
Parallel Algorithms

for MD-Simulations of Synthetic

Polymers

�

Bernd Jung

Editorial o�ce \Macromolecular Chemistry and Physics"

Hegelstr. 45

D-55122 Mainz, Germany

Hans{Peter Lenhof Peter M�uller Christine R�ub

Max-Planck-Institut f�ur Informatik

D-66123 Saarbr�ucken, Germany

February 14, 1997

Abstract

Molecular dynamics simulation has become an important tool for test-

ing and developing hypotheses about chemical and physical processes.

Since the required amount of computing power is tremendous, there is

a strong interest in parallel algorithms. We deal with e�cient algorithms

on MIMD computers for a special class of macromolecules, namely syn-

thetic polymers, which play a very important role in industry. This makes

it worthwhile to design fast parallel algorithms speci�cally for them. Con-

trary to existing parallel algorithms, our algorithms take the structure of

synthetic polymers into account which allows faster simulation of their

dynamics.

�

This work is supported by the DFG{Schwerpunktprogramm \E�ziente Algorithmen

f�ur diskrete Probleme und ihre Anwendungen", grant LE 952/1{1

1

Contents

1 Introduction 4

1.1 What is a polymer ? . 5

1.2 Parallel MD simulations for biopolymers 5

1.3 Parallel MD simulations for synthetic polymers 6

2 The basics of MD simulations 7

2.1 Classical MD simulation . 7

2.2 Langevin{Dynamics simulation 9

2.3 Acceleration techniques . 10

2.3.1 Cuto� radius . 10

2.3.2 Neighbour{lists . 10

2.3.3 Multiple{time{step method 10

2.3.4 Linked cells . 11

3 A sequential MD simulation algorithm for synthetic polymers 11

3.1 Simulation model . 11

3.2 The algorithm . 12

4 A parallel MD simulation algorithm 13

4.1 Machine model . 13

4.2 The algorithm . 14

4.2.1 Interactions between static pairs 14

4.2.2 Interactions between dynamic pairs 17

5 Some simulation results 20

6 Future work 23

2

List of Figures

20 Di�usion coe�cient, 40 C{atoms, good-solvent condition 23

1 Backbone representation of a protein 24

2 Backbone representation of a polymer 25

3 Basic structure of MD simulations 26

4 linked cell method in two dimensions 27

5 Dynamic pairs . 28

6 Subdivision into chain segment 29

7 Border atoms . 29

8 Speedup for static pairs . 29

9 Speedup for static and dynamic pairs 30

10 End{to{end distance, 40 C{atoms, �{condition 30

11 End{to{end distance, 80 C{atoms, �{condition 31

12 End{to{end distance, 40 C{atoms, good{solvent condition 31

13 End{to{end distance, 80 C{atoms, good{solvent condition 32

14 Mean square displacement, 40 C{atoms, �{condition 32

15 Mean square displacement, 80 C{atoms, �{condition 33

16 Di�usion coe�cient, 40 C{atoms, �{condition 33

17 Di�usion coe�cient, 80 C{atoms, �{condition 34

18 Mean square displacement, 40 C{atoms, good{solvent condition . 34

List of Tables

1 Static pairs only, iPSC/860 . 16

2 Static pairs only, Paragon XP/S 17

3 Static and dynamic pairs, iPSC/860 19

4 Static and dynamic pairs, Paragon XP/S 19

3

1 Introduction

With the advent of fast and a�ordable digital computers, a new tool for test-

ing and developing hypotheses about chemical and physical processes became

available: the technique of molecular dynamics simulation.

In a molecular dynamics (MD) simulation, the motions of all atoms of a given

molecular system are simulated using classical mechanics. Given the atomic

coordinates and velocities at time t��t and t, the atoms' new positions at time

t+�t are calculated by numerically integrating Newton's equation of motion (for

more details, see Section 2).

The core of every MD simulation is the so-called force �eld, a set of analytical

expressions that describes the potential energy in the molecular system. A great

deal of work has been put into the development and improvement of such force

�elds for di�erent kinds of molecules as their quality determines a simulation's

usefulness. Therefore, MD simulations are not only used to predict properties

that are not accessible by direct measurement but also to explain already known

properties, thus improving knowledge and theory on the molecular and atomic

level.

Today's main problem with MD simulations is the massive amount of com-

puting power which is necessary to simulate molecular systems during a desired

period of up to one second. As the above mentioned time step �t is tiny (of

the order of 10

�15

s) compared to the typical simulation periods, a tremendous

number of work-intensive iterations has to be carried out. In many cases and

especially when dealing with large molecules (thousands of atoms), this is far

beyond the frontiers of today's sequential computer technology. For this rea-

son, parallel algorithms for MD simulations have become one of the most active

research �elds in computational chemistry and physics.

We concentrate our work on parallel MD{simulations for a special class of

molecules that play a major role in industry: synthetic polymers. Despite their

importance, there are no parallel algorithms which have been especially adapted

to them. Most simulations are done with algorithms which have been designed

for biopolymers. Our approach makes better use of the structure of synthetic

polymers which allows faster simulation of their dynamics.

The outline of this report is as follows. First, a short introduction to poly-

mers and biopolymers is given and it will become clear that due to their di�erent

chemical and physical properties, di�erent simulation algorithms should be used

for these two types of macromolecules. Then, the basic ideas of molecular dynam-

ics simulations are presented. In the following chapter, a sequential algorithm is

described whose key ideas and techniques will also be employed in our parallel

algorithm. Finally, some simulation results are given.

4

1.1 What is a polymer ?

In general a polymer is a substance whose single molecules are very big, i.e.,

containing hundreds and thousands of atoms, and consist of many basic units

(the monomers) that are linked to form long chains. There are quite a few pos-

sibilities for categorizing polymers; a fundamental one is the distinction between

biopolymers and synthetic polymers.

Figure 1: Backbone

1

representation of a protein.

