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Abstract

The SCAN algorithm has been proposed for second order

quanti�er elimination. In particular it can be applied to

�nd correspondence axioms for systems of modal logic. Up

to now, what has been studied are systems with unary modal

operators. In this paper we study how SCAN can be applied

to various systems of conditional logic, which are logical

systems with binary modal operators.
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1 Introduction

A conditional is an expressions of the form if : : : then : : : . There are

various kinds of conditionals that �t into that pattern, such as counterfactual

conditionals (\if it were the case that A then it would be the case that B"),

causal conditionals (\if A then causally B"), action conditionals (\if A then

B is obtained (can be performed)"), conditional obligations (\if A then B

should be brought about"), generic conditionals (\if A then normally B")

etc. What is commom to all these constructions is that the antecedent is

connected to the consequent in such a way that the antecedent represents a

condition (or a context) for the consequent.

It has been recognized quite early that the truth conditional account

that classical logic gives seems far from being adequate to formalize these

constructions. A counterfactual conditional is a conditional whose antecedent

is false.

Beginning with work by R. Stalnaker [21] and D. Lewis [15], several for-

mal treatments of counterfactual conditionals have been proposed. Most of

them are based on possible worlds and the notion of similarity. Basically,

a conditional A > C is true in a world w if and only if C is true in every

A-world that is most similar to w. It remains to say what the set of most

similar A-worlds is.

In that respect, one can distinguish two types of semantics:

� based on selection functions: the A-worlds that are most similar to the

actual world are selected by a function

� based on orderings: an ordering relation explicitly orders worlds ac-

cording to their similarity.

In the �rst approach stemming from R. Stalnaker and generalised by B.

Chellas [6], a function f selects from the set of possible worlds those worlds

that are most similar to w with respect to A. Formally, f has as arguments

the actual world w and a set of worlds and gives as a result a set of worlds.

1

The second argument will in fact be the extension [A] of a formula A, i.e. the

set of possible worlds in wich A is true. f(w; [A]) is the set of most similar

A-worlds. When f does not have any particular properties, such a semantics

1

In Stalnaker's original proposal it was a single world (and not a set of worlds).
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does not validate principles such as A > A or (A > B^A > C) � ((A^B) >

C).

The second approach stems from D. Lewis [15] and has been generalised

by J. Burgess [5]. To each possible world w there is associated a partial

preordering R

w

on the set of possible worlds, i.e. a re
exive and transitive

relation.

2

Given an actual world w and a the extension [A] of a formula A,

R

w

allows us to �nd out those worlds from [A] which are most similar to

w, namely those worlds w

0

such that w

0

2 [A] and for every world w

00

2 [A]

such that w

00

Rw

0

, we also have that w

0

Rw

00

. Most of the conditional logics

that have been proposed thereafter are particular cases of the Lewis-Burgess

semantics.

The corresponding basic logical systems are of increasing strength, in the

sense that all the formulas valid in Lewis's basic sphere models are also valid

in Burgess basic models, and all formulas valid in the latter are also valid

in Stalnaker's basic selection function model (but not the converse). For

example, Burgess' semantics - in contrast with Stalnaker's - validates A > A

and (A > B ^ A > C) � ((A ^ B) > C). It does not validate the principle

(A > C ^:(A > :B)) � ((A^B) > C) which in turn is validated by Lewis'

semantics.

From the seventies on, the AI community has devoted a lot of attention

to the formal study of nonmonotonic inference and belief change operations.

In the sequel, the relation between conditionals and nonmonotonic reason-

ing was investigated more and more. By the end of the eighties, there have

been established formals links between conditional logics, nonmonotonic for-

malisms, and postulats for belief revision, in the sense that there are the same

general principles. There have been given translations between the respective

general principles (or postulates) [3, 8, 16]. These postulates correspond to

the normative aspect of the respective notions.

The SCAN algorithm [11, 19] has been proposed for second order quan-

ti�er elimination. In particular it can be applied to �nd correspondence

axioms for systems of modal logic. Given a basic system, SCAN permits

to automatically �nd semantical conditions that correspond to extensions of

that system by supplementary axioms. SCAN has been implemented on a

2

Lewis' original proposal was in terms of total preorderings, which he called systems

of spheres around worlds. Burgess used a notational variant where the set R

w

: w 2 W is

replaced by a single ternary relation.
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www-site and can be run at distance.

3

Up to now, what has been studied are systems with unary modal opera-

tors. In this paper we study how SCAN can be applied to various systems

of conditional logic, which are logical systems with binary modal operators.

First we overview axiomatics and semantics of three basic types of conditional

logics that have been proposed in the literature, as well as their extensions.

Then using SCAN we analyze several extensions of these basic systems by

new axioms.

2 General Points

2.1 Language

The language of conditional logic is built on a set of propositional variables,

classical connectives and a conditional operator >. A, B, C etc. denote

formulas, and > and ? respectively stand for logical truth and falsehood.

For the antecedens part of a conditional we shall use A, and for the the

consequens part C, as far as this is possible. Modal operators can be de�ned

by abreviations: �A is :A > A, and �A is :(A > :A). FOR denotes the

set of formulas.

2.2 Axiomatics

As usual, our conditional systems will be de�ned by inference rule and axiom

schemata. Every system is built on what we call a classical base, namely all

theorems of classical propositional logic CPL together with the rule of modus

ponens

(MP) A , A � B

B

Formally speaking, the aim of the game in the axiomatic study of con-

ditional logics is to �nd systems where the conditional has as much of the

properties of material implication as possible, while avoiding trivialization.

By trivialization we understand here that one of the principles

3

The implementation that we have used is accessible through

http://www.mpi-sb.mpg.de/guide/staff/ohlbach/scan/scan.html
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(Mon) (A > C) � ((A ^ B) > C)

(Trans) ((A > B) ^ (B > C)) � (A > C)

(Contr) (A > C) � (:C > :A)

(monotony, transitivity, contraposition) is derivable: neither of them should

hold in a reasonable logic of conditionals [15, 18].

2.3 Semantics

Semantics is stated in terms of frames and models. Generally, a frame is

composed of a set W whose elements are called worlds (denoted by w; u; v),

and some structure S on W . Then a model is composed of a frame and a

meaning function m mapping propositional variables to sets of worlds.

