
MAX-PLANCK-INSTITUT

F�UR

INFORMATIK


 	

� �

Natural Deduction for
Non-Classical Logics

David Basin
Se�an Matthews

Luca Vigan�o

MPI{I{96{2{006 August 1996

���
�

�� k

I N F O R M A T I K

Im Stadtwald

D 66123 Saarbr�ucken

Germany

i



ii



Authors' Addresses

David Basin, Se�an Matthews, Luca Vigan�o

Max-Planck-Institut f�ur Informatik, Im Stadtwald, D-66123 Saarbr�ucken,

Germany

fbasin,sean,lucagmpi-sb.mpg.de

Publication Notes

The present report has been submitted for publication elsewhere and will be
copyrighted if accepted.

Acknowledgements

We thank Andreas Nonnengart for many useful discussions.

iii



Abstract

We present a framework for machine implementation of fam-

ilies of non-classical logics with Kripke-style semantics. We

decompose a logic into two interacting parts, each a natural

deduction system: a base logic of labelled formulae, and a

theory of labels characterizing the properties of the Kripke

models. By appropriate combinations we capture both par-

tial and complete fragments of large families of non-classical

logics such as modal, relevance, and intuitionistic logics.

Our approach is modular and supports uniform proofs of

correctness and proof normalization. We have implemented

our work in the Isabelle Logical Framework.
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1 Introduction

The origins of natural deduction (ND) are both philosophical and practical.

In philosophy, it arises from an analysis of deductive inference in an at-

tempt to provide a theory of meaning for the logical connectives [7, 31, 42].

Practically, it provides a language for building proofs, which can be seen as

providing the deduction theorem directly, rather than as a derived result.

Our interest is on this practical side, and a development of our work on ap-

plications of logical frameworks, i.e. formal notations providing support for

the uniform implementation of di�erent logics, based on fragments of higher-

order implicational logic and suitable in particular for ND [19, 28, 30, 38].

We address the problem of how to present families of related non-classical

logics so as to be suitable for such implementations. The problem is not

trivial: these logics are usually presented as Hilbert systems and, even if a
presentation is an ND system, it is often specialized, and metatheorems such

as soundness and completeness (with respect to the semantics) sometimes
have signi�cantly di�erent proofs, even for closely related logics. As a result,
�nding `good' presentations is still specialist work.1

The particular non-classical logics we consider are those with non-classical

connectives (we also use modality and non-local connective as synonyms for
non-classical connective) which can, e.g., assert the necessity or contingency
of propositions, or take account, in some way, of context. Many of these

logics can be interpreted using a Kripke semantics of `worlds' and relations
between them, where the meaning of a non-classical connective at some world

is de�ned in terms of conditions at others; e.g. the � and � of modal logic, in-
terpreted using binary relations [21], or relevant implication, using a ternary
relation [8], or non-classical negation, again using a binary relation [6, 9].

In each case a class of logics is de�ned by variations of the behavior of the
relation. Using this view of non-classical logics to build ND presentations, we
are able to (i) exploit modularity in the semantics so that related logics result

from modi�cations just to the behavior of the relations, and (ii) provide basic
metatheoretic results in a modular fashion; e.g. the soundness and complete-

ness of encodings, and proof normalization results, are parameterized over
the properties of the relations.

ND, even though recognized as one of the more practical notations for

1With su�cient e�ort, a logical framework can implement any (recursively enumerable)

proof system, but the resulting encoding does not necessarily `�t' well (see [16], where a

concept of a natural representation in a framework is formalized and investigated).
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a proof system (cf. [41]), is usually seen as ill-suited for non-classical logics,

because it builds in too many assumptions about the logic it is encoding.

Proof under assumption needs a deduction theorem: `if assuming A true,

we can show B true, then A ! B is true'; but for implications weaker or

substantially di�erent from intuitionistic ! this fails (at least for the con-

ventional reading of `if-then'). Attempts to build ND presentations of non-

classical logics have thus introduced various technical devices to get around

these problems. For example, Dunn [8], for relevance logics, considers `rele-

vant' ND, where rules have side conditions on discharged assumptions, and

Prawitz [31], for (some) modal logics, proposes rules for � with side condi-

tions that the main connective of all the supporting assumptions is �. The

continuing primacy of Hilbert presentations in non-classical logic, despite the

di�culty in actually using them, is evidence that these devices have not been

completely successful.
Nevertheless, in this paper we present non-classical logics as ND proof

systems. Our systems however, unlike those of Dunn or Prawitz, �t well
in a standard framework: all our rules are ordinary (insensitive to thinning
or contraction of assumptions), pure (have no non-local side conditions),

and single-conclusioned.2 Our presentations are partitioned into interacting
parts: a base logic of propositional3 logic and a separate relational theory

characterizing the properties of the relations; the base logic stays �xed for
a given class of related logics and we generate the one we want by `plug-
ging in' the appropriate relational theory. Thus the task we address here

is how to reduce non-classical logics to such interacting ND theories with
well-behaved proof rules for which we have general metatheorems about cor-
rectness and other desirable properties. To carry out this program, we com-

bine the language of ND with that of a Labelled Deductive System (LDS), as
proposed by Gabbay [14] and others (e.g. [13, 40]). We show that for many

non-classical logics with Kripke-style semantics it is possible to use LDS to
partition presentations and give well-behaved LDS/ND systems supporting

the modularity we want.

To illustrate, take the example of modal logic, where the usual deduction
theorem fails. The standard Kripke completeness theorem tells us that A is

provable (` A) i� A is true at every world in every suitable frame (W;R),

2We use the vocabulary of [2], which notes (x5.5) that `every ordinary, pure single-

conclusioned ND system can, e.g., quite easily be implemented in the Edinburgh LF.'
3We do not, here, consider quanti�ed non-classical logics, which can be presented by

means of quanti�er rules similar to those of free logic.
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where W is the set of possible worlds, and R is the accessibility relation

between worlds. Then ` A i� 8w 2 W(w j= A), and the deduction theorem,

as formulated above, corresponds to

8w 2 W(w j= A)) 8w 2 W(w j= B)) 8w 2 W(w j= A! B) ;

where ) is implication in the meta-language and ! is implication in the

object language. But this is false, since from the semantics we have only

that

8w 2 W(w j= A) w j= B)) 8w 2 W(w j= A! B) :

Thus a na��ve embedding of modal logic in an ND system is going to fail.

Suppose, however, we extend ND to be over pairs drawn from the language

of modal logic and labels; i.e. instead of ` A, we consider ` w:A, where
w is a `world', and 8w 2 W(` w:A) i� ` A. This provides a language

to formulate the above theorem, and provides a basis for an ND system.
Moreover, we can use the same notation to express the general behavior of
modal operators like � in a way that is independent of the details of the

Kripke model providing the semantics, i.e. ` w:�A i� ` w0:A for all w0 2 W

accessible from w. Then by formalizing the details of particular accessibility

relations we can produce particular modal logics. This treatment has obvious
similarities to traditional semantic embedding (i.e. translation into predicate
logic [20, 24, 25]), but it o�ers substantial advantages: our formalization does

not require all of �rst-order logic and it yields structured ND systems where
the strong separation between the base logic and the relational theory gives
us better proof normalization results (cf. Theorem 30 and its commentary).

In [3] we investigated LDS/ND for modal logics based on classical propo-
sitional logic. This paper explores the generalizations needed to build proof

systems that handle both positive and full fragments of large families of non-
classical logics, including relevance and intuitionistic (and classical) logic,
and can treat non-classical negation as a modality (the metatheory of posi-

tive logics is di�erent from that for full logics, cf. Dunn's semantic treatment

of positive modal logics in [11]). We provide a framework for a uniform

treatment of a wide range of non-classical connectives (�, �, relevant impli-

cation, non-classical negation, etc.). Our framework is based on an abstract
classi�cation of modalities as `universal' and `existential', and on general

metatheorems about them. We have implemented our approach in the Is-

abelle system, which supports management of separate theories and their
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structured combination, resulting in a parameterized proof development sys-

tem where (although it is not formally quanti�able) proof construction is

natural and intuitive.

Organization The remainder of this paper is organized as follows. In Sec-

tion 2 we formalize our presentations of labelled non-classical logics based

on a base logic and relational theories extending it; we conclude the section

with an example, the presentation of the relevance logic R, which also shows

the advantages of our approach over Hilbert axiomatizations. In Section 3

we modularly prove soundness and completeness of our presentations with

respect to Kripke semantics (Theorem 19), and discuss the incompleteness of

some unrestricted positive fragments (Theorem 20). In Section 4 we consider

the proof-theoretic properties of our encodings (Theorem 30), including proof

normalization, and use that to contrast our approach with related formal-
izations, such as semantic embedding. Finally, in Section 5 we compare our
work with related approaches based on LDS presentations and on algebraic

presentations, and discuss future work. An Appendix contains a sketch of
our implementation in Isabelle, its application, and its correctness.

2 Labelled Non-Classical Logics

In this section we formalize our presentations. We introduce the fundamen-

tals of how an LDS presentation relates to a Kripke semantics (Section 2.1).
After this we de�ne the base logic (Section 2.2) and the associated class of
relational theories over which it is parameterized (Section 2.3). Finally, we

give examples of non-classical logics (Section 2.4).

2.1 Labels and Kripke Models

Let W be a set of labels, ranging over worlds in a Kripke model, and R an

n + 1-ary relation over W . If a; a1; : : : ; an are labels and A is a formula,
then we call Raa1 : : : an a relational formula (rw� ), and a:A a labelled for-

mula (lw� ). We partition connectives in a logic into two families: local

and non-local. If a formula A is built from a local connective C of arity n,

A = C(A1; : : : ; An), then the truth of the lw� a:A depends only on the (lo-

cal) truth of a:A1; : : : ; a:An. Typical local connectives are conjunction (^),
disjunction (_), material implication (�), and `local' negation (�). Where
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j=M is the truth relation for lw�s in the model M, we have:4

j=M a:A ^ B i� j=M a:A and j=M a:B (1)

j=M a:A _ B i� j=M a:A or j=M a:B (2)

j=M a:A � B i� j=M a:A implies j=M a:B (3)

j=M a:�A i� 6j=M a:A (4)

For notational simplicity, we omit parentheses where possible and write bi-

nary connectives in in�x notation (as above).