Biopolymers are a class of naturally occuring molecules like proteins, DNA,

RNA, polysaccharides or natural rubber. One molecule usually consists of many

di�erent types of monomers, e.g., in the case of proteins, these basic units are

the amino acids. As proteins are the dominating biopolymers in publications,

1

A backbone shows just the principal structure of a molecule by omitting details like single

atoms, side groups, etc.

5

\biopolymer" is used synonymously with \protein" and we will also observe this

convention. The typical 3D structure (the conformation) of a biopolymer is rather

compact and a so-called \collapsed coil"(see Figure 1).

As its name already reveals, a synthetic polymer cannot be found in nature. It

is produced in laboratories and chemical plants in a process called polymerization

where monomers are prompted to link. Typically, a synthetic polymer consists

of just a few types of monomers and often just one. Synthetic polymers are the

base of all varieties of plastic (e.g., polyethylene, PVC, nylon, polyester) and

therefore, many chemists simply call them \plastics". A single molecule of a

synthetic polymer has a very di�erent conformation from a biopolymer: it forms

an \expanded random coil" (see Figure 2).

Figure 2: Backbone representation of a polymer

It should be obvious that these two kinds of polymers are very di�erent with

regard to their reaction and their chemical and physical properties so that no

general all-purpose MD simulation algorithm that is e�cient for both of them

should be expected.

1.2 Parallel MD simulations for biopolymers

Many parallel algorithms for MD simulations for biopolymers have been devel-

oped and implemented (e.g., [BCL+92, BYT91, JP92, NHG+95, SSS92]), in most

cases for distributed-memory architectures. Because of the compact conforma-

tion of biopolymers, nearly all algorithms use the following spatial decomposition

method. The protein is placed in a small box which is decomposed into cubes

(also called cells). These cubes are distributed among the processors and every

processor is in charge of all atoms in its cubes and computes the interaction forces

6

and new coordinates for these atoms. If an atom moves to a cube belonging to a

di�erent processor, responsibility for the atom passes to the new processor. Since

proteins have a relatively �xed conformation (in comparison with synthetic poly-

mers), only very few atoms move to another cube in an iteration step and the

amount of data that must be exchanged between processors is small. Thus, the

communication overhead caused by the parallelization is low, especially as com-

munication takes place mainly between neighbouring processors. Furthermore, it

is relatively easy to achieve a good load balancing among the processors due to

the biopolymer's compactness, i.e., every cube will have approximately the same

number of atoms.

1.3 Parallel MD simulations for synthetic polymers

The spatial decomposition method outlined above has also been applied to the

simulation of synthetic polymers ([Fin90, SBR+92]). But unlike proteins, most

synthetic polymers do not have a �xed conformation. They form expanded ran-

dom coils and their trajectories are more or less three dimensional random walks.

There is a lot of \empty space", i.e., space �lled by other macromolecules or

solvent molecules. Since simulating the dynamics or non-equilibrium properties

can be done by simulating a single macromolecule of the polymer | the inuence

of the solvent and surrounding molecules can be modeled by random forces, fric-

tional factors (Langevin dynamics) and mean{�eld interactions | many cubes

in a spatial decomposition will be empty. This makes it much more di�cult to

achieve a good load balance between the processors. In addition, a synthetic poly-

mer covers relatively long distances during the simulation compared to biopoly-

mers whose dynamics are limited to some kind of vibration in a small area. There-

fore, it does not seem to be e�cient to divide the possible conformation area into

cubes and allocate them to processors because a continual redistribution would

be necessary as the polymer hastens away.

For these reasons, we decided to employ a di�erent strategy. Instead of dis-

tributing the conformation space among the processors, we distribute the atoms.

Naturally, this is somewhat dependent on the structure of the polymer (linear,

combed or star shaped). As a beginning, we have implemented algorithms for the

easier case of linear chains which will be explained in detail later on. These algo-

rithms should also work for more complex polymer structures but less e�ciently.

In the future, we will concentrate on the modi�cations and enhancements that

are necessary to improve the e�ciency for them.

7

2 The basics of MD simulations

The goal of MD simulations is the investigation and analysis of structural and

(thermo)dynamic properties of molecular systems. There are two main ap-

proaches to this goal.

The �rst one is based on quantum mechanics where approximations to Schr�o/-

din/-ger's equation are solved in order to determine electron density, energy and

other molecular properties. Because of the enormous computational e�ort, this

method is only feasible for a very small number of atoms and is not useful for

most molecular systems.

Therefore, almost all MD simulations are based on molecular mechanics. The

idea takes a somewhat coarse{grained view (compared to the quantummechanical

level) of the molecular system. Atoms are looked upon as balls, and bonds and

other atom{atom interactions are modeled by analytical expressions. This makes

it possible to use methods from the �eld of classical mechanics, especially the

well{known Newton's law of motion, which are much easier and faster to compute

than quantum mechanical equations; thus, bigger systems with several thousand

atoms can be simulated.

2.1 Classical MD simulation

The motion and properties of a molecular system are simulated by computing

the trajectories of each atom. This is done in an iterative way as follows.

The simulation period is divided into intervals of length �t. Given the coor-

dinates and velocities of all atoms at time t ��t and time t, the new positions

at t+�t are calculated via numerical integration of Newton's Law:

m

i

� ~a

i

(t) = m

i

@

2

~q

i

(t)

@t

2

=

~

F

i

(t);

where

m

i

: mass of atom i,

~q

i

(t) : position of atom i at time t,

~

F

i

(t) : force on atom i at time t,

~a

i

(t) : acceleration of atom i at time t.

Twice integrating with respect to t leads to the well{known equation of motion

~q

i

(t) = ~u

i

� t+

1

2

~a

i

(t) � t

2

;

where ~u

i

: initial velocity of atom i, ~a

i

(t) : acceleration of atom i at time t.

