
Strong Skolemization

Andreas Nonnengart

MPI{I{96{2{010 December 1996

i

Author's Address

Max-Planck-Institut f�ur Informatik

and Saarbr�ucken University

Im Stadtwald, 66123 Saarbr�ucken, Germany

Email: Andreas.Nonnengart@mpi-sb.mpg.de

WWW: http://www.mpi-sb.mpg.de/~nonnenga/

Acknowledgements

Thanks to Harald Ganzinger, Hans J�urgen Ohlbach and Christoph Weiden-

bach for their comments on earlier versions of this paper.

ii

Abstract

Skolemization is a means to eliminate existential quanti�ers

within predicate logic sentences and that by replacing ex-

istentially quanti�ed variables with Skolem function appli-

cations. The arguments of these Skolem functions are vari-

ables which are quanti�ed outside the sub-formula under

consideration. In this paper a Skolemization technique is

introduced which abstracts from some of the arguments of

the Skolem functions. It shows that the Skolemization result

obtained this way is usually more general than what can be

achieved from standard (classical) Skolemization. This can

be of quite some importance since such generalizations often

lead to a reduction of both search space and proof length.

Keywords

Skolemization, Skolem functions, Optimized Skolemization, First-order logic,

predicate logic theorem proving.

iii

1 Introduction

In automated theorem proving much e�ort is spent on the development of

more and more sophisticated reasoning calculi. Not so much e�ort is spent

on the optimization of certain normal form transformations as they are, for

example, necessary for resolution-based theorem proving.

One part of the usual clause normal form transformation for resolution

is Skolemization (see the historical paper (Skolem 1920)). Its major e�ect

lies in substituting so-called Skolem function applications for existentially

quanti�ed variables. Usually, there are two kinds of Skolemization techniques

mentioned in the standard literature on automated theorem proving (see

e.g. (Loveland 1978, Chang and Lee 1973)) which are called Inner and Outer

Skolemization in this paper. The two di�er mainly in the choice of the

arguments for the Skolem functions (see below).

Anti-prenex transformation turned out to be a fairly useful preparatory

process for Skolemization

1

. Its purpose is to minimize the dependencies of

existentially quanti�ed variables from other, universally quanti�ed variables.

The value of anti-prenexing can be of quite some signi�cance (see, e.g., (Egly

1994, Loveland 1978)) and that regardless of whether we perform Inner or

Outer Skolemization. The Strong Skolemization introduced in this work is

shown to be a generalization of both standard Skolemization methods.

The paper is organized as follows: First the usual notion of Skolemization

is recapitulated. After that the Strong Skolemization technique is introduced

and it is shown that it preserves both satis�ability and unsatis�ability. This

is followed by some application examples and the paper concludes by compar-

ing Strong Skolemization with a related technique, the so-called Optimized

Skolemization.

2 Preliminaries

For simplicity, we assume formulas to be in negation normal form and that

any two di�erent quanti�ers inside a formula bind variables with di�erent

names. This guarantees that the occurrence of a sub-formula 9x� or 8x�

1

A formula is said to be in anti-prenex form if all quanti�ers are moved inwards as far as

possible. There is only one exception, namely, existential quanti�ers are not distributed

over disjunctions. It is even the case that formulas of the form 9x�[x] _ 9y	[y] are

transformed into 9x (�[x] _	[x]) in order to reduce the number of existential quanti�ers.

1

in a given formula � is unique.

By � [�] we indicate that � is a sub-formula of � and � [� =] is a

representation of � with sub-formula � replaced by 	

2

.

We refer to the set of free (i.e. not bound by any quanti�er) variables

in � by V(�). For any variable x occurring in �, the (unique) sub-formula

starting with the quanti�er which binds x is referred to by �

x

. Thus, if

� = � [9x�] then �

x

= 9x�.

For readability we abbreviate sequences of the form u

1

; : : : ; u

k

of length

k by u

k

.

A (�rst-order) interpretation M = (D;=; �) consists of a non-empty do-

main of discourse D, a mapping = which associates functions and relations

to function symbols and predicate symbols respectively, and a variable val-

uation � which maps variables to elements of D. Given a valuation � we

mean by �[x=d] the variable valuation which is identical to � except for the

variable x which is to be interpreted as the domain value d. Similarly, by

M[x=d] we understand the triple (D;=; �[x=d]) provided M = (D;=; �).

Finally, whenever we write �fx=tg we mean � with every occurrence of

the variable x replaced by the term t.

Definition 2.1 (inner and outer skolemization)

We obtain the Skolemization of a sentence � by replacing every occurrence of

sub-formulas 9x� in � with a corresponding �fx=f(y

n

)g, where f is an n-

place function symbol which is new to the problem under consideration. We

speak of Outer Skolemization in case the variables y

n

are all the universally

quanti�ed variables such that 9x� is a sub-formula of �

y

i

for each 1 � i � n.

