of inequalities this one might

belong to, so we have no conjecture as to a complete description for P

3

(n).
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Figure 5: Another facet for P

3

.
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