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Abstract

We present a new approach to hardware veri�cation based

on describing circuits in Monadic Second-order Logic (M2L).

We show how to use this logic to represent generic designs

like n-bit adders, which are parameterized in space, and

sequential circuits, where time is an unbounded parame-

ter. M2L admits a decision procedure, implemented in the

Mona tool [16], which reduces formulas to canonical au-

tomata.

The decision problem for M2L is non-elementary decid-

able and thus unlikely to be usable in practice. However,

we have used Mona to automatically verify, or �nd errors

in, a number of circuits studied in the literature. Previously

published machine proofs of the same circuits are based on

deduction and may involve substantial interaction with the

user. Moreover, our approach is orders of magnitude faster

for the examples considered. We show why the underlying

computations are feasible and how our use of Mona gener-

alizes standard BDD-based hardware reasoning.
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1 Introduction

Correctness of hardware systems can be established by enumeration when

the possible behaviors are �nite, or formal theorem proving, when the pos-

sible behaviors are in�nite. The �nite case arises when reasoning, for exam-

ple, about combinational circuits: these can be represented as functions in

Boolean logic and correctness can be established by enumeration of possible

inputs and outputs. Although any hardware system is of �nite size, the in�-

nite case may arise in several ways. One may be interested in demonstrating

the correctness of an in�nite family of related systems, for example, families

of arithmetical circuits like n-bit adders or n-bit counters, whose description

depends uniformly on the parameter n. Alternatively, the behavior of a sin-

gle circuit may depend not only on current inputs, but on previous values

as well. For example, the behavior of a sequential circuit is a function of

time, and one may want to establish that the circuit behaves correctly over

arbitrarily long time intervals.

When behaviors are �nite, arguments based on enumeration are popu-

lar due to the optimizations often possible using a symbolic representation

like Binary Decision Diagrams (BDDs). A BDD is an automaton-like rep-

resentation of a �nite relation or function. In the BDD method, a symbolic

representation of the �nite function calculated by a combinational circuit is

obtained through operations re
ecting the Boolean semantics of the gates.

The BDD calculations are often much faster than other mechanized means

of reasoning and demand little user intervention.

We present here a generalized method that can automatically establish

properties of many in�nite relations and functions. Our method is based on

a decidable logic, the Monadic Second-order Logic on Strings, abbreviated

M2L. In M2L, propositional variables of Boolean logic are generalized to vari-

ables that denote strings of bits. Every M2L formula � de�nes a language

over an alphabet B

k

, consisting of a cross-product of Booleans: one Boolean

for each of the k free variable in �. Strings over this alphabet describe the

values of all free variables. The language de�ned by � then is the possi-

bly in�nite set of strings de�ning values that make the formula true. This

correspondence generalizes the way a BDD de�nes a set of satisfying truth

assignments. Moreover, any such language corresponds to a language recog-

nized by a �nite-state machine; hence M2L formulas characterize regularity.

We show how to exploit this logical characterization of regularity to rea-

son about parameterized classes of circuit designs and their behavior. The
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language that a formula de�nes can represent words of unbounded size (the

behaviors of members of a parameterized family of circuits) or how the state

of a circuit evolves over time.

An example of a parameterized family of circuits is an n-bit adder. In

M2L we can write a formula � (cf. x4) that precisely describes how 1-bit

adders are composed in a ripple-carry fashion to form n-bit adders. Under

the semantics of M2L, � de�nes an input-output relation on two inputs A

and B of size n, and an output C of size n. This relation can be represented

by a language over an alphabet that has three Boolean components so that

a string of length n encodes the values of A, B, and C. For example,

0 1 2 3

A 1 1 0 0

B 1 0 0 0

C 0 0 1 0

de�nes three rows or tracks of bits. The length n of the string is 4. The

positions of the string (and of the tracks) are numbered from 0 to n � 1.

If we assume that the least signi�cant bit comes �rst, then the �rst track

de�nes A = 3 = 1100. Similarly, we read o� B = 1 = 1000, and C = 4 =

0010. Thus, this string de�nes an interpretation such that the sum of the

binary numbers A and B is C. Note that variable A can also be thought

of as denoting a subset, namely the set f0; 1g of positions where the A-

track contains a 1 (similarly, B denotes the subset f0g, and C denotes f2g.)

Alternatively, we may view the set denoted by A as a predicate A(p) that

holds on position p if and only if there is a 1 in the A-track. The predicate

A(p) is monadic (i.e., of one argument). Thus, when A occurs in a formal

logic as a variable, it is monadic second-order.

An example of temporal parameterization is the modeling of an RS 
ip-


op, where a string of length n with three components models the behavior

of the circuit through n time instants, each described by a letter de�ning the

values of the inputs R and S and the output Q. These examples are very

easy to formulate in M2L; with a little syntactic sugar, the M2L speci�cations

resemble those used in standard hardware description languages.

Since any M2L formula � can be reduced to an automaton that accepts

the satisfying interpretations of �, validity is decidable. A formula � is

valid (i.e. always true) if the corresponding automaton accepts all strings.

Validity testing can be used to show that the logic of a circuit is consistent

with a speci�cation of its behavior. For example, if the formula �

behavior
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describes the behavior of an n-bit adder and the formula �

circuit

describes a

proposed realization as a parameterized circuit, then the property that the

circuit behaves as an adder can be checked by verifying that the automaton

corresponding to �

circuit

) �

behavior

accepts all strings. If there is some

string that is not accepted by the automaton, then this string encodes a

counter-model, which can be used to debug the proposed design.

The Mona tool, described in [16], implements a decision procedure and

a counter-model generator for formulas in M2L on strings (and trees, which

we do not consider here). Mona supports predicate de�nitions, libraries,

display of automata, and counter-model generation. Its implementation is

based on a generalization of BDDs for the representation of automata on

large alphabets.

Our contributions

We describe the theory and practice of how M2L, as embodied inMona, can

be used to automatically verify parameterized circuit designs. Our results

demonstrate how Mona e�ciently generalizes BDDs to handle regular rea-

soning about in�nite domains. The examples we present here o�er various

techniques for dealing with the in�nite in automatic hardware veri�cation.

� Our arithmetic logic unit (ALU) example shows how an in�nite family

of combinational circuits can be concisely described in M2L.

� Our D-type 
ip-
op example illustrates how M2L can be used as a

succinct temporal logic for analysis of di�cult sequential circuits. This

example also demonstrates how Mona serves not only as a veri�ca-

tion tool but also provides a means to explore and understand circuit

behavior.

� Our 74LS163-counter and signal processor examples show how param-

eterized sequential circuits can be veri�ed.

Our approach applies to any scenario that can be modeled as a regular

set over alphabets of the form B

k

. Not all parameterized circuits can be so

described (e.g., multipliers and grid-shaped circuits with multiple indepen-

dent parameters). However, our examples indicate that, when applicable,

both circuits and their properties can be simply expressed in M2L.

The decision problem for M2L is non-elementary decidable: a formula

of size n may require time and space bounded below by an iterated stack
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of exponentials whose height is proportional to n. Such a staggeringly bad

theoretical complexity suggests that any implementation may be unusable in

practice. In contrast, Quanti�ed Boolean Logic (QBL), which can formalize

combinational logic (and be decided using traditional BDD operations), is

only PSPACE-complete.

We explain why M2L is usable in practice despite the worst-case bounds.

For the circuits studied both in this paper and in the literature, our ap-

proach is orders of magnitudes faster. For hardware problems expressible in

QBL, Mona is as e�cient as the direct use of BDD-based procedures, since

Mona generalizes standard BDD-based hardware reasoning. Moreover, for

the parameterized systems considered here, we show that the increased cost

of working with a more expressive logic is negligible.

Organization

We proceed as follows. In x2, we introduce M2L. In x3, we present the es-

sentials of the Mona tool and show how it generalizes BDD-based hardware

procedures. In x4, we consider speci�cation and veri�cation of parameterized

combinational hardware. In x5, we consider timed hardware and use Mona

to analyze a D-type 
ip-
op. In x6, we verify a 4n-bit counter implemented

in terms of n 4-bit 74LS163 counters, and in x7 we present a signal-processing

benchmark circuit. These circuits are sequential, but we reason about them

as parameterized transition systems. In x8, we give some theoretical justi�-

cation for why our approach works. Finally in x9, we compare M2L and our

use of Mona to other deduction based and automata theoretic approaches.

2 The Second-OrderMonadic Logic on Strings

The Monadic Second-order Logic on strings that we use is closely related to

S1S, the second-order monadic theory of one successor, and S2S, the second-

order monadic theory of two successors, which are among the most expressive

decidable logics known (cf. [28]). In these logics, �rst-order terms are inter-

preted over positions in an in�nite string (S1S) or tree (S2S) and second-order

variables are interpreted by subsets of positions. In M2L, �rst-order terms

are interpreted over �nite strings. S1S and S2S are more expressive than

M2L, but have not been shown to be feasible in practice.
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The correspondence between automata and regular languages is well-

known. The decidability of the above mentioned logics is based on the well

understood (but less widely known) fact that regular languages may be char-

acterized by logics. Consider, for example, the automaton

1

0

0

1

1
0

0 1,

which accepts the regular language f1; 10; 101; 1010; 10101; : : :g. Now assume

that X is a variable over binary strings. We say that X(p) holds if the pth

position in X is 1. Now, the regular language above can be described in M2L

as

X(0) ^ 8p : p < $! (X(p)$ :X(p� 1)) ; (1)

which states that the �rst character in the string is 1 and that for subsequent

positions p, up to the �nal position (denoted by the symbol $), the pth

character of X is 1 precisely when the following character is not.

We describe M2L below. It turns out that the logic precisely characterizes

regularity: every M2L formula describes a regular set and, conversely, every

regular set is described by an M2L formula.

2.1 Syntax

M2L consists of three kinds of entities: �rst-order terms, second-order terms,

and formulas. First-order terms are formed from �rst-order variables p; q; : : : ,

the constants 0 (the �rst position), $ (the last position), and the expressions

t � i (the ith position to the right from t), where t is a �rst-order term

and i is a natural number. Second-order terms are built from second-order

variables X; Y; : : : , the constants empty (the empty set) and all (the set of

all positions), and they may be combined using \ and [. Formulas arise

as follows: if t

1

and t

2

are �rst-order terms and S

1

and S

2

are second-order

terms, then t

1

2 S

1

, t

1

= t

2

, t

1

< t

2

, and S

1

= S

2

are formulas. Formulas
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may be combined by the standard connectives : and ^. Quanti�ers also

build formulas: if p and X are �rst and second-order variables respectively,

and f is a formula, then 9

1

p : f and 9

2

X : f are formulas.