8

Taylor{expansion yields

~q

i

(t+�t) = ~q

i

(t) + ~v

i

(t)�t+

1

2

~a

i

(t)�t

2

+O(�t

3

)

~q

i

(t��t) = ~q

i

(t)� ~v

i

(t)�t+

1

2

~a

i

(t)�t

2

�O(�t

3

):

These equations can be combined to

~q

i

(t+�t) = 2~q

i

(t)� ~q

i

(t��t) +

~

F

i

(t)

m

i

�t

2

(+O(�t

4

));

which is called Verlet{Algorithm. It is one of the most widespread methods used

in MD simulations for calculating the new positions.

Computing the new positions is straightforward, but what about the necessary

forces

~

F

i

(t)? They are the result of the energetic interactions between all atoms

in the system at time t and can be obtained from a so{called force �eld whose

calculation is the gist of every step in an MD simulation.

A force �eld is a sum of analytical expressions that try to approximate the

potential energy in the molecular system. Its name stems from the fact that the

gradient of the force �eld represents the forces currently acting on the atoms. The

components of a force �eld for classical MD simulations contain the potentials

for :

� covalent bonds

� valence angles

� dihedral angles

� non{bonded pairs of atoms (van der Waals and electrostatic interactions).

The force �eld that we use in our simulations only takes short{range inter-

actions into account (i.e., no electrostatic potentials; these will be added in the

future) and looks like this:

V =

X

b

K

b

(r

2

b

� r

2

b;0

)

2

+

X

v

K

v

(r

2

1�3

� r

2

1�3;0

)

2

+

X

1�4;i<j

(

A

ij

r

12

ij

�

B

ij

r

6

ij

) +

X

nb;i<j

(

A

ij

r

12

ij

�

B

ij

r

6

ij

):

r

b

is the current length of the bonds (b) and r

1�3

is the current 1{3 distance

2

in

the valence angles (v). The subscript 0 denotes the values with minimal potential

2

A valence angle is de�ned by three atoms. 1{3 distance is the distance between the �rst

and the third atom.

9

energy. r

ij

is the distance between atoms i and j. A

ij

and B

ij

are the Lennard{

Jones 12 � 6 parameters for van der Waals potentials and are used not only to

calculate the non{bonded interactions (nb), but also to express the dihedral angle

interactions (1{4). Evaluation of forces by the derivatives of these expressions

is much faster than using the standard ones. In [Jun93a], the force �eld given

above was derived together with equations that allow to calculate the necessary

parameters from those of the AMBER force �eld (see [WKN+86, WKC+84]).

When the force �eld for time t has been evaluated, the impact on each atom,

i.e., the current force that pushes it to a new position, is calculated and applied

according to the equations given above.

So, the basic structure of a classical MD simulation is as follows:

?

?

?

?

?

�

begin

start positions

computation of gradients of

the potential energy

() forces)

computation of new positions

end of simulation period ?

end

yes

no

Figure 3: The basic structure of a classical MD simulation

10

2.2 Langevin{Dynamics simulation

As molecules do not exist in a vacuum, it is necessary to include the atoms of

the environment (e.g., a liquid) and of other macromolecules in the simulation.

Unfortunately, this increases the number of particles and consequently the com-

plexity of the computation considerably. However, in certain cases (e.g., when

simulating non{equilibrium properties like di�usion) it is possible to emulate the

inuence of these additional atoms by using the Langevin{equation

m

i

� ~a

i

(t) = �

i

� ~v

i

(t) +

~

R

i

(t);

where

i

denotes a friction constant for atom i and

~

R

i

(t) is a Gauss{distributed

random force acting on atom i at time t. When using the Verlet{Algorithm, this

leads to the modi�ed formula ([PBS88])

~q

i

(t+�t) = ~q

i

(t) + [~q

i

(t)� ~q

i

(t��t)](1�

i

�t) +

~

F

i

(t) +

~

R

i

(t)

m

i

�t

2

:

The resulting MD simulation is called Langevin{Dynamics. Its advantage is

the fact that the numerous atoms of the surrounding area can be omitted because

their inuence is taken into account by

� a friction component (represented by the

i

factors) that simulates the

friction between molecule and solvent, and

� a stochastic force component

~

R

i

(with mean value < R

i

>= 0 and vari-

ance < R

2

i

>= 2

i

k

B

T=�t, k

B

: Boltzmann's constant, T : absolute

temperature) which models the pushes that the atoms may be given by

surrounding atoms.

In this way, a realistic simulation is feasible with considerably fewer atoms than

otherwise necessary.

2.3 Acceleration techniques

Because of the enormous computational requirement for MD simulations, many

methods have been devised to accelerate the simulation without losing too much

precision ([VG91]). Usually, these techniques are employed together but we are

going to present them here separately for reasons of clarity.

2.3.1 Cuto� radius

In principle, every atom has an inuence on every other atom in the system that

is to be simulated, so we face an n{body problem with O(n

2

) atom pairs. Luckily,

11

the intensity of an interaction between two atoms decreases with distance. There-

fore, it is often possible to neglect all atoms that are beyond a given cut{o� radius

by setting their energy/force contribution to zero. This method works �ne for

fast{decreasing potentials like the Lennard{Jones potential which approximates

van der Waals interactions.

Note that a cuto�{radius just reduces the amount of work for computing the

potentials; there are still �(n

2

) atom pairs to be looked at in every iteration in

order to �nd out whether they are within the cuto� radius.

2.3.2 Neighbour{lists

A typical time{step in MD simulations is of the order of 10

�15

s. During this

period, the atoms cannot move much. So, if an atom was within the cuto�{

radius for some atom at time t, in most cases, it will not have left the radius at

time t+�t. This �nding led to the idea of neighbour lists: every atom has a list

naming the atoms that are within the cuto�{radius at some time. This list is used

in k subsequent time steps to evaluate the potentials between the atoms and its

neighbours. Then the neighbour lists are updated. The expensive determination

of neighbouring atoms within the cuto�{radius is therefore reduced by a factor

of k.

2.3.3 Multiple{time{step method

The length of the integration time step �t is limited by the highest frequency

(�

max

) motions occuring in the molecular system: �t � �

�1

max

= � . Three fre-

quency ranges can be distinguished:

� high{frequency bond{stretching forces with an approximate time � of about

10

�14

s,

� low{frequency Coulomb{forces with � � 10

�12

s,

� the remaining intermediate frequency forces with � � 4 � 10

�14

s.

The contribution of these three kinds of forces can be evaluated by using three

di�erent time steps without much loss of accuracy.

2.3.4 Linked cells

When the number of atoms n exceeds a few hundred, determining neighbourship

becomes the most time{consuming part of the simulation if this is done by looking

at all

n(n�1)

2

atom pairs.

Therefore, in the linked{cells method, the conformation space is subdivided

into cells with appropriate edge lengths. All atoms that are in the same cell are

12

kept in a linked list. Determining neighbours of an atom i can then be limited

to the cell (or list, respectively) where i is located, and the bordering cells.

Because of symmetry (Newton's third axiom actio = reactio), the search can

even be limited to the cells that are lexicographically bigger than the current cell

(see Figure 4).

Figure 4: linked cell method in two dimensions

3 A sequential MD simulation algorithm for syn-

thetic polymers

3.1 Simulation model

As the dynamic behaviour of synthetic polymers can be studied by simulating a

single macromolecule, we use the Verlet{formula for Langevin{dynamics. Our al-

gorithms use the force �eld presented in Section 2, with parameters and constants

recalculated from the AMBER{package ([WKN+86, WKC+84]). The employed

force �eld expressions for bonds, valence angles and dihedral angles (developed by

[Jun93a]) allow a much faster computation than the usual expressions because no

\expensive" operations like square root or trigonometric functions are necessary.

The time{step �t for the simulation is 0:5 � 10

�15

s. Calculation of the force

�eld is done with a multiple{time{step scheme: covalent bonds are evaluated in

every time{step whereas interactions from valence angles and dihedral angles are

13

considered every second and fourth time{step, respectively. Van der Waals forces

are calculated every fourth time step with a cuto� radius of 4

�

A. For long{range

van der Waals interactions, only the repelling part of the 12{6 Lennard{Jones

potential is applied in order to avoid collapse of the coiled macromolecule. Thus,

a good solvent is simulated.

Due to the long simulation runs, a great deal of \good" random numbers

must be created. We have chosen the \ran1" algorithm [PFT+88], which is quite

time{consuming, but yields random numbers of acceptable quality.

At present, electrostatic interactions are not considered. This will be imple-

mented in the near future. Furthermore, all algorithms presented in this work

are specially suited to linear macromolecules. More complex structures will lead

to reduced e�ciency.

3.2 The algorithm

As explained in the previous section, there are two main parts of the MD simula-

tion during each iteration: calculation of the forces and calculation of new atom

positions due to these forces. From an algorithmic view, the latter is trivial, so

we will focus on the computation of the force �eld.

The force �eld approximates the potential energy (in the molecular system)

which results from all interactions that exist between atom pairs. We can classify

atom pairs into two groups:

� atom pairs with interactions of type covalent bond, valence angle or dihedral

angle, and

� atom pairs with interactions of type van der Waals or electrostatic.

The treatment of atom pairs of the �rst group is straightforward. The reason

for this is that their de�ning interaction (covalent bond, valence and dihedral

angle) is "static" with respect to the simulation: the interacting atoms are de�ned

by the structure of the molecule and cannot change in the course of time. Hence,

it is possible to perform a preprocessing step by constructing lists for covalent

bonds, valence angles, and dihedral angles, where each list element contains the

indices of the atoms that interact. In every step of the simulation | when

the appropriate force �eld component must be evaluated | we run through the

appropriate list, read the current coordinates of the atoms involved, and compute

the forces.

Atom pairs of the second group are more di�cult to deal with. As already

mentioned in Section 2, only atoms that are within a certain cuto� radius are of

importance for the computation. Because of the atoms' motions, relevant atom

pairs come into being or cease to exist depending on the current distance between

them. Therefore, no preprocessing is possible and an expensive neighbourhood

14

search must be performed in each iteration step of the simulation. Luckily, there

are atom pairs whose distance is always smaller than the cuto� radius because

they are \neighbours" in the polymer chain. For these pairs, a preprocessing step

similar to the one for the �rst group of atom pairs can be done. We call all atom

pairs that can be stored in one of these lists static pairs. Note that not all atoms

within the cuto� radius are considered for these static pairs (e.g., in the case of

polyethylene, atoms covered by the �rst group and atoms that are farther away

than 2 CH

2

units do not contribute to static pairs).

Figure 5: Dynamic pairs arise from bends in the chain

Since the polymer chain builds bends or loops during the simulation (see

Figure 5), some atoms will be close enough for van der Waals interactions (i.e.,

within the cuto� radius) for a certain time. Because their relationship evolves

dynamically and changes continually after a few iterations, we call these pairs of

atoms dynamic pairs. Obviously, no preprocessing step is possible, so whenever

van der Waals interactions have to be computed, we must determine all current

dynamic pairs by using a \�xed{radius{all-nearest{neighbours{algorithm".

We use the following standard technique to do this: a mesh of cubes is laid

over the molecule and its conformation area. Each cube is identi�ed by a vector

(xyz). For each non{empty cube, two lists are maintained:

� the �rst list contains the (indices of the) atoms that currently reside in the

cube

� the second list contains pointers to all neighbouring cubes which are not

empty (at most 26).

15

Of course, the cube size must be chosen properly (edge length � cuto� radius)

so that relevant neighbouring atoms will be in one of the 26 surrounding cubes

and not in cubes farther away.

All non{empty cubes are held in a hash{table. When potentials from dynamic

pairs are to be evaluated, this table is run through and for every cube the following

is done:

All atoms belonging to this cube are tested with all atoms of neighbouring non{

empty cubes (since the diameter of the cubes is small, there are only very few

atoms in each cube and the quadratic running time here is negligible). If they are

close enough, their contribution to the force �eld is calculated. As the interaction

between two atoms is symmetric (apart from the sign), it is su�cient to consider

only neighbouring cubes that are lexicographically bigger than the current cube.

After the computation of the new positions of the atoms, i.e., after the Verlet{

step, some atoms will have changed their cube. Therefore, in all iterations that

precede an iteration where Van der Waals interactions due to dynamic pairs must

be considered (i.e., in every fourth iteration) a check for every atom is made to

see whether the atom has moved on to a di�erent cube. In this instance, the

cubes concerned are updated accordingly.

4 A parallel MD simulation algorithm

4.1 Machine model

We developed our parallel algorithms with the following machine model in mind.

Given is a collection of independent processors, each with its own local memory,

which are linked together by some interconnection network. The processors com-

municate by sending/receiving messages and are numbered from 0 to p�1, where

p is the number of processors.

This model of a parallel machine is calledMIMD (= multiple instruction mul-

tiple data) because every processor executes its own program in its local memory

and all processors are completely independent of one another apart from ex-

plicit communication via message{passing. Many existing parallel computers,

especially those used for simulation, are covered by this model, e.g., Connection

Machine 5 (Thinking Machines), iPSC/860 (Intel), Paragon XP/S (Intel), Cray

T3D/E (Cray Research).

As parallel computing technology is still very expensive, most installations

have only a moderate number of processors. Even systems with relatively many

processors are often con�gured in such a way that the costly resource \processing

unit" is partitioned into subsets so that the average user can access just a small

number of processors. Against this background the parallel algorithm presented

in the following sections has been developed for a moderate number of processors

(up to 16).

16

4.2 The algorithm

One main problem in parallelizing an algorithm is the discrepancy between local

memory access times and remote memory access times. The latter is much more

\expensive" and must therefore be kept at a minimum.

With this in mind, we have to tackle the two di�erent kinds of interactions

in the MD simulation that have been presented in Section 3: static and dynamic

atom pairs.

The static atom pairs are de�ned by the molecular structure and do not change

over time whereas dynamic pairs evolve and vanish during the simulation. Not

surprisingly, it is easier to handle the static pairs in parallel and therefore, we

will show how to deal with interactions due to static pairs �rst. This already

gives an algorithm which is useful for speci�c applications, e.g., the simulation

of �{conditions [Jun89c, DSA91, SMB94]. After this, we show how to add the

interactions occuring because of dynamic pairs.

4.2.1 Interactions between static pairs

In order to keep communication due to static pairs minimal, it is necessary to

divide the atoms among the processors in such a way that the number of atom

pairs with atoms belonging to di�erent processors is small. As already mentioned,

we restrict the class of polymers to be simulated to those with chain{like structure

(e.g., unbranched polyethylene).

0 1 2

� � �

p-1

Figure 6: The chain is divided into disjoint segments.

In this case, we can use the following straightforward approach. Let p be the

number of processors and n the number of atoms. We subdivide the polymer

chain into p segments of roughly size n=p (see Figure 6).

These segments are distributed among the processors. Each processor is re-

sponsible for all atoms in its segment, i.e., in each iteration it computes the forces

acting on these atoms and their resulting new coordinates. By declaring one end

of the polymer chain \left end", we impose an order on the segments. Every

segment has a left and/or right neighbour segment. Accordingly, a processor has

17

a left and/or right neighbour. (Note that this has nothing to do with physical

neighbours in the interconnection network.)

i i+1

Figure 7: Border atoms of two neighbouring processors

For each processor, we distinguish between \inner" atoms and \border" atoms.

Border atoms are located close enough to the border of a processor's segment such

that they interact with atoms in the neighbouring segment (which is assigned to

a di�erent processor); all other atoms are inner atoms (see Figure 7).

The parts of a segment containing only border atoms are called left and right

border region. The size of such a border region varies with the kind of polymer

that is being simulated. For polyethylene, at most four CH

2

groups, that is 12

atoms, form such a border region. We assume that the segment size n=p is large

enough so that left and right border regions of a segment do not overlap. (In our

implementation, this is checked at the beginning and if the condition is not met,

only some of the available processors will be used.)

The algorithm works as follows. One processor acts as a \master": it reads

the input (start positions, chemical parameters that de�ne the molecule, etc.),

distributes the atoms among the processors and collects the output (positions, ve-

locities and other data). Except for this, it does no coordination of the processors

during execution.

In a preprocessing step, neighbouring processors exchange information about

their border atoms, for instance, the atom type. During the actual simulation,

at the beginning of every iteration each processor sends the coordinates of its

border atoms to the corresponding neighbouring processors. This is done by non{

blocking sends and receives : after initiating the exchange of data, each processor

proceeds by computing the interactions for its inner atoms where no information

from the outside is needed. Meanwhile, the required data for the border atoms

pour in and, when the inner atoms are done, the calculation for the border

atoms can begin. On many modern parallel computers, communication and local

computation can take place simultaneously, thus allowing the communication

time to be hidden.

When all interactions from inner and border atoms have been computed,

each processor calculates the forces and resulting new positions of the atoms in

18

its segment.

After a certain number of iterations (that depends on the purpose of the sim-

ulation), the master collects output data: each processor sends its data (e.g.,

atom coordinates) to the master processor. If necessary (or desired), the mas-

ter computes global information like the potential energy or other simulation

parameters.

If we cut the input molecule into equally sized segments, this approach will not

lead to a perfect load balance between the processors as the processors respon-

sible for the leftmost and rightmost segment of the chain possess fewer border

atoms. Thus, they have to send and receive less data and the amount of lo-

cal computation is smaller because their leftmost or rightmost atoms have fewer

neighbours. Finally, the master processor has to do more work because it collects

the output. To improve the running time of the algorithm it is therefore better

to cut the chain into unequally sized segments. The best choice for the lengths of

the segments depends on the particular computer used. In our implementation,

the master processor is also responsible for the leftmost segment. For the simula-

tion of a polyethylene molecule on an iPSC/860, we assigned approximately 10%

more atoms to the leftmost and rightmost segment than to the other segments.