A non-local connectiveM of arity n is associated with an n+1-ary relation

R on worlds, and the truth of a:MA1 : : : An is evaluated non-locally at the

worlds R-accessible from a; i.e. it depends on the truth of a1:A1; : : : ; an:An

where Raa1 : : : an.
Examples of non-local connectives and associated relations are the unary

modal operator � and the binary accessibility relation on possible worlds, or
relevant implication ! and the ternary compossibility relation. We extend

j=M to express truths for rw�s in a Kripke modelM with an n+1-ary relation
R as

j=M Raa1 : : : an i� (a; a1; : : : ; an) 2 R ; (5)

and we call M a universal non-local connective when the metalevel quan-

ti�cation in the evaluation clause of M is universal (and the body is an
implication):

j=M a:M(A1; : : : ; An) i� for all a1; : : : ; an((j=
M Raa1 : : : an

and j=M a1:A1 and : : : and j=M an�1:An�1) imply j=M an:An) : (6)

Similarly,M is an existential non-local connective when the metalevel quan-
ti�cation is existential (and the body is a conjunction):

j=M a:M(A1; : : : ; An) i� there exist a1; : : : ; an(j=
M Raa1 : : : an

and j=M a1:A1 and : : : and j=M an�1:An�1 and j=M an:An) : (7)

4� can also be de�ned in terms of � and falsum (?). Then we can compare, like for

modal logics (cf. [3]), the logics obtained when (i) j=M a:�A i� j=M a:A implies j=M b:?,

and (ii) ? is `global', i.e. j=M a:? implies j=M b:A, with the (paraconsistent) logics where

(i0) j=M a:�A i� j=M a:A implies j=M a:?, and (ii0) ? is `local', i.e. j=M a:? implies

j=M a:A.
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Thus � and (relevant)! are universal non-local connectives, � is existential,

and their customary evaluation clauses are special cases of (6) and (7), e.g.

j=M a:A1 ! A2 i� for all a1; a2((j=
M Raa1 a2

and j=M a1:A1) imply j=M a2:A2) : (8)

A uniform treatment of negation plays a central role in our framework.

However, in the Kripke semantics for relevance (and other) logics, it may be

necessary for both a formula and its negation to be true at a world, which

cannot be the case with �; thus a new connective is introduced, a non-local

negation :, formalized by a unary function � on worlds [8]:

a j=M :A i� a� 6j=M A : (9)

Informally, a� is the world which does not deny what a asserts, i.e. a and
a� are compatible worlds. We generalize this by introducing the constant ??

that expresses incoherence of compatible worlds to replace (9) with

j=M a::A i� for all b(j=M a�:A implies j=M b:??) ; (10)

where 6j=M b:?? for every world b.
Some remarks. First, when relevant implication is present, we can de�ne

a::A as a:A ! ??, and postulate Raa� b for every b, so that (10) is just
a special case of (8).5 Second, when a = a�, e.g. for modal or classical

logic, ?? reduces to ?, : to �, and (10) to (4). Finally, there is a well-
known approach to non-local negation, e.g. for relevance, linear and ortho-
logic (cf. [6, 9, 17, 18, 34]), which uses an incompatibility relation N between

worlds:

j=M a::A i� for all b(j=M b:A implies b N a) : (11)

Then a� is the `strongest' world b for which b N a does not hold. This can be

shown equivalent to our approach (for a comparison of (11) with (9) see [9]).

Hence, we de�ne the language of a non-classical logic L as follows:

De�nition 1 LetW be a set of labels, and I; J two �nite sets of indices. The

language of a non-classical logic L is a tuple (W;S;O; F ). S is a denumerably

in�nite set of sentence letters. O is the set whose members are (i) the constant

5That a and a
� are `compossible' according to every b is justi�ed by the meaning of �.
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?? (and/or ?); (ii) local and/or non-local negation (or neither for positive

logics); (iii) a set of local connectives fCj j j 2 Jg; (iv) a set of non-local

connectives fMi j i 2 Ig with an associated set
�!
R = fRi j i 2 Ig of relations

of the appropriate arities. F is the set of rw�s and lw�s: if a; a1; : : : ; an are

labels, Ri has arity n + 1, and A is a formula built up from members of S

and O, then Ri a a1 : : : an is an rw� and a:A is an lw�. �

Note that by associating di�erent relations to universal and existential non-

local connectives, we make no a priori assumptions about their interrelation-

ships (when the relations are not independent, incompleteness may arise,

cf. Theorem 20 in Section 3.1).

De�nition 2 A frame (for the logic L) is a tuple (W;G;
�!
R ; �), where W is

a non-empty set of worlds, G 2 W is the actual world,
�!
R = fRi j i 2 Ig is

the set of relations over W corresponding to
�!
R , and � is a unary function

on worlds. A model M (for L) consists of a frame and a function V mapping

elements of W and sentence letters to truth values (0 or 1), where

j=M a:p i� V(a; p) = 1 (12)

and j=M is extended to lw�s with local and non-local connectives and to rw�s

as above. When j=M ', for ' an lw� or an rw�, we say that ' is true in M.
�

A non-classical logic L is then characterized by its language and by its
models, e.g. the conditions independently imposed on � and each Ri. More-
over, some logics, e.g. intuitionistic and relevance (but not classical modal)

logics, require truth to be monotonic. We de�ne a partial order v on worlds,
where, e.g., for intuitionistic logic v coincides with the accessibility relation,

while for relevance logics it can be de�ned in terms of R, i.e. a v b i� RGa b.
For modal logic v reduces to equality. Then we require that V satisfy the
atomic monotony condition, i.e. for any ai; aj and for any sentence letter p:

if j=M ai:p and j=M ai v aj, then j=M aj:p : (13)

One might be tempted to generalize this immediately to arbitrary formulae;

this is in fact the case for `usual' non-classical logics, such as intuitionistic

and relevance logics, where we can prove by induction on the structure of A
that

if j=M ai:A and j=M ai v aj, then j=M aj:A : (14)

8



But there are logics for which (14) does not hold for every formula; e.g. [12, 22]

combine intuitionistic implication! with classical implication �, and show

that (14) holds for A ! B (in fact it holds, as one would expect, for every

intuitionistic formula) but it fails for A � B. This problem is solved in [12, 22]

by restricting (14) to persistent formulae: A is persistent if (i) it is atomic,

or (ii) if it is of the form B ! C or :B, where : is intuitionistic (and thus

non-local) negation, or (iii) it is of the form B ^ C or B _ C, and B and C

are both persistent. Similar de�nitions can be given for other non-classical

logics, depending on the particular language we are considering. With such

a precaution (14) re�nes to the following property (provable from (13) by

induction on the structure of A):

Property 3 For any ai; aj and for any persistent formula A, if j=M ai:A and

j=M ai v aj, then j=
M aj:A. �

Monotony is de�ned also for rw�s: for an n + 1-ary relation Ri we require

that if j=M Ri a0 : : : aj : : : an then

if j=M ai v aj, then j=M Ri a0 : : : a : : : an, for all j < n (15)

if j=M an v a, then j=M Ri a0 : : : aj : : : an�1 a (16)

In the following we assume formulae of the form a v b to be special cases

of relational formulae, but we note that one could introduce them explicitly
as a third kind of formulae, independent of lw�s and rw�s (proof-theory and

semantics are then extended accordingly). This assumption allows us to treat
the properties of the partial order, re
exivity and transitivity, as instances
of (15) and (16).

As a notational simpli�cation, we will restrict our attention to non-

classical logics with a restricted language containing the local connectives
^;_;�, one universal non-local connective Mu of arity u associated with a

relation Ru of arity u + 1, one existential non-local connective Me of arity
e associated with a relation Re of arity e + 1, non-local negation :, and the
constant ??.6 Then, from De�nition 2, a model for such a logic is the tuple

M = (W;G;Ru;Re; �;V), and truth for an rw� or lw� ' in M, j=M ', is the

smallest relation j=M satisfying (1), (2), (3), (5) and (6) for Ru and Mu, (5)

and (7) for Re and Me, (10), (12), (13), (15) and (16) for Ru and Re.

6Since the language might not contain (the non-local) !, we take : as a primitive

operator as opposed to de�ned by means of ?? and !.
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Finally note that we do not, here, consider logics like the relevance logic E

for which models with more than one actual world are needed. These logics

can be formalized by considering a set P of actual worlds and modifying the

postulates of the relational theory with a precondition testing membership

in P : for instance, for identity the postulate RGaa is replaced with `x 2 P

implies Rxa a'.

2.2 The Base Logic B

We now introduce the base logic B that provides the rules we need to reason

about lw�s. Our formalization of the base logic is motivated by pragmatic
concerns: (i) it should make no assumptions on the relational theories ex-

tending it, (ii) it should be adequate for the logics we are interested in, and
(iii) it should have good proof-theoretic properties. In [3] we are able to
provide a base logic for the modal logics of the Geach hierarchy that sat-

is�es all these criteria. Unfortunately, in the more general case considered
here, things are not so clear cut: to achieve (ii) and (iii) we have to replace
(i) with (i0) it should make as few assumptions as possible on the relational

theories extending it and ideally none at all, depending on the logic we want
to formalize (cf. Section 2.3, where we discuss `complementary rules', and

Section 4, where we discuss extensions with �rst-order relational theories).

We start by considering the simplest connective: classical (local) impli-
cation. For this we adapt the `traditional' ND rules, simply adding a label,
to get the rules � I and � E:

[a:A1]....
a:A2

a:A1 � A2
� I

a:A1 � A2 a:A1

a:A2

� E
(17)

Rules for ^, _, or other local connectives, are adapted similarly. Then we

10



give the rules for Mu and Me:

[a1:A1] : : : [au�1:Au�1] [R
u a a1 : : : au]....

au:Au

a:MuA1 : : : Au

MuI

a:MuA1 : : : Au a1:A1 : : : au�1:Au�1 Ru a a1 : : : au

au:Au

MuE

a1:A1 : : : ae:Ae Re a a1 : : : ae

a:MeA1 : : : Ae

MeI

a:MeA1 : : : Ae

[a1:A1] : : : [ae:Ae] [R
e a a1 : : : ae]....

b:B

b:B
MeE

(18)

where, in MuI and MeE, each ak; al (1 � k � u � 1, 1 � l � e) is fresh;
e.g. inMeE, a1; : : : ; ae are all di�erent from a, b and each other, and do not
occur free in b:B or in any assumption other than those listed.