The syntax we have given is not minimal, cf. [28]. For example, �rst-

order variables can be eliminated by replacing each �rst-order variable with

a second-order variable that is constrained to be a singleton set. (This is

also the way that Mona handles �rst-order variables.) Also, we will make

frequent use of standard de�nitions and syntactic sugar in the remainder of

the paper.

First, the complete set of propositional connectives, inequality, universal

quanti�cation and the like are all de�nable as is standard in a classical logic.

For example f

1

_ f

2

is de�ned as :(:f

1

^ :f

2

) and 8

2

X : f is de�ned as

:(9

2

X : :f).

Second, since we can view a second-order variable X as a bit vector, we

again write X(p) for p 2 X.

Third, Boolean variables, connectives and quanti�cation over Booleans

values are not part of M2L, but are easily encoded. In particular, each

Boolean variable b is encoded by a second-order variable B, and occurrences

of b in formulas are encoded as B(�1), where �1 is an extra position, just to

the left of the position 0. The position �1 is used solely for the simulation of

Boolean variables. (We do not use the position 0 for technical reasons.) In

this way, quanti�cation over Booleans (8

0

and 9

0

) is encoded using second-

order quanti�cation. For example, the Boolean formula 8

0

x; y : :(x ^ :y) is

encoded as the M2L sentence 8

2

X; Y : :(X(�1) ^ :(Y (�1))).

Finally, when the order of a variable can be determined from context

then we may omit superscripts on quanti�ers. For example, in the expression

X(p) ^ b, it must be the case that X, p, and b are second-order, �rst-order,

and Boolean, respectively. To help disambiguation, we use capital letters

for second-order variables and lower-case letters like i, j, p, and q for �rst-

order position variables. Remaining lower-case strings like like x, y, cin and

cout represent Booleans. With these abbreviations and conventions, (1) is a

formula of M2L.

2.2 Semantics

A formula is interpreted relative to a natural number n � 0, called the length,

which de�nes positions f0; : : : ; n� 1g. A �rst-order term denotes a position.

Thus, a �rst-order variable ranges over the set f0; : : : ; n� 1g. The constant
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0 denotes the position 0, and $ denotes n�1.

1

The expressions t� i and t	 i

denote the positions j+i mod n and j�i mod n, where j is the interpretation

of t.

A second-order variable P denotes a subset of f0; : : : ; n � 1g. Alterna-

tively, a second-order variable can be viewed as designating a bit pattern

b

0

: : : b

n�1

of length n, where b

i

is 1 if and only if i belongs to the interpreta-

tion of P . The constants empty and all denote the sets ; and f0; : : : ; n� 1g,

and the operators \ and [ are usual set theoretic operations.

A 0th order (Boolean) variable is simulated by a special second-order

variable, which may contain the non-standard position �1 (and this means

\true").

The meaning of formulas is straightforward. For example, the formula

t 2 S is true when the position denoted by t is in the set denoted by S.

Propositional connectives have their standard meaning. 9

1

p : f is true when

there is a position i in f0; : : : ; n � 1g such that the denotation of f is true

with i replacing p. Truth of 9

2

X : f is de�ned similarly, with X replaced by

a subset of f0; : : : ; n� 1g.

A formula � de�nes a regular language denoting the interpretations that

make free variables in � true. In the formula (1), we have one free variable,

X, and the interpretations that make � true are exactly the strings in the

regular language f1; 10; 101; 1010; 10101; : : :g. More generally, if a formula

has k free second-order variables (and as noted above, all other variables are

encoded using second-order variables), then the language denoted is over the

alphabet B

k

consisting of k-tuples of Booleans. As a simple example, the

formula � given by 8p : P (p) $ :Q(p) de�nes a language L(�) over B

2

as follows. We make the convention that if the letter

a

b

2 B

2

occurs in

position i, then i is in P i� a is 1 and i is in Q i� b is 1. In this way, a string

over B

2

determines an interpretation of P and Q. The language denoted is

the set of strings describing interpretations that make � true. For example,

0 1 1 0

1 0 0 1

2 L(�) and

0 1 1

0 0 0

=2 L(�) :

1

When the length n is 0, there are no positions de�ned. Therefore, 0 and n� 1 do not

make sense. We will not be bothered by this anomaly, since the case n = 0 is irrelevant

to the kinds of examples presented in this paper.
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3 The Mona Tool

The Mona tool implements a decision procedure for M2L. Details can be

found in [16]; here, we summarize the main algorithms and data structures.

Input toMona is a script consisting of a sequence of de�nitions followed

by a formula to be proved. For each formula � in the script,Mona constructs

a deterministic automaton recognizing L(�). Construction of automata pro-

ceeds using standard operations (see [28]) by recursion on the structure of

�.

For example, if � is the formula �

1

^ �

2

, then Mona �rst calculates the

automata A

i

recognizing the language corresponding to �

i

. Second, Mona

calculates the automaton corresponding to � by forming the product au-

tomata of the A

i

and minimizing the result. In a similar way, negation

corresponds to automata-theoretic operation of swapping �nal and non-�nal

states. Existential quanti�cation corresponds to a projection, followed by a

subset construction, and minimization. More precisely, if formula � corre-

sponds to an automaton A that reads strings over the alphabet B

k

, then the

automaton for the formula 9

2

X:� is built by projection from A by changing

it so that it guesses the track corresponding to X. The resulting automaton

is non-deterministic and must be determinized in order to be minimized.

Since Mona always stores automata in a minimized form, valid formulas

are particularly simple to recognize: they correspond essentially to the trivial

automaton whose single state is both the initial and �nal state with a self-

loop as transition on every input. For any formula � that is not valid,Mona

extracts from its corresponding automaton a minimal length string de�n-

ing an interpretation making � invalid. We use this procedure to generate

counter-examples to proposed theorems.

3.1 BDD Representation

Although the automata constructions are in principle standard, we note

that the exponential size of the alphabet B

k

calls for special consideration|

otherwise even the representation of the transition function for an automaton

corresponding to a formula with k variables would necessitate space pro-

portional to 2

k

. Thus the implementation in [16] uses multi-valued BDDs

to compress the representation of the transition function. The exponential

blow-up is then often avoided.

To see how this is possible, consider the formula � � x^y _ A = B, where
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0 1

0 11

0
1

1 0

  a b d

db  a

BB

A

c

y

x

c

0

Figure 1: A BDD-represented automaton.

x and y are Boolean variables and A and B are second-order variables. An

interpretation of this formula is de�ned by a string over B

4

whose positions

are numbered �1; 0; : : : ; n � 1 and where we assume that the tracks are in

the order x; y; A;B. For example, the string

�1 0 1 2

x 1 X X X

y 0 X X X

A X 1 0 1

B X 0 1 0

de�nes x = 1, y = 0, n = 3, A = f0; 2g, and B = f1g (X means \don't

care"). The automaton that accepts all strings de�ning satisfying interpre-

tations (i.e., interpretations that make � true) is depicted in Figure 1. The

automaton has four states fa; b; c; dg shown in the rectangular box. In prac-

tice, the states are just entries in an array. Each state contains a pointer

to a BDD node. For example, the initial state a points to a decision node

for x. Thus if the letter in position �1 has a 1 in the x-component (in the

�rst track), then the pointer labeled 1 is followed, and a decision is then
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made on the y-component. Consequently, if both the x-component and the

y-component have a 1 in the �1st letter, then a leaf marked b is reached

upon reading this letter. This leaf signi�es that the state entered next is b,

which is an accepting state (denoted by an inner square).

From state b, there is a pointer directly to a leaf. We say that the state

is looping|this means that the letter read is irrelevant. Thus the automaton

accepts all strings that de�ne both x and y to be true. If one is false, then

the automaton remains in the accepting c state as long as the membership

status of the current position is the same for A and B.

Note that by using the position �1 for the Boolean variables, we have

avoided the problem that an encoding based on position 0 would lead to an

ill-de�ned semantics for Boolean variables in the case of the empty string

(where position 0 does not exist).

3.2 Canonicity of BDD Representation

The automaton shown above is minimal or canonical in two ways: (1) the

BDD representation of the transition function is reduced (canonical) and (2)

the transition function represented and state space are those of the canonical

automaton. The requirement (1) is maintained automatically by the use of

BDD algorithms that reduce the representation as the BDD is calculated.

Requirement (2) is enforced by the use of a minimization algorithm on each

new automaton calculated. The current Mona minimization algorithm [16]

is quadratic in the size (the number of nodes and states) of the representation,

although in practice minimization is often only about twice as costly as the

product and projection routines.

3.3 Relationship to Usual BDDs

If a formula � contains only Boolean variables, then the BDD represented

automaton has only three states: the initial state and two looping states, one

accepting and one non-accepting. If the pointers of the looping states are

deleted, then the resulting graph is identical to the standard BDD represen-

tation of � for the given track assignment (ordering of variables). Moreover,

for propositional logic, and its extension to Quanti�ed Boolean Logic, the cal-

culations carried out by Mona are essentially identical to those performed

by a standard BDD based procedure. In particular, the automaton product

algorithm described in [16] essentially degenerates to a BDD binary apply
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routine. Similarly, the automaton projection essentially degenerates to a

BDD projection routine. From this it follows that

Proposition 1 For any variable ordering chosen for a formula of QBL,

Mona essentially performs the same calculations as a standard BDD based

algorithm.

4 Parameterized Combinational Hardware

In this section, we show how to specify and verify circuit designs parame-

terized in their word length. Such parametric designs represent families of

circuits. For example, an n-bit adder represents a family of adders, one for

each n. Using M2L, we can specify such a family and prove its correctness

with respect to a parameterized behavioral speci�cation.

4.1 Preliminaries: Combinational Circuits

We can de�ne in M2L predicates at a level that formalizes appropriate build-

ing blocks of circuits. We can represent the behavior of such blocks as func-

tions from inputs to outputs or as relations between external circuit ports.

The functional approach is used for example in theorem provers based on

equational and other quanti�er free logics (e.g., the prover of Boyer and

Moore, NQTHM [17]), where primitive components are functions. For ex-

ample, and is a function from two inputs to an output. Larger circuits are

built by functional composition.