Given a model, it is the truth conditions which uniquely determine a

forcing relation between worlds and formulas. In the case of propositional

variables and classical connectives, the truth conditions are the usual ones:

� w j= A i� w 2 m(A), if A is a propositional variable.

� w j= A � B i� w 6j= A or w j= B.

� w j= :A i� w 6j= A.

Informally, the truth condition for the conditional operator is

� w j= A > B i� for every A-world u that is closest to w, u j= C.

It is the particular structure which will permit us to compute the closest

A-worlds. In particular, it may be some ordering, which (via some minimiza-

tion) naturally gives us a notion of closeness.

A particular semantics will always be identi�ed by a condition on the

structure type together with the truth condition for the conditional operator.

Given a model M = (W;S; m), we sometimes use the notion of the ex-

tension [A] of a formula A which is de�ned by [A] = fw 2 W;w j= Ag.

We say that a formula A is true in a model M = (W;S; m) i� w j= A

for every w 2 W (or equivalently [A] = W ). A formula A is true in a frame

(W;S) i� for every meaning function m, A is true in (W;S; m). A formula A

is valid in a class of frames C (noted j=

C

A) if A is true in every frame of C.

4



3 Systems Without Underlying Orderings

In this section we present the weakest systems of conditional logic. There,

it is supposed that there is some selection function which given a formula A

and some world gives us the closest set of A-worlds. This is the basic normal

conditional logic CK.

This section draws from [7, 6] and [18].

3.1 Axiomatics

Following [6], the basic axiomatic system is called CK. It is composed of a

classical base, plus the inference rule schemata

(RCEA) A$ B

(A > C) $ (B > C)

(RCK) (B

1

^ : : : ^ B

n

) � C

((A > B

1

) ^ : : : ^ (A > B

n

)) � (A > C)

We equal CK and the sum of axioms de�ning it. Hence CK = CPL + (RCEA)

+ (RCK).

An alternative and less economic axiomatics is a classical base plus the

inference rule and axiom schemata:

(RCEA) A$ B

(A > C) $ (B > C)

(RCEC) B $ C

(A > B) $ (A > C)

(CN) A > >

(CC) ((A > B) ^ (A > C)) � (A > (B ^ C))

(CM) (A > (B ^ C)) � ((A > B) ^ (A > C))

(RCEA) expresses that substitution of equivalences is allowed in the an-

tecedens part of conditionals, and (RCEC) in the consequence part of con-

ditionals. In the last three axioms, the second letter respectively stands

for `necessitation', `conjunction' and `monotony'. Here, monotony refers to

5



the consequens: As said above, monotony in the antecedens (axiom (Mon))

would trivialize the conditional logic.

Yet another axiomatization (that is closer to the usual ones in modal

logic) is a classical base plus

(RCEA) A$ B

(A > C) $ (B > C)

(RCN) C

A > C

(CK) ((A > B) ^ (A > (B � C))) � (A > C)

3.2 Semantics

3.2.1 Original Formulation

Frames are of the form M = (W;R), where R � 2

W

�W �W is a ternary

relation.

4

We note a ternary relation as a set of binary ones that are indexed

by the �rst argument: R(U;w; v) is written R

U

(w; v). We have the following

truth condition for >:

� w j= A > C

i� 8u(R

[A]

(w; u) � u j= C)

Here, the set fu : R

[A]

(w; u)g is the set of A-worlds that are closest to w.

3.2.2 First-Order Formulation

In �rst-order logic, a formula A[t] containing one or more occurrences of the

term t is equivalent to 9x(x = t ^ A[x]). Hence the formula R

[A]

(w; u) can

be coded in �rst-order as 9U(R

U

(w; u)^ 8v(v 2 U $ v j= A)). Then we get

the following �rst-order formulation of the truth conditions:

� w j= A > C

4

We give a presentation in terms of ternary accessibility relations, and not the equiva-

lent one in terms of selection functions f : 2

W

�W �! W as Chellas does.
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i� 8u((9U(R

U

(w; u) ^ 8v(v 2 U $ v j= A))) � u j= C)

This seems to be just a more complicated way of writing things, but it

is crucial when it comes to the automatic computation of correspondences:

The �rst version of the truth condition has a second-order 
avour, but not

the second (because we do not need the whole strength of set theory for 2).

3.3 Weaker Variants: Non-Normal Conditional Logics

The above semantics can be weakened in a way that only (RCEA) and

(RCEC) are valid (and (CN), (CC) and (CM) are invalidated). Semanti-

cally, this amounts to making the accessibility relation more complex by

requiring that R � 2

W

�W � 2

W

. In other words, we no longer have a set

of worlds that is accessible from a given world via R

U

, but a set of sets of

worlds. This is exploited in the truth condition:

� w j= A > C

i� 9U � W (R

[A]

(w;U) ^ 8u 2 U; u j= C)

Such a basic system is axiomatized by (RCEC) and (RCEA). (CN), (CC),

(CM) and other axioms can be made valid by restricting the class of frames

appropriately.

3.4 Weaker Variants: Syntax-Dependent Logics

Systems without (RCEA) can be obtained by bringing in some syntax into the

semantics: In the case of CK, what we need is a relation R � FOR�W�W .

In this way, R

A

and R

B

may be di�erent although A and B are logically

equivalent formulas. Otherwise, the truth condition is very much as before:

� w j= A > C

i� 8u(R

A

(w; u) � u j= C)

3.5 Extensions

CK can be extended with various other axioms. The corresponding conditions

on the relation R can be found in a straightforward manner. (The reason is

that in some sense this semantics is quite close to the axiomatics.)
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Rather uniform completeness proofs for extensions of CK are given in [6]

and [7]. Nevertheless, there is no general completeness result around.

Let R

U

(w) = fv : R

U

(w; v)g.

3.5.1 CK + (ID)

The axiom of identity is

(ID) A > A

We have the following semantical restriction for CK + (ID):

(id) 8w8U � W (R

U

(w) � U)

3.5.2 CK + (CMP)

Conditional Modus Ponens

5

is

(CMP) (A > B) � (A � B)

The semantical restriction is

(cmp) 8w8U � W (w 2 U � R

U

(w;w))

3.5.3 CK + (CEM)

Conditional excluded middle is

(CEM) (A > C) _ (A > :C)

Semantically, the accessibility relations R

U

are restricted to functions:

(cem) 8w;w

0

8U � W (R

U

(w;w

0

) � w

0

= w)

5

This axiom schema is often called (MP), but we prefer to avoid confusion with the

inference rule schema (MP) of classical logic.