If fy

1

; : : : ; y

n

g = V(9x�), i.e. the variables y

n

are all the free variables in

the sub-formula 9x�, then we speak of an Inner Skolemization.

Skolemization is not an equivalence transformation. It preserves satis�-

ability and unsatis�ability, though. This is stated in the following Lemma

(proofs are omitted, for they can be found in most common textbooks and

survey articles on �rst-order predicate logic theorem proving as, e.g., in

(Chang and Lee 1973, Loveland 1978, Andrews 1981)).

2

This de�nition won't be ambiguous since we are only going to replace sub-formulas

of the form 9x� in the sequel which, under the above assumption, are unique inside the

formulas we consider.

2

Lemma 2.2

Let � be some arbitrary sentence with sub-formula 9x� and let f; y

n

as in

De�nition 2.1. Then

� [9x�] is satis�able

i�

� [9x� =�fx=f(y

n

)g] is satis�able

Outer Skolemization generates new Skolem functions which get all the

universally quanti�ed variables as arguments the formula under consideration

depends on. There might be unnecessarily many such variable dependencies,

however, if the formula to be skolemized is not in anti-prenex form. As an

example consider the formula 8x; y [9z P (x; z)_P (x; y)] for which Standard

Skolemization leads to 8x; y [P (x; f(x; y)) _ P (x; y)]. If preceded with an

anti-prenex transformation, however, we would end up with the much simpler

8x [P (x; f(x)) _ 8y P (x; y)] instead.

During Inner Skolemization, Skolem functions are introduced which take

only \necessary" variables as arguments. However, the Skolemization re-

sult depends on the order of the Skolemization of the sub-formulas. As an

example consider the formula 8x [9y (P (x; y) ^ 9z Q(x; y; z))]. If we �rst

skolemize on 9z Q(x; y; z) then we �nally end up with 8x [P (x; f(x)) ^

Q(x; f(x); g(x; f(x)))] whereas starting the Skolemization with the outer ex-

istentially quanti�ed sub-formula yields 8x [P (x; f(x)) ^ Q(x; f(x); g(x))].

Evidently, the latter is to be preferred. Indeed, Inner Skolemization should

always be performed from left to right in order to result in such a preferred

form.

There is, however, a possibility to de�ne Skolemization without such a

Skolemization strategy and which always ends up with the very same result.

The idea is to �gure out the overall dependencies of existentially quanti�ed

variables and to use these dependencies instead of local occurrences of certain

variables.

Definition 2.3

Let x be a variable in the sentence �. Then we de�ne

Dep

�

(x) =

8

>

<

>

:

fxg if x is universally quanti�ed in �

[

y2V(�

x

)

Dep

�

(y) otherwise

3

As an example consider the formula � = 8x; u 9y (P (x; y) ^ 9z Q(u; z)).

Then Dep

�

(x) = fxg, Dep

�

(u) = fug, Dep

�

(y) = fx; ug, and Dep

�

(z) =

fug.

Definition 2.4 (standard skolemization)

We obtain the Standard Skolemization of a sentence � by replacing all sub-

formulas 9x� within � with �fx=f(y

n

)g, where f is a new function symbol

and

fy

1

; : : : ; y

n

g =

[

z2V(9x�)

Dep

�

(z)

Lemma 2.5

Standard Skolemization preserves both satis�ability and unsatis�ability.

Proof: The above variable restriction is identical to the one for Inner Skolem-

ization if �

x

lies not within the scope of another existential quanti�er. More-

over, the result achieved by Standard Skolemization is unique { it does not

depend on the order the respective existentially quanti�ed sub-formulas are

visited. Hence, what has been claimed follows immediately from Lemma 2.2

(and Skolemization is performed from left to right). 2

Note that this Skolemization is still not optimal in the sense that the

least possible variable dependencies are found. For instance, consider the

formula 8x; y 9z [P (z) ^ (Q(x; z) _ R(y; z))] which, after Skolemization, be-

comes 8x; y [P (f(x; y)) ^ (Q(x; f(x; y)) _ R(y; f(x; y)))] and that regardless

of which of the above Skolemization possibilities is performed. If we �rst

distributed the ^ over the _, however, we would be able to perform an

anti-prenex step and �nally we were faced with the formula 8x; y [9z (P (z)^

Q(x; z))_9z (P (z)^R(y; z))]. In this case the Skolemization would result in

8x; y [(P (f(x)) ^ Q(x; f(x))) _ (P (g(y)) ^ R(y; g(y)))]. Thus we have fewer

dependencies for the price of having to deal with more Skolem functions.

Whether or not this is still of some advantage varies from case to case; we

shall not discuss this issue in this paper.