Comparing these rules with (3), (6) and (7), we see that they re
ect the
semantic de�nitions. When we treat negation, however, the correspondence

between the rules and the semantics is more subtle, and we must choose
which kind of negation we want to encode. We begin by providing rules for
treating : with the rules :I and :E (cf. (10)):

[a�:A]
....

b:??

a::A
:I

a::A a�:A

b:??
:E

(19)

These rules capture only a minimal non-local negation, and if we want a base
logic capable of formalizing intuitionistic or classical non-local negation we

need the additional rules ??Ei and ??Ec, respectively:

b:??

a:A
??Ei

[a::A]
....

b:??

a�:A
??Ec

(20)

11



Finally, we require the rule monl, expressing monotony at the level of lw�s:

ai:A ai v aj

aj:A
monl (21)

where A is a persistent formula.7 Since monl re
ects Property 3, the details

of its de�nition, including the proviso on its application, depend on the logic

we are considering.

2.3 Relational Theories

We formalize a logic L by extending (the appropriate) B with a relational

theory axiomatizing the properties of � and of the relations Ri in a Kripke

model. Correspondence theory [43, 44] and known correspondence results [36]

allow us to determine which possible axioms correspond to which properties

of Ri. Some of these properties can only be expressed using higher-order logic
(e.g. the McKinsey axiom ��A � ��A), but for others �rst-order logic, or

even fragments of it, is enough. We restrict our attention to properties
axiomatizable using (Horn) relational rules, i.e. those of the form

Ri t
1
0 : : : t

1
m : : : Ri t

n
0 : : : t

n
m

Ri t0 : : : tm

where the tjk are terms built from labels and function symbols. (Some proper-

ties of Ri, e.g. ass1 and ass2 below, can be expressed as Horn relational rules
only after the introduction of Skolem function constants, cf. [3], where we use

the theorem on functional extensions [39, p.55] to show that the introduction
of Skolem constants is a conservative extension.) A (Horn) relational theory

T is then a theory generated by a set of such rules.

Even with such a restriction, we are able to capture many families of
non-classical logics used in practice. For example, relational theories cor-

responding to logics in the modal Geach hierarchy (e.g. K, D, T , B, S4,

S4:2, KD45, S5) [3], and various relevance logics (e.g. B, N, T, and R);
cf. Section 2.4.8

7If this restriction is not imposed, then the result is not sound for some logics, e.g. an

attempted encoding of intuitionistic implication collapses to classical implication, similar

to what is shown for Hilbert systems in [12, 22].
8Also, Horn relational rule sets can be directly implemented in the Horn fragment of

the metalogics we use for our implementation (it is not necessary �rst to embed �rst-order

logic or formalize additional judgements, cf. the appendix and [15, 19]). This restriction

also yields good proof-theoretic properties (cf. Theorem 30).
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Thus, for example, the modal axiom �A � A corresponds to the re
ex-

ivity of the accessibility relation,

xR x
refl

while the A ! A and (A ! B) ! ((B ! C) ! (A ! C)) axioms of

relevance logic correspond to identity and associativity for the compossibility

relation:

RGaa
iden

R a b e R e c d

R b h(a; b; c; d; e) d
ass1

Ra b e R e c d

R a c h(a; b; c; d; e)
ass2

(22)

(Where h is a 5-ary Skolem function constant).

For negation we do not extend the properties of Ri directly, but instead
re�ne the behavior of the � function, which is part of the language of terms in
the relational theory. Depending on whether we want to encode intuitionistic

(��i), classical (��i, ��c), or ortho (ortho1, ortho2) negation, we can select
from the following rules, which impose di�erent behaviors on �:

a v a��
��i

a�� v a
��c

a v a�
ortho1

a� v a
ortho2

Finally, we have n+ 1 rules for the monotonic properties of rw�s:

Ri a0 : : : aj : : : an a v aj

Ri a0 : : : a : : : an
monRi(j)

Ri a0 : : : an an v a

Ri a0 : : : an�1 a
monRi(n)

where j < n in the schematic rule monRi(j), cf. (15), (16).

Negation and monotony again raise the question of what exactly a base
logic should be. The rules we have just given can be seen as rw� comple-

ments of lw� rules given earlier. For instance, for an intuitionistic negation,
i.e. where the base logic contains ??Ei, we need ��i, while for a classical
negation, i.e. with ??Ec, we need ��i and ��c; similarly, the monRi rules

complement monl. Moreover, only by requiring these complementary rules
can one establish desired proof-theoretic results (cf. the proof of Theorem 30).

Thus it is convenient, on pragmatic grounds, to assume that a base logic B
is extended with a theory that includes these minimal relational rules (a

characterization of the logics in which this complementarity is not satis�ed,

e.g. ??Ei without ��i, or ??Ec with only ��c, is out of the scope of this
paper).

13



A logic L = B + T is the extension of an appropriate base logic B with

a Horn relational theory T . Consider the restricted language (with ^, _,

�, Mu, Me, :, ??) of page 9. Following Prawitz [31, 32], in Figure 1

we distinguish three families of ND systems according to their treatment

of negation: minimal, intuitionistic or classical (we make the distinction by

considering the ?? rules, as opposed to Prawitz's ? rules).

The minimal system ML is determined by a base logic containing monl

(with the appropriate restrictions) and introduction and elimination rules

for local (cf., e.g., (17)) and non-local connectives (cf. (18), and (19)), and

by a relational theory containing, at least, the monRi rules, to complement

monl.9 The intuitionistic system JL is then obtained by extending ML

with ??Ei and the complementary rule ��i, and the classical system CL is

obtained by extendingML with ??Ec and the complementary rules ��i and

��c. For each of these systems we de�ne:

De�nition 4 If � is a set of lw�s, � a set of rw�s, and ' an lw� or an rw�,
a derivation of ' from � and � in L is a tree formed using the rules in L,
ending with ' and depending only on � [ �. We write �;� `L ' when '

can be so derived. A derivation of ' in L depending on the empty set, `L ',
is a proof of ' in L, and we say that ' is a theorem of L. �

Fact 5 �;� `L Ri a a1 : : : an i� � `L Ri a a1 : : : an. �

Notation 6 We systematically use �, with or without indices, to range over
derivations, and we write �

'
to specify that the formula ' is the conclusion of

the derivation �. Similarly, we write '

�
[ [']
�
] to distinguish a possibly empty

set of occurrences of the open [discharged] assumption ' in �. Furthermore,
we write �[b=a] for the systematic substitution of b for a in �, with a suit-

able renaming of the variables to avoid clashes, and we use superscripts to

associate discharged assumptions with rule applications. Finally, we assume

the reader is familiar with the terminology of natural deduction (e.g. major
and minor premises in an inference, cf. [31, 32, 45]). �

9Note that, unlike Prawitz's, our minimal system does not satisfy the inversion prin-

ciple, since it contains monl which is neither an introduction nor an elimination rule.
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L B T

ML rules for ^;_;�;Mu;Me, :

monl monRi rules

JL rules for ^;_;�;Mu;Me, :

monl monRi rules

??Ei ��i

CL rules for ^;_;�;Mu;Me, :
monl monRi rules

??Ec ��i, ��c

Figure 1: The systems ML, JL and CL

2.4 Examples of Non-Classical Logics

Our framework can be specialized to implement fragments and full presenta-
tions of large classes of modal and relevance logics. The important (though
relatively simple) case of modal logics is discussed at length in [3]. There we

show how the base logic K, which consists of the rules

[x:A]
....

x:B

x:A � B
� I x:A � B x:A

x:B
� E

[xR y]
....

y:A

x:�A
�I

x:�A xR y

y:A
�E

y:A xRy

x:�A
�I

x:�A

[y:A] [xR y]
....

z:B

z:B
�E

[x:A � ?]
....

y:?

x:A
?E
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can be extended with relational rules to yield, e.g., logics in the Geach hi-

erarchy. For instance, S4 is obtained by extending K with relational rules

expressing re
exivity and transitivity of the accessibility relation:

xRx
refl

xR y y R z

xR z
trans

Here we consider, as an example from relevance logics, the logic R: we

compare our system with the Hilbert system RH of Routley and Meyer [35],

and show the advantages of our approach in the modular way we present the

system so that it can be `naturally' extended to obtain (positive and full)

intuitionistic and classical logic.

De�nition 7 We de�ne R as follows. Since Routley and Meyer consider a

classical non-local negation, (i.e. ::A ! A is an axiom of RH), we use the
classical version of B with ??Ec. B also includes monl and the rules for ^,
_, :, and !; A ! B is de�ned as the binary universal modality MuAB

associated with the ternary relation R, for which we provide a relational
theory generated by: ��i and ��c, monR(1) and10 monR(3), iden, ass1,

ass2 (cf. (22)), and the further rules

Raa a
idem

Ra b c
R a c� b�

anti
R a b c
R b a c

comm

Ra b c
R a b g(a; b; c)

cont1
Ra b c

R g(a; b; c) b c
cont2

where g is a ternary Skolem function constant. a v b is de�ned to be RGa b.

We get the positive fragmentR+ simply by deleting all the rules involving

non-local negation (:I, :E, ??Ec, ��i, ��c, anti). �

We postpone proofs thatR andR+ are what we claim they are, i.e. equivalent

toRH andRH
+ (which we get fromRH by deleting the axioms for negation),

until Section 3, where we show the correctness of our presentations with

respect to Kripke-style semantics. Here we are interested rather in comparing
the modularity of the two presentations.