The relational approach is typically used with �rst-order or higher-order

logic. Basic components are relations which de�ne constraints between port-

values. These relations are joined together using conjunction (which com-

bines constraints), and internal wires are represented by shared variables that

are existentially quanti�ed. In [4, 11], these two kinds of representation are

discussed in detail. Both options are available in our work, and it makes

little di�erence which one we choose.

We follow the relational approach in specifying circuits. We begin by
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w1

w2

w3

a
b out

cout
cin

Figure 2: Full 1-bit adder

de�ning basic gates as relations over Boolean variables. For example:

not(a; o) � o$ :a

and(a; b; o) � o$ (a ^ b)

or(a; b; o) � o$ (a _ b)

xor(a; b; o) � o$ ((:a ^ b) _ (a ^ :b))

and3 (a; b; c; o) � o$ (a ^ b ^ c)

or3 (a; b; c; o) � o$ (a _ b _ c)

The left-hand side of each de�nition names a predicate whose meaning is

given by the right-hand side. The actual input to Mona is identical except

that ASCII syntax, additional key words, and type declarations are required.

The appendices provide scripts from actual Mona sessions, including the

veri�cation of the n-bit adder given in this section.

Let us now build a full 1-bit adder from these gates. One such design

is given in Figure 2. The top half of the circuit consists of two xor gates

connected by an internal wire w

1

that computes the sum bit out. The bottom

half uses the value of internal wire w

1

as well as the two inputs a and b to

compute the carry-out bit cout. Our de�nition in M2L conjoins the gate

descriptions and projects away the internal wires:

full adder(a; b; out; cin; cout) �

9

0

w

1

; w

2

; w

3

: xor(a; b; w

1

) ^ xor(w

1

; cin; out) ^ and(a; b; w

2

) ^

and(cin; w

1

; w

3

) ^ or(w

3

; w

2

; cout)

Now let us consider our �rst example of a theorem proved by Mona. Al-

though the adder is speci�ed as a relation, for each set of inputs, it computes

unique outputs. That is, out and cout are functionally determined by a, b,

12



B0 A0

OUT0OUT1OUT2

A1A2 B1B2

C1C2C3

cout cin

C0
full adder full adder full adder

Figure 3: n-bit adder for n = 3

and cin.

8

0

a; b; cin : 9

0

out; cout : full adder(a; b; out; cin; cout)

^ 8

0

o; co : (full adder(a; b; o; cin; co)! ((o$ out) ^ (co$ cout)))

Mona proves this theorem in 0.25 seconds.

2

This includes parsing all

de�nitions, converting them to automata, and afterwards translating the

conjecture into an automaton. In this case, all calculations are equivalent

to standard BDD operations, since we are essentially using just Quanti�ed

Boolean Logic.

4.2 Correctness of an n-bit Adder

The circuit

We turn now to parameterized hardware and consider an n-bit adder. Figure

3 gives an example of this for n = 3. In the general case, an n-bit adder is

constructed by (1) wiring together n 1-bit adders where (2) the carry-out of

the ith becomes the carry-in of the i+1st. The �rst and last carry are special

cases; (3) the �rst carry has the value of the carry-in and (4) the last has the

value of the carry-out.

It is easy to formalize this kind of ripple-carry connectivity. Let us use

C and D to represent the carry-ins and carry-outs, respectively. Then we

can formalize the general case as the following predicate, which relates three

second-order variables (the two input strings A and B and the output string

2

All times reported in this paper are measured in CPU seconds on a Sun Ultra-Sparc

work station.
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Out) and two Booleans (the carry-in cin and carry-out cout).

n add(A;B;Out; cin; cout) �

9

2

C;D : (8

1

p : full adder (A(p); B(p); Out(p); C(p); D(p)))

^ (8

1

p : (p < $)! (D(p)$ C(p� 1)))

^ (C(0)$ cin)

^ (D($)$ cout)

The four lines of the de�nition body formalize the four requirements listed

above. The way we formalize ripple-carry connectivity is independent of the

particular component (here a full-adder) that we are iterating. We later use

an identical formalization for specifying an n-bit ALU constructed from 1-bit

ALUs.

The speci�cation

To verify our circuit, we specify how n-bit binary words are added. Since

M2L is a logic about strings and string positions, any arithmetic must be

encoded within this limited language. In particular, we encode addition as

an algorithm over strings representing bit-patterns, i.e., binary addition. A

simple way to do this is to mimic how addition is computed with pencil and

paper. The ith output bit is set if the sum of the ith inputs and carry-in is

1 mod 2, and the ith carry bit is set if at least two of the previous inputs

and carry-in was set. The 0th carry and the �nal values must be computed

as special cases.

at least two(a; b; c) � (a ^ b) _ (a ^ c) _ (b ^ c)

mod two(a; b; c; d) � a$ b$ c$ d

add(A;B;Out; cin; cout) �

9

2

C :

( 8

1

p : mod two(A(p); B(p); C(p); Out(p))

^ ((p < $)! (C(p� 1)$ at least two(A(p); B(p); C(p))))

^ (cout$ at least two(A($); B($); C($)))

^ C(0)$ cin)

To give the reader a feel for the complexity involved in translating such

speci�cations to automata, we mention some statistics for this example.

14



There are, overall, 109 product and projection operations performed, and

the average number of states is 5 and BDD nodes is 12. The largest interme-

diate automaton has 21 states and 71 BDD nodes. We will later return to

this example in x8 and analyze more carefully why the state-space does not

explode during translation.

Veri�cation

We now have a speci�cation of the implementation of a family of adders built

from gates and a speci�cation in terms of its behavior over binary strings.

To verify their equivalence, we give Mona the formula

8

2

A;B;Out : 8

0

cin; cout :

add(A;B;Out; cin; cout)$ n add(A;B;Out; cin; cout) :

This formula is veri�ed in 0.41 seconds.

Often we are interested in more than one property of a circuit or its

speci�cation. For example, the n-bit adder computes a unique function from

its inputs to its outputs.

8

2

A; B : 8

0

cin : 9

2

Out : 9

0

cout : n add(A;B;Out; cin; cout)

^ 8

2

O : 8

0

co : (n add(A;B;O; cin; co)! (Out = O ^ (cout$ co)))

We may also check that the addition function de�ned is commutative.

8

2

A;B;Out : 8

0

cin; cout : add(A;B;Out; cin; cout)$ add(B;A;Out; cin; cout)

Both of these are veri�ed in under a second.

4.3 Correctness of an n-bit ALU

We now apply our approach to a more complex circuit|a parameterized n-

bit ALU. The circuit we analyze is presented in [21]. It is also an interesting

theorem for comparison (given in x9), since it has been veri�ed in several

theorem proving systems based on induction.

ALU speci�cation

The ALU is designed to perform 8 arithmetic and 4 logical operations. The

12 functions are selected through 3 \selection" lines s

0

, s

1

, s

2

and the carry-

in cin as described in Table 1. For example, if the s

i

are 0 and cin is 1, then

15



Selection

s

2

s

1

s

0

cin Output Function

0 0 0 0 F = A Transfer A

0 0 0 1 F = A+ 1 Increment A

0 0 1 0 F = A+B Addition

0 0 1 1 F = A+B + 1 Addition with carry

0 1 0 0 F = A� B � 1 Subtract with borrow

0 1 0 1 F = A� B Subtract

0 1 1 0 F = A� 1 Decrement A

0 1 1 1 F = A Transfer A

1 0 0 X F = A _ B OR

1 0 1 X F = A� B XOR

1 1 0 X F = A ^ B AND

1 1 1 X F = A Complement A

Table 1: Function Table for ALU

the ALU increments the n-bit input A and places the result in F , producing

a carry-out when every bit in F is set.

Let us begin by specifying this behavior: we formalize each functional

sub-unit (addition, subtraction, etc.) and specify the function table by case

analysis on the values of s

i

. The logical sub-units are speci�ed straightfor-

wardly using the previously de�ned gates.

transfer(To;From) � To = From

compl(A; F ) � 8

1

x : not(A(x); F (x))

OR(A;B; F ) � 8

1

x : or(A(x); B(x); F (x))

XOR(A;B; F ) � 8

1

x : xor(A(x); B(x); F (x))

AND(A;B; F ) � 8

1

x : and(A(x); B(x); F (x))

For the remainder of the speci�cation, we must develop more arithmetic.

We de�ne an auxiliary predicate one, which is true when a second-order

variable represents the number one, i.e., when only the �rst bit is set.

one(B) � B(0) ^ 8

1

p : (p > 0! :B(p))

We can now de�ne the remaining arithmetic functions using the previously

16



de�ned relation add.

increment(A; F; cout) �

9

0

cin : 9

2

N : one(N) ^ :cin ^ add(A;N; F; cin; cout)

add no carry(A;B; F; cout) �

9

0

cin : :cin ^ add(A;B; F; cin; cout)

add with carry(A;B; F; cout) �

9

0

cin : cin ^ add(A;B; F; cin; cout)

one compl add(A;B; F; cout) �

9

0

cin : 9

2

Comp : :cin ^ compl(B;Comp) ^ add(A;Comp; F; cin; cout)

two compl add(A;B; F; cout) �

9

0

cin : 9

2

Comp : cin ^ compl(B;Comp) ^ add(A;Comp; F; cin; cout)

decrement(A; F; cout) �

9

2

V : one(V ) ^ two compl add(A; V; F; cout)

Now, using the following auxiliary de�nitions

if

3

(a; b; c; d) � (a ^ b ^ c)! d

if

4

(a; b; c; d; e) � (a ^ b ^ c ^ d)! e

we encode alu spec(s

0

; s

1

; s

2

; A; B; F; cin; cout) by specifying the function ta-

ble as the iterated conjunction, one conjunction for each function.

if

4

(:s

2

;:s

1

;:s

0

;:cin; transfer(A; F )) ^

if

4

(:s

2

;:s

1

;:s

0

; cin; increment(A; F; cout)) ^

if

4

(:s

2

;:s

1

; s

0

;:cin; add no carry(A;B; F; cout)) ^

if

4

(:s

2

;:s

1

; s

0

; cin; add with carry(A;B; F; cout)) ^

if

4

(:s

2

; s

1

;:s

0

;:cin; one compl add(A;B; F; cout)) ^

if

4

(:s

2

; s

1

;:s

0

; cin; two compl add(A;B; F; cout)) ^

if

4

(:s

2

; s

1

; s

0

;:cin; decrement(A; F; cout)) ^

if

4

(:s

2

; s

1

; s

0

; cin; transfer(A; F )) ^

if

3

(s

2

;:s

1

;:s

0

;OR(A;B; F )) ^ if

3

(s

2

;:s

1

; s

0

;XOR(A;B; F )) ^

if

3

(s

2

; s

1

;:s

0

;AND(A;B; F )) ^ if

3

(s

2

; s

1

; s

0

; compl(A; F ))