4

3 The Strong Skolemization Technique

Strong Skolemization applies to sub-formulas of the form 9x

l

(�^)

3

; in all

other cases it behaves just like Standard Skolemization. Recall that Standard

Skolemization of a formula � replaces each of its sub-formulas of the form

9x (� ^) by �fx=f(u

k

)g ^	fx=f(u

k

)g, where f is a new function symbol

and

fu

1

; : : : ; u

k

g =

[

z2V(9x (�^))

Dep

�

(z)

Now, we can split the variables u

k

into two disjoint subsets y

n

and z

m

such

that

fy

1

; : : : ; y

n

g =

[

y2V(�)nfxg

Dep

�

(z)

and

fz

1

; : : : ; z

m

g =

0

@

[

z2V(�)nV()

Dep

�

(z)

1

A

n fy

1

; : : : ; y

n

g

With this we can reformulate the Standard Skolemization step as follows: We

replace 9x (� ^) with �fx=f(y

n

; z

m

)g ^ 	fx=f(y

n

; z

m

)g. As it will turn

out, it is allowed to abstract from z

m

in one of the two conjuncts resulting in

fresh universally quanti�ed variables w

m

. This is what Strong Skolemization

is about.

Definition 3.1 (strong skolemization)

Let � be a �rst-order sentence in anti-prenex negation normal form. Strong

Skolemization replaces existentially quanti�ed sub-formulas exactly as Stan-

dard Skolemization does except for sub-formulas of the form 9x

k

(�^). In

this case let

fy

1

; : : : ; y

n

g =

[

y2V(�)nfx

k

g

Dep

�

(y)

fz

1

; : : : ; z

m

g =

0

@

[

z2V()nV(�)

Dep

�

(z)

1

A

n fy

1

; : : : ; y

n

g

Then 9x

k

(�^) is to be replaced by 8w

m

�fx

i

=f

i

(y

n

; w

m

)g^	fx

i

=f

i

(y

n

; z

m

)g

for all 1 � i � k. Such transformation steps are called Strong Skolemization

steps on the sub-formula �.

3

Without loss of generality we assume that both � and 	 contain the variables x

l

, for

otherwise we could apply an anti-prenex step.

5

The following theorem ensures that Strong Skolemization behaves as de-

sired.

Theorem 3.2

Let y

n

and z

m

be as in De�nition 3.1. Then

� [9x

k

(� ^)] is satis�able

i�

� [9x

k

(� ^) = (8w

m

�fx

i

=f

i

(y

n

; w

m

)g ^	fx

i

=f

i

(y

n

; z

m

)g)] is satis�able

Proof: See page 8. 2

Given a sub-formula 9x (�^), it indeed matters whether we perform a

Strong Skolemization step on � or on 	. For instance, if

[

z2V()nfxg

Dep

�

(z) �

[

z2V(�)nfxg

Dep

�

(z)

it turns out that by doing such a step on � the number m becomes 0. In such

a case Strong Skolemization behaves as Standard Skolemization and we have

no gain at all over the classical methods. Quite evidently, the greater this

m, the more general is the Strong Skolemization outcome. Hence, if the one

choice results in a value of m = 0 and the other in a value of m > 0 then the

latter is to be preferred, for it is the one that covers the possibility to gain

something more general than what Standard Skolemization could produce.

But even in case either choice leads to a value of m > 0 it often matters

which of the two takes part. Some such examples can be found in the next

section.

But �rst we have to show that Theorem 3.2 holds. To this end we make use

of the following auxiliary lemma.

Lemma 3.3

Let � be some arbitrary sentence with sub-formula 9x

k

(� ^). Then

4

� [9x

k

(� ^)] is satis�able

implies

� [9x

k

(� ^) = (8w�fx

i

=h

i

(y

n

; w)g ^ 9z	fx

i

=h

i

(y

n

; z)g)] is satis�able

4

In fact, the Lemma holds for both directions. We only need this one in the sequel,

however.

6

where h

i

are new function symbols, w and z are fresh variables and

fy

1

; : : : ; y

n

g =

[

u2V(�)nfx

k

g

Dep

�

(u)

Proof: It su�ces to consider the case where �

x

1

lies not within the scope of

another existential quanti�er in �. The other cases then follow by some appli-

cations of Lemma 2.2 (or Lemma 2.5) (Skolemization and de-Skolemization).

Thus we can assume that fy

n

; x

k

g are the free variables of �. Now, for any

interpretation M = (D;=; �) and elements �

n

in D we de�ne

S

�

(�

1

; : : : ; �

n

) = f(�

1

; : : : ; �

k

) 2 D

k

j M[y

i

=�

i

][x

j

=�

j

] j= �g

S

�

is a representation of the set of tuples that make � true under the interpre-

tation M (given suitable values for the universally quanti�ed free variables

in �). Therefore, in case of M j= 9x

k

(� ^) we know that

� S

�

(�(y

1

); : : : ; �(y

n

)) 6= ; and

� there is a (�

1

; : : : ; �

k

) 2 S

�

(�(y

1

); : : : ; �(y

n

)) with M[x

i

=�

i

] j= 	

Now let

b

h:D

n+k

! D

k

be such that

b

h(�

n

;

k

) =

8

>

<

>

:

(

k

) if (

k

) 2 S

�

(�

n

)

c

1

if (

k

) =2 S

�

(�

n

) and S

�

(�

n

) 6= ;

c

2

otherwise

where c

1

is an arbitrary element of S

�

(�

n

) and c

2

is an arbitrary element

of D

k

respectively. Thus, if S

�

(�

n

) 6= ; for some interpretation M and

appropriate values for the respective �

i

, then

b

h(�

n

;

k

) serves as a `selector

function' on S

�

(�

n

). I. e.,

b

h(�

n

;

k

) always provides us with an element of

S

�

(�

n

) and, just as important, all elements of S

�

(�

n

) can be reached by

b

h.