8



4 Systems Based on Partial Preorders

Here we present a basic system which is stronger than CK. It is the weakest

one whose semantics can be based on partial preorders. We can think of such

preorders as being orders of comparative closeness to the actual world.

CC currently seems to be the best base of a logic of conditionals (the

stronger one based on sphere systems that we shall present in the next section

has been criticized in the literature).

Such systems have been studied �rst in [5] as generalizations of Lewis's

sphere systems. Lateron, they have been taken up in [13, 16] and [1].

4.1 Axiomatics

The axiomatization is composed of that of CK (i.e. a classical base together

with e.g. (RCEA) and (RCK)), plus

(ID) A > A

(ASC) ((A > B) ^ (A > C)) � ((A ^ B) > C)

(CA) ((A > C) ^ (B > C)) � ((A _B) > C)

The name (ASC) is from [3]. In the study of nonmonotonic inference

relations, the corresponding pattern has been called Cautious Monotony [10].

(CA) has been called (CC

0

) in [6]. (CA) can be replaced by ((A^B) > C) �

(A > (B � C)).

The axiom of restricted transitivity [18]

(RT) ((A > B) ^ ((A ^ B) > C)) � (A > C)

can be proved in this system. In the study of nonmonotonic inference rela-

tions, the corresponding pattern has been called Cautious Cut [10]. (ASC)

and (RT) can be put together nicely in a single axiom

(CUM) (A > B) � ((A > C) $ ((A ^B) > C))

(CUM) stands for cumulativity, which is a principle that has been discussed

in the study of nonmonotonic inference relations. Viewing the hypothesis of

a conditional as the context of its consequent, (CUM) states that contexts

9



can be modi�ed by adding or dropping `lemmata' B that can be obtained

from the antecedens A.

Apparently there is no commonly used name for this basic system. We

call it CC, intending that the second letter refers to cumulativity. Note that

CC is closely related to preferential inference relations that are studied in

nonmonotonic reasoning.

Replacing (RCEA) and (ASC) with the two axioms

(CSO) ((A > B) ^ (B > A)) � ((A > C) $ (B > C))

(MOD) (:A > A) � (B > A)

we get an alternative axiomatization of CC [18, 5]. In CC, (MOD) is equivalent

to

(MOD

0

) (A > ?) � ((A ^ B) > ?)

which perhaps has more intuitive appeal: if the hypothesis A cannot be made

(i.e., leads to an inconsistency) then a fortiori the hypothesis A ^ B cannot

be made.

4.2 Semantics

The models do not verify the so-called Limit Assumption (v.i.). The price

to pay for that is a rather complex truth condition.

A frame is a couple (W;R), where R � W �W �W is a ternary relation

on W . We view R as a set of binary relations indexed by the �rst argument:

R(w; u; v) is written R

w

(u; v). For every w 2 W , let S

w

= fu : 9vR

w

(u; v)g.

(W;R) must verify the following condition:

� For all w, R

w

\ (S

w

� S

w

) is a partial preorder on S

w

(i.e. a re
exive

and transitive relation).

The truth condition is

� w j= A > C

i� 8u 2 [A] \ S

w

9v 2 [A] \ S

w

R

w

(v; u) ^ 8v

0

2 [A] \ S

w

(R

w

(v

0

; v) � v

0

j= C)

10



In this semantics, the set of A-worlds closest to w can only be de�ned if

the set of worlds is �nite. In this case, it is min

R

w

([A]). The reason is that

min

R

w

([A]) may not exist if there are in�nite decreasing R

w

-chains.

6

Burgess has proved that such frames can be restricted to antisymmetric

frames. In other words, we can require a partial order instead of a partial

preorder in the basic case.

7

4.3 Semantics with the Limit Assumption

The above semantics does not suppose the so-called Limit Assumption [15],

which says that for every formula A that is true in some accessible world there

is at least one closest world satisfying A. (Such an assumption is e.g. guar-

anteed by the stronger one that there is no in�nite decreasing chain of closer

and closer worlds.) The Limit Assumption has been debated extensively in

the literature [15], p. 20, [18], p. 66.

Contrarily to above, we give a formulation in terms of strict partial pre-

orders. Models are of the form M = (W;R;m), where (W;R) is a frame as

previously, such that

� R

w

is transitive and irre
exive: :R

w

(u; u)

� for all w in W , R

w

satis�es the Limit Assumption (which corresponds

to the smoothness condition that is used in the study of nonmonotonic

inference relations):

6

This can be reformulated without S

w

as

� weak re
exivity: 8w; u((9vR

w

(u; v)) � R

w

(u; u))

� transitivity: 8w; u; v; t((R

w

(u; v) ^ R

w

(v; t)) � R

w

(u; t))

Then the truth condition is

� w j= A > C

i� 8u 2 [A](9vR

w

(u; v) �

9v 2 [A](R

w

(v; u) ^ 8v

0

2 [A](R

w

(v

0

; v) � v

0

j= C)))

(In [13] there is yet another formulation of the same semantics.)

7

Note that such a restriction may be too strong for extensions of the basic system:

If we want models with total preorders (i.e. Lewis's V-systems), requiring antisymmetry

immediately makes us validate Stalnaker's axiom Conditional Excluded Middle (CEM),

which is a principle that is generally felt to be too strong.
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For every formula A, 8w; u(u 2 [A] \ S

w

�

9u

0

((u

0

= u _ R

w

(u

0

; u)) ^ u

0

j= A ^ 8u

00

(u

00

j= A � :R

w

(u

00

; u

0

))

(Remember that R

w

is irre
exive.)

By virtue of the Limit Assumption, min

R

w

([A] \ S

w

) 6= ; if [A] \ S

w

6= ;.

Note that this condition is not �rst-order, because we quantify over formulas

(or their extensions, i.e. sets of worlds). The truth condition then is

� w j= A > C

i� min

R

w

([A] \ S

w

) � [C]

i� 8u 2 [A]((9vR

w

(u; v) ^ 8u

0

2 [A]:R

w

(u

0

; u)) � u j= C)

Note that as the conditions on R involve the forcing relation, we cannot

de�ne the notion of a frame here.