Routley and Meyer show that there is a problem with their presentations:

RH
+ is a subsystem of positive intuitionistic logic, but RH is a subsystem

only of classical logic. That is, full intuitionistic logic J cannot be modularly

10
monR(2) is derivable from monR(1), since Ra b c `R Rba c.
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obtained by simply adding new axioms to RH. (J can be obtained from RH,

but only in a non-modular fashion, if relevant negation is rejected in favour

of an intuitionistic one [35, p.227].)

Now consider our systems. Positive intuitionistic logic J+ is obtained

from R+ by adding the rule

RGGa
int

corresponding to the (intuitionistically valid `thinning') axiom A ! (B !

B), so that the ternary R reduces to a binary partial order (in fact to the

usual accessibility relation for Kripke models of intuitionistic logic), and !

reduces to intuitionistic implication. However, extending R with the rule int

yields classical logic: we are able to derive RGaG, so that, essentially, all

the worlds collapse; i.e. a = a� = a��, ! reduces to �, and : to �. This

should not come as a surprise: in De�nition 7 we explicitly de�ned R to
contain, like RH, a classical treatment of negation. That is, with reference

to Figure 1, we de�ned R = CR. But Figure 1 also tells us that this problem
can be naturally overcome in our setting: to restore the modularity of the
extensions and obtain full intuitionistic logic J, we just need to consider the

system JR (intuitionistic R), which we obtain from R by substituting ??Ec
with ??Ei, and deleting ��c. Indeed, JR is an intermediate system between
R+ and R, R+ � JR � R, and we can extend it with int to obtain full

intuitionistic logic:

Proposition 8 Adding the rule int to JR results in J. �

We show this by (i) proving that R reduces to a partial order, and (ii) that

relevant !, :, ?? and the corresponding relevance rules reduce to intuition-
istic !, �, ? and the corresponding intuitionistic rules.

To �nish this section we give a couple of derivations in R. We show, �rst,
contraposition, i.e. that G:A! B implies G::B ! :A, when R is antitonic

[a::B]2
G:A! B [b�:A]1

[RGa b]2

RGb� a�
anti

a�:B
! E

c:??
:E

b::A :I1

G::B ! :A ! I2

17



and then that G:::A! A is provable (note the use of ??Ec and ��c):

RGc�� c
��c

[c�::A]1
[b:::A]2 [RGb c]2

c:::A
monl

d:??
:E

c��:A ??Ec1

c:A
monl

G:::A! A ! I2

This proof, formalized in Isabelle, is given in Appendix A.

3 Correctness of the presentations

In this section we show that every non-classical logic L = B + T is sound

and complete with respect to the corresponding Kripke-style semantics. We
consider here only the case where T is a Horn relational theory; extensions
of B with �rst-order relational theories are discussed in Section 4.

Again, for notational simplicity, we consider the restricted language (with
^, _, �, Mu, Me, :, ??) of page 9; the results generalize easily to unre-
stricted languages.

De�nition 9 Given a set of lw�s � and a set of rw�s �, we call the ordered
pair (�;�) a proof context (pc). When �1 � �2 and �1 � �2, we write
(�1;�1) � (�2;�2). When a:A 2 �, we write a:A 2 (�;�) irrespective of �,

and when Ru a a1 : : : au 2 �, we writeRu a a1 : : : au 2 (�;�) irrespective of �.
Similarly for Re a a1 : : : ae. Moreover, if there exists an A such that a:A 2 �,

or if a is an argument of an rw� in �, we write a 2 (�;�) and say that the
label a occurs in (�;�). Finally, we extend the de�nition of j=M as follows:
j=M � means that j=M Ri a a1 : : : an for all Ri a a1 : : : an 2 �; j=M (�;�)

means that j=M ' for all lw�s or rw�s ' 2 (�;�); � j= Ri a a1 : : : an means

that j=M � implies j=M Ri a a1 : : : an for any modelM; and �;� j= a:A means
that j=M (�;�) implies j=M a:A for any model M. �

The explicit embedding of properties of the models, and the possibility of
explicitly reasoning about them, via rw�s and relational rules, require us

to consider also soundness and completeness for rw�s, where we show that

� `L Ri a a1 : : : an i� � j= Ri a a1 : : : an.
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De�nition 10 Let � be a set of lw�s and � a set of rw�s. The logic L is

sound i� (i) � `L Ri a a1 : : : an implies � j= Ri a a1 : : : an, and (ii) �;� `L
a:A implies �;� j= a:A. L is complete i� the converses hold. �

Lemma 11 L is sound, i.e. (i) � `L Ri a a1 : : : an implies� j= Ri a a1 : : : an,

and (ii) �;� `L a:A implies �;� j= a:A.

Proof Throughout the proof let M = (W;G;Ru;Re; �;V) be an arbitrary

model for the logic L. We prove (i) by induction on the structure of the

derivation of the rw� Ri a a1 : : : an from �. The base case, Ri a a1 : : : an 2 �,

is trivial, and there is one step for each application of a Horn relational rule.

We treat only one example which involves Skolem functions; soundness of

the other rules follows similarly.11 Consider applications of the rules ass1

and ass2 (cf. (22)) for a ternary relation Ru:

�1

Ru a b e
�2

Ru e c d
Ru b h(a; b; c; d; e) d

ass1

�1

Ru a b e
�2

Ru e c d
Ru a c h(a; b; c; d; e)

ass2

where �1 is the derivation �1 `L Ru a b e, and �2 is the derivation �2 `L
Ru e c d, with � = �1 [�2. Assume that Ru is associative, and that j=M �.

Then from the induction hypothesis we obtain j=M Ru a b e and j=M Ru e c d,
and we conclude j=M Ru b h(a; b; c; d; e) d and j=M Ru a c h(a; b; c; d; e).

We prove (ii) by induction on the structure of the derivation of a:A from
� and �. The base case, a:A 2 �, is trivial, and there is one step for each

inference rule. We treat only applications of MuI, MeE, and ??Ec; sound-
ness of the other rules follows similarly (soundness of monl with respect to

Property 3 is immediate by the restriction on its application).

MuI

[a1:A1] : : : [au�1:Au�1] [R
u a a1 : : : au]

�1

au:Au

a:MuA1 : : : Au
MuI

11Note that our models do not contain functions corresponding to possible Skolem func-

tions in the signature. When such constants are present the appropriate Skolem expansion

of the model (cf. [45, p.137]) is required; e.g. for (relevant) associativity the signature of

the relational theory is conservatively extended with a 5-ary Skolem function constant h,

and h is also added to the model.
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where �1 is the derivation �1;�1 `L au:Au, with �1 = �[fa1:A1; : : :; au�1:Au�1g

and �1 = � [ fRu a a1 : : : aug. The induction hypothesis is �1;�1 `L au:Au

implies �1;�1 j= au:Au. Assume j=M (�;�). Considering the restric-

tion on the application of MuI, we can extend � and � to �0 = � [

fa01:A1; : : : ; a
0
u�1:Au�1g, �

0 = �[fRu a a01 : : : a
0
u�1g for arbitrary a

0
1; : : : ; a

0
u�1 62

(�;�), and assume j=M �0 and j=M �0. Since j=M �0 implies j=M �1 and

j=M �0 implies j=M �1, from the induction hypothesis we obtain j=M a0u:Au

for arbitrary a01; : : : ; a
0
u�1 62 (�;�) such that j=M Ru a a01 : : : a

0
u�1 and j=M

a01:A1; : : : ; j=
M a0u�1:Au�1. We conclude j=M a:MuA1 : : : Au by de�nition of

j=M.

MeE Let � be the derivation

�1

a:MeA1 : : : Ae

[a1:A1] : : : [ae:Ae] [R
e a a1 : : : ae]

�2

b:B

b:B
MeE

That is, � is �;� `L b:B, where, by the restriction on MeE, we can as-
sume that a1; : : : ; ae do not occur in (�;�) and are di�erent from b. More-

over, �1 is the derivation �;� `L a:MeA1 : : : Ae, and �2 is the derivation
� [ fa1:A1; : : : ; ae:Aeg;� [ fRe a a1 : : : aeg `L b:B. By the induction hy-
pothesis for �1 we have that �;� j=M a:MeA1 : : : Ae, and thus, by de�-

nition of j=M, there exist b1; : : : ; be such that j=M b1:A1; : : : ; j=
M be:Ae and

j=M Re a b1 : : : be. We can then extend � and � to �0 = �[fa01:A1; : : : ; a
0
e:Aeg,

�0 = � [ fRe a a01 : : : a
0
eg for arbitrary a01; : : : ; a

0
e 62 (�;�), and from the in-

duction hypothesis for �2 we conclude �;� j=M b:B.

??Ec

[a::A]

�1

b:??

a�:A
??Ec

where �1 is the derivation �1;� `L b:??, with �1 = � [ fa::Ag. The
induction hypothesis is �1;� `L b:?? implies �1;� j=M b:??. We assume
j=M (�;�) and prove j=M a�:A. Since, evidently, 6j=M b:??, from the induction

hypothesis we obtain 6j=M �1, and therefore 6j=M fa::Ag. We conclude j=M

a�:A by de�nition of j=M. �
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Completeness follows by a Henkin-style proof, where a canonical model

MC = (WC ;GC ;RuC ;ReC ; �C ;VC) is built to show that

� 6`L Ri a a1 : : : an implies � 6j=M
C

Ri a a1 : : : an, and

�;� 6`L a:A implies �;� 6j=M
C

a:A .