Now let �

i

denote the usual projection functions on tuples of elements from

D such that �

i

(: : : ; �

i

; : : :) = �

i

. Then

S

�

(�(y

1

); : : : ; �(y

n

)) 6= ;

implies

M[x

i

=�

i

(

b

h(�(y

1

); : : : ; �(y

n

); �

k

))] j= � for all (�

k

) 2 D

k

and also

M[x

i

=�

i

] j= 	 for some (�

k

) 2 S

�

(�(y

1

); : : : ; �(y

n

))

implies

M[x

i

=�

i

(

b

h(�(y

1

); : : : ; �(y

n

); �

k

))] j= 	 for some (�

k

) 2 D

k

7

Thus, if M j= 9x

k

(� ^) then

M

0

j= 8w

k

�fx

i

=h

i

(y

n

; w

k

)g ^ 9z

k

	fx

i

=h

i

(y

n

; z

k

)g

where M

0

is like M except for the interpretation of the function symbols h

i

which is M

0

(h

i

) = �

i

�

b

h, i. e. the ith element of the result of

b

h. 2

Proof of Theorem 3.2:

� [9x

k

(� ^)] is satis�able

implies � [9x

k

(� ^) = 8w

k

�fx

i

=h

i

(y

n

; w

k

)g ^ 9u

k

	fx

i

=h

i

(y

n

; u

k

)g]

is satis�able (by Lemma 3.3)

implies � [9x

k

(� ^) = 8w

k

�fx

i

=h

i

(y

n

; w

k

)g

^ 	fx

i

=h

i

(y

n

; g

i

(y

n

; z

m

))g]

is satis�able (by Lemma 2.5)

implies � [9x

k

(� ^) = 8w

m

�fx

i

=h

i

(y

n

; g

i

(y

n

; w

m

))g

^ 	fx

i

=h

i

(y

n

; g

i

(y

n

; z

m

))g]

is satis�able (by instantiation)

implies � [9x

k

(� ^) = 8w

m

�fx

i

=f

i

(y

n

; w

m

)g ^ 	fx

i

=f

i

(y

n

; z

m

)g]

is satis�able (let f

i

(�

n

;

m

) = h

i

(�

n

; g

i

(�

n

;

m

)))

implies � [9x

k

(� ^) =�fx

i

=f

i

(y

n

; z

m

)g ^	fx

i

=f

i

(y

n

; z

m

)g]

is satis�able (by instantiation)

implies � [9x

k

(� ^)] is satis�able (by Lemma 2.5)

and this implication-cycle completes the proof. 2

4 Examples

As mentioned earlier, there are cases where Strong Skolemization cannot

be distinguished from Standard Skolemization. For instance, if a Strong

Skolemization step is to be performed on a sub-formula 9x�, where � is

not a conjunction, Strong Skolemization in fact degenerates to Standard

Skolemization. Also, even if � is a conjunction, the Strong Skolemization

step might be a mere variant of a corresponding Standard Skolemization

step.

8

In this section we examine some interesting, yet typical, examples which

show the e�ect of Strong Skolemization.

Consider the formula

8x [C(x) _ 8y 9z (A(y; z) ^B(x; z))] (1)

Standard Skolemization and clause normal form transformation leads to

5

C(x) _ A(y; f(x; y))

C(x) _ B(x; f(x; y))

After Strong Skolemization (on A(y; z)), however, we obtain the clauses

C(x) _ A(y; f(w; y))

C(x) _B(x; f(x; y))

Observe the di�erence between the two Skolemization outcomes. The latter

(after Strong Skolemization) is more general than the former, for it has a new

variable w where the former has a variable x which occurs somewhere else in

the clause. Thus the latter should be preferred. This is particularly valuable

in case a :C(t) follows from the problem under consideration, because then

we are able to derive A(y; f(w; y)) which even subsumes the �rst clause from

above, something which would not be possible after Standard Skolemization.

Note that the result of Strong Skolemization (on A(y; z)) is identical to

what we would achieve if we (standard) skolemized the formula

8x; y 9z [(8uC(u) _ A(y; z)) ^ (C(x) _ B(x; z))] (2)

Indeed, the two formulas (1) and (2) are logically equivalent as the reader

might easily check.