It is remarkable that the axiomatics of CC is sound and complete for �nite

models as well (because it has the �nite model property [5]). And in �nite

models, the more complex general truth condition can be reduced to the

above simpler one for models relying on the Limit Assumption. Therefore,

the axiomatics of CC is complete for a semantics where the Limit Assumption

is made.

Note nevertheless that if we combine models not satisfying the Limit

Assumption with the simpli�ed truth condition then (ASC) is no longer valid.

Hence the axiomatics of CC is unsound for such a semantics.

4.4 Semantics for the Flat Language

In the truth condition, we cannot generally suppose 9vR

w

(u; v): In this case,

a principle of weak uniformity �A � (B > �A) would be valid (�A being

de�ned by :(A > :A)).

On the other hand, in the case where we are only interested in the frag-

ment of the language without nested conditional operators, we may make

this hypothesis, and suppose also that 8w; u(R

w

= R

u

) [13]. (The situation

is similar to that in the modal logic S5, whose frames can be restricted from

equivalence to universal relations without loosing completeness.) We can

also drop the index of R, because the conditionals in 
at formulas only refer

to the accessibility relation associated to the initial world. Consequently we

must add it to the models: they are now of the form M = (W;w

0

; R;m),

12



where w

0

2 W , and R is a binary relation on W that is transitive and weakly

re
exive. The truth condition is

� w j= A > C

i� 8u 2 [A](9vR(u; v) �

9v 2 [A](R(v; u) ^ 8v

0

2 [A](R(v

0

; v) � v

0

j= C)))

A formula A is satis�able in a model M = (W;w

0

; R;m) i� M;w

0

j= A.

4.5 Extensions

Burgess has proved completeness results for several extensions of CC.

Let S

w

= fu : 9vR

w

(u; v)g.

4.5.1 CC + (CN

0

)

(CN

0

) :(> > ?)

The name (CN

0

) is from [6] (it is called (N) in [15]). It axiomatizes nonva-

cuity:

(cn

0

) 8w9u; vR

w

(u; v).

This corresponds to seriality of S: 8(wS

w

6= ;).

4.5.2 CC + (CMP)

(CMP) (A > B) � (A � B)

(CMP) is called (W) in [15]. (CN

0

) is an instance of (CMP). The system

CC + (MP) is called WC in [18]. It is Nute's o�cial logic of conditionals.

(CMP) axiomatizes weak centering:

(cmp) 8w(w 2 S

w

^ 8u 2 S

w

R

w

(w; u)).

Note that w 2 S

w

can be replaced by R

w

(w;w).

13



4.5.3 CC + (CS)

(CS) (A ^ B) � (A > B)

The name (CS) (`conjunctive su�ciency') is from [18]. In CC, (CS) can be

replaced by A � (> > A). ((CS) can then be derived with (ASC).) (CS)

axiomatizes strong centering:

(cs) 8w; u(u 2 S

w

� (R

w

(w; u) ^ (:R

w

(u; w) _ w = u)))

4.5.4 CC + (CMP) + (CS) = SS

Pollock's system SS is CC + (CMP) + (CS). It has been discussed in the

philosophical literature. The semantical condition results from putting to-

gether (cs) and (cmp).

(CMP) and (CS) can be put together nicely in the so-called centering

axiom

(C) A � (B $ (A > B))

which means that the conditional is trivialized if its antecedens is true. The

name (C) is from [15]. In CC, (C) can be replaced by its instance A$ (> >

A), modulo which (C) is an instance of the axiom of cumulativity (CUM).

4.6 Specialized Semantics for systems

containing (CMP)

Note that in weakly centered frames of the system CC + (CMP), we do not

need the relation S any more: without modifying the forcing relation we

can replace the restriction u 2 S

w

in the truth condition by R

w

(w; u).

8

We

simplify the latter to

� w j= A > C

i� 8v 2 [A](R

w

(w; v) �

9u 2 [A](R

w

(u; v) ^ 8u

0

2 [A](R

w

(u

0

; u) � u

0

j= C)))

8

Precisely, we replace R by R

0

such that R

0

w

(u; v) i� R

w

(u; v)^9v

0

R

w

(u; v

0

), dropping

thus worlds without R

w

-successors from the set of worlds accessible from w via R

w

.
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5 Systems Based on Total Preorders

Lewis's V-systems are extensions of CC satisfying the axiom (CV), which

forces every R

w

to be a total relation (V stands for `variably strict condition-

als').

5.1 Axiomatics

The axiomatics of V is composed of that of CC (i.e. a classical base together

with e.g. (RCEA), (RCK), (ID), (ASC) and (CA)), plus

(CV) ((A > C) ^ :(A > :B)) � ((A ^B) > C)

(CV) corresponds to the pattern of rational monotony for nonmonotonic

inference relations.

9

The principle (CV) has been criticized recently by Stalnaker by means of

a counterexample where it leads to unintuitive conclusions.

5.2 Semantics

A V-frame is a CC-frame (W;R) such that for all w, R

w

is a total preorder.

Using that every R

w

is total, we can slightly simplify the truth condition

for the conditional operator to:

� w j= A > C

i� either there is no u 2 [A] with R

w

(u; v) for any v,

or 9u 2 [A]8u

0

2 [A](R

w

(u

0

; u) � u

0

j= C

i� either 8u 2 [A]8v:R

w

(u; v),

or 9u 2 [A ^ C]8v 2 [A ^ :C]:R

w

(v; u)

9

This presentation is from [18]. We can get an equivalent axiomatics from a classical

base plus (CC), (CA), (ID), (CSO), (CV) and (RCM), where the latter is the rule

(RCM) B � C

(A > B) � (A > C)

More complex axiomatics are in [15] and [5]. In [5], V is obtained by adding to CC the

axiom

(D

0

) ((A _ B) > :A) � (((A _ C) > :A) _ ((B _ C) > :C))

Lewis's axiom is even more complex than (D

0

).
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5.3 The Limit Assumption: A Specialized Semantics

As before, we can give a somewhat simpler formulation of the semantics if

we adopt the Limit Assumption. Then the truth condition becomes

� w j= A > C

i� either 8u 2 [A]8v:R

w

(u; v), or

8u 2 [A]((8v 2 [A]R

w

(u; v)) � u j= C)

As before, if we associate the previous truth condition with the present

semantics, the axiomatics of V is unsound, because axiom (ASC) is not valid.

In [1], it has been proved that such a semantics is axiomatized by Delgrande's

system NP [9], which is CK + (ID) + (RT) + (CA) + (CV). It is shown

there that V can be obtained from NP by adding axiom (ASC).