ALU implementation

The ALU implementation, as speci�ed in [21], is given in Figure 4. The

corresponding M2L formula is encoded analogously to the parameterized

17



1-bit
Adder

Init

1-bit
Adder

s0
s1
s2

n1

n

A(0)

B(0)

A(1)

B(1)

w1
w2

w3
w4

w5

w6

w7

C(1)

C(2)

cout

F(0)

F(1)

C(0)
cin =

v0

w8

v1

n0

Figure 4: n-bit ALU (n = 2)

adder. The only additional complication is that the description consists of

two parts: an initialization block and a repeating ALU block. The �rst part,

which we call init computes negations of the selection wires and conjunctions

of them and their negations.

init(s

0

; s

1

; s

2

; v

0

; v

1

; n) �

9

0

n

0

; n

1

: not(s

0

; n

0

) ^ not(s

1

; n

1

) ^ not(s

2

; n) ^

and3 (n

0

; s

1

; s

2

; v

0

) ^ and3 (n

0

; n

1

; s

2

; v

1

)

The remainder of the ALU consists of the regular repetition of 1-bit ALU

sections. These sections also require the switching wires s

i

and the results of
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the init section computed on the wires v

0

, v

1

, and n.

one alu(a; b; f; cin; cout; s

0

; s

1

; v

1

; v

2

; n) �

9

0

w

1

; w

2

; w

3

; w

4

; w

5

; w

6

; w

7

; w

8

: and(n; cin; w

1

) ^ and(v

1

; b; w

2

)

^ and(v

0

; w

8

; w

3

) ^ or3 (w

2

; w

3

; a; w

4

) ^ and(b; s

0

; w

5

)

^ and(w

8

; s

1

; w

6

) ^ or(w

5

; w

6

; w

7

) ^ not(b; w

8

)

^ full adder(w

4

; w

7

; f; w

1

; cout)

To specify the parameterized ALU, we combine the init block with ripple-

carried 1-bit ALU units. The ALU sections are hooked together as were the

adder sections in the parameterized adder example.

n alu(s

0

; s

1

; s

2

; A; B; F; cin; cout) �

9

2

C; D : 9

0

v

0

; v

1

; n : init(s

0

; s

1

; s

2

; v

0

; v

1

; n) ^

(8

1

p : one alu(A(p); B(p); F (p); C(p); D(p)); s

0

; s

1

; v

0

; v

1

; n) ^

(8

1

p : (p < $)! (D(p)$ C(p� 1))) ^ (C(0)$ cin) ^ (D($)$ cout)

We may now verify that the ALU implementation satis�es its speci�-

cation. Namely, when the switches and ports of the ALU take on values

consistent with the implementation, the speci�cation is satis�ed.

8

2

A;B; F : 8

0

s

0

; s

1

; s

2

; cin; cout :

n alu(s

0

; s

1

; s

2

; A; B; F; cin; cout)! alu spec(s

0

; s

1

; s

2

; A; B; F; cin; cout)

It takes Mona 2 seconds to verify this. Other properties, such as the func-

tional relation between the inputs and outputs, are also easily checked in

about the same amount of time.

Note that we proved only that the implementation satis�es (implies) the

speci�cation. We did not prove an equivalence, as we did with the n-bit

adder. The reason is that the speci�cation is more abstract than the imple-

mentation: it leaves certain port value combinations unspeci�ed. Suppose

we did not know this, or perhaps did, but we wanted to determine when the

converse fails. If we ask Mona to prove the converse it responds that the

formula is not a tautology. If we remove the initial quanti�ers, i.e.,

alu spec(s

0

; s

1

; s

2

; A; B; F; cin; cout)! n alu(s

0

; s

1

; s

2

; A; B; F; cin; cout) ;

then the port values are free variables andMona produces a counter-example

and responds:
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P1

P2

P3

P4

Q

P5

CK

D

Figure 5: D-type Flip-
op

A counter-example of least length (1) is:

Booleans:

cout 1

s2 1

s1 1

s0 1

Second-order:

A 0

B X

F 1

The output tells us that there is a counter-example of length n = 1, i.e.,

consisting of a single 1-bit ALU slice. This counter-example is sensible. The

speci�cation only states that when the s

i

are all 1, then F is the complement

of A. So the speci�cation holds for any value of B and any value of cout,

in particular cout = 1. However, these values are not consistent with the

implementation.

5 Sequential Circuits

In the last section, a string represented a sequence of bits, i.e., a word of

parameterized length. In this section, a string represents the behavior of a

sequential circuit (of �xed bit-width) as it evolves over time. Circuit descrip-

tions are similar to those we have previously seen except that gates are now

parameterized by time.
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Our example is a standard implementation of a D-type 
ip-
op, built

from 6 nand gates, as shown in Figure 5. Although this circuit looks sim-

ple, understanding and demonstrating its correctness is di�cult. Hanna and

Daeche give a thorough and well-written analysis of this 
ip-
op in [15].

3

They used Veritas, a theorem prover based on a higher-order logic, to give

a comprehensive analysis using a partial description of waveforms over the

rational numbers. Their analysis is complex, and it took an experienced user

a week to construct the proof.

Our starting point is a discrete model of this circuit proposed by Gordon

in [11]. He assumed that each gate has a delay of one time unit. Gordon

described the behavior of the circuit using HOL formulas, where �rst-order

variables denote time instants. The proof that the circuit meets its speci�-

cation, which he notes \is fairly complicated" was done by hand only. The


ip-
op and Gordon's HOL speci�cation are easily encoded in Mona. To

our surprise, Mona calculated a counter-example. We later discovered that

Wilk and Pnueli had already reported on the failure of Gordon's speci�ca-

tion in [30]. They formulated Gordon's informal requirements in a temporal

logic with \quantized" tense operators like �

n

�, which holds at the present

moment if � holds at least once within the next n time units.

Temporal logic, in the sense of tense logic, is based on operators that

denote modalities like \it will be the case" and \until". Linear tense logic is

PSPACE-complete, and it has been explored intensively [9]. But temporal

logic can as well be viewed as simply a �rst-order logic of natural numbers

(if we are content with the natural numbers as a model of time)|which was

essentially also Gordon's approach. To our knowledge, this point of view

has not been pursued from a practical point of view in veri�cation, maybe

because this formulation is non-elementary (as is M2L). We believe that

the �rst-order formulation is more attractive, since many temporal idioms

(including the usual tense operators) can easily be expressed as predicates.

To translate the other way, from the �rst-order formulation to the tense

3

Hanna and Daeche write about the complexity of the circuit (page 193):

\It turns out, on analysis, that the modus operandi of this circuit is far from

simple: in fact, it is unusually complex, and (so the authors found) di�cult

to understand intuitively. If, like most people, you �nd this remark di�cult

to accept at face value, read the rest of this account, then set it aside, and

attempt, within (say) one working day, to come up with a carefully justi�ed

account of `how' the proposed implementation is intended to function..."
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formulation, is much more di�cult and potentially involves a non-elementary

blow-up; this is why Wilk and Pnueli could not directly use Gordon's HOL

speci�cation, but had to transcribe the informal requirements.

We present next our analysis, which is based on experiments withMona.

5.1 Temporal Concepts

The temporal concepts needed to reason about the 
ip-
op are straightfor-

ward to express in Mona:

� the value of F is stable in [t

1

; t

2

]:

stable(t

1

; t

2

;F ) � 8

1

t : t

1

� t � t

2

! (F (t)$ F (t

1

))

� t

2

is the �rst instant after t

1

when F becomes high:

next(t

1

; t

2

;F ) � t

1

< t

2

^ F (t

2

) ^ (8

1

t : t

1

< t < t

2

! :F (t))

� F rises at t:

rise(t;F ) � t > 0 ^ (:F (t	 1) ^ F (t))

� F falls at t:

fall(t;F ) � t > 0 ^ (F (t	 1) ^ :F (t))

� F rises at Rise:

times rise(F ;Rise) � 8

1

t : Rise(t)$ rise(t;F )

� F falls at Fall :

times falls(F ;Fall) � 8

1

t : Fall(t)$ falls(t;F )

5.2 The Circuit

The temporal behavior of a unit-delay nand-gate with inputs I

1

and I

2

and

output O is described by

nand(I

1

; I

2

; O) � 8

1

t : t < $! O(t� 1)$ :(I

1

(t) ^ I

2

(t)) :

If we call the corresponding predicate for three inputs nand3(I

1

; I

2

; I

3

; O),

then the 
ip-
op in Figure 5 is described by

dtype imp � nand(P

2

; D; P

1

) ^ nand3(P

3

; CK; P

1

; P

2

) ^ nand(P

4

; CK; P

3

) ^

nand(P

1

; P

3

; P

4

) ^ nand(P

3

; P

5

; Q) ^ nand(Q;P

2

; P

5

) :
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5.3 Stability Analysis

In our model, even a simple 
ip-
op may begin to oscillate due to a single

negative spike:

11101111 : : :

11111111 : : :

00001010101 : : :

11111010101 : : :

We address this phenomenon (which was not discussed in [11, 30]) to demon-

strate how an understanding of the circuit can be achieved by experiments

in Mona.

Informally, we would like to argue that if the input signals are kept stable

for some time and if the circuit is already stable, then eventually the other

signals of the circuit become stable as well. We de�ne

input stable(t) � t + in stable time � 1 � $

^ stable(t; t � in stable time � 1; D) ^ stable(t; t � in stable time � 1;CK )

to denote that inputs are stable for a period of length in stable time.

