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Abstract

Rewriting is traditionally presented as a method to compute normal forms in varieties. Con-

ceptually, however, its essence are commutation properties. We develop rewriting as a general

theory of commutation for two possibly non-symmetric transitive relations modulo a congruence

and prove a generalization of the standard Church-Rosser theorem. The theorems of equational

rewriting, including the existence of normal forms, derive as corollaries to this result. Completion

also is purely commutational and we show how to extend it to plain transitive relations. Nev-

ertheless the loss of symmetry introduces some unpleasant consequences: unique normal forms

do not exist, rewrite proofs cannot be found by don't-care nondeterministic rewriting and also

simpli�cation during completion requires backtracking. On the non-ground level, variable critical

pairs have to be considered.
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1 Introduction

Term rewriting is one of the standard decision procedures for varieties. Any

algebra free in a variety is isomorphic to the quotient of the corresponding

term algebra and the congruence generated by the equations which hold

in the variety. By e�ectively mapping each congruence class to one of its

members|its normal form|term rewriting often yields a method to com-

pute the congruence and thereby a solution to the associated word problem.

In this spirit Dershowitz and Jouannaud write in their survey article on

rewrite systems [7] that \the theory of rewriting is in essence a theory of

normal forms".

We present a di�erent view on rewriting. We show that the essential

concepts of rewriting are commutation and reduction, whereas normal forms

only arise as a mere side-e�ect in a special case. According to this more

liberal view, rewriting techniