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Abstract

In this paper we prove that the max-
ow min-cut ratio for multicommodity 
ow is no more

than 2H(n) and show a randomized polynomial time algorithm for �nding a cut of sparsity no

more than 4H(n) times the optimum; where H(n) = 1+

1

2

+

1

3

+ : : :+

1

n

is the n

th

harmonic sum.

This represents a signi�cant improvement over the 40 logn approximation guarantee in [5]. More

importantly over approach, which uses the notion of cut packings, seems to be fairly powerful

and general and holds promise for approximating other NP-hard problems involving cuts.

1 Introduction

Given a multicommodity 
ow problem, with a demand associated with each commodity, which is

the amount of the commodity that we wish to ship, one often needs to know if there is a feasible 
ow,

i.e. a 
ow that satis�es the demands and obeys the capacity constraints. For a feasible 
ow to exist

it is necessary that the capacity of any cut exceed the sum of the demands of the commodities whose

source and sink are separated by the cut. The max-
ow min-cut theorem for single commodity


ow implies that this cut condition is also su�cient. In contrast, a multicommodity 
ow problem

can be infeasible even if the cut condition is satis�ed.

The optimization version of the multicommodity 
ow problem, called the concurrent 
ow problem,

�rst formulated by Shahrokhi and Matula [6], is to maximize the throughput, which is de�ned as

the value, f , such that there exists a multicommodity 
ow shipping a fraction f of the demand of

each commodity.

An upper bound on the throughput can be obtained by considering cuts in the network. For any

cut, the throughput times the sum of the demands of the commodities whose source and sink lie

on di�erent sides of the cut, cannot exceed the capacity of the cut. Thus the throughput is at most

the minimum, taken over all cuts, of the ratio of the capacity of the cut to the demand across the

cut; the cut achieving this minimum ratio, �, is called the sparsest cut.

The maximum throughput is also referred to as the maximum concurrent 
ow or the maximum


ow and the sparsest cut is commonly called the minimum cut. The max-
ow min-cut theorem

for single commodity 
ow states that the maximum 
ow and minimum cut as de�ned above are

equal. However, equality of maximum 
ow and minimum cut does not hold for multicommodity


ow instances in general.

�
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In a recent result Linial, London and Rabinovich [5] use ideas from the low-distortion embeddings

of graphs in normed spaces [1] to show that

�

O(log k)

� f � �

Alternatively, this means that for the case of uniform demands, it is su�cient that the capacity

of every cut exceed the demand across the cut by an O(log k) factor. Further, this approximate

max-
ow min-cut theorem is tight; Leighton and Rao show an example where the ratio between

the minimum cut and the maximum 
ow is O(log k).

The proof of this theorem also yields a randomized polynomial time algorithm for approximating

the sparsest cut within a factor of O(log k). Computation of such cuts is a basic step for a variety

of approximation algorithms for NP-hard optimization problems.

In this paper we provide a 2H(n) bound on the max-
ow min-cut ratio and present a randomized

polynomial time algorithm for approximating the sparsest cut with an approximation guarantee

of 4H(n) Besides improving signi�cantly on the constants involved, our work provides a poten-

tially powerful approach to approximating other NP-hard problems involving cuts in graphs. We

elaborate on this below.

Given a fractional solution (obtained by solving either a linear-programming or semi-de�nite pro-

gramming relaxation of the integer program) to an NP-hard problem involving cuts in graphs, can

it be expressed as a convex combination of the integer solutions? The integer solutions in our case

are cuts. Hence we would like to assign values to cuts in such a manner that the sum of the values

assigned to cuts that include a certain edge e, is `close' to the value of this edge in the fractional

solution; we refer to the value of edge e in the fractional solution as the length of e. In particular,

we require that the sum of the values assigned to cuts including e be no more than its length and it

is for this reason that we refer to this assignment of values to cuts as a cut packing. Furthermore, if

the cut packing is such that the sum of the values of the cuts including an edge is at least � times

the length of the edge then one of the cuts has sparsity no more than 1=� times the value of the

fractional solution.

Another instance where such an approach has been used for approximating an NP-hard problem

is that of the max-cut. In [2] the fractional solution obtained by solving the semi-de�nite program

is packed with cuts that are de�ned by hyperplanes. Since the problem involved is a maximization

problem we only require that each edge is packed to a su�ciently large extent. In fact by considering

only those cuts that are de�ned by hyperplanes and assigning them suitable values Goemans and

Williamson argue that each edge is packed to an extent of at least 0.878 thereby obtaining an

algorithm with this approximation guarantee.

In the case of max cut, geometry plays a crucial role in that it determines what cuts to include

in the packing and at what value. Our result demonstrates that geometry is of no signi�cance for

the sparsest cut problem as [5] seems to suggest. Thus although the approach we use for packing

cuts is as suggested implicitly in the paper by Bourgain [1] and the problem addressed there was of

embedding metric spaces into �nite-dimensional normed spaces, the cut packing approach can be

viewed in purely graph-theoretic and combinatorial terms. The geometric view advanced in [5] fails

for the case of multicommodity 
ows in directed graphs since we cannot hope to embed a directed

graph (with vastly di�erent lengths on two anti-parallel edges) with any bounded distortion. We
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believe that this break from geometry shall lead to improve bounds on the max-
ow min-cut ratio

for symmetric multicommodity 
ow in directed graphs [4].

The paper is organized as follows. Section 2 introduces the notations used. In Section 3 we show

how a cut-packing implies a bound on the max-
ow min-cut ratio. We also give a procedure for

obtaining a cut-packing. Section 4 proves the main theorem of the paper while Section 5 gives a

randomized polynomial time algorithm which approximates the sparsest cut within a factor 4H(n).

2 Notation and Preliminaries

An instance of the multicommodity 
ow problem consists of an undirected graph G = (V;E), a

capacity function, c : E ! R

+

, on the edges and k commodities, numbered 1 through k, where for

commodity i, besides the source and sink for that commodity we are also speci�ed a non-negative

demand. The demand graph H corresponding to a multicommodity 
ow instance is the graph

obtained by putting an edge for each source-sink pair.

Any multicommodity 
ow instance is equivalent to another instance where the graph G is the

complete graph and every pair of vertices is the source-sink pair of a commodity; we assign zero

capacities to the edges and zero demands for the commodities that are not part of the original

instance. For this paper we assume that the multicommodity 
ow instance is speci�ed as a complete

graph G = (V;E) with non-negative capacities c : E ! R

+

and demands d : E ! R

+

where d(e)

represents the demand of the commodity whose source-sink pair are the end-points of the edge e.

For a subset of edges, E

0

� E, let c(E

0

) denote the sum of the capacities of the edges in E

0

.

Similarly, d(E

0

) =

P

e2E

0

d(e). We de�ne the cut associated with a set S, denoted by 5(S), as the

set of edges with exactly one end point in S. Thus c(5(S));d(5(S)) denote the capacity and the

demand across the cut 5(S). Using this notation the Cut condition can be formulated as

Cut condition: 8S � V , c(5(S))� d(5(S))

The sparsest cut is the cut that minimizes the ratio c(5(S))=d(5(S)) and the sparsest cut ratio,

�, is given by

� = min

S�V

c(5(S))

d(5(S))

Let l : E ! [0; 1] be an assignment of lengths to the edges that satis�es the triangle inequality ie.,

for all vertices u; v; w, l(u; v) + l(v; w)� l(u; w), and which minimizes the ratio

P

e2E

l(e)c(e)

P

e2E

l(e)d(e)

Note that a 0/1 assignment of lengths which satis�es triangle inequality and minimizes the above

ratio yields a sparsest cut; the edges of length 1 are the edges in the cut. Thus l can be viewed as a

fractional solution to the sparsest cut problem . In fact it follows from the duality theory of linear

programming that the above ratio is equal to the maximum throughput of the multicommodity


ow instance, ie.

f =

P

e2E

l(e)c(e)

P

e2E

l(e)d(e)
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For a non-empty subset S � V , let l(u; S) denote the minimum length of an edge whose one

endpoint is u and the other is in S ie., l(u; S) = min

w2S

l(u; w). If u 2 S then l(u; S) = 0.

3 Cut Packings

Let y : 2

V

! R

+

be an assignment of non-negative values to subsets of vertices. This assignment

of values to subsets can also be viewed as an assignment of values to cuts with y(S) + y(S) being

the value assigned to the cut 5(S). Such an assignment is a cut packing if for all edges e 2 E, the

sum of the values assigned to subsets which contain exactly one end point of e is at most l(e) ie.,

P

S:e25(S)

y(S) � l(e). Furthermore if it is the case that for all edges e,

P

S:e25(S)

y(S) � � � l(e)

then

f =

P

e2E

l(e)c(e)

P

e2E

l(e)d(e)

� �

P

e2E

c(e)

�

P

S:e25(S)

y(S)

�

P

e2E

d(e)

�

P

S:e25(S)

y(S)

�

= �

P

S�V

y(S)c(5(S))

P

S�V

y(S)d(5(S))

� �min

S�V

c(5(S))

d(5(S))

and hence the sparsest cut is of value no more than f=�. Thus to prove an 1=� bound on the

max-
ow min-cut ratio for multicommodity 
ow it su�ces to show a way of assigning values to

subsets of vertices y : 2

V

! R

+

such that for every edge e, � � l(e) �

P

S:e25(S)

y(S) � l(e).

Bourgain's de�nition of an embedding [1] suggests a natural way of packing cuts. We begin by

picking a set of vertices S (we call this set the seed) and increase y(S) till for some edge e 2 5(S),

l(e) = y(S). Since we cannot increase y(S) any further, we include the other endpoint of e, say v,

into the set S and start raising y(S [ fvg). The set whose y value we raise is referred to as the

active set. Let A be the active set at some point (A is initially the same as S). We raise y(A) till

some edge e = (u; v), u 2 A, becomes tight ie.,

P

S:e25(S)

y(S) = l(e). We then update the active

set to A[ fvg and continue in this manner till all vertices are included in the active set. Note that

if l(u; S) < l(v; S) then vertex u is included before vertex v. We scale the values assigned to the

sets in this process by 1=(jSj

�

n

jSj

�

H(n)) and repeat this procedure for all 2

n

initial choices of the

seed set. Finally, the value assigned to a set is the sum of the scaled values assigned to the set in

the 2

n

runs. This then yields the cut packing.

Note that for every edge e = (u; v)

X

S:e25(S)

y(S) =

1

H(n)

X

S�V

jl(u; S)� l(v; S)j

jSj

�

n

jSj

�

and we denote this quantity by

^

l(e).
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Theorem 3.1

8e 2 E :

l(e)

2H(n)

�

^

l(e) � l(e)

This, by our argument from before, implies that the sparsest cut in the graph is of sparsity no more

than 2H(n) � f . Hence the max-
ow min-cut ratio for multicommodity 
ow is bounded by 2H(n).

A weaker version of Theorem 3.1 �rst appeared in [1] where it was shown that l(e)=O(logn) �

^

l(e) � l(e) with the constant in the Big-Oh being roughly 40. Our proof of this theorem yields a

better constant ie. two and this translates to a signi�cantly better approximation guarantee for the

sparsest cut problem.

4 Proof of Theorem 3.1

For this section we �x an edge e = (u; v) and provide upper and lower bounds on

^

l(e) in terms of

l(e). To simplify presentation we assume that l(e) = 1; the same arguments apply for any particular

value of l(e).

Lemma 4.1 (Bourgain)

^

l(e) � 1

One important technical contribution of this paper is to prove that

^

l(e) is minimum when every

vertex (besides u; v) has an edge of length 1=2 to both u and v and for this choice of lengths

^

l(e) = (1=2 + 1=n)=H(n). Formally,

Lemma 4.2

^

l(e) is minimum when

8w 2 V � fu; vg : l(u; w) = l(v; w) = 1=2

The minimum value of

^

l(e) is (1=2 + 1=n)=H(n).

From amongst all possible length functions which satisfy the property that for all vertices w di�erent

from u and v, l(u; w) + l(v; w)� 1 let l

�

: E ! R

+

be the one for which

^

l(e) is minimum. We call

the quantity jl

�

(u; S)� l

�

(v; S)j the contribution of set S (to

^

l(e)).

Claim 4.1 8w 2 V : l

�

(u; w) + l

�

(v; w) = 1.

Proof: Since l

�

is a metric, 8w 2 V : l

�

(u; w)+ l

�

(v; w)� 1. Let w be such that l

�

(u; w)+ l

�

(v; w) >

1. Decrease the larger of l

�

(u; w); l

�

(v; w) (both, if they are equal) by an amount �. We now argue

that there is no set whose contribution increases as a result of this change. Let S be a set whose

contribution changes and let l

�

(u; S) � l

�

(v; S). Clearly w 2 S. The contribution of S increases

only when l

�

(u; S) remains unchanged and l

�

(v; S) decreases. l

�

(v; S) decreases when l

�

(v; S) =

l

�

(v; w) � l

�

(u; w). l

�

(u; S) remains unchanged when l

�

(u; w) < l

�

(v; w) or l

�

(u; S) < l

�

(u; w).

However both these cases imply that l

�

(u; S)< l

�

(v; S) contradicting our assumption. Furthermore,

for a suitable �, the contribution of at least one set, either fu; wg or fv; wg, decreases. Hence if l

�

minimizes

^

l(e) it must be the case that 8w 2 V : l

�

(u; w) + l

�

(v; w) = 1.
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Claim 4.2 There exists a l

�

such that 8w 2 V : l

�

(u; w); l

�

(v; w) 2 f0; 1=2; 1g.

Proof: Given a length function l

�

we show how to obtain from it another length function which

also minimizes

^

l(e) and under which the length of any edge incident at u or v is either 0; 1=2 or 1.

Modify l

�

by decreasing (resp. increasing) all lengths in the range (1=2; 1) (resp. (0; 1=2)) by an

amount �. Let S be a set whose contribution changes and let l

�

(u; S) � l

�

(v; S). Then S satis�es

one of the following

� l

�

(u; S) > 1=2. This implies that l

�

(v; S) < 1=2 (consequence of Claim 4.1) and hence the

contribution of S decreases by 2�.

� l

�

(u; S) = 1=2 and l

�

(v; S) < 1=2. Contribution of S decreases by �.

� 0 < l

�

(u; S) < 1=2 and l

�

(v; S) = 0. Contribution of S increases by �.

Let � be the change in

^

l(e) as a result of this modi�cation in lengths (� > 0 implies an increase

and � < 0 a decrease in

^

l(e)). Now consider the complementary modi�cation which increases (resp.

decreases) all lengths in the range (1=2; 1) (resp. (0; 1=2)) by the same amount �. It is easy to see

that the only sets whose contribution changes are exactly those as before. Sets whose contribution

increased (resp. decreased) earlier have their contributions decreasing (resp. increasing) now by

the same amount. Since

^

l(e) is a weighted sum of the contributions of the sets and � was the change

in

^

l(e) earlier, the change in

^

l(e) now is ��. If � 6= 0 then one of these two ways of modifying l

�

reduces

^

l(e) contradicting the fact that l

�

minimizes

^

l(e). On the other hand, if � = 0, we could use

any one of these two techniques for modifying lengths and �nally obtain a length function which

takes values from f0; 1=2; 1g for the length between any vertex and u; v.

Henceforth we assume that l

�

is as claimed above. Let S

u

be the set of vertices which have an

edge of 0 to u (and hence an edge of length 1 to v), i.e. S

u

= fw 2 V jl

�

(u; w) = 0g. Similarly,

S

v

= fw 2 V jl

�

(v; w) = 0g. Further, let jS

u

j = a and jS

v

j = b. The only sets that have a non-zero

contribution are those that intersect exactly one of S

u

; S

v

. Of these, the sets that are contained

in either S

u

or S

v

contribute 1 while the rest contribute 1/2 to

^

l(e). There are

�

n�b

r

�

�

�

n�a�b

r

�

r-element sets that intersect S

u

but not S

v

and of these

�

a

r

�

sets are contained in S

u

. Hence,

^

l(e) =

1

H(n)

 

1

2

n�b

X

r=1

�

n�b

r

�

�

�

n�a�b

r

�

r

�

n

r

�

+

1

2

a

X

r=1

�

a

r

�

r

�

n

r

�

+

1

2

n�a

X

r=1

�

n�a

r

�

�

�

n�a�b

r

�

r

�

n

r

�

+

1

2

b

X

r=1

�

b

r

�

r

�

n

r

�

!

Claim 4.3

n�p

X

r=1

�

n�p

r

�

�

�

n�q

r

�

r

�

n

r

�

= H(q)� H(p)

where 0 � p � q � n.

Proof: Telescoping the di�erence in the numerator we obtain

 

n� p

r

!

�

 

n� q

r

!

=

q

X

i=p+1

 

n� i+ 1

r

!

�

 

n� i

r

!

=

q

X

i=p+1

 

n � i

r � 1

!
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Therefore,

n�p

X

r=1

�

n�p

r

�

�

�

n�q

r

�

r

�

n

r

�

=

n�p

X

r=1

q

X

i=p+1

�

n�i

r�1

�

r

�

n

r

�

=

q

X

i=p+1

n�p

X

r=1

�

n�i

r�1

�

r

�

n

r

�

=

q

X

i=p+1

 

1

n

n�p

X

r=1

�

n�i

r�1

�

�

n�1

r�1

�

!