Table 1: Static pairs only, iPSC/860

nodes time in s speedup e�ciency speedup factor

1 11175 100.0 1.0

2 5625 99.3 1.99

4 2912 95.9 3.84

8 1499 93.2 7.45

16 780 89.5 14.33

32 431 81.0 25.93

Tables 1 and 2 show running times for the simulation of a polyethylene chain

consisting of 1000 CH

2

units. The simulation has been carried out on an Intel

iPSC/860 and on an Intel Paragon XP/S. The results shown are for 40000 itera-

tion steps, which corresponds to 2 �10

�11

s in reality. The tables show the running

times, the achieved speedup when compared with the running time on a single

processor (speedup factor), and the speedup as percentage of the maximum pos-

sible (speedup e�ciency). As one can see, the speedup grows with increasing p,

and the speedup factor ranges from an excellent 1:99 and 1:98 with 2 processors

to a still good 25:93 and 27:38 with 32 processors.

As can be seen by the running times, our algorithm achieves a good load

balance between the processors. The (inevitable) drop in the speedup e�ciency

with increasing number of processors stems from two sources. One reason is that

19

Table 2: Static pairs only, Paragon XP/S

nodes time in s speedup e�ciency speedup factor

1 6625 100.0 1.0

2 3347 99.0 1.98

4 1714 96.3 3.87

8 878 94.3 7.55

16 443 93.5 14.95

32 242 85.6 27.38

processors

speedup

ideal

ipsc860

paragon

16 32

16

32

Figure 8: Speedup for static pairs

part of the calculations is carried out twice: the sequential algorithmmakes heavy

use of symmetries, i.e., the force acting between any two atoms is calculated only

once. In the parallel algorithm, this is no longer the case: the forces acting

between two border atoms are calculated twice, namely by the two processors

responsible for the two atoms. That means that the total work is increased by a

term that is linear in the number p of processors: The sequential running time

t

s

is approximately c � n, where n is the number of atoms and c is a constant.

The parallel work w

p

is approximately c � n + c

0

� (p � 1), where c

0

is a constant

that depends on the number of border atoms per processor. Since the speedup

e�ciency is given by t

s

=w

p

� 100, it will drop with increasing p. The second

reason for the decrease in e�ciency is the communication overhead: initiating

the send or receive of a message and preparing/evaluating messages requires a

20

certain amount of time.

Similar results can be expected for other chain types as long as the number

of static atom pairs with atoms allocated to di�erent processors remains small.

4.2.2 Interactions between dynamic pairs

In the previous section we described how to compute the interactions for static

pairs; now we show how to include the interactions between dynamic pairs.

Interactions because of dynamic pairs confront us with the problem of deter-

mining the atoms that form these dynamic pairs at a given moment. In Section 3,

we described a sequential algorithm that lays a mesh of cubes over the molecule

and its conformation area in order to do the dynamic neighbours search. Un-

fortunately, dynamic pairs can evolve between any two sections of the polymer

chain. If these sections belong to the piece of the chain that has been allocated

to one processor, then no communication is necessary and this processor can use

the sequential method for detecting local dynamic pairs.

But there may be also pairs with the atoms allocated to di�erent processors.

In order to �nd them, the positions of all atoms in the molecule are necessary

but each processors knows only the piece of the chain that it has been given.

As we want to keep communication as low as possible, the trivial method where

each processors sends the coordinates of all its atoms to every other processor is

obviously not recommendable. Therefore, we devised the following master{slave

approach that takes use of the e�cient sequential algorithm:

A mesh of cubes is laid over the molecule and its conformation area. Each

processor maintains a data structure similar to the sequential version for all atoms

belonging to its part of the chain. Additionally, a master processor maintains

a \global" data structure. With the help of this data structure, the master

processor determines which processors have to exchange the coordinates of atoms

due to the formation of loops or bends. To be able to do this, the master processor

must know which cubes contain atoms and to which processors they belong. This

is achieved as follows.

Dynamic neighbours need only be considered after each 4th step; thus, after

every 4th step, each processor determines which of its atoms have moved to a

di�erent box. This information is sent to the master processor which updates the

global cube data structure. After this, the master processor assembles for each

processor a list of pairs (i; j), where i is the number of a processor and j denotes

a cube. If a pair (i; j) is contained in the list of processor k, this means that

processor k has to send the coordinates of all of its atoms in box j to processor

i. The size of these lists is kept to a minimum by applying the following rules:

No pair is contained more than once in a list. Interactions between static pairs

are not considered, i.e., the master processor checks, for each pair of non-empty

boxes, whether all atoms stem from two neighbouring border regions. In this

case the pair is not included. The list of processor k will not contain pairs of the

21

form (k;�). When the master has prepared all the lists, it sends them to the

processors.

After receiving the lists, every processor k sends for each pair (i; j) the coor-

dinates of the atoms that are contained in box j to processor i. After the receipt

of all relevant data, each processor proceeds as in the sequential algorithm.

We chose this approach for the following reasons. As long as we can distribute

the work equally among the processors, it is most important that we keep the

overall work as low as possible (assuming there are no waiting times). If we

distribute the global cube data structure (or similar global information) among

several processors, more work will be carried out and we will increase the amount

of communication.

Tables 3 and 4 show running times of the dynamic version for the simulation

of a polyethylene chain consisting of 1000 CH

2

units on an iPSC/860 and Paragon

XP/S. Again, the simulation has been carried out for 40000 iteration steps.