4

We regard the circuit as stable if all outputs of gates are stable for an

interval of circ stable time instants, i.e., if

circuit stable(t) � t� circ stable time � 1 � $ ^

stable(t; t� circ stable time � 1; P

1

) ^ stable(t; t � circ stable time � 1; P

2

) ^

stable(t; t� circ stable time � 1; P

3

) ^ stable(t; t � circ stable time � 1; P

4

) ^

stable(t; t� circ stable time � 1; P

5

) ^ stable(t; t � circ stable time � 1; Q) :

Stability preservation of the circuit can be expressed informally as: if the

circuit is stable at some t

s

and if the inputs are held stable at t

i

� t

s

, then

there is t

0

s

� t

i

such that the circuit is stable at t

0

s

. Thus, we de�ne

stability preserved �

8

1

t

s

: circuit stable(t

s

)!

8

1

t

i

: (t

i

> t

s

^ input stable(t

i

)! 9t

0

s

: t

0

s

� t

i

^ circuit stable(t

0

s

)) :

4

We here use + instead of � in the formula t+ in stable time� 1 � $ , which holds if

+ and � are interpreted in the usual arithmetic sense without \wrap-around". We need

the conjunct \t+ in stable time � 1 � $" to prevent t from lying too close to the end (in

which case there would not be enough remaining time instants to model that the signals

are stable for the required amount of time).
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Let us try to verify stability preservation as embodied by the formula

dtype imp ) stability preserved :

Mona calculates a counter-example in about 5 seconds (where we have made

in stable time equal 6):

D = 0111111

CK = 0111111

Q = 1111010

P

1

= 1101010

P

2

= 1101010

P

3

= 1111010

P

4

= 0001010

P

5

= 0001010

t

s

= 1000000

t

i

= 0100000

Here we have made t

s

and t

i

free variables so that Mona can generate a

counter-example that identi�es the exact spot of trouble.

5

We see that the

simultaneous rise of both the D and CK signals seem to tickle the circuit so

that it begins to oscillate despite being stable initially. (Incidentally, this was

the problem that Gordon had failed to address in his speci�cation.) Note

that the quanti�cation 9

1

t

0

s

must succeed before \time runs out," i.e., before

the �nite segment of time that the logic is interpreted over ends. In other

words, we have made the assumption that the stabilization of the circuit

takes place while the inputs are kept stable.

5.4 Input Requirements

By experiments that constrain the inputs in di�erent ways, we have arrived

at the following requirements on the input signals: the clock signal must not

form a negative spike of duration less than min clock low or a positive spike

of duration less than min clock high. The D signal must be stable for at least

5

Note that t

s

and t

i

are �rst-order position variables. These are actually encoded

in Mona as second-order variables ranging over singleton sets. Here t

s

and t

i

point to

positions 0 and 1 respectively.
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setup units before CK rises. We de�ne these conditions as

input requirements �

8

1

t : (fall(t;CK )! stable(t; t�min clock low � 1;CK )) ^

(rise(t;CK )! stable(t; t�min clock � 1;CK )) ^

(rise(t;CK )! stable(t	 (setup� 1); t; D)) :

(The actual Mona code also contains the test for end of time, which we have

omitted here for sake of brevity.) Now, with the choices

min clock low 2

min clock high 3

setup 3

circ stable time 2

in stable time 6

Mona proves the implication

dtype imp ^ input requirements ! stability preserved

in about 2 seconds.

5.5 D-type Flip-
op Behavior

The essential D-type 
ip-
op behavior is as depicted below: if the clock rises

at t

r

, then falls at t

f

, and then rises again at t

0

r

, then the value of D at t

r

appears at Q at time t

r

� stabilization � 1 and remains there until time

t

0

r

�mem � 1. When we add the input requirements already stated to this

set of circumstances, a complicated set of timing relationships is enforced:
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mem

stabilization

setup

time for Q to stabilize

min clock low

Q is constant and same as D at t

r

t

r

t

f

t

0

r

time D must be constant

min clock high

Formally, we express the essential 
ip-
op behavior as

dtype � 8 t

r

; t

f

; t

0

r

:

rise(t

r

;CK )

^ (9

2

P : times rise(CK ; P ) ^ next(t

r

; t

0

r

; P ))

^ (9

2

P : times fall(CK ; P ) ^ next(t

r

; t

f

; P ))) !

(stable(t

r

� stabilization � 1; t

0

r

�mem � 1; Q)

^ Q(t

r

� stabilization � 1)$ D(t

r

)) :

This is essentially the same behavior speci�ed by Gordon in [11]. Now, with

the additional choices

stabilization 4

mem 2

the implication

dtype imp ^ input requirements ! dtype

is veri�ed in about 2 seconds. Experiments show that these values cannot be

lowered.
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6 Veri�cation of Parametric Iterative Circuits

We have used parameterization to represent both families of combinational

circuits and sequential designs. Here we consider the two aspects together:

sequential circuits with parametric data-paths. The interesting problem now

is that there are two independent parameters: time and word (data-path)

length. Both parameters cannot be simultaneously formalized since our

second-order variables represent only monadic predicates (which take a sin-

gle argument).

6

We extend here the well-known idea of reasoning about a

sequential circuit in terms of its transition function to circuits with param-

eterized data-paths. As an illustration, we present a counter architecture

based on the 74LS163 4-bit counter with enable and synchronous clear. We

begin by specifying the implementation and behavior of the 4-bit basic cell

and afterwards we specify a 4�n-parameterized counter constructed as a

cascade of 4-bit modules.

6.1 The Behavioral Speci�cation

The counter is given in Figure 6. The inputs are the I

i

, four control lines,

PEn, SRn, CET , and CEPT , and the clock pulse CP . The outputs are

the O

i

and the terminal count TC . The control lines select one of the four

possible operations (clear, parallel load, increment, or no op) according to

the values of the control signals, and the data-path consists of a data register

with synchronous clear. In [10] the speci�cation is given by the following

mode select table

SRn PEn CET CEP Action (E�ect)

L X X X Reset (Clear)

H L X X Load (I ! O)

H H H H Count (Increment)

H H L X No Change (Hold)

H H X L No Change (Hold)

plus the logic equation for the terminal count TC

tc = I

o

^ I

1

^ I

2

^ I

3

^ cet :

6

Logics involving binary-predicates, such as logics on grids, are generally undecidable,

since Turing Machine computations can be encoded on the grid.
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SRn

CP TC
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Figure 6: The 74LS163 4-bit Counter

The behavior is parameterized by time: the increment and hold oper-

ation depend on the previous output. But all of the operations are also

well-de�ned independent of the width of the data-path. We will give a spec-

i�cation parameterized by the data-path width. It is su�cient to require the

consistency of the counter's behavior over any two consecutive time units;

that is, for each operation mode, the value of the generated output O (which

coincides with the new state) and of the terminal count tc must be consistent

with the previous output/state, which we call PO, the current input I and

the current values of the control signals as prescribed by the above table.
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To encode the behavioral speci�cation, we �rst de�ne some auxiliary pred-

icates.

if (b; t; f) � (b! t) ^ (:b! f)

clear(O) � 8

1

p : :O(p)

inc(O;N) � if (O = all ; N = empty ; 9

1

j : :O(j) ^ (8

1

k : k < j ! O(k)) ^

8

1

l : (l < j ! :N(l)) ^

(l = j ! N(l)) ^

(l > j ! (O(l)$ N(l))))

We will also make use of the predicate transfer , which was de�ned for the

ALU. Note that instead of using addition to specify incrementation as we

did with the ALU, here we specify it directly. If O consists of all 1s, then N

will consist of all zeros. Alternatively, there exists a least position j which

is zero (i.e. :O(j)), and then the increment operation should clear all the

smaller positions in N , set this position, and leave the rest unchanged.

Now, using PO to represent the output from the previous time unit, we

can specify the counter's behavior. We encode the above table using nested

if statements and the additional condition on tc.

speccount(pen; cep; cet; srn; tc; I; O; PO) �

if (:srn; clear(O);

if (:pen; transfer(I; O);

if (cet ^ cep; inc(PO;O); transfer(PO;O))))

^ tc$ (8

1

j : PO(j) ^ cet)

6.2 Veri�cation of the Basic Cell

Our �rst veri�cation problem is the correctness of the gate-level implemen-

tation of the 74LS163 4-bit counter given in Figure 6. Appendix B contains

the speci�cation of the implementation, called count4bit , which formalizes

the counter as a relation in M2L.

The 4-bit implementation is not parameterized. All ports and internal

wires are Booleans. Even though our behavioral speci�cation is parameter-

ized, we can still use it to verify the behavior of a counter operating over a

4-bit wide data-path. We must simply insist that the length of the strings

is precisely 4 (so the last position, given by $, is 3). Hence we prove the
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4-bit module
SRn PEn CEP CET

TC

4-bit module
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4-bit module
SRn PEn CEP CET

TC

4n-bit

4n-bit

Data input

Data outputTC

PeSR CEP CET

Figure 7: Hierarchical implementation of the 4n bit counter

equivalence of the concrete implementation with respect to the parameter-

ized speci�cation as follows.

$ = 3!

(count4bit(pen; cep; cet; srn; tc;

I(0); I(1); I(2); I(3); O(0); O(1); O(2); O(3); PO(O); PO(1); PO(2); PO(3))

$ speccount(pen; cep; cet; srn; tc; I; O; PO))

Mona proves this equivalence in under 3 seconds. Note that this is a problem

over a �nite domain (strings are limited to size 4); thus Mona is again here

used essentially as a BDD-based decision procedure for Quanti�ed Boolean

Logic.

6.3 A Cascaded Counter Architecture

We can use the 4-bit counter blocks to implement a 4n-bit counter by cas-

cading together the 4-bit modules, as indicated in Figure 7). To specify this

design, we restrict input to strings of size 4n and partion the strings into n

4-bit units, one for each 4-bit module. Intuitively, this is possible since au-

tomata can count modulo n. We begin by specifying such an automaton with

the following predicate, fourth(p), which is true when the position variable p
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takes values 3; 7; 11; : : : .

fourth(p) �

9

2

S : (:S(0) ^ :S(1) ^ :S(2)

^ (8

1

p : (p � 3! (S(p)$ (:S(p	 1) ^ :S(p	 2) ^ :S(p	 3))))))

^ S(p)

This predicate will be used to control the iteration that allocates the modules.