In standard proofs for `unlabelled' non-classical logics (with Kripke seman-

tics), a countermodel to underivable formulae is built by de�ning a notion of

maximality for sets of formulae, and then using an extension lemma (such as

the Lindenbaum Lemma, the Zorn Lemma or the Belnap Extension Lemma,

cf., e.g., [8]) to show that every set of formulae is contained in some maximal

set; the canonical model is then obtained by repeated applications of the

extension lemma. There are several possible de�nitions of maximality that
can be considered, depending on the logic. For instance, maximality can be

de�ned in terms of consistency (as usually done, e.g., for modal logics), in
terms of notions weaker than consistency for paraconsistent logics such as
relevance logics, or one can simply build the canonical model by extending

disjoint theory{countertheory pairs (cf. [1, 8, 11]).
The latter approach is more general than the other ones as it does not

rely on negation and thus applies also for positive fragments. We have taken
a similar approach, but instead of introducing countertheories, we start by

de�ning what it means for a proof context (�;�) to be maximal with respect
to an underivable lw� a:A. Then, given the presence of labelled formulae and
explicit assumptions on the relations between the labels, i.e. the rw�s in �,

we modify the Lindenbaum Lemma (cf. Lemma 13 below) to extend (�;�)
to one single proof context (��;��) maximal w.r.t. a:A, where maximality is
`globally' checked also against the additional assumptions in �. The elements

of WC are then de�ned by partitioning �� with respect to the labels, and the
relations are de�ned by exploiting the information in �. Therefore only one

application of the extension lemma is needed. Moreover, and most important,
our proof is completely independent of L: exactly the same procedure applies
for any fragment of any logic.

De�nition 12 Given a logic L = B + T , let �L be the deductive closure of

� under T , i.e. �L = fRi a a1 : : : an j � `L Ri a a1 : : : ang. A pc (�;�) is
maximal w.r.t. a:A i� (i) � = �L, and (ii) b:B 62 (�;�) i� � [ fb:Bg;� `L
a:A. �
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Clearly, when (�;�) is maximal w.r.t. a:A, both a:A 62 (�;�) and �;� 6`L
a:A. Moreover, b:?? 62 (�;�) for any b, for otherwise �;� `L a:A. Also

note that �;� `L b:B i� �;�L `L b:B, and that � `L Ri a a1 : : : an i�

�L `L Ri a a1 : : : an.

In the Lindenbaum lemma for �rst-order logic, a maximally consistent

set of formulae is inductively built by adding for every formula 9x:P (x)

a witness to its truth, namely a formula P (c) for some new constant c. A

similar procedure applies here in the case of existential non-local connectives:

if the addition of w:MeA1 : : : Ae does not yield a derivation of a:A, then we

also add t1:A1; : : : ; te:Ae and Rew t1 : : : te, for some new t1; : : : ; te which

act as witness worlds to the truth of w:MeA1 : : : Ae. This ensures that

the pc (��;��) is maximal w.r.t. a:A, as shown in Lemma 13 below. As a

comparison, in the standard completeness proof for unlabelled modal logics

one shows instead that if w j=M
C

�A, then, by the extension lemma, there
is a world w0 accessible from w that serves as a witness to the truth of �A,
i.e. w0 j=M

C

A.

Lemma 13 If �;� 6`L a:A, then (�;�) can be extended to a pc (��;��)

that is maximal w.r.t. a:A.

Proof We �rst extend the language of the logic L with in�nitely many new

constants for witness worlds. Systematically let t range over the new con-
stants for witness worlds, and w range over labels (including a) and over the
new constants; t and w may be subscripted. Let l1; l2; : : : be an enumeration

of all lw�s in the extended language. Starting from (�0;�0) = (�;�), we
inductively build a sequence of pcs by de�ning (�i+1;�i+1) as follows:

� if �i [ fli+1g;�i `L a:A, then (�i+1;�i+1) = (�i;�i)

� if �i [ fli+1g;�i 6`L a:A, then

{ if li+1 is w:MeA1 : : : Ae, then we add witnesses to the truth of

w:MeA1 : : : Ae, i.e. for t1; : : : ; te 62 (�i [ fw:M
eA1 : : : Aeg;�i),

�i+1 = �i [ fw:M
eA1 : : : Ae; t1:A1; : : : ; te:Aeg

�i+1 = �i [ fR
ew t1 : : : teg

{ if li+1 is not w:M
eA1 : : : Ae, then (�i+1;�i+1) = (�i [ fli+1g;�i)
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Every (�i;�i) is such that �i;�i 6`L a:A. To prove this we show that if

�i;�i 6`L a:A then �i+1;�i+1 6`L a:A. The only non-trivial case is the

addition of witnesses to the truth of w:MeA1 : : : Ae. Suppose that

�i [ fw:M
eA1 : : : Ae; t1:A1; : : : ; te:Aeg;�i [ fR

e w t1 : : : teg `L a:A

for all t1; : : : ; te 62 (�i[fw:M
eA1 : : : Aeg;�i). But then we can applyMeE,

and thus �i [ fw:M
eA1 : : : Aeg;�i `L a:A. Contradiction.

Now de�ne

�� =
[

i�0

�i ; �� = (
[

i�0

�i)L :

Clearly, (�;�) 2 (��;��) and a:A 62 (��;��). Moreover, (��;��) is maximal

w.r.t. a:A. Condition (i) in De�nition 12 is satis�ed by de�nition of ��,

and we show that condition (ii) holds too. �� [ fb:Bg;�� 6`L a:A implies

b:B 2 �� by construction. For the converse, assume that b:B 2 ��. If
��[fb:Bg;�� `L a:A, then, since �

�;�� `L b:B, by transitivity of derivations
we have that ��;�� `L a:A. Contradiction. �

When � 6`L Ri a a1 : : : an, then we simply extend � to �� = �L, where

Ri a a1 : : : an 62 ��, since by de�nition of deductive closure �� `L Riww1 : : : wn

i� Ri ww1 : : : wn 2 ��.

Lemma 14 Let (��;��) be maximal w.r.t. a:A. Then

(i) ��;�� `L w:B i� w:B 2 (��;��) (deductive closure)

(ii) w:MuA1 : : : Au 2 (��;��) i� Ruww1 : : : wu 2 (��;��) and w1:A1 2

(��;��) and ... and wu�1:Au�1 2 (��;��) imply wu:Au 2 (��;��), for
all w1; : : : ; wu

(iii) w:MeA1 : : : Ae 2 (��;��) i� Reww1 : : : we 2 (��;��) and w1:A1 2

(��;��) and ... and we:Ae 2 (��;��), for some w1; : : : ; we

(iv) w::A 2 (��;��) i� w�:A 62 (��;��)

(v) w:A1 ^ A2 2 (��;��) i� w:A1 2 (��;��) and w:A2 2 (��;��)

(vi) w:A1 _ A2 2 (��;��) i� w:A1 2 (��;��) or w:A2 2 (��;��)

(vii) w:A1 � A2 2 (��;��) i� w:A1 2 (��;��) implies w:A2 2 (��;��)

Proof We only show (i), (iii), and (vi); the other cases follow similarly.

(i) Suppose that ��;�� `L w:B. If w:B 62 (��;��), then, since (��;��)

is maximal w.r.t. a:A, �� [ fw:Bg;�� `L a:A, and thus, by transitivity,

��;�� `L a:A. Contradiction. The converse holds by de�nition.
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(iii) Suppose that Reww1 : : : we 2 (��;��) and w1:A1 2 (��;��) and ...

and we�1:Ae�1 2 (��;��) imply we:Ae 62 (��;��), for all w1; : : : ; we. Then,

by deductive closure,

�� [ fw1:A1; : : : ; we�1:Ae�1g [ fwe:Aeg;�
� [ fRe ww1 : : : weg `L a:A

for all w1; : : : ; we. Now, if w:M
eA1 : : : Ae 2 (��;��), then, by deductive clo-

sure, ��;�� `L w:MeA1 : : : Ae, and thus ��;�� `L a:A, by MeE. Contra-

diction. For the converse suppose that w:MeA1 : : : Ae 62 (��;��). Then ��[

fw:MeA1 : : : Aeg;�
� `L a:A. Now, if for some w1; : : : ; we, R

e ww1 : : : we 2

(��;��) and w1:A1 2 (��;��) and ... and we:Ae 2 (��;��), then ��;�� `L
w:MeA1 : : : Ae by deductive closure and MeI, and thus ��;�� `L a:A by

transitivity. Contradiction.

(vi) Suppose that w:A1 _ A2 2 (��;��). Now, if w:A1 62 (��;��) and
w:A2 62 (��;��), then �� [ fw:A1g;�

� `L a:A and �� [ fw:A2g;�
� `L a:A,

and thus ��;�� `L a:A by deductive closure and _E. Contradiction. For
the converse suppose that w:A1 2 (��;��). Now, if w:A1 _ A2 62 (��;��),

then �� [ fw:A1 _ A2g;�
� `L a:A. But by deductive closure and _I the

assumption yields ��;�� `L w:A1 _ A2, and thus, by transitivity, ��;�� `L
a:A. Contradiction. We conclude analogously when we assume that w:A2 2

(��;��). �

De�nition 15 Given (��;��), we de�ne the canonical model MC for the

logic L as follows: WC = ffB j w:B 2 ��g j w 2 (��;��)g, where GC =
fB j G:B 2 ��g, and w�C = fB j w�:B 2 ��g; (w;w1; : : : ; wu) 2 RuC

i� Ruww1 : : : wu 2 ��, and (w;w1; : : : ; we) 2 ReC i� Reww1 : : : we 2 ��;

VC(w; p) = 1 i� w:p 2 ��. �

The standard de�nition of RuC , i.e. (w;w1; : : : ; wu) 2 RuC i�

fAu j M
uA1 : : : Au 2 w; A1 2 w1; : : : ; Au�1 2 wu�1g � wu ; (23)

is not applicable in our setting, since (23) does not imply `L R
uww1 : : : wu.

We would therefore be unable to prove completeness for rw�s, since there
would be cases where 6`L Ruww1 : : : wu, but (w;w1; : : : ; wu) 2 RuC , and

thus j=M
C

Ruww1 : : : wu. Hence, we instead de�ne (w;w1; : : : ; wu) 2 RuC i�

Ruww1 : : : wu 2 ��; note that therefore Ruww1 : : : wu 2 �� implies (23).

Similarly for ReC . Moreover, we immediately have that:

Fact 16 Riww1 : : : wn 2 �� i� �� j=M
C

Riww1 : : : wn. �
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The deductive closure of �� ensures not only completeness for rw�s (cf. Lemma 18

below), but also that the conditions on RuC , ReC are satis�ed, so that MC

is really a model for L. As an example, we show that if L contains ass1

and ass2 for a ternary relation Ru, then RuC is associative. Consider an

arbitrary pc (�;�), from which we build MC . Assume (a; b; e) 2 RuC and

(e; c; d) 2 RuC . Then Ru a b e 2 �� and Ru e c d 2 ��. But �� is deductively

closed, and thus Ru b h(a; b; c; d; e) d 2 �� and Ru a c h(a; b; c; d; e) 2 ��,

by ass1 and ass2. Hence, there exists an x such that (b; x; d) 2 RuC and

(a; c; x) 2 RuC .

Let the degree of an lw� be the number of connectives (both local and

non-local) that occur in it. By Lemma 14 and Fact 16, it is easy to show

that:

Lemma 17 w:B 2 (��;��) i� ��;�� j=M
C

w:B. �

The proof is by induction on the degree of w:B; as an example, consider the
case when w:B is w:MuA1 : : : Au. Assume w:MuA1 : : : Au 2 (��;��). Then,

by Lemma 14, Ruww1 : : : wu 2 (��;��) and w1:A1 2 (��;��) and ... and
wu�1:Au�1 2 (��;��) imply wu:Au 2 (��;��), for all w1; : : : ; wu. Fact 16
and the induction hypotheses yield ��;�� j=M

C

wu:Au for all w1; : : : ; wu

such that ��;�� j=M
C

Ruww1 : : : wu and ��;�� j=M
C

w1:A1 and ... and
��;�� j=M

C

wu�1:Au�1, i.e. �
�;�� j=M

C

w:MuA1 : : : Au by the de�nition of

truth.

For the converse, assume w:MuA1 : : : Au 62 (��;��). Then, by Lemma 14,

Ruww1 : : : wu 2 (��;��) and w1:A1 2 (��;��) and ... and wu�1:Au�1 2

(��;��) and wu:Au 62 (��;��), for some w1; : : : ; wu. Fact 16 and the in-
duction hypotheses yield ��;�� j=M

C

Ruww1 : : : wu and ��;�� j=M
C

w1:A1

and ... and ��;�� j=M
C

wu�1:Au�1 and ��;�� 6j=M
C

wu:Au, i.e. �
�;�� 6j=M

C

w:MuA1 : : : Au by the de�nition of truth.

We can now �nally show that:

Lemma 18 L is complete, i.e. (i) � j= Ri a a1 : : : an implies� `L Ri a a1 : : : an,

and (ii) �;� j= a:A implies �;� `L a:A.

Proof (i) If � 6`L Ri a a1 : : : an, then, where �� = �L, Ri a a1 : : : an 62 ��,

and thus �� 6j=M
C

Ri a a1 : : : an, by Fact 16. Hence, � 6j=M
C

Ri a a1 : : : an. (ii)
If �;� 6`L a:A, then we extend (�;�) to a pc (��;��) maximal w.r.t. a:A.

Then, by Lemma 17, ��;�� 6j=M
C

a:A, and thus �;� 6j=M
C

a:A. �
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Hence by Lemma 11 and Lemma 18 we have that:

Theorem 19 L is sound and complete. �

3.1 Positive Fragments and Interrelated Relations

In Section 2 we argued that an unrestricted monl rule produces an unsound

system in which intuitionistic and classical implication are equivalent, and

that soundness is regained when applications of monl are restricted to per-

sistent formulae. We show now that the correctness of our presentations

(Theorem 19) depends on another restriction we have imposed in Section 2,

that there are no a priori assumptions on the interrelationships of the dif-

ferent relations associated with universal and existential modalities. If this

restriction is withdrawn and the relations are interrelated, then incomplete-
ness may arise.

To illustrate this, we consider the positive fragments of (classical) modal
logics. Without negation we cannot de�ne � in terms of � and derive the

rules for �. Indeed, there need be no a priori reason why � and � are related
at all. Therefore, we characterize the positive fragments containing both �
and � by the interrelationships between R� and R�, which are speci�ed by

a (possibly empty) collection of the following Horn relational rules:

xR� y

xR� y
(��)

xR� y

xR� y
(��)

Then, using these rules, we can prove theorems stating relationships between
� and �. For instance, using (��) we can prove

x:(�A ^�B) � �(A ^B) ; (24)

and using (��) we can prove

x:(�A � �B) � �(A � B) : (25)

That these theorems are provable is not surprising: correspondence the-
ory [43, 44] provides a means of showing that (24) corresponds to the se-

mantic condition R� � R�, and that (25) corresponds to R� � R�.

Now consider

x:�(A _B) � (�A _�B) ; (26)
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which corresponds, in the above sense, to R� � R�, and therefore is true

in the models satisfying this property. By analysis of normal form proofs

(cf. Section 4), we can show that (26) is not provable using (��).12 This

illustrates that:

Theorem 20 If the Ris associated with the modalities are not independent,

then there are positive fragments of non-classical logics that are incomplete

with respect to the corresponding Kripke-style semantics. �

An analogous problem holds for Hilbert presentations, as pointed out by

Dunn in [11]; he ensures the completeness of the `absolutely' positive frag-

ment of modal logic (i.e. without negation and implication) by extending

his Hilbert-style deductive system with postulates equivalent to (24) and

(26). Similarly, we could restore completeness in our setting by giving up
our claim to a �xed base logic extended with relational theories, and adding

a rule directly encoding (26), e.g.

x:�(A _ B) � (�A _�B)

However, such a rule is not in the spirit of ND since it does not contribute
to the theory of meaning of the connectives. Moreover, it complicates proof

normalization arguments.

4 Normalization

In this section we follow, when possible, Prawitz [31, 32] to show that deriva-
tions of lw�s can be reduced to a normal form that does not contain unnec-

essary detours and satis�es a subformula property.

There are two possible forms of detours in a derivation and we eliminate
them by the reduction operations de�ned below. For brevity, we consider the

restricted language (with ^, _, �, Mu, Me, :, ??) of page 9, and we only
show the part of the derivation where the reduction actually takes place: the
missing parts remain unchanged. Moreover, we extend Notation 6 by writing

�  �0 when the derivation � reduces to the derivation �0 by one or more

of such reductions.

12This is because the proof of (26) requires properties of classical negation. Thus, instead

of `strengthening' the proof system, we could try to restore completeness by adopting a

semantics with a `weaker' negation.

27



The �rst, and simplest, form of detour is the application of an elimination

rule immediately below the application of the corresponding introduction

rule. That is, if an lw� is introduced and then immediately eliminated, then

we can avoid introducing it in the �rst place. Formally, we de�ne:

De�nition 21 A maximal lw� in a derivation is an lw� which is both the

conclusion of an introduction rule and the major premise of an elimination

rule. Maximal lw�s are removed from a derivation by (�nitely many appli-

cations of) proper reductions. �

There is one proper reduction for each connective. The proper reductions for

universal and existential non-local connectives are:

Proper reduction for Mu:

[a1:A1] : : : [au�1:Au�1] [R
u a a1 : : : au]

�
au:Au

a:MuA1 : : : au
MuI

�1

b1:A1 : : :
�u�1

bu�1:Au�1

�r

Ru a b1 : : : bu
bu:Au

MuE

 

�1

b1:A1 : : :
�u�1

bu�1:Au�1

�r

Ru a b1 : : : bu
�[b1=a1; : : : ; bu=au]

bu:Au

Proper reduction for Me:

�1

a1:A1 : : :
�e

ae:Ae

�r

Re a a1 : : : ae
MeA1 : : : Ae:

MeI

[b1:A1] : : : [be:Ae] [R
e b b1 : : : be]

�
c:C

c:C
MeE

 

�1

a1:A1 : : :
�e

ae:Ae

�r

Re a a1 : : : ae
�[a1=b1; : : : ; ae=be]

c:C

where the substitutions in the above reductions are allowed by the provisos

on MuI and MeE.
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The proper reductions for negation and for local connectives can be easily

adapted from the standard `unlabelled' reductions, e.g. for negation:

[a�:A]
�1

b:??
a::A

:I
�2

a�:A
b:??

:E

 

�2

a�:A
�1

b:??

Let us call indirect rules the rules MeE, _E, ??Ei and monl. The sec-

ond form of detour arises when the conclusion of an indirect rule is the major

premise of an elimination rule. Consider the di�erent cases. At applications

of MeE occurrences of the same lw� appear immediately below each other,

and this can constitute a detour in which lw�s which potentially interact in

a proper reduction are too far apart. The same problem holds for applica-

tions of _E, and a similar one for applications of monl. Finally, when the
conclusion of ??Ei is the major premise of an elimination, then we can easily
show that the elimination is an unnecessary inference.

To remove this second form of detour we permute the order of application
of indirect and elimination rules. Formally we de�ne:

De�nition 22 A permutable lw� in a derivation is an lw� that is both
the conclusion of an indirect rule and the major premise of an elimination.

Permutable lw�s are removed from a derivation by (�nitely many applications
of) permutative reductions. �

The di�erence with respect to Prawitz is twofold. First, we explicitly de�ne

??Ei to be an indirect rule, since, unlike his ? elimination rule for intuition-
istic logic, we cannot restrict ??Ei to applications where the conclusion is
an atomic lw�. For instance, to replace

�
b:??

a:MeA1 : : : Ae
??Ei

with
�
b:??
a1:A1

??Ei
: : :

�
b:??
ae:Ae

??Ei

�
b:??

Re a a1 : : : ae
(y)

a:MeA1 : : : Ae
MeI

we would need a rule (y) which would violate the separation between base
logic and relational theory. Second, although it is not an elimination rule,
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we de�ne monl to be an indirect rule since, likeMeE, _E, and ??Ei, it can

interrupt a potential reduction.

As notation, write
a:A �
b:B

(r)

for an application of an elimination (or indirect) rule (r) with major premise

a:A and conclusion b:B, where � represents the �nite sequence of derivations

of the minor premises of the rule. The permutative reductions forMeE, _E,

and ??Ei are as follows:

Permutative reductions for MeE:

�
a:MeA1 : : : Ae

[a:A1] : : : [a:Ae] [R
e a a1 : : : ae]

�1

b:B

b:B
MeE

�
c:C

(r)

 �
a:MeA1 : : : Ae

[a:A1] : : : [a:Ae] [R
e a a1 : : : ae]

�1

b:B �
c:C

(r)

c:C
MeE

Permutative reductions for _E:

�
a:A _B

[a:A]
�1

c:C

[a:B]
�2

c:C
c:C

_E
�

d:D
(r)

 �
a:A _ B

[a:A]
�1

c:C �
d:D

(r)

[a:B]
�2

c:C �
d:D

(r)

d:D
_E

Permutative reductions for ??Ei:

�
b:??
a:A

??Ei
�

c:C
(r)

 

�
b:??
c:C

??Ei

The permutative reductions for monl are more complex and we consider
them in detail. First, note that since monl can be only applied to persistent

formulae, we do not need to consider permuting it with � E (cf. the discus-
sions on pages 9 and 12). Now let A ^ B and A _ B be persistent formulae.
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In the permutative reductions of monl with applications of ^E or _E the

application of monl is `pushed' to lw�s of smaller degree, e.g.

�1

a:A _B
�2

a v b

b:A _B
monl

[b:A]
�3

c:C

[b:B]
�4

c:C
c:C

_E

 
�1

a:A _ B

[a:A]
�2

a v b

b:A
monl

�3

c:C

[a:B]
�2

a v b

b:B
monl

�4

c:C
c:C

_E

The permutative reductions of monl with ??Ei or ??Ec simply result in the
deletion of the application of monl, e.g.

[a::A]
�1

c:??
�2

c v b

b:??
monl

a�:A
??Ec

 

[a::A]
�1

c:??
a�:A

??Ec

In the case of MuE, monl is `pushed' to rw�s, i.e. it is replaced with an

application of monR(1):

�
a:MuA1 : : : Au

�0

a v b

b:MuA1 : : : Au
monl

�1

b1:A1 : : :
�u�1

bu�1:Au�1

�r

Ru b b1 : : : bu
bu:Au

MuE

 
�

a:MuA1 : : : Au

�1

b1:A1 : : :
�u�1

bu�1:Au�1

�r

Ru b b1 : : : bu
�0

a v b

Ru a b1 : : : bu
monR(1)

bu:Au
MuE

A similar situation occurs when we permute monl with itself, i.e. we exploit

the transitivity of the partial order, which is an instance of monR(n):

�1

a:A
�2

a v b

b:A
monl

�3

b v c

c:A
monl

 
�1

a:A

�2

a v b
�3

b v c
a v c

monR(n)

c:A
monl
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Finally, the substitution in the permutative reduction of monl with MeE is

allowed by the proviso on MeE:

�
a:MeA1 : : : Ae

�r

a v b

b:MeA1 : : : Ae
monl

[b1:A1] : : : [be:Ae] [R
e b b1 : : : be]

�1

c:C
c:C

MeE

 �
a:MeA1 : : : Ae

[a1:A1] : : : [ae:Ae] [R
e a a1 : : : ae]

�1[a=b; a1=b1; : : : ; ae=be]
c:C

c:C
MeE

We are now in a position to state our desired normalization results. We

�rst de�ne:

De�nition 23 A derivation is in normal form (is a normal derivation) i�
it contains no maximal lw�s and no permutable lw�s. �

Then we consider the three systems in Figure 1. For ML and JL we have
that:

Lemma 24 Every derivation in ML or JL reduces to normal form. �

This follows analogous with Prawitz, by showing that each application of
proper and permutative reductions reduces a suitable well-formed measure
on derivations. Hence, the reduction process must eventually terminate with

a derivation free of maximal and permutable lw�s.

Since derivations in Horn relational theories cannot introduce maximal
or permutable lw�s, by minor modi�cations to the above we have that:

Corollary 25 Every derivation in extensions of ML or JL with Horn re-

lational theories reduces to normal form. �

Before proving analogous results for CL, let us perform a standard sim-

pli�cation: the `classical' negation and ?? rules allow us to de�ne for each
existential modalityMe with associated relationRe a dual universal modality

Mu
e with associated relation R

u
e , while retaining completeness (cf. the discus-

sion on the possible incompleteness of positive modal logics in Section 3.1).
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In particular we de�ne:13

a::Mu
eA1 : : : Ae�1:Ae i� a:MeA1 : : : Ae

Ru
e a

� a1 : : : ae�1 a
�
e i� Re a a1 : : : ae

To show that this is correct, i.e. that Me and Mu
e are really interde�nable,

we take Mu
e as primitive and derive the rules for Me, e.g. for MeE:

a::Mu
eA1 : : : Ae�1:Ae

[a1:A1]
2 : : : [ae�1:Ae�1]

2 [ae:Ae]
1 [Ru

e a
� a1 : : : ae�1 a

�
e]
2

�
b:B [b�::B]3

c:??
:E

a�e::Ae
:I1

a�:Mu
eA1 : : : Ae�1:Ae

Mu
eI

2

d:??
:E

b:B ??Ec3

where, for brevity, we have identi�ed a�� with a instead of explicitly using

the rules ��i and ��c. Hence we can safely replace Me and Re with Mu
e

and Ru
e . Analogously, we can de�ne disjunction in terms of conjunction,

and with these replacements we obtain the logic CL0, which is adequate for
representing a non-classical logic with a classical treatment of negation.

Considering this simpli�ed language (with ^, �, Mu, Mu
e , :, ??) allows

us to reduce applications of ??Ec to instances where the conclusion is atomic,

by showing that any application of ??Ec with a non-atomic consequence can
be replaced with a derivation in which ??Ec is applied only to lw�s of smaller
degree. For instance, again identifying a�� with a,

[a::MuA1 : : : Au]
�
b:??

a�:MuA1 : : : Au
??Ec

13Note that this is equivalent to de�ning Re
a a1 : : : ae i� R

u

e
ae a1 : : : ae�1 a and adding

switching rules for both R
e and R

u

e
, e.g.

R
u

e
ae a1 : : : ae�1 a

R
u

e
a
�

a1 : : : ae�1 a
�

e

This is, for instance, the case in relevance logics, where fusion (�) and relevant implication

(!) are associated with the one and the same R, and a:A � B is shown equivalent to

a::(A! :B) by means of switching, cf. [10].
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is replaced with

[a�u::Au]
2

[a�:MuA1 : : : Au]
1 [a1:A1]

3: : : [au�1:Au�1]
3 [Ru a� a1 : : : au]

3

au:Au
MuE

c:??
:E

a::MuA1 : : : Au
:I1

�
b:??
au:Au

??Ec2

a�:MuA1 : : : Au
MuI3

Therefore, in the case of CL0 the only permutative reductions that need to

be considered are those for monl, and, in analogy with Lemma 24, we have

that:

Lemma 26 Every derivation in CL0 reduces to normal form. �

Corollary 27 Every derivation in extensions of CL0 with Horn relational

theories reduces to normal form. �

One of the main advantages of normal derivations is that they have a
well-de�ned structure from which one can show several desirable properties
(a full account of the applications and consequences of normalization, as given

by Prawitz, is out of the scope of this paper). In particular, in any of the
three logics we considered the two parts of the proof system are rigorously

separated: lw� judgements can depend on rw� judgements, but not vice
versa. As a consequence, any normal derivation of an lw� is structured as
a central derivation in the base logic `decorated' with subderivations in the

relational theory, which attach onto the central derivation through instances
of MuE, MeI, or monl. Moreover, the structure of the central derivation

in B can be further characterized by indentifying particular sequences of
lw�s (which Prawitz calls branches, paths, and segments [32, pp.249{250]),
and showing that in these sequences there is an ordering on inferences. By

exploiting this ordering, we can then show a subformula property for all three

systems.

De�nition 28 A is a subformula of B i� B is A, or B is B1 ^B2, B1 _B2,

B1 � B2, :B1, M
uB1 : : : Bu, or M

eB1 : : : Be, and A is a subformula of

one of the Bis. We say that a derivation �;� ` a:A in ML or JL has
the subformula property if for all lw�s b:B used in the derivation, B is a
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subformula of some formula in fC j c:C 2 � [ fa:Agg; if the derivation is in

CL, then B is either a subformula of some formula in fC j c:C 2 �[fa:Agg,

or is an assumption :D discharged by ??Ec, and D is a subformula of some

formula in fC j c:C 2 � [ fa:Agg or is an occurrence of ?? immediately

below such an assumption. We will speak loosely of a:A being a subformula

of b:B, meaning A is a subformula of B. �

Lemma 29 If � is a normal derivation in extensions of ML, JL, or CL0

with Horn relational theories, then � satis�es the subformula property. �

To summarize, our presentations have the following properties:

Theorem 30

(I) The deductive machinery is minimal: the proof systems formalize the

minimum fragment of �rst-order logic required by the semantics.

(II) Derivations are rigorously partitioned: the derivation of lw�s may de-

pend, via rules for non-local connectives, on derivations of rw�s, but not vice

versa.

(III) Derivations normalize: the derivations of lw�s have a well-structured

normal form that satis�es the subformula property. �

For comparison, consider the semantic embedding approach (e.g. [20, 24, 25]),
in which a non-classical logic is encoded as a `suitable' (e.g. intuitionistic
or classical) �rst-order theory by axiomatizing an appropriate de�nition of

truth: (i) a non-classical logic constitutes a theory of full �rst-order logic,
as opposed to an extension of labelled propositional logic with Horn-clauses;
(ii) all structure is lost as propositions and relations are 
attened into �rst-

order formulae; (iii) there are normal forms, those of ND for �rst-order logic,
but derivations of lw�s are mingled with derivations of rw�s, as opposed to

the separation between the base logic and the relational theory that we have
enforced.