The following identity is proved in [3, pages 173,174].

l

X

k=0

�

l

k

�

�

m

k

�

=

m+ 1

m+ 1� l

; 0 � l � m

Hence

n�p

X

r=1

�

n�i

r�1

�

�

n�1

r�1

�
=

(n� 1) + 1

(n� 1) + 1� (n� i)

=

n

i

since i � p+ 1 and p � 0. Substituting the above into equation 1 yields

n�p

X

r=1

�

n�p

r

�

�

�

n�q

r

�

r

�

n

r

�

=

q

X

i=p+1

1

i

= H(q)�H(p)

Substituting the identity in Claim 4.3 into the expression for

^

l(e) gives

^

l(e) =

1

H(n)

 

1

2

(H(a+ b)�H(b)) +

1

2

a

X

r=1

�

a

r

�

r

�

n

r

�

+

1

2

(H(a+ b)�H(a)) +

1

2

b

X

r=1

�

b

r

�

r

�

n

r

�

!

Since a; b � 1, the expression on the right is minimum when a = b = 1 at which point its value is

(1=2 + 1=n)=H(n). This proves Lemma 4.2.

5 A 4H(n)-approximation algorithm for sparsest cut

In this section we present a randomized polynomial time algorithm that �nds a cut of sparsity at

most 4H(n) � f with probability at least 1 � e

�1

. Our arguments in the previous sections were

existential ie. we only showed the existence of a cut of sparsity at most 2H(n). Besides the cut

packing we used required an assignment of values to exponentially many sets and hence it is not

clear how this could lead to a polynomial time algorithm.

Note however that there is a simple procedure for picking a cut with probability proportional to its

value in the packing. Hence by picking cuts in this manner we should be able to obtain a cut with

sparsity less than the `average' sparsity. The actual procedure we use for picking cuts is slightly

di�erent and is detailed below.
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Recall that in the procedure for �nding a cut packing we picked a seed set and then using a Dijkstra

like procedure for shortest paths, assigned values to some cuts. We now pick, randomly, a set S

with probability 1=(H(n)jSj

�

n

jSj

�

) and perform this procedure with S as the seed. From amongst

all cuts encountered in this procedure (the cuts corresponding to the active sets) pick the one with

the minimum sparsity.

Lemma 5.1 The probability, p, that the cut picked in this manner has sparsity more than 4H(n) �f

is at most 1� 1=4H(n).

Proof: For contradiction assume that p > 1 � 1=4H(n). Let S be the collection of seed sets for

which the sparsest cut found is of sparsity more than 4H(n) � f . Then

p =

X

S2S

1

H(n)jSj

�

n

jSj

�

Recall that y(S) is the value assigned to set S in the cut packing obtained by considering all

possible seed sets. We split y(S) into y

1

(S) and y

2

(S) where y

1

(S) is the value assigned to S when

considering those seed sets which are in S and y

2

(S) is the value assigned to S when considering

those seed sets that are not in the collection S. Thus y(S) = y

1

(S) + y

2

(S).

Claim 5.1

X

S�V

y

2

(S)d(5(S))<

1

4H(n)

X

e2E

l(e)d(e)

Proof: Note that for any edge e 2 E

X

S:e25(S)

y

2

(S) � l(e)(1� p)

Thus

X

S�V

y

2

(S)d(5(S)) =

X

e2E

d(e)

X

S:e25(S)

y

2

(S)

which implies the claim

Since

X

S�V

y(S)d(5(S))�

1

2H(n)

X

e2E

l(e)d(e)

we have

X

S�V

y

1

(S)d(5(S))>

1

4H(n)

X

e2E

l(e)d(e)

Further, any set S with y

1

(S) > 0 has sparsity at least 4H(n) � f and therefore

X

e2E

l(e)c(e) �

X

S�V

y(S)c(5(S))
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�

X

S�V

y

1

(S)c(5(S))

� 4H(n) � f

X

S�V

y

1

(S)d(5(S))

> f

X

e2E

l(e)d(e)

which contradicts the equality

f =

P

e2E

l(e)c(e)

P

e2E

l(e)d(e)

Hence the probability that we pick a cut of sparsity more than 4H(n) � f is at most 1� 1=4H(n).

Thus if we repeat this experiment 4H(n) times then the probability that every trial gives us a cut

of sparsity more than 4H(n) � f is at most (1� 1=4H(n))

4H(n)

. Thus the probability that one of

the trials gives us a cut of sparsity at most 4H(n) � f is at least 1� e

�1

.

Theorem 5.2 There is a randomized polynomial time algorithm that with probability at least 1�e

�1

�nds a cut of sparsity at most 4H(n) times the optimum.

6 Sparsest Node Cuts
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