The following description is a simple generalization of the ripple-carry iter-

ation we have already seen, generalizing such iteration to blocks of constant

size (in this case 4).

ripplecount(pen; cep; cet; srn; tc; I; O; PO) �

9

2

CEP;CET; TC :

8

1

p : fourth(p)!

count4bit(pen; cep; cet; srn; tc;

I(p	 3); I(p	 2); I(p	 1); I(p);

O(p	 3); O(p	 2); O(p	 1); O(p);

PO(p	 3); PO(p	 2); PO(p	 1); PO(p)) ^

(p 6= $! (and(TC(p); cep; CEP (p� 4)) ^ (CET (p� 4)$ TC(p)))) ^

(CEP (3)$ cep) ^ (CET (3)$ cet) ^ (tc$ TC($))

Here, CEP , CET and TC are internal bit vector variables representing the

vectors of intermediate control values that we need to propagate between the

modules. For every 4th value of p we instantiate a count4bit slice with the

preceding 4 input lines. E.g., on the �rst iteration, for p = 3, then p	3, p	2,

p	1, and p correspond to to the �rst 4 positions 0, 1, 2 and 3, and count4bit

computes the counter relation over these values. The rippling of the terminal

count tc to the enabling control lines cep and cet of the next module follows

the diagram given in Figure 7. Finally, the internal control signals CEP

and CET are connected to the global ones and the global terminal count is

de�ned to be the last position of TC.

We can now verify the equivalence between this cascaded implementation

and the behavioral speci�cation speccount. We show the equivalence for all

inputs whose length is a multiple of 4, which is the case when fourth($)

holds.

8

2

I; O; PO : 8

0

pen; cep; cet; srn; tc :

fourth($)!

(ripplecount(pen; cep; cet; srn; I; O; PO; tc) $

speccount(pen; cep; cet; srn; I; O; PO; tc))
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Mona veri�es that this is valid in 11 seconds. This example was the most

time intensive of those considered in this paper. 827 automata are computed

in processing this example. The average number of states is 47, and the

average number of BDD nodes is 189. The largest intermediate automaton

generated contained 3,037 states and 12,865 BDD nodes.

7 A Parameterized Benchmark: the \Min-

Max" Circuit

The Min-Max signal processor unit was formulated as a benchmark problem

for the 1989 IFIP International Workshop on Applied Formal Methods for

Correct VLSI Design [7]. Here we study a parameterized version suggested

in [25]. This version was speci�ed in the CASCADE Hardware Description

Language and veri�ed by means of a theorem prover. We argue that such

descriptions can be straightforwardly translated into Mona provided that

the arithmetic used is essentially regular.

The unit is controlled by three Boolean signals; in addition, it has a

parameterized integer input and output. In its normal mode of operation, the

output value is the mean value of the lowest and highest values encountered

in the input since the circuit was reset last.

As an example of the transcription into Mona, we reproduce here a

submodule of the high-level speci�cation:

description LAST (INT N) (in CLOCK H; in BTM0 E, IN_L[0:N-1];

out BREG0 OUT_L[0:N-1])

body

external MUX_N;

declare BTM0 E_N[0:N-1], OUT_M[0:N-1];

use MUX_N MUX(E_N, IN_L, OUT_L, OUT_M);

relation

E_N = fan N | E,

!H! OUT_L <= OUT_M;

enddescription

This submodule is parameterized by N and declares a clock H, a Boolean

input signal E, a parameterized input IN L, and a parameterized register

OUT L. The submodule declares parameterized data-paths named E N and
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OUT M, and it instantiates a multiplexer MUX N, whose output is wired to

OUT M and whose inputs are E N (which is speci�ed as the signal E duplicated

N times), the parameterized input IN L, and the current value of the param-

eterized OUT L register. The submodule also declares that when the clock H

rises, the value OUT M is latched into the register OUT L.

The corresponding Mona declaration is

last(h; e; In L;Out L;Out L ) �

9

2

E N;Out M : mux n(E N; In L;Out L;Out M)

^ fan(E N; e) ^ if (h;Out L ;Out M;Out L ;Out L);

where the parameterized register variable OUT L is modeled by two second-

order variables Out L and Out L corresponding to the value before and

after a clock tick. Here mux n, fan, and if are Mona predicates de�ned

elsewhere.

We translate both the circuit description min max low and the high-level

description min max high in a similar fashion (which can be automated). The

one exception is that in the high-level description, the mean value is described

in terms of usual addition and division on values of the parameterized data-

path viewed as integers. As with the ALU, we have to specify these operations

bit-wise. Both descriptions concern four Boolean signals (h, clear, reset,

and enable), the parameterized input (In M) and output values (Out M), and

three parameterized registers (Pastmax, Pastmin, Last).

The equivalence of the two descriptions is established if the Mona for-

mula

min max low(h; clear ; reset ; enable; In M ;Out M ;

Pastmax ;Pastmax ;Pastmin;Pastmin ;Last ;Last )

, min max high(h; clear ; reset ; enable; In M ;Out M ;

Pastmax ;Pastmax ;Pastmin;Pastmin ;Last ;Last )

is valid. Mona veri�es that this is the case in 10 seconds. The description

of the circuit and its speci�cation takes �ve pages of M2L code.

8 Why does it work?

The complexity of deciding the validity of M2L formulas is determined by

the complexity of carrying out the operations that translate formulas to au-

tomata. Exponential factors arise in two ways. First, as discussed in x3, the
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transition function of an automaton is exponential in the number of free vari-

ables. This is typically not a problem in practice since BDDs often lead to

exponential compression whereby the transition function can be represented

in polynomial space. The second source of trouble is that each quanti�er

requires a projection operation followed by an application of the subset con-

struction to determinize the result. The subset construction can lead to

exponentially many more states in an automaton. Formulas with alternating

quanti�ers require iterating this operation (once for each quanti�er alterna-

tion) and this is responsible for the non-elementary lower-bound associated

with M2L and related logics. In what follows, we look more carefully at

these operations and argue why a state explosion rarely happens in practice.

Indeed, we show that there are particular syntactic and semantic classes of

formula (see also x9) where we can guarantee that a blow-up will not occur.

To illuminate why our approach works in practice, we focus on the add

predicate de�ned in Section 4.2:

at least two(a; b; c) � (a ^ b) _ (a ^ c) _ (b ^ c)

mod two(a; b; c; d) � a$ b$ c$ d

add(A;B;Out; cin; cout) �

9

2

C : $ � 0 )

( 8

1

p : mod two(A(p); B(p); C(p); Out(p))

^ ((p < $)! (C(p� 1)$ at least two(A(p); B(p); C(p))))

^ (cout$ at least two(A($); B($); C($)))

^ C(0)$ cin)

Note that we have here added the precondition $ � 0 so as to �x the meaning

of the formula (to true) for the empty string interpretation; this makes the

corresponding automata easier to understand.

A use of second-order quanti�cation

The formula de�ned by add above has the form 9

2

C : �. We focus on the

computation related to the quanti�er 9

2

C, which \guesses" the intermediate

carry bits. In theory, the projection and subsequent determinization required

to eliminate this quanti�er can cause an exponential blow-up in the state

space. Here is what happens in practice. The automaton corresponding to

the formula � inside the quanti�er has 8 states (we have not indicated the

32 BDD nodes of this automaton for the sake of clarity):
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The automaton reads a string that de�nes the interpretations of variables

A, B, Out, cin, cout and C. Its shape can be explained as follows. The

formula � expresses that each component of the result is the sum of the A

and B component and the carry. Thus the automaton counts modulo 2. But

it must also remember the value of the carry out cout , which can be checked

only after the last position has been read. Thus, the automaton has two

modulo-2 counters, each having one accepting and one non-accepting state.

Since the empty string is always accepted (due to the $ � 0 clause), the four

di�erent states reached from the initial state upon reading the letter de�ning

the values of the Boolean variables are all accepting. The rightmost state is

the one reached in case the carry C or the output Out is wrong at any point.

There is no recovery from such an error so this state acts as a sink.

The automaton for 9

2

C : � is obtained by a projection and subset con-

struction that works as follows. Recall that this new automaton reads strings

that de�ne A;B;Out; cin, and cout, but not C. It must accept if and only

if there is some assignment to C that makes the old automaton accept. The

�rst subset constructed is that containing only the initial state. On any

transition out of the initial state, another singleton state is reached since the

�rst transition only involves the values of Boolean variables. For any of these

four states and any input letter, there are exactly two transitions possible:

one to the state that would be reached if the correct value of the carry C

was part of the input letter and the sink state corresponding to the situation

when C was wrong. Thus, all subsets reached from this point on have exactly

two elements: a counting state and the sink state (there is one exception:
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the singleton state consisting of the sink state alone is also reachable, for

example, if a letter de�nes the wrong value of Out). As a result, two of the

four singleton states reached on the �rst transition also become two-element

states. Thus there are exactly 10 reachable states in the subset automaton.

The arguments above are easily generalized as follows.

Proposition 2 Let � be a formula of the form 9

2

P :  (P ), where P is

functionally determined, that is, for any interpretation of the remaining free

variables in  , there is exactly one interpretation of P making  true. Then,

the calculation of the subset automaton for � is linear in the size of the

automaton for  .

A use of �rst-order quanti�cation

Recall that each �rst-order variable is treated as a second-order variable

that ranges over a singleton (one element) set. Thus the automaton for

�(p

1

; : : : ; p

n

), where p

1

; : : : ; p

n

are all the free �rst-order variables in �, rec-

ognizes all strings that have exactly one occurrence of a 1 in each p

i

-track

and that make � true with p

i

interpreted by the position of the 1 in the

p

i

-track.

Returning to the example, we calculate the automaton for � � 8

1

p :  ,

where

 � mod two(A(p); B(p); C(p); Out(p))^

((p < $)! (C(p� 1)$ at least two(A(p); B(p); C(p))))

from the automaton for  , which looks like:

:p :p

:p ^ C

p

p ^mod two ^ at least two

p ^ :mod two

:p ^ :C

p ^mod two ^ :at least two

p _ C

p _ :C
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We have here omitted the initial transition corresponding to the Boolean

variables in  , since there are none. Intuitively, this automaton waits until

it sees the position p; then it either goes to a terminal non-accepting state

(if the mod two predicate does not hold at position p), or it branches (if the

mod two predicate holds) to a new state that remembers the value of the

at least two predicate at position p. In the latter case, the automaton checks

on the next transition, corresponding to position p+1, that C has the correct

value.