5.4 Extensions of the Basic System

Just as CC, V can be extended by the axiom schemata (CMP), (CS), (CEM)

etc. For all of them, the semantical conditions are just as in the case of CC.

In [15], system VW is V + (CMP), and system VC is V + (CS). VC is

Lewis's o�cial logic of conditionals.

We only mention the following.

5.4.1 V + (CEM) = C2

Stalnaker's Logic C2 = V + (CEM) [21] is important for historical reasons.

The semantical condition is

(cem) every R

w

must be a total order

10

10

In [5], the axiom

(D

0

) ((A _B) > :A) � (((A _ C) > :A) _ ((B _ C) > :C))

is added to system V , and it is shown that it axiomatizes antisymmetry. Hence we have

a total order here. In other words, (D

00

) is equivalent to (CEM). This can be shown

syntactically as follows: Replacing A by A _ B and C by A in (CEM) we get ((A _B) >

A) _ ((A _ B) > :A), from which (D

0

) follows. In the other sense, consider the following

instance of (D

00

): (((A ^C) _ (A ^:C)) > (A ^C)) _ (((A ^C) _ (A ^ :C)) > (A ^:C))

By (RCEA), this is nothing else than (CEM).

16



Note that the axiom (CV) can be derived from (CEM). Hence it can be

dropped from the axiomatics of C2.

The axiom (CEM) has been `under �re' very early. The semantical condi-

tion (cem) entails that there is at most one closest A-world. That this is too

restrictive has been demonstrated by Lewis [12] by means of a famous coun-

terexample where A is \Bizet and Verdi are compatriots", and C is \Bizet

and Verdi are both French".

5.4.2 V + (U)

The axiom of uniformity is the conjunction of the usual modal axioms (4)

and (5).

(U) (�A � ��A) ^ (:�A � �:�A)

(Remember that �A is :A � A.) Semantically, (U) axiomatizes local uni-

formity

(u-) 8w8u 2 S

w

(S

w

= S

u

),

where S

w

= fu : 9vR

w

(u; v)g. Note that uniformity

(u) 8w8u(S

w

= S

u

)

is complete as well.

5.4.3 V + (A)

The axiom of absoluteness is

(A) (A > B) $ �(A > B)

Note that (A) implies (U) (the converse does not hold). Semantically, (A)

axiomatizes local absoluteness

(u-) 8w8u 2 S

w

8v; v

0

(R

w

(v; v

0

) $ R

u

(v; v

0

)),

but absoluteness

(u-) 8w; u; v; v

0

(R

w

(v; v

0

) $ R

u

(v; v

0

))

is complete as well.
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5.4.4 V + (SDA)

The axiom of simpli�cation of disjunctive antecedents is

(SDA) ((A _B) > C) � ((A > C) ^ (B > C))

Although this axiom seems to be intuitive at �rst glance, together with

the rule of substitution of provable equivalents it entails the principle of

monotony (Mon), which (as we have said above) disquali�es every system

containing (SDA) as a reasonable logic of conditionals [18].

Note that the weaker system CK + (SDA) + (CA) + (? > A) has been

studied in [6]. There, it is shown that it can be given a semantics in terms

of models of the form M = (W;R;m) such that R is a ternary relation on

W , and

� w j= A > C

i� 8u; v(R(w; u; v) ^ u j= A) � u j= C

5.5 Remarks

5.5.1 Sphere Semantics

Lewis's original semantical presentation is in terms of sphere systems: A

frame is a couple (W;S), where S : W �! 2

2

W

is a function such that

� for every w, S

w

is nested: 8U; V 2 S

w

, U � V or V � U

S

w

is called a sphere system. The truth condition is

� w j= A > C i� there is U 2 S

w

such that U \ [A] 6= ;, and U \ [A] � [C]

Intuitively, A � C must be true everywhere in the smallest sphere intersect-

ing [A] (note that such a reading is only correct under the Limit Assumption,

which guarantees that such a smallest sphere always exists).

11

Sphere semantics is equivalent to our presentation. Nevertheless we do

not have a bijection between the two types of frames: every nonempty ac-

cessibility relation R

w

corresponds to at least two sphere systems, one where

the innermost sphere is empty and one where it is nonempty.

11

Our conditional operator here corresponds to Lewis's �!, and not to �) (A�) C is

de�ned as �A ^ (A�! C) ).
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5.5.2 The Relation with Standard Modal Logic

As we have done above, we can get a modal operator from a conditional

operator by de�ning �A as :A > A. It is more surprising that the other

way round we can de�ne a conditional operator from a given modal operator:

At least the systems that are stronger than V+(�A � (B > A)) (Lewis's

system VA) can be mapped into normal modal logics by translating A > C

to �(A � �(A ^�(A � C))) [4, 14].

6 Results with SCAN

We have quite di�erent results depending on the truth condition. Generally,

the Limit Assumption enables a simple form of it, which makes it that SCAN

terminates for much more axioms.

It turns out that in some cases of termination, the elimination order of

predicates is crucial.

In the next section we give the formulations of the de�nitions that have

been given to SCAN. Thereafter we study the outputs SCAN gives for several

axioms. \OK" in the comment line means that the semantical condition that

SCAN has found is the right one, i.e. we have correspondence.

6.1 De�nitions

6.1.1 Conditions on the Accessibility Relation

nonvacuity(r) $ 8w9u; vr(u; v)

nonvac3(r) $ 8w9u; vr(w; u; v)

wtotal(r) $ 8w; u; v(((9tr(w; u; t))^(9tr(w; v; t))) � (r(w; u; v)_r(w; v; u)))

wrefl(r) $ (8u; v:r(u; v)) _ (8ur(u; u))

wrefl3(r) $ 8w; u((9vr(w; u; v)) � r(w; u; u))

trans3(r) $ 8w; u; v; t((r(w; u; v)^ r(w; v; t)) � r(w; u; t))

wcent3(r) $ 8w(r(w;w; w) ^ 8u((9vr(w; u; v)) � r(w;w; u)))

total3(r) $ 8w; u; v((r(w; u; v)_ r(w; v; u))

6.1.2 Truth Conditions

The main parameter of SCAN is the truth condition for the conditional oper-

ator. The type of the truth condition corresponds to a particular predicate.
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We have tested the following:

� chellas(>; r): Chellas's selection function semantics (system CK)

w j= (A > C) $ 8u9U(8v(in(v; U) $ v j= A) ^ (r(U;w; u) � u j= C))

(There are no conditions on r.)