But what would happen if we (strongly) skolemized on B(x; z) instead

of A(y; z)? In this case we would end up with the same result as Standard

Skolemization and hence there would be no gain in using Strong Skolemiza-

tion. This shows how the choice on the conjuncts can inuence the �nal result

and that it is by no means irrelevant on which of the conjunctive elements

the Strong Skolemization is performed.

Formula (1) is an example in which we have no problems in deciding on

which conjunct to perform the Strong Skolemization step. However, if we

slightly change (1) to

8x; y [C(x; y) _ 9z (A(y; z) ^ B(x; z))] (3)

5

Note that � is already in anti-prenex negation normal form.

9

then it is not any more clear whether we should choose the literal A(y; z) or

the literal B(x; z) for the next Strong Skolemization step. In the one case we

produce the clauses

C(x; y) _ A(y; f(w; y))

C(x; y) _ B(x; f(x; y))

in the other case we end up with the clauses

C(x; y) _ A(y; g(x; y))

C(x; y) _ B(x; g(x; w))

Both are more general than the Standard Skolemization result, nonetheless

the two cannot be compared with each other. For example, the former is

more valuable in case we are able to prove 8x 9y C(y; x), the latter is of

particular interest if 8x 9y C(x; y) can be shown.

The above example is not arti�cial. As an interesting instance consider

the so-called \density property" of some binary relation R, i.e.,

8x; y [R(x; y) � 9z (R(x; z) ^R(z; y))] (4)

Here, as in the previous example, Strong Skolemization ends up with either

:R(x; y) _R(x; f(x; w))

:R(x; y) _R(f(x; y); y)

or

:R(x; y) _R(x; g(x; y))

:R(x; y) _R(g(w; y); y)

The former is particularly interesting if R can be proven to be forward serial,

whereas the latter is more important in case backward seriality of R holds.

Note that the results achieved from Strong Skolemization are identical to the

application of Standard Skolemization on

8x; y 9z [8w (R(x; w) � R(x; z)) ^ (R(x; y) � R(z; y))] (5)

and

8x; y 9z [(R(x; y) � R(x; z)) ^ 8w (R(w; y) � R(z; y))] (6)

respectively. I leave it to the reader to verify that (4), (5), and (6) are

pairwise equivalent.

The above examples show that the Strong Skolemization outcome can

depend on the choice of the conjunct. Quite often, however, this choice turns

out to be irrelevant because the possible cases are somewhat symmetric. One

such example can be found in the following formula

8x; y; z [(R(x; y) ^ R(x; z)) � 9u (R(y; u) ^ R(z; u))] (7)

10

which expresses something like a \conuence" property of the relation R.

Standard Skolemization (plus clausi�cation) results in

:R(x; y) _ :R(x; z) _ R(y; f(y; z))

:R(x; y) _ :R(x; z) _ R(z; f(y; z))

whereas Strong Skolemization (on R(y; u)) yields

:R(x; y) _ :R(x; z) _ R(y; f(y; w))

:R(x; y) _ :R(x; z) _ R(z; f(y; z))

Here, a condensing step is possible on the literals :R(x; y) and :R(x; z) with

substitution � = fz=yg and so we end up with

:R(x; y) _ R(y; f(y; w))

:R(x; y) _ :R(x; z) _ R(z; f(y; z))

Similarly, Strong Skolemization (on R(z; u)) leads to (again after condensing)

:R(x; y) _ :R(x; z) _R(y; g(y; z))

:R(x; z) _ R(z; g(w; z))

In contrast to the earlier examples the two outcomes are mere variants of each

other. Nevertheless, both are more general than the Standard Skolemization

result.

The above examples all are of the form 9x (�^). However, the de�nition

of Strong Skolemization also covers the slightly more general cases in which

there may be more than just one existentially quanti�ed variable. This more

general case cannot be simulated by a sequence of Strong Skolemization steps

of the above kind as the following example shows. Let

� = 8x [C(x) _ 8y 9u; v (A(y; u; v) ^ B(x; u; v))] (8)

If we �rst (strongly) skolemized on the sub-formula �

u

we would obtain

8x [C(x) _ 8y 9v (A(y; f(x; y); v)^ B(x; f(x; y); v))]

and so would �nally end up with

8x [C(x) _ 8y (A(y; f(x; y); g(x; y))^ B(x; f(x; y); g(x; y)))]

11

Hence Strong Skolemization would behave as Standard Skolemization in this

case. However, according to De�nition 3.1, we can treat the two existentially

quanti�ed variables u and v simultaneously and so actually achieve the result

8x [C(x) _ 8y (A(y; f(w; y); g(w; y))^ B(x; f(x; y); g(x; y)))]

which subsumes the Standard Skolemization outcome and (after clause nor-

mal form transformation) allows for clause splitting.

Summarizing: The e�ect of Strong Skolemization compared to Standard

Skolemization is not that the structure after clausi�cation is changed; rather

it lies in the abstraction from some of the arguments of the Skolem functions

(resulting in new universally quanti�ed variables).