In this example, the subset automaton constructed by projecting out p is

also small. (This automaton is constructed from an automaton corresponding

to the negation of  according to the identity 8

1

p :  � :9

1

p : : . The

automaton for : is the same as the one above, except that accepting and

non-accepting states are interchanged and that a few transitions are slightly

di�erent.) However, instead of studying the subset construction in detail for

the automaton above, we tackle a more general situation. Consider a formula

 that is (or is equivalent to) a Boolean combination of formulas of the form

p 2 X

i

or p � $) p� 1 2 X

i

. Then  corresponds to an automaton A that

looks like:

:p

p ^ : : :

:p

p _ � � �

:p ^ � � �

p states

This shape is easy to explain: before p occurs,  says nothing about any

other variable; when p occurs, a new state (inside the dotted box named \p

nodes") is reached according to the values of the X

i

s at p (some of these

states may be �nal, since p might be the last position); and if p is not the

last position the truth of  is determined by reading the X

i

s at position p+1.
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The reachable states of A in the subset construction are those of the form

fs j for some �, s is the state reached when some p-track is added to �g;

where � determines an interpretation of the X

i

. It can be seen that any such

set contains at most one state from the box in the �gure above. Therefore,

we again have an only linear expansion.

Proposition 3 For a formula of the form � � 9

1

p :  (p; fX

i

g), where  

only mentions p in terms that are of the form p or the form p� 1 (where in

the latter case, the occurrence is under the provision p � $), the calculation

of the subset automaton for � is linear in the size of the automaton for  .

This proposition does not directly explain the complexity of the subset

construction when there are more than one free �rst-order variable in the

formula. Often, however, the variable that is projected away is tightly con-

strained by other variables. For example, if we project away the variable z in

a formula that contains the clause x � z � y, then the subset construction

essentially only explores the situation when x � z � y holds. Thus, if z is

otherwise only used as in the proposition above, we would be able to again

establish a linear upper bound.

9 Comparison and Conclusions

Our results constitute a study of automatic veri�cation based on regular

classes of circuits. A family of n-bit adders is regular in an informal structural

sense (n adders are chained together ripple-carry style), but also in a formal

language theoretic sense. Viewing the input/output relation of an n-bit adder

as a set of words of length n, we �nd that the union of the words for n =

1; 2; : : : is recognizable by a �nite-state automaton. The logic of M2L allows

us to express regularity in the informal structural sense in a declarative way

by stating how an n-bit adder is iteratively built. The decision procedure

implemented by Mona reduces analysis of the resulting description of an

in�nite state space to the analysis of a regular one.

Below we compare our approach with others reported on in the literature.
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9.1 Inductive Theorem Proving

Most approaches to reasoning about parameterized systems involve explicit

theorem proving: the system is formalized as a recursive (or inductive) de�ni-

tion within a logic like �rst-order or higher-order logic and explicitly reasoned

about by mathematical induction, cf., [1, 3, 8, 11, 15, 17, 18, 20, 24]. For

example, to show that a family of circuits C, parameterized by n, with port

values given by the vectors X

1

; : : :X

n

satis�es a parameterized behavioral

speci�cation S, one proves

8n; X

1

; : : : ; X

n

: C(n;X

1

; : : : ; X

n

)! S(n;X

1

; : : : ; X

n

)

by induction over the parameter n.

The parameterized adder and ALU have been used as test-cases by oth-

ers in inductive theorem proving, in particular by Cantu et. al. using the

Edinburgh Clam System [5] and by Cyrluk et. al. using PVS [6]. CLAM

is a system that generates proofs by induction for a higher-order logic. The

development in CLAM of the ALU took over a week and the proof is con-

structed automatically in 4 minutes and 40 seconds by CLAM, as opposed

to 2 seconds by Mona. Their speci�cation shares some similarities to ours,

but di�ers in several important respects. First, they are not limited to spec-

i�cations expressible within a decidable logic. As a result, they were able

to apply their approach to verify circuits such as parameterized multipliers,

which cannot be formalized in M2L. Second, they speci�ed the ALU as a

recursive function while we speci�ed it as a non-recursive relation. Both are

valid representation techniques, but note that we cannot write explicit re-

cursive functions in M2L. On the other hand, if Cantu et. al. had formalized

the ALU as a recursively de�ned relation, CLAM would have been unable to

construct a proof.

7

The ALU theorem was also veri�ed using PVS. PVS is a semi-interactive

theorem prover that features built-in simpli�ers and decision procedures; for

example BDDs are used for propositional reasoning. Users can control proof

construction by writing proof strategies (similar to tactics in the LCF sense).

In [6] the adder and the ALU are veri�ed using the induction, normalization,

7

To the best of our knowledge, all systems automating proof by mathematical induc-

tion reason about recursively speci�ed functions, but not recursively speci�ed relations.

Indeed, some provers used for hardware veri�cation, such as NQTHM, are so biased to-

wards functions that they cannot represent hardware speci�ed relationally (e.g., they lack

existential quanti�cation).
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and BDD features of PVS. The formalization of these circuits is similar to

that of Cantu et. al. Veri�cation by induction of the parameterized adder

is stated to last approximately 2 minutes (as opposed to our time of one

second) and their proof of the ALU required 90 seconds, as opposed to 2

seconds in our case.

The signal-processor circuit was veri�ed in NQTHM (the Boyer-Moore

theorem prover) and reported on in [25]. The proof required the user to for-

mulate various lemmas. Even with the lemmas, veri�cation required several

minutes of CPU time, as opposed to 10 seconds in our case.

These examples suggest that when a parameterized system is formaliz-

able in M2L, then there can be real advantages to our approach. Not only

were our veri�cation times typically one to two orders of magnitude faster,

but there was no need for search, heuristics, or user interaction. In practice,

no theorem proving systems (other than those implementing decision proce-

dures) are fully automatic. Although some systems use powerful heuristics

for automating induction (e.g., CLAM, NQTHM, and PVS) or complete

proof procedures for semi-decidable logics (e.g., resolution theorem provers

like OTTER are typically refutation complete for �rst-order theories) all such

systems require, in practice, user guidance such as suggestion of rewrite rules,

lemmas, parameter settings, and the like. This is quite di�erent from our

approach where the only possible parameter the user can in
uence is the

variable ordering used in building BDDs. In all our examples, this ordering

was picked automatically by Mona.

9.2 Deduction without Induction

An alternative approach to parameterized veri�cation is to �x the parameter

to a particular value n. A �nite circuit arises that can be analyzed using

BDDs. As shown in [23], the circuits that allow BDD representations whose

size is linear in n are those with a bounded amount of information 
owing

through any cross section. Similarly, it is not hard to see that the correspond-

ing parameterized circuit is representable in M2L. The point at which the

instantiated description becomes larger than the parameterized description

will depend on variable orderings and the chosen representation of automata.

Deduction (without induction) is another possibility for reasoning about

non-parameterized circuits: even when BDDs are applicable, one may still

prefer to reason within an axiomatic system. An example of this is the

74LS163-counter, which was veri�ed using the OTTER theorem prover in
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[22]. In this proof 4 4-bit counters were chained together to form a 16-bit

counter, which was veri�ed. Unlike in our work, the proof was partially inter-

active (simpli�cation rules, equivalences, and the like were initially proven)

and there was no induction involved since only a particular case, n = 16, was

veri�ed.

Although replacing a parameter with a constant may be satisfactory for

reasoning about circuits whose size is parameterized, it can lead to incorrect

results when reasoning about circuits whose behavior should hold over all

instants of time. The problem is that one cannot easily bound how many

time instances must be reasoned about to establish correctness; the counter-

examples produced in our 
ip-
op example provide some evidence of the

di�culty of this problem. One alternative, discussed above, is to retreat to

an undecidable formalism and use induction to explicitly reason about the

parameter. Another alternative is to use a decidable temporal logic.

As indicated in x5, both of the above approaches have been pursued in ver-

i�cation of 
ip-
ops. Flip-
ops have been laboriously veri�ed interactively in

theorem provers based on higher-order logic. In contrast, our fully-automated

veri�cation took 2 seconds. A competitive approach is model checking us-

ing decidable temporal logics. A temporal logic solution for the 
ip-
op we

analyzed was presented in [30]. Veri�cation took 20 seconds. We have trans-

lated the speci�cation given in [30] directly intoMona; our veri�cation time

is around 2 seconds|a �gure comparable to those of the original solution,

since computers are now much faster than in 1989, when [30] was published.

9.3 Combined Induction/Deduction

It is possible to combine induction with non-inductive methods such as de-

cision procedures like Mona or model checkers. In our work, we combined

induction and deduction when reasoning about parameterized sequential cir-

cuits: an inductive step was performed (which was not formalized in a formal

metalogic) to eliminate a parameter (in our case, time) and thereby reduce

the problem to one which can be solved by Mona. Such a reduction can

be formalized in an interactive theorem proving environment. For example,

Kurshan and Lamport combined COSPAN (a model checking system) with

TLP (a theorem prover based on Lamport's Temporal Logic of Actions) and

used induction to decompose the veri�cation of a parametric multiplier to

the veri�cation of 8-bit multipliers, which is then veri�ed automatically [19].

Other researchers have investigated explicit induction principles for rea-
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soning about networks of processes where the base case and the inductive

steps are reduced to decidable problems. Such approaches test su�cient

conditions for the correctness of the overall system. Kurshan and MacMil-

lan have incorporated reasoning by induction into the COSPAN system [20],

which is used to check !-regular properties of processes; this allowed them

to verify safety and liveness properties of a non-trivial version of the Dining

Philosophers problem that was parameterized by the number of processes.

These ideas have been further extended [26] and similar ideas have been

developed in other settings, cf. [31].

9.4 Linearly Inductive Functions

The work closest to ours is that of Gupta and Fisher [12, 13] who, from a

rather di�erent starting point, have also developed a BDD-based formalism

closely connected to regular languages. They de�ne two classes of induc-

tively de�ned Boolean functions: Linearly Inductive Functions (LIFs) and

Exponentially Inductive Functions (EIFs). Both classes consist of Boolean

formulas de�ned by restricted forms of recursion. For example, the following

equations de�ne a family of n-bit adders as two LIFs, one for sum and one

for carry.

for i = 1 sum

1

= a

1

� b

1

� cin

carry

1

= (a

1

^ b

1

) _ ((a

1

_ b

1

) ^ cin)

for i > 1 sum

i

= a

i

� b

i

� carry

i�1

carry

i

= (a

i

^ b

i

) _ ((a

i

_ b

i

) ^ carry

i�1

)

These equations can be expressed in M2L as follows.

add(A;B; Sum;Carry; cin) �

8

1

i :

i = 0!