This separation is in the philosophical spirit of LDSs, and it also provides

extra structure that is pragmatically useful: since derivations of rw�s use

only the resources of the relational theory, we may be able to employ theory-
speci�c reasoners successfully to automate proof construction.14 However,

in exchange for this extra structure there are limits to the generality of the
formulation: the properties in Theorem 30 depend on design decisions we

14Then, to further restrict the structure of normal derivations, it is interesting to study

the eliminability of monl from the systems.
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have made, in particular, the use of Horn relational theories. This, of course,

places stronger limitations on what we can formalize than a semantic em-

bedding in �rst-order logic. Consider, for instance, the relevance logic RM,

the extension of R with the postulate

Ra b c implies (RGa c or RGb c) ; (27)

which corresponds to the axiom A ! (A ! A). We cannot formalize RM

because (27) is not formalizable as a set of Horn rules. This is a design

decision. Consider the alternatives. We can extend our deductive machinery

by providing proof rules for a full �rst-order relational theory and explicitly

add (27) as an axiom. However, if we then maintain (II) of Theorem 30

we lose completeness (with respect to the semantics), since, by analysis of

normal form proofs, we can show that G:A ! (A ! A) is not provable.
Alternatively, we can regain completeness by giving up (II), by identifying

falsum in the �rst-order relational theory with ??. However, the resulting
system is then essentially equivalent to semantic embedding and we lose (I);

cf. [3], where we investigated analogous problems for modal logics.

But there is also another reason why this latter solution is not satisfactory:

since it is based on the ?? rules, it does not apply for positive fragments. For
these (and also for full logics), we can regain completeness by again giving
up (II) to introduce rules similar to Simpson's geometric rules [40], e.g. we

encode (27) with the `relational' rule:

Ra b c

[RGa c]
....

d:A

[RGb c]
....

d:A
d:A

5 Related and Future Work

Gabbay has proposed LDSs as a general methodology for presenting lo-
gics [14]. The formal details are di�erent from our proposal. For example,

labelled modal logics presented in [14, 37] are based on a notion of diagrams

and logic data-bases, which are manipulated by complex multiple conclusion
rules. The result is similar to semantic embedding (cf. [3]), to which we have

compared our work above. In [5] labelled tableaux for substructural logics
are proposed based on algebraic semantics. The rules support automated
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proof search, but are not easy to recast as ordinary pure ND proof rules

(e.g. their general closure rule depends on arbitrarily many formulae).

In [26, 27], Orlowska introduces tableaux-like relational proof systems

for relevance, modal and intuitionistic logics, by �rst translating formulae

into suitable relations, and then proving a formula by decomposing its rela-

tional translation into simpler relations. Although the metalogic is di�erent,

relational logic instead of predicate logic, this method is comparable to se-

mantic embedding, since formulae of the logic and relations from the Kripke

semantics are treated in a uniform way as relations.

Our work is closely related to, and in
uenced by, the algebraic approach

proposed by Dunn (cf. [10] and the references there). Dunn introduces gag-

gle theory as an abstraction of Boolean algebras with operators [23], where

n-ary operators are interpreted by means of n+ 1-ary relations. Gaggle the-

ory yields a landscape of algebras where the standard Kripke semantics for

a particular logic is obtained by manipulating the gaggle presentation at the
level of the canonical model, as opposed to instantiating the appropriate re-
lational theory as in our approach. For instance, an analysis of the canonical

model shows how to reduce the ternary relation associated with the binary
intuitionistic implication to the more customary partial order on possible

worlds. This algebraic approach is extremely powerful, but does not lend it-
self well to direct implementation; however, with appropriate simpli�cations
or by combination with Belnap's display logic [4] (as in [33]) this may be

possible. We plan to investigate this as future work.

A Implementation and its Correctness

We have implemented the work described in this paper in the Isabelle sys-

tem [29], which is based on a logical framework of minimal implicational logic
with quanti�cation over higher types [28]. Since the implementation issues
are not signi�cantly di�erent from the simpler case for modal logic described

in [3], we refer the interested reader there for more extensive details and we
give only a brief overview here.

A.1 The Implementation

We call the framework logic of IsabelleM, and write universal quanti�cation
and implication in `machine readable' form as !! and ==>.
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A logic is encoded in Isabelle using a theory composed of a signature and

axioms, which are formulae in the language of M. The axioms are used

to establish the validity of judgements, which are assertions about syntactic

objects declared in the signature [19]. Then proving theorems in the encoded

logic simply means proving theorems with these axioms in the metalogic. As

an example, consider the theory MR+,

R+ = Pure + (* R+ extends Pure (Isabelle's metalogic) *)

types (* with the following signature and axioms *)

l,o 0

arities

l, o :: logic

consts

G :: "l"

h :: "[l,l,l,l,l] => l"

g :: "[l,l,l] => l"

inc :: "o"

star :: "l => l" ("_*" [40] 40)

(* Connectives *)

and :: "[o, o] => o" (infixr 35)

or :: "[o, o] => o" (infixr 30)

imp :: "[o, o] => o" (infixr 25)

(* Judgements *)

L :: "[l, o] => prop" ("(_ : _)" [0,0] 100)

R :: "[l, l, l] => prop" ("(R _ _ _)" [0,0,0] 100)

rules

(* Base Logic *)

conjI "[| a:A; a:B |] ==> a: A and B"

conjE1 "a: A and B ==> a:A"

conjE2 "a: A and B ==> a:B"

disjI1 "a:A ==> a: A or B"

disjI2 "a:B ==> a: A or B"

disjE "[| a: A or B; a:A ==> b:C; a:B ==> b:C |] ==> b:C"

impI "[| !!b c. [| b:A; R a b c |] ==> c:B |] ==> a: A imp B"

impE "[| a: A imp B; b:A; R a b c |] ==> c:B"

monl "[| a:A; R G a b |] ==> b:A"

(* Properties of R *)

monR1 "[| R a b c; R G d a |] ==> R d b c"

monR3 "[| R a b c; R G c d |] ==> R a b d"

iden "R G a a"

ass1 "[| R a b e; R e c d |] ==> R b h(a,b,c,d,e) d"

ass2 "[| R a b e; R e c d |] ==> R a c h(a,b,c,d,e)"

idem "R a a a"

comm "R a b c ==> R b a c"

cont1 "R a b c ==> R a b g(a,b,c)"
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cont2 "R a b c ==> R g(a,b,c) b c"

end

which encodes the presentation of R+ given in De�nition 7. The signature of

MR+ declares two types l and o, for labels and (unlabelled) formulae. Con-

stants and connectives are then declared as typed constants over this signa-

ture; e.g. inc (for incoherence, i.e. ??) of type o, and imp of type o => (o => o).

There are two judgements, encoded as predicates: �rst, L a A, for provable

lw�s, which we abbreviate to a:A; second, R a b c, for provable rw�s. The

axioms for L and R correspond directly to the rules in De�nition 7. Note that

in the axioms, free variables are implicitly outermost universally quanti�ed,

comments are added between `(*' and `*)', and there is additional information

present to �x notation and help Isabelle's parser.

We may now extend MR+ by adding axioms, to re
ect the discussion in

Section 2.4. The encoding of JR is obtained by extendingMR+ with axioms
for an intuitionistic treatment of negation:

JR = R+ +

consts

neg :: "o => o" ("~_" [40] 40)

rules

negI "(a*: A ==> b: inc) ==> a: ~A"

negE "[| a: ~A; a*: A |] ==> b: inc"

incEi "b: inc ==> a: A"

anti "R a b c ==> R a c* b*"

stari "R G a a**"

end

Then we can further add an axiom encoding the rule int to obtain intuition-
istic logic J as in Proposition 8, or we can add `classical' negation rules to
obtain MR, the encoding of R (alternatively, we can encode R by directly

extending MR+):

R = JR +

rules

incEc "(a: ~A ==> b: inc) ==> a*: A"

starc "R G a** a"

end

Using this encoding we can, e.g., prove G : ~~A imp A in R as follows (cf. the
proof of G:::A! A given on page 18).

> goal R.thy "G : ~~A imp A";

G : ~~A imp A

1. G : ~~A imp A
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At the prompt of Isabelle, `>', we select a logic and state the goal to be

proved. Isabelle responds by typing the goal and the subgoal(s) that must be

established to prove it. We begin by instructing Isabelle to apply implication

introduction using resolution to the �rst subgoal.

> by (rtac impI 1);

G : ~~A imp A

1. !!b c. [| b : ~~A; R G b c |] ==> c : A

We now apply monl and dispose of the second subgoal using starc.

> by ((rtac monl 1) THEN (rtac starc 2));

G : ~~A imp A

1. !!b c. [| b : ~~A; R G b c |] ==> c** : A

We proceed by applying rules as in the proof given on page 18 (atac instan-
tiates metavariables to solve a subgoal by assumption).

> by (EVERY [rtac incEc 1, rtac negE 1, atac 2]);

G : ~~A imp A

1. !!b c. [| b : ~~A; R G b c; c* : ~A |] ==> c : ~~A

> by (rtac monl 1);

G : ~~A imp A

1. !!b c. [| b : ~~A; R G b c; c* : ~A |] ==> ?a5(b, c) : ~~A

2. !!b c. [| b : ~~A; R G b c; c* : ~A |] ==> R G ?a5(b, c) c

This leaves us with two subgoals, which are both proved by assumption, in-

stantiating the metavariable ?a5(b, c) to b. Since there are no more unproved
subgoals, Isabelle tells us that we are �nished.

> by (REPEAT (atac 1));

G : ~~A imp A

No subgoals!

A.2 Correctness

By reasoning about our encoding and the metalogic M we can prove that,
e.g.,MR corresponds to the originalR. We do this in two parts, by showing

�rst adequacy, that any proof in R can be reconstructed in MR, and then
faithfulness, that we can recover from any derivation in MR a proof in R

itself.

Adequacy is easy to show, because the rules of R map directly onto the
axioms ofMR. A simple inductive argument on the structure of proofs in R
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establishes this (cf. [3, x5.2]). Faithfulness is more complex, since there is no

such simple mapping in this direction: arbitrary derivations in MR do not

map directly onto proofs in R. Instead we use proof-theoretic properties of

M: any derivation in M is equivalent to another in a normal form. Hence,

given a derivation in MR we can, by induction over its normal form, �nd a

derivation in R. This establishes faithfulness (again cf. [3, x5.2]). Moreover,

this proof is constructive: it not only tells us that there is a proof in R, it

provides an e�ective method for �nding one.
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