� burgess(>; r): Burgess's partial preorder semantics without the Limit

Assumption (system CC)

w j= (A > C) $ (8u(((9vr(w; u; v)) ^ (u j= A)) � 9v((v j= A) ^

r(w; v; u)^ 8v

0

(((v

0

j= A) ^ r(w; v

0

; v)) � (v

0

j= C)))))

r must satisfy ternary weak re
exivity wrefl3(r) as well as transitivity

trans3(r).

� burgessL(>; r): Burgess's partial preorders semantics with the LIMIT

ASSUMPTION. This condition is not �rst-order and cannot be ex-

pressed here. Therefore, when an axiom like (MOD) which is only

valid in CC with the Limit Assumption is scanned, it is not identi�ed

as being valid, and (at best) a condition is given back which follows

from the Limit Assumption. (In fact, SCAN loops in this case.)

w j= (A > C) $ 8u(((u j= A) ^ (9vr(w; u; v)) ^ 8us((us j= A) �

:r(w; us; u))) � (u j= C))

r must satisfy transitivity trans3(r), and irrefl3(r).

� burgessF (>; r): Burgess's partial preorders semantics for the FLAT

LANGUAGE without the Limit Assumption.

w j= (A > C) $ (8u((u j= A) � 9v((v j= A) ^ r(v; u) ^ 8v

0

(((v

0

j=

A) ^ r(v

0

; v)) � (v

0

j= C)))))

r must satisfy re
exivity(r), transitivity(r) and nonvacuity(r). Here

we must use the option \initial(0)".

� burgessLF (>; r): Burgess's semantics in terms of a single STRICT

partial preorder for the FLAT LANGUAGE and with the LIMIT AS-

SUMPTION.

w j= (A > C) $ (8u(((u j= A)^ 8v((v j= A) � :r(v; u))) � (u j= C)))

r must satisfy transitivity(r), irre
exivity irre
(r), and nonvacuity(r).

Here we must use the option \initial(0)".
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� burgessOld(>; r): Burgess's semantics in terms of a single partial pre-

order for the FLAT LANGUAGE and with the LIMIT ASSUMPTION.

w j= (A > C) $ (8u(((u j= A) ^ (8v(((v j= A) ^ (r(w; v; u))) �

r(w; u; v)))) � (u j= C)))

r must satisfy re
exivity refl3(r), transitivity trans3(r), and nonva-

cuity nonvac3(r).

� burgessW (>; r): Burgess's system CC + (CMP) in terms of partial

preorders (without the Limit Assumption) and with WEAK CENTER-

ING.

w j= (A > C) $ (8v(((r(w;w; v)^ v j= A) � 9u((u j= A)^ r(w; u; v)^

8us(((us j= A) ^ r(w; us; u)) � (us j= C))))))

r must satisfy weak re
exivity wrefl3(r), transitivity trans3(r), and

weak centering wcent3(r).

� lewis(>; r): Lewis's basic system V in terms of total preorders (without

the Limit Assumption).

w j= (A > C) $ (8u(((9vr(w; u; v)) ^ (u j= A)) � 9v((v j= A) ^

r(w; v; u) ^ 8v

0

(((v

0

j= A) ^ r(w; v

0

; v)) � (v

0

j= C)))))

r must satisfy weak re
exivity wrefl3(r), transitivity trans3(r), and

weak totality wtotal3(r).

� lewisL(>; r)

w j= (A > C) $ (8u(((u j= A) ^ (8v((v j= A) � r(w; u; v)))) � (u j=

C)))

r must satisfy re
exivity re
3(r) and transitivity trans3(r) as well as

totality total3(r) and nonvac3(r).

6.2 Results for Axiom (ID): p > p

� chellas(>; r)

output: FAILS (unskolemization failure).

� burgess(>; r)

output: (8w8u((8v:r(w; u; v))_ r(w; u; u)))

comment: OK (this is weak re
exivity).
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� burgessL(>; r)

output: >

comment: OK (we get the same result with option \initial(0)").

� burgessF (>; r)

output: (8u r(u; u))

comment: OK

(this is just re
exivity, which is associated with burgessF (>; r).

� burgessLF (>; r)

output: >

comment: OK.

� burgessOld(>; r)

output: >

comment: OK.

� burgessW (>; r)

output: (8w8u(:r(w;w; u) _ r(w; u; u)))

comment: OK. This is a sort of weak re
exivity (but does not follow

from it!).

� lewis(>; r)

output: (8w8u((8v:r(w; u; v)) _ r(w; u; u)))

comment: OK (this is weak re
exivity).

� lewisL(>; r)

output: >

comment: OK.
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6.3 Results for Axiom (CN

0

): :(> > ?)

(We used the version :((p _ :p) > (q ^ :q)))

� chellas(>; r)

output: (8w9u8U((9v:in(v; U)) _ r(U;w; u)))

comment: OK (the output means: If [A] = W then r([A]; w) 6= ;).

� burgess(>; r)

output:

8w9u8v((9t(r(w; u; t)) ^ :r(w; v; u)) _ (9t(r(w; t; v)) ^ 9t(r(w; u; t))))

comment: OK. The output is equivalent to

8w9u(9v(r(w; u; v))^ 8v(:r(w; v; u) _ 9t(r(w; t; v)))).

Now the �rst conjunct is nonvacuity as requested, and the second fol-

lows from weak re
exivity: r(w; v; u) � r(w; v; v).

� burgessL(>; r)

output: (8w9v((8u:r(w; u; v))^ 9s(r(w; v; s))))

comment: OK. The second conjunct is nonvacuity. The �rst one is

related to the Limit Assumption. Nevertheless, it is remarkable that

it cannot be derived from it, but only from the stronger property of

well-foundedness.

� burgessF (>; r)

output: FAILS

comment: We have a somewhat surprising result with option \ini-

tial(0)":

(p(0) _ :p(0)) => (0; (q(0) ^ :q(0)))

(on the other hand, option \all" gives us > which would be OK because

(N

0

) is valid with the truth condition burgessF ).