Sum(0)$ xor(A(0); xor(B(0); cin) ^

Carry(0)$ (A(0) ^B(0)) _ ((A(0) _B(0)) ^ cin))

0 < i!

Sum(i)$ xor(A(i); xor(B(i); Carry(i	 1))) ^

Carry(i)$ (A(i) ^B(i)) _ ((A(i) _B(i)) ^ Carry(i	 1))

Gupta and Fischer provide algorithms for converting function de�nitions

of this particular form into a Function Descriptor (FD) representation. A
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function descriptor is essentially a state of a BDD-represented automaton

(cf. x3.1), but it is associated with two BDDs: a basis BDD, which is Boolean-

valued BDD followed when the last letter in the string is read, and a linear

inductive BDD, which is a multi-valued BDD whose value is either a state

or a Boolean. A Boolean leaf, which signi�es reject or accept, is encountered

when the following letters have no signi�cance as to whether the string is

accepted|in the usual automaton, this situation corresponds to a looping

state.

As shown in [12], the FD representation is in essence an automaton. A

precise relation with our framework can be establised as follows:

Proposition 4

1. For any regular language L � B

k

, the FD representation is isomorphic,

modulo a couple of nodes, to the BDD-represented automaton A

0

for the

language L

0

consisting of all � 2 B

k+1

such that � projected on the �rst

k tracks is in L and the k + 1-track is of the form 0

�

1. Moreover, the

FD representation is linear in the size of an automaton A recognizing

L.

2. Vice versa, an FD representation can be converted to a BDD-represented

automaton with at most a quadratic increase in size.

Proof: 1) The states in A

0

have two kinds of transitions: those correspond-

ing to letters with a 1 in the k + 1-track and those with a 0. All states

corresponding to a situation where the 1 in the k + 1-track has not yet oc-

curred can then be viewed as FDs according to the two kinds of transition,

which correspond to the inductive case and the base case, respectively. In

addition, to get a proper FD representation, the looping non-accepting state

in A

0

is replaced by a leaf labeled 0. The looping accepting state contains a

transition to the looping non-accepting state on a 1 in the k+1-track (since

no more 0s are expected in this track). This piece of the transition graph is

replaced by the leaf with value 1.

To see that the FD description is linear in the original BDD-represented

automaton A recognizing L, we note that every state of this automaton can

be converted to a (non-reduced) FD descriptor by letting the inductive part

be the original transition function and by letting the base part be the BDD

that represents the transition function from the state with every leaf replaced

by 0 or 1 according to whether the leaf is labeled with an accepting or non-

accepting state.
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2) The other direction is proven in a similar manner. To go from an FD

descriptor to a state with an associated transition BDD, we must make a

BDD product of the base case and inductive case BDD of the FD descriptor.

The details are omitted. �

The algorithm for translating linearly inductive functions to FD descrip-

tions as described by Fischer and Gupta is based on representing the reverse

language. That is, the base case is represented as the last letter in the string.

For certain circuits, like shifters, this representation is sometimes exponen-

tially more succinct. Note that the Mona description above can easily be

dualized to achieve a representation of the reverse language: simply exchange

0 with $ and �1 with +1. The resulting Mona automaton is then in a re-

lationship with the FD description as explained in the above proposition.

If the FD description is desired as the direct output of the Mona trans-

lation, a simple formula for the k+1-track in the Proposition above could be

easily added so that the automaton A

0

is calculated. This trick is an instance

of padding regular languages to the languages described so that state spaces

decrease in size for the padded representations.

The above demonstrates that Mona generalizes the LIF framework as a

succinct representation formalism for regular languages. It is also the case

that one does not pay a price, from a computational theory point of view,

for using Mona to compute automata for LIFs. In particular, any LIF is

translated to a formula with a single �rst-order quanti�er (for the parameter

i), whose quanti�er-free matrix is a Boolean formula built using very limited

arithmetic (subtraction by 1, and test against zero). An automaton for the

matrix can be computed in exponential time in the worst case using argu-

ments as in x8. This bound is similar to that of Gupta and Fisher, where

the the worst-case complexity of their algorithms is doubly-exponential in

number of LIF variables (as in our case); [14] does not contain an explicit

discussion of the size of the FDs in terms of the input size, but it is not

hard to see that this explosion is exponential only. Note that it is an open

question as to which approach o�ers better performance in practice, since the

algorithms used to build BDD-represented automata in the two approaches

are di�erent.

In the LIF framework multiple automata can be speci�ed at the same

time and their representation can be shared; this idea can lead to compact

representations that are currently not supported by Mona.
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We believe that the Mona approach to specifying hardware is often

more natural than the LIF approach since the latter|judging from examples

in [12]|sometimes requires substantial amount of reasoning at the meta-level

to even see that a circuit can be brought into the form of an LIF. On the

other hand, the LIF approach generalizes the Mona approach in that it o�ers

some interesting ways of attacking the problem of simultaneous induction in

more than one parameter|something that goes beyond regularity [12, 14].

9.5 Other Approaches to Regularity

Independently of [14], Vuillemin studied relationships between 2-adic integers

and sequential circuits in [29]. A 2-adic integer is essentially an in�nite string

of bits that is regarded as a rational number (only certain rational numbers

can be represented in this way). In this somewhat abstract setting, Vuillemin

showed that synchronous circuits can be synthesized from descriptions in a

language named 2Z. The circuits are represented by Synchronous Decision

Diagrams or SDDS, which are essentially equivalent to the function descriptor

representation of Gupta and Fisher. Vuillemin did not study algorithmic

issues such as minimization of SDDS. In [2], the problem of solving equations

involving 2-adic integers was studied, and it was noted that SDDS provide

another representation of regular languages.

A di�erent approach to automatic veri�cation based on regularity has

been studied by Rho and Somenzi in [27]. They investigate automatic veri�-

cation of what we called parameterized sequential circuits: networks built by

iterating cells where each cell is a �nite state transition system. As noted in

x6, such systems have multiple parameters and their properties are in general

undecidable. Rho and Somenzi show that for certain classes of parameterized

systems there are algorithms which can sometimes compute an automaton

model of these systems: they infer the automaton model from observations of

the systems behavior for n = 1; 2 : : : until some technical conditions indicate

a �xed point. The existence of such a model (boundedness in their termi-

nology) is undecidable and their algorithm, when it terminates, provides

su�cient conditions for determining simple properties of networks, such as

their equivalence.
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Appendix A: The Parameterized Adder

The following is the entire script given to Mona for the parameterized adder.

It includes the formalization of gates, the description of the implementation

of a full 1-bit adder and parameterized adder, and the behavioral speci�cation

described in section 4. The only di�erences are small notational ones. Def-

initions are preceded by the keyword pred and type declarations are given.

Concrete syntax is used for operators, e.g., & for conjuntion.

pred and(var0 a,b,o) = o <=> (a & b);

pred or(var0 a,b,o) = o <=> (a | b);

pred xor(var0 a,b,o) = o <=> ((~a & b) | (a & ~b));

pred full_adder(var0 a,b,out,cin,cout) =

ex0 w1, w2, w3 : xor(a,b,w1) & xor(w1,cin,out) & and(a,b,w2) &

and(cin,w1,w3) & or(w3,w2,cout);

pred at_least_two(var0 a,b,c) = (a & b) | (a & c) | (b & c);

pred mod_two(var0 a,b,c,d) = (a <=> b <=> c <=> d);

pred add(var2 A,B,Result, var0 cin, cout) =

ex2 C: (all1 p: mod_two(p in A,p in B,p in C,p in Result)

& ((p < $) => ((p +o 1 in C) <=> at_least_two(p in A, p in B, p in C))))

& (cout <=> at_least_two($ in A, $ in B, $ in C))

& (0 in C1 <=> cin);

pred n_bit_adder(var2 A, B, Out, var0 cin, cout) =

ex2 C, D:

(all1 p: full_adder(p in A, p in B, p in Out, p in C, p in D))

& (all1 p: (p < $) => (p in D <=> (p +o 1 in C)))

& (0 in C <=> cin)

& ($ in D <=> cout);
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all2 A, B, Out: all0 cin, cout:

(add(A,B,Out,cin,cout) <=> n_bit_adder(A,B,Out,cin,cout));

The last line is the theorem to be proven. Mona responds:

Formula with free variables is a tautology

The total time elapsed: 0:00:01

Appendix B: The 74LS163 4-bit counter

Below is the Mona speci�cation of the the 4-bit counter given as a relation

over its external ports.

count4bit(pen, cep,cet,srn,tc,i0,i1,i2,i3,

o0,o1,o2,o3,oo0,oo1,oo2,oo3) =

(Ex pe, ep, pen1, et: # set combinations of switch values

(not(pen,pe) & and3(pen,cep,cet,ep) & and(cep,cet,et)

& not(pe,pen1)) &

(Ex ga0, gb0, gc0, gi0, h0 : # set first output

and(pe,i0,gi0) & not(et,h0) &

and(~oo0,ep,ga0) & and3(h0,pen1,oo0,gb0) &

or3(ga0, gi0, gb0,gc0) & and(srn, gc0, o0)) &

(Ex ga1, gb1, gc1, gi1, h1: # set second output

and(pe,i1,gi1) & nand(oo0,et,h1) &

and3(~oo1,oo0,ep,ga1) & and3(h1,pen1,oo1,gb1) &

or3(ga1, gi1, gb1,gc1) & and(srn, gc1, o1)) &

(Ex ga2, gb2,gc2, gi2, h2: # set third output

and(pe,i2,gi2) & nand3(oo0,oo1,et,h2) &

and4(~oo2,oo0,oo1,ep,ga2) & and3(h2,pen1,oo2,gb2) &

or3(ga2, gi2, gb2,gc2) & and(srn, gc2, o2)) &

(Ex ga3, gb3, gc3, gi3, h3: # set fourth output

and(pe,i3,gi3) & nand4(oo0,oo1,oo2,et,h3) &

and5(~oo3,oo0,oo1,oo2,ep,ga3) & and3(h3,pen1,oo3,gb3) &
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or3(ga3, gi3, gb3,gc3) & and(srn, gc3, o3)) &

(Ex w0, w1, w2, w3: # set tc

not(~oo0,w0) & not(~oo1,w1) & not(~oo2,w2) &

not(~oo3,w3) & and5(w0,w1,w2,w3,cet,tc)));
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