Table 3: Static and dynamic pairs, iPSC/860

nodes time in s speedup e�ciency speedup factor

1 13038 100.0 1.0

2 6801 95.9 1.92

4 3644 89.4 3.58

8 1933 84.3 6.74

16 1064 76.6 12.25

32 |

3

| |

Table 4: Static and dynamic pairs, Paragon XP/S

nodes time in s speedup e�ciency speedup factor

1 8273 100.0 1.0

2 4384 94.4 1.89

4 2283 90.6 3.62

8 1210 85.5 6.84

16 664 77.9 12.46

32 503 51.4 16.44

3

not available

22

The speedup e�ciency varies from 95:9% and 94:4% with 2 processors to

76:6% and 77:9% for 16 processors. There are several reasons for the decrease in

e�ciency compared with the static version.

ipsc860

paragon

processors

speedup

ideal

16 32

16

32

Figure 9: Speedup for static and dynamic pairs

Because of the dynamic interactions, an expensive neighbourhood search must

be done. This is the part of the simulation which is hardest to parallelize

and which increases the communication and computation overhead considerably.

Apart from the additional work the load balance between processors gets worse

(compared to static pairs only) because in general only a few processors | if any

| have to exchange information (=atom coordinates) due to dynamic neighbours.

This kind of imbalance is aggravated by imbalances between the four steps that

constitute one \superstep": right now, in one of the steps (where dynamic pairs

have to be evaluated according to the simulation model) the master processor

has more work to perform than the other processors and in all other steps, it

has less work than the others. All these factors inevitably lead to a smaller but

still quite acceptable speedup for moderate numbers of processors (up to 16). In

the future we will investigate the power of dynamic load balancing techniques to

improve e�ciency and speedup.

5 Some simulation results

In order to check the correctness of the implementation of our parallel MD-

simulation algorithm, the dynamics of polyethylene chains of di�erent lengths

23

were simulated. During these simulations, some static and dynamic properties of

the chains were monitored.

In all �gures, the results of the parallel version of the algorithm are compared

with those of the sequential version. It can be seen that the agreement of the

parallel simulations with the sequential ones for �{conditions is excellent and the

scaling law < r

2

>� n is ful�lled.

0

10

20

30

40

50

60

0 1000 2000 3000 4000 5000 6000

A
ng

st
ro

m

time in ps

"40_static.end_to_end"
"40_parallel_static.end_to_end"

Figure 10: End{to{end distance, 40 C{atoms, �{condition

0

20

40

60

80

100

0 2000 4000 6000 8000 10000 12000 14000

A
ng

st
ro

m

time in ps

"80_static.end_to_end"
"80_parallel_static.end_to_end"

Figure 11: End{to{end distance, 80 C{atoms, �{condition

Figures 10 and 11 show the root of the cumulative mean square end{to{end

24

distance (

p

< r

2

>) of polyethylene chains with n = 40 and n = 80 C{atoms,

respectively, under �{conditions, i.e., only static pairs are considered.

0

10

20

30

40

50

60

0 1000 2000 3000 4000 5000 6000

A
ng

st
ro

m

time in ps

"40_dynamic.end_to_end"
"40_parallel_dynamic.end_to_end"

Figure 12: End{to{end distance, 40 C{atoms, good{solvent condition

0

20

40

60

80

100

0 2000 4000 6000 8000 10000 12000 14000

A
ng

st
ro

m

time in ps

"80_dynamic.end_to_end"
"80_parallel_dynamic.end_to_end"

Figure 13: End{to{end distance, 80 C{atoms, good{solvent condition

Figures 12 and 13 show the same comparison for good{solvent conditions, i.e.,

considering \dynamic pairs" with repulsive van der Waals interactions. As to be

expected, the coils are expanded relative to �{conditions.

25

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30 35 40 45 50

A
ng

st
ro

m
^2

time in ps

"40_static.msd"
"40_parallel_static.msd"

Figure 14: Mean square displacement, 40 C{atoms, �{condition

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30 35 40 45 50

A
ng

st
ro

m
^2

time in ps

"80_static.msd"
"80_parallel_static.msd"

Figure 15: Mean square displacement, 80 C{atoms, �{condition

Figures 14 and 15 show the mean square displacement of the center of mass

plotted versus time for chains under �{conditions. These data are extracted from

simulations starting from conformations after full relaxation of the end{to{end

distance.

26

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

A
ng

st
ro

m
^2

 /
ps

time in ps

"40_static.msd_diffusion"
"40_parallel_static.msd_diffusion"

Figure 16: Di�usion coe�cient, 40 C{atoms, �{condition

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

A
ng

st
ro

m
^2

 /
ps

time in ps

"80_static_msd.diffusion"
"80_parallel_static_msd.diffusion"

Figure 17: Di�usion coe�cient, 80 C{atoms, �{condition

Figures 16 and 17 show the corresponding �rst derivatives divided by 6, i.e.,

the instantaneous di�usion coe�cients D. Also for this dynamic property the

agreement between sequential and parallel simulations is good. Furthermore, the

expected power law D �

1

n

for Rouse conditions (i.e., without hydrodynamic

interactions) is approximately ful�lled.

27

Figures 18 to 21 show the same plots for simulations under good{solvent

conditions. The agreement between sequential and parallel simulations in this

case is still acceptable, but worse than under �{conditions.

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30 35 40 45 50

A
ng

st
ro

m
^2

time in ps

"40_dynamic.msd"
"40_parallel_dynamic.msd"

Figure 18: Mean square displacement, 40 C{atoms, good{solvent condition

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30 35 40 45 50

A
ng

st
ro

m
^2

time in ps

"80_dynamic.msd"
"80_parallel_dynamic.msd"

Figure 19: Mean square displacement, 80 C{atoms, good{solvent condition

The reason is that here the dynamic neighbours are considered. These dy-

namic interactions are indeed hydrodynamic interactions because the interacting

sections of a chain mutually inuence their motions. Therefore, the average of D

28

should be taken over the whole space of conformations, while in fact the simula-

tion time was too short for this. However, the power law of D �

1

p

n

for Zimm

conditions (i.e., with hydrodynamic interactions) is at least roughly ful�lled.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

A
ng

st
ro

m
^2

/p
s

time in ps

"40_dynamic.msd_diffusion"
"40_parallel_dynamic.msd_diffusion"

Figure 20: Di�usion coe�cient, 40 C{atoms, good-solvent condition

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

A
ng

st
ro

m
^2

/p
s

time in ps

"80_dynamic.msd_diffusion"
"80_parallel_dynamic.msd_diffusion"

Figure 21: Di�usion coe�cient, 80 C{atoms, good{solvent condition

In summary, we can say that the results of the simulations using the parallel

algorithm compare favourably with the theoretical expectations and with the

results of the sequential calculations.