� burgessLF (>; r)

output: FAILS

comment: We have a somewhat surprising result with option \ini-

tial(0)":
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(p(0) _ :p(0)) => (0; (q(0) ^ :q(0)))

(on the other hand, option \all" gives us: (9v8w:r(w; v)) which would

be OK because it is entailed by the Limit Assumption in terms of strict

orders (put > for A)).

� burgessOld(>; r)

output: (8w9v8u(:r(w; u; v) _ r(w; v; u)))

comment: OK (this is entailed by the Limit Assumption).

� burgessW (>; r)

output:

(8w9v8u((r(w;w; v)^ :r(w; u; v)) _ (9s(r(w; s; u)) ^ r(w;w; v))))

comment: OK. This can be simpli�ed by hand to

(8w9v(r(w;w; v)^ 8u(:r(w; u; v) _ 9s(r(w; s; u))))).

Now by wrefl(r), r(w; u; v) � 9s(r(w; s; u)), and hence the whole re-

duces to 8w9v(r(w;w; v)), which is just nonvacuity for burgessW (r).

� lewis(>; r)

output:

(8w9v8u(((9sr(w; v; s))^:r(w; u; v))_(9s(r(w; s; u))^9s(r(w; v; s)))))

comment: OK. By hand, we get

(8w9v(9s(r(w; v; s)) ^ 8u(:r(w; u; v) _ 9s(r(w; s; u))))).

Now by wrefl(r), r(w; u; v) � 9s(r(w; s; u)), and hence the whole re-

duces to 8w9v9s(r(w; v; s)) which is just nonvacuity.

� lewisL(>; r)

output: 8w9u8v(r(w; u; v))

comment: OK (this follows from the Limit Assumption).

6.4 Results for Axiom (CMP): (p > q) � (p � q)

� chellas(>; r)

output: FAILS (unskolemization failure).
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� burgess(>; r)

output: LOOPS (SCAN does not terminate).

comment: If we choose the option `elimination of q only' we get:

:(8w ((9v8u(((9s r(w; v; s)) ^ p(v) ^ :p(u)) _ (((9s r(w; v; s)) ^

:r(w; u; v)) ^ p(v)) _ (((9s r(w; v; s))^ r(w;w; u))^ p(v)))) _ :p(w)))

But then SCAN loops again if we try to eliminate p.

� burgessL(>; r)

output: (8w8u(:r(w; u; w))^ 8w9v(r(w;w; v)))

comment: OK (this is weak centering in terms of a strict order, together

with a condition of seriality (ensuring that the actual world w always

has a successor in r

w

)).

� burgessF (>; r)

output: LOOPS.

� burgessLF (>; r)

output: (8u:r(u; 0))

comment: OK. This is weak centering in terms of a strict order. It has

been obtained with option initial(0).

� burgessOld(>; r)

output: (8w9v8u((:r(v; u; v) ^ v = w) _ (r(v; v; u) ^ v = w)))

comment: OK. By hand, this can be simpli�ed to

(8w8u(:r(w; u; w)_ r(w;w; u))

which is just the weak centering condition.

Note that SCAN loops if we try to eliminate p �rst.

� burgessW (>; r)

output: (8w9v8u((r(v; v; v) ^ :r(v; u; v) ^ v = w)

_ (r(v; v; u) ^ r(v; v; v) ^ v = w)))

comment: OK. By hand, this can be simpli�ed to

8w8u(r(w;w; w)) and
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(8w8u(:r(w; u; w))_ (r(w;w; u)))

which is just weak centering for burgessW (r).

� lewis(>; r)

output: LOOPS.

� lewisL(>; r)

output: 8w8u(r(w;w; u))

comment: OK (this is weak centering in the context of nonvacuity).

6.5 Results for Axiom (CS): (p ^ q) � (p > q)

� chellas(>; r)

output: FAILS (unskolemization failure).

� burgess(>; r)

output: LOOPS.

� burgessL(>; r)

output: (8w8u((8v:r(w; u; v)) _ r(w;w; u) _ r(w; u; u) _ u = w))

comment: OK. the 3rd disjunct can be eliminated with irre
exivity,

and we get:

(8w8u((8v:r(w; u; v))_ r(w;w; u)_ u = w)),

which means that either r

w

is empty, or w is the minimum of r

w

.

� burgessF (>; r)

output: LOOPS.

� burgessLF (>; r)

output: (8u(r(0; u) _ r(u; u) _ u = 0))

comment: OK. with irreflexivity(r) this reduces to

(8u(r(0; u) _ u = 0)),

which is strong centering for strict orders.
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� burgessOld(>; r)

output: (8w8u((r(w;w; u)^ :r(w; u; w)) _ u = w))

comment: OK. This is equivalent to strong centering for preorders:

(8u(r(0; u) _ u = 0)).

� burgessW (>; r)

output: LOOPS.

� lewis(>; r)

output: LOOPS.

� lewisL(>; r)

output: (8w8u(:r(w; u; w)_ :r(w; u; u) _ u = w))

comment: OK. The second disjunct can be eliminated because r satis-

�es refl3(r), and we get

(8w8u(:r(w; u; w)_ u = w)),

which is just strong centering.

6.6 Results for Axiom (MOD): (:p > p) � (q > p)

� chellas(>; r)

output: FAILS (unskolemization failure).

� burgess(>; r)

output: FAILS (unskolemization failure).

� burgessL(>; r)

output: LOOPS.

� burgessF (>; r)

output: FAILS (unskolemization failure).

� burgessLF (>; r)

output: LOOPS.
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� burgessOld(>; r)

output: LOOPS.

� burgessW (>; r)

output: LOOPS.

� lewis(>; r)

output: LOOPS.

� lewisL(>; r)

output: LOOPS.

6.7 Results for Axiom (CV):

((p > r) ^ :(p > :q)) � ((p ^ q) > r)

� chellas(>; r)

output: LOOPS.

� burgess(>; r)

output: LOOPS.

� burgessL(>; r)

output: (8w8u((8v((8t:r(w; v; t)) _ (9e08t(((9e1(r(w; e0; e1))

^:r(w; t; e0))^ e0 = u)_ ((9e1(r(w; e0; e1))^ r(w; t; v))^ e0 = u)))_

r(w; v; u)_ r(w; v; v) _ r(w; u; v))) _ (8v:r(w; u; v)) _ r(w; u; u)))

comment: I was unable to simplify the output any further.

� burgessF (>; r)

output: LOOPS.