5 Related Work

There is a somewhat related technique to Strong Skolemization, the so-called

Optimized Skolemization, that has been developed by Christoph Weidenbach

and Hans J�urgen Ohlbach in (Ohlbach and Weidenbach 1995). Their ap-

proach can briey be described as follows:

Let � be a sentence with sub-formula 9x (� ^). Moreover, suppose that

we can prove that � j= 8y

1

; : : : ; y

n

9x� where fy

1

; : : : ; y

n

g = V(9x (� ^)).

Then

�[9x (� ^)] is satis�able

i�

�[9x (� ^) =	fx=f(y

n

)g] ^ 8y

n

�fx=f(y

n

)g is satis�able

where f is a new (Skolem) function symbol.

As an example consider again the density property for R, i.e., 8u; v [R(u; v) �

9w (R(u; w)^R(w; v))]. In case we know (or can easily prove) that the binary

relation R is serial, i.e., 8x9y R(x; y), the Optimized Skolemization of the

density property results in the clauses

R(x; f(x; y))

:R(u; v) _ R(f(u; v); v)

The very same two clauses could be obtained by Standard Skolemization

from

8x; y 9z [R(x; z) ^ (R(x; y) � R(z; y))] (9)

12

We leave it to the reader to verify that indeed formula (9) is logically equiv-

alent to the conjunction of the formulas for seriality and density of R.

Now let us compare this with the method proposed in this paper. Recall

that Strong Skolemization on the literal R(u; w) yields the clauses

:R(u; v) _ R(u; f(u; w))

:R(u; v) _ R(f(u; v); v)

Moreover, suppose that there is a further clause, say R(x; g(x)), which states

the seriality of R. Then a resolution step with the �rst clause from above

yields the unit clause R(u; f(u; w)) which even subsumes its two-literal parent

clause. Thus, we �nally ended up with the same outcome as in the case of

Optimized Skolemization, i.e., Optimized Skolemization has in a sense been

simulated by Strong Skolemization and resolution.

The above shows some similarity between Strong Skolemization and Op-

timized Skolemization. However, the similarities are not always as strong as

the above example might suggest.

Consider again formula (7) and assume that we are able to prove that

8y9uR(y; u), i.e., R is serial. Optimized Skolemization then results in the

clauses

R(y; f(y; z))

:R(x; y) _ :R(x; z) _ R(z; f(y; z))

whereas Strong Skolemization on R(y; u) leads to

:R(x; y) _ R(y; f(y; w))

:R(x; y) _ :R(x; z) _ R(z; f(y; z))

Note that { in contrast to the \density example" { the seriality of R does not

help here to simulate Optimized Skolemization, although, somewhat surpris-

ingly, backward seriality does; and after all, seriality follows from backward

seriality in the example under consideration (although not the other way

round). A major reason for this is, that Optimized Skolemization takes the

whole problem into account and not only the sub-problem in which the sub-

formula to be skolemized occurs. In other words, Optimized Skolemization

works globally on the problem under consideration whereas Strong Skolem-

ization applies only locally to the various sub-problems. This leads us to the

conclusion that, if Optimized Skolemization applies at all, then it produces

a more general result than Strong Skolemization and thus in particular a

more general result than Standard Skolemization. This fact might indicate

13

that Optimized Skolemization should always be performed, however, there

still is the restriction that it requires the provability of a certain intermediate

conjecture (seriality of R in the examples above). Hence, if automated, Op-

timized Skolemization itself involves the application of theorem provers, so

that clause normal form generation can become a signi�cantly complicated

procedure. In fact, such proofs might be arbitrary complicated and since

such desired requirements cannot be decided (they are only semi-decidable,

just as �rst-order theorem proving is in general) some restrictions are to be

imposed on the intermediate prover, be it by time limits or by a bounded

number of inference steps (see (Weidenbach, Gaede and Rock 1996) for a de-

scription of flotter, an implementation of Optimized Skolemization). In

case the desired property cannot be proved { regardless of whether it simply

does not hold or the given restrictions prevent a proof to be found { Opti-

mized Skolemization performs a Standard Skolemization step and thus shows

no advantage at all. These are situations where Strong Skolemization would

nicely come into play, for then its superiority over Standard Skolemization

could show its signi�cance.

Another slight di�erence between Strong and Optimized Skolemization

can be seen in the kind of sub-formulas they are applied to. Recall that

Strong Skolemization applies to sub-formulas of the form 9x

k

(�^), where

k may be any natural number, whereas Optimized Skolemization requires

sub-formulas of the form 9x (�^), i.e., it considers only single existentially

quanti�ed variables. As an example consider again formula (8)

8x [C(x) _ 8y 9u; v (A(y; u; v) ^ B(x; u; v))]

In a �rst step Optimized Skolemization would eliminate the variable u, yield-

ing

8x [C(x) _ 8y 9v (A(y; f(x; y); v)^ B(x; f(x; y); v))]

After that there is an attempt to prove 8x; y 9v A(y; f(x; y); v), and, if this

does not succeed, it is tried to show that 8x; y 9v B(x; f(x; y); v). Of course,

it might very well be that neither attempt succeeds, and so we would in fact �-

nally end up with the standard result. But, actually, it would have su�ced to

test the much simpler 8y9u; v A(y; u; v) (or 8x9u; v B(x; u; v) respectively).

Unfortunately, this possibility is not given in the de�nition of Optimized

Skolemization described in (Ohlbach and Weidenbach 1995). Nonetheless it

is absolutely correct and we �x this in the following theorem.

14

Theorem 5.1 (improved optimized skolemization)

Let �[9x

k

(� ^)] be a sentence in anti-prenex negation normal form and,

moreover, assume that � j= 8y

n

9x

k

� where fy

1

; : : : ; y

n

g = V(9x

k

(� ^)).

Then

� is satis�able

i�

8y

n

�fx

i

=f

i

(y

n

)g ^�[9x

k

(� ^)=	fx

i

=f

i

(y

n

)g] is satis�able

where f

1

; : : : ; f

k

are new (Skolem) function symbols.

Proof: The proof presented in (Ohlbach and Weidenbach 1995) for the single

variable case can easily be extended to the k variable case. 2

ALC Experiments

Typical situations where Optimized Skolemization turns out to be of almost

no use at all are ones in which the intermediate proofs that have to be

performed during the overall Skolemization process are numerous and/or

di�cult. In such cases the whole reasoning process might get stuck already

within the clause normal form generation.

In order to compare Strong Skolemization with Standard Skolemization

(and that without ignoring the possibilities of Optimized Skolemization) we

decided to run several rather huge examples where flotter and thus Opti-

mized Skolemization, in its current implementation

6

has almost no chance to

terminate within reasonable time. The problems we considered come from

the area of knowledge representation and are described in the terminological

languageALC (see (Schmidt-Schau� and Smolka 1991)) which is essentially a

multi-modal logic K and thus can be translated into a decidable fragment of

�rst-order predicate logic. I do not want to go into detail what this language

is concerned. What is interesting about it, however, is that, after performing

a so-called relational translation into �rst-order predicate logic, we are faced

with formulas that contain sub-formulas of the kind 9x [R(y; x)^�[x]] where

R is a binary predicate symbol and �[x] is meant to represent a complicated

formula with x as its only free variable. When faced with such sub-formulas,

Optimized Skolemization �rst tries to prove that 8y9xR(y; x) follows from

the problem under consideration, and, if this does not succeed, attempts to

show 9x�[x]. However, it is usually not the case in ALC problems that

6

We ran flotter version 0.42

15

8y9xR(y; x) holds and therefore Optimized Skolemization will usually have

to deal with the very complicated problem of showing that 9x�[x]. Evi-

dently, the bigger the sub-formula � the more expensive is such an attempt.

In fact, typical ALC �les contain several hundreds of such sub-formulas and

so Optimized Skolemization, at least in its current implementation, quite

easily gets lost.

Strong Skolemization, however, works nicely on these kinds of problems.

Why this is so, is justi�ed by the following observation.

Let � be a sentence with sub-formula 9x (� ^) such that x is the only

free variable in � and let fy

1

; : : : ; y

n

g =

S

z2V()nfxg

Dep

�

(z). Then Strong

Skolemization transforms �[9x (� ^)] into

�[9x (� ^) = 8w

n

�fx=f(w

n

)g ^	fx=f(y

n

)g]

Note that the sub-formula 8w

n

�fx=f(w

n

)g obtained this way has no free

variables at all, something which is particularly important in case the theorem

prover at hand has a built-in splitting rule.

In order to compare Standard and Strong Skolemization we ran about

100 ALC examples and it showed that in more than 50% there was a sig-

ni�cantly better behavior of Strong Skolemization

7

. In about one fourth of

the examples, Strong Skolemization made it at all possible for the theorem

prover to stop its reasoning process (be it with a proof, or with a saturated

set of clauses) so that we can conclude that Strong Skolemization shows a

signi�cant improvement over Standard Skolemization.

Summarizing: Optimized Skolemization has the advantage that it pro-

duces better results than any other Skolemization technique, provided it can

at all be applied. Its disadvantages are, �rst, that it requires a theorem

prover on its own to perform the Skolemization, and second, that it performs

Standard Skolemization steps whenever the theorem prover is not able to

solve the intermediate goals. Strong Skolemization comes into play when-

ever either the user (or implementer) of automated theorem provers does not

want to spend that much e�ort for the clause normal form generation, or it

is likely that Optimized Skolemization gets stuck because the sub-formulas

to be considered are too complicated (or there are too many of them), or,

otherwise, if none of the intermediate goals is provable from the clause set.

7

Sure, there are specially designed inference mechanisms and translation techniques for

such kind of logics and it would be nonsense to compare such a general framework as the

Strong Skolemization with these special methods. But this is not our purpose anyway.