29

6 Future work

There are two main goals for the future.

First, we want to test (and modify where appropriate) the algorithms for

a broader range of synthetic polymers. At the moment, only simulations for

polymers with a linear chain have been considered in the implementations; but

as some synthetic polymers appear as branched or comb{like chains, it would be

nice to have a modi�ed version of our algorithms that can deal with them, too.

Second, we will enhance the existing algorithms by integrating a dynamic load

balancing scheme. Due to dynamic pairs, some processors have more work to do

(data exchange and calculations) compared to the beginning of the simulation

when the initial subdivision into segments was done. For this reason, the work

is no longer balanced and this slows down the simulation. We will try to develop

methods that detect such imbalances and eliminate them by redistributing the

atoms of the molecule.

The presented algorithms perform well for a moderate number of processors

(up to 16). But as more and more parallel computers with large numbers of pro-

cessors come into use, we must also develop suitable algorithms for these systems.

Obviously, our \master{slave" approach is not scalable to large numbers of pro-

cessors and therefore no longer very e�cient because of increasing communication

overhead.

References

[AT89] M. P. Allen, D. J. Tildesley : \Computer Simulation of Liquids". Oxford

University Press, 1989.

[BCL+92] J. A. Board, J. W. Causey, J. F. Leathrum, A. Windemuth, K. Schul-

ten: \Accelerated molecular dynamics simulation with the parallel fast

multipole algorithm". Chemical Physics Letters (2 Oct. 1992) vol. 198,

no. 1{2, pp. 89{94

[BYT91] C. L. Brooks, W. S. Young, D. J. Tobias: \Molecular simulations on

supercomputers". International Journal of Supercomputer Applications

(Winter 1991) vol. 5, no. 4, pp. 98{112.

[DSA91] M. Depner, B. L. Sch�urmann und F. Auriemma: \Investigation of a

poly(oxethylene) chain by a molecular dynamics simulation in an aque-

ous solution and by Langevin dynamics simulation". Mol. Phys. 74,

(1991), pp. 715{733.

[Fin90] D. Fincham: \Parallel Computers and the simulation of solids and liq-

uids". in \Computer Modelling of Fluids, Polymers and Solids". C. R.

30

A. Catlow, S. C. Parker, M. P. Allen (Eds.), NATO ASI Series, Ser. C,

vol. 293. Kluwer Academic Publishers, Dordrecht (1990), pp. 269{288.

[HFP+94] R. Haberlandt, S. Fritzsche, G. Peinel, K. Heinzinger : \Molekular-

dynamik". Vieweg, 1994.

[Hai92] J. M. Haile : \Molecular Dynamics Simulation". Wiley, 1992.

[JP92] J. F. Janak, P. C. Pattnaik: \Protein calculations on parallel proces-

sors". Journal of Computational Chemistry (Nov. 1992) vol. 13, no. 9,

pp. 1098{1102

[Jun89c] B. Jung: \Simulation der Kettenkonformation von Polymeren mit

Hilfe der Konzepte der Molekulardynamik-Rechnungen", Dissertation,

Johannes-Gutenberg-Universit�at, Mainz, 1989.

[Jun93a] B. Jung: \Fast force �eld expressions for computer simulations". Macro-

mol. Chem., Theory Simul. 2, (1993), pp. 673{684.

[NHG+95] M. Nelson, W. Humprey, A. Gursory, A. Dalke, L. Kale, R. Skeel, K.

Schulten, R. Kufrin : \MD{Scope: A Visual Computing Environment

for Structural Biology". Computational Physics Communications 91,

1995, pp. 111{134.

[Oet96] H. C.

�

Ottinger: \Stochastic processes in polymeric uids". Springer

Verlag, Berlin 1996.

[PBS88] R.W. Pastor, B.R. Brooks, A. Szabo: \An analysis of the accuracy of

Langevin and molecular dynamics agorithms", Mol. Phys. 65, (1988),

pp. 1409{1419.

[PFT+88] W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, \Nu-

merical recipes in C". Cambridge University Press, Cambridge 1988.

[SMB94] A. Sariban, T. Mosell, J. Brickmann: \Monte Carlo simulation of

the theta-conditions of poly(methylene): temperature dependence of

the long-range screening factor", Macromol. Theory Sim., 3, (1994),

pp. 963{977.

[SBR+92] M. A. Smith, Y. Bar-Yam, Y. Rabin, B. Ostrovsky, C. H. Benett, N.

Margolus und T. To�oli: \Parallel-processing simulation of polymers".

Comput. Polym. Sci. 2, (1992), pp. 165{171.

[SSS92] H. Schreiber, O. Steinhauser, P. Schuster: \Parallel molecular dynamics

of biomolecules". Parallel Computing (May 1992) vol. 18, no. 5, pp. 557-

573.

31

[VG91] W. F. van Gunsteren: \Computer simulation of biomolecular systems:

Overview of time-saving techniques". Advances in Biomedical Simu-

lations, AIP Conference Proceedings No. 239, American Institute of

Physics, (1991), pp. 131-146.

[WKN+86] S. J. Weiner, P. A. Kollman, D. T. Nguyen, D. A. Case. An All Atom

Force Field for Simulations of Proteins and Nucleic Acids, Journal of

Computational Chemistry, 7, (1986) pp. 230{252.

[WKC+84] S. J. Weiner, K. A. Kollman. A New Force Field for Molecular Me-

chanical Simulation of Nucleic Acids and Proteins, Journal of American

Chemical Society 106, (1984) pp. 765{784.

32