� burgessLF (>; r)

output: LOOPS.

comment: This was the case with option \initial(0)". With option \all"

we get a formula I was unable to simplify any further:

(8w((8u((9e08v((:r(v; e0)^ e0 = w)_ (r(v; u)^ e0 = w)))_ r(u; w)_

r(u; u) _ r(w; u))) _ r(w;w)))
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� burgessOld(>; r)

output: (8w8u8v((9e08t(((r(w; t; u) ^ :r(w; u; t)) ^ e0 = v)

_ (:r(w; t; e0) ^ e0 = v) _ (r(w; e0; t) ^ e0 = v))) _ (r(w; u; v) ^

:r(w; v; u)) _ (r(w; v; u)^ :r(w; u; v)))).

comment: OK: by simplifying the equalities we get

8w8u8v((8t((r(w; t; u) ^ :r(w; u; t)) _ :r(w; t; v) _ r(w; v; t)))

_ (r(w; u; v)^ :r(w; v; u)) _ (r(w; v; u) ^ :r(w; u; v))).

We can reformulate this as

8w8u8v((r(w; u; v) $ r(w; v; u)) � (8t((r(w; t; v) ^ :r(w; v; t)) �

(r(w; t; u) ^ :r(w; u; t))))).

r(w; u; v) $ r(w; v; u) can be split into two cases: if r(w; u; v) and

r(w; v; u) then the rest follows with trans3(r). Otherwise we have

:r(w; u; v) ^ :r(w; v; u).

This gives us a condition which is slightly weaker than total3(r). It

says that even if u and v are incomparable, everything which is smaller

than one of them is comparable.

Note that SCAN loops if we try to eliminate p �rst.

� burgessW (>; r)

output: LOOPS.

� lewis(>; r)

output: LOOPS.

� lewisL(>; r)

output: (8w8u((8v((9e08t((r(w; e0; t) ^ e0 = u) _ (:r(w; v; t) ^ e0 =

u))) _ :r(w; u; v) _ :r(w; v; v) _ :r(w; v; u))) _ :r(w; u; u)))

comment: OK. two disjuncts can be dropped due to re
exivity, and

simplifying the equalities we get

8w8u8v(:r(w; u; v) _ :r(w; v; u) _ (8t(r(w; u; t) _ :r(w; v; t))))

This follows from trans3(r) (which holds for Lewis's shpere models).
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7 Conclusion

We have tested the applicability of the SCAN algorithm for a large family of

systems of conditional logic, which contains most of the systems that have

been studied in the literature.

Although the algorithm worked as expected for very short axioms, it

turned out that the program loops for most of the axioms in the literature

(including rather simple ones). Basically, this is due to the rather complex

truth condition for the conditional in the semantics.

Recently, an alternative algorithm has been developped at MPII by A.

Nonnengart and A. Sza las [17], which always terminates. It would be inter-

esting to investigate the application of that algorithm to conditional logics.

8 Annex: List of Axiom

and Inference Rule Schemata

8.1 Axiom and Inference Rule Schemata for CK

(MP) A and A � B

B

(RCEA) A$ B

(A > C) $ (B > C)

(RCEC) B $ C

(A > B) $ (A > C)

(RCM) B � C

(A > B) � (A > C)

(RCK) (B

1

^ : : : ^ B

n

) � C

((A > B

1

) ^ : : : ^ (A > B

n

)) � (A > C)

(RCN) C

A > C

(CN) A > >

(CC) ((A > B) ^ (A > C)) � (A > (B ^ C))
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(CM) (A > (B ^ C)) � ((A > B) ^ (A > C))

(CK) ((A > B) ^ (A > (B � C))) � (A > C)

Each of the following combinations is complete:

� CK = CPL + (RCEA) + (RCK)

� CK = CPL + (RCEA) + (RCEC) + (CN) + (CC) + (CM)

� CK = CPL + (RCEA) + (RCN) + (CK)

8.2 Axiom Schemata for CC

All rules and theorems of CK, plus

(ID) A > A

(ASC) ((A > B) ^ (A > C)) � ((A ^ B) > C)

(CA) ((A > C) ^ (B > C)) � ((A _B) > C)

(CSO) ((A > B) ^ (B > A)) � ((A > C) $ (B > C))

(MOD) (:A > A) � (B > A)

(MOD

0

) (A > ?) � ((A ^B) > ?)

(RT) ((A > B) ^ ((A ^ B) > C)) � (A > C)

(CUM) (A > B) � ((A > C) $ ((A ^B) > C))

Each of the following combinations is complete:

� CC = CK + (ASC) + (ID) + (CA)

� CC = CK + (CSO) + (MOD) + (ID) + (CA)

� CC = CPL + (RCK) + (CSO) + (MOD) + (ID) + (CA)

� CC = CPL + (RCEC) + (CN) + (CC) + (CM) + (CSO) + (MOD) +

(ID) + (CA)

� CC = CPL + (RCN) + (CK) + (CSO) + (MOD) + (ID) + (CA)
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8.3 Axiom Schemata for V

All rules and theorems of CC, plus

(CV) ((A > C) ^ :(A > :B)) � ((A ^ B) > C)

(D

0

) ((A _ B) > :A) � (((A _ C) > :A) _ ((B _ C) > :C))

Each of the following combinations is complete:

� V = CC + (CV)

� V = CC + (D

0

)

� V = CPL + (CC) + (CA) + (ID) + (CSO) + (CV) + (RCM)

8.4 Extensions of the Basic Systems

(CN

0

) :(> > ?)

(CMP) (A > B) � (A � B)

(CS) (A ^ B) � (A > B)

(C) A � (B $ (A > B))

(C-) A$ (> > A)

(CEM) (A > C) _ (A > :C)

(U) (�A � ��A) ^ (:�A � �:�A)

(A) (A > B) $ �(A > B)

8.5 Trivializing Axiom Schemata

(Mon) (A > C) � ((A ^ B) > C)

(Trans) ((A > B) ^ (B > C)) � (A > C)

(Contr) (A > C) � (:C > :A)

(SDA) ((A _B) > C) � ((A > C) ^ (B > C))
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8.6 Some Other Systems from the Literature

� SS = CC + (CMP) + (CV) [20]

� VW = V + (CMP) [18]

� VC = V + (CS) [15]

� C2 = V + (CEM) [21]

� NP = CK + (ID) + (RT) + (CA) + (CV) [9]
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