16

Hence the two techniques Optimized Skolemization and Strong Skolemiza-

tion can nicely be combined. I.e., whenever applicable we should perform

an Optimized Skolemization step. In all other cases a Strong Skolemization

step is to be preferred over Standard Skolemization.

References

Andrews, P. B.: 1981, Theorem Proving via General Mating, Journal of the

Association for Computing Machinery 28(2), 193{214.

Chang, C.-L. and Lee, R. C.: 1973, Symbolic Logic and Mechanical Theorem

Proving, Computer Science and Applied Mathematics Series, Academic

Press, New York.

Egly, U.: 1994, On the Value of Antiprenexing, Proceedings of the LPAR'94,

Springer, LNAI 822.

Loveland, D.: 1978, Automated Theorem Proving: A Logical Basis, Funda-

mental Studies in Computer Science, North-Holland.

Ohlbach, H. J. and Weidenbach, C.: 1995, A Note on Assumptions about

Skolem Functions, Journal of Automated Reasoning 15(2), 267{275.

Schmidt-Schau�, M. and Smolka, G.: 1991, Attributive Concept Description

with Complements, Arti�cial Intelligence 48, 1{26.

Skolem, T.: 1920, Logisch-kombinatorische Untersuchungen �uber die Erf�ull-

barkeit oder Beweisbarkeit mathematischer S�atze, nebst einem Theo-

reme �uber dichte Mengen, Skrifter utgit av Videnskappsellkapet i Kris-

tiania 4, 4{36. see also: (Skolem 1976).

Skolem, T.: 1976, Logico-combinatorial Investigations in the Satis�ability

and Provability of Mathematical Propositions, in J. van Heijenoort

(ed.), From Frege to G�odel: A Source Book in Mathematical Logic, 1879-

1931, Harvard University Press.

Weidenbach, C., Gaede, B. and Rock, G.: 1996, SPASS & FLOTTER Version

0.42, Proceedings of the 13th International Conference on Automated

Deduction, CADE 13, Springer, LNAI 1104, pp. 141{145.

���

�

��

k

I N F O R M A T I K

Below you �nd a list of the most recent technical reports of the research group Logic of Programming

at the Max-Planck-Institut f�ur Informatik. They are available by anonymous ftp from our ftp server

ftp.mpi-sb.mpg.de under the directory pub/papers/reports. Most of the reports are also accessible via

WWW using the URL http://www.mpi-sb.mpg.de. If you have any questions concerning ftp or WWW

access, please contact reports@mpi-sb.mpg.de. Paper copies (which are not necessarily free of charge)

can be ordered either by regular mail or by e-mail at the address below.

Max-Planck-Institut f�ur Informatik

Library

attn. Birgit Hofmann

Im Stadtwald

D-66123 Saarbr�ucken

GERMANY

e-mail: library@mpi-sb.mpg.de

MPI-I-96-2-009 D. Basin, N. Klarlund Beyond the Finite in Automatic Hardware

Veri�cation

MPI-I-96-2-007 A. Herzig SCAN and Systems of Conditional Logic

MPI-I-96-2-006 D. Basin, S. Matthews, L. Vigano Natural Deduction for Non{Classical Logics

MPI-I-96-2-005 A. Nonnengart Auxiliary Modal Operators and the

Characterization of Modal Frames

MPI-I-96-2-004 G. Struth Non-Symmetric Rewriting

MPI-I-96-2-003 H. Baumeister Using Algebraic Speci�cation Languages for

Model-Oriented Speci�cations

MPI-I-96-2-002 D. Basin, S. Matthews, L. Vigano Labelled Propositional Modal Logics: Theory and

Practice

MPI-I-96-2-001 H. Ganzinger, U. Waldmann Theorem Proving in Cancellative Abelian Monoids

MPI-I-95-2-011 P. Barth, A. Bockmayr Modelling Mixed-Integer Optimisation Problems in

Constraint Logic Programming

MPI-I-95-2-010 D. A. Plaisted Special Cases and Substitutes for Rigid

E-Uni�cation

MPI-I-95-2-009 L. Bachmair, H. Ganzinger Ordered Chaining Calculi for First-Order Theories

of Binary Relations

MPI-I-95-2-008 H. J. Ohlbach, R. A.Schmidt,

U. Hustadt

Translating Graded Modalities into Predicate Logic

MPI-I-95-2-007 A. Nonnengart, A. Szalas A Fixpoint Approach to Second-Order Quanti�er

Elimination with Applications to Correspondence

Theory

MPI-I-95-2-006 D. Basin, H. Ganzinger Automated Complexity Analysis Based on Ordered

Resolution

MPI-I-95-2-005 F. Baader, H. J. Ohlbach A Multi-Dimensional Terminological Knowledge

Representation Language

MPI-I-95-2-003 P. Barth A Davis-Putnam Based Enumeration Algorithm for

Linear Pseudo-Boolean Optimization

MPI-I-95-2-002 H. J. Ohlbach, R. A. Schmidt Functional Translation and Second-Order Frame

Properties of Modal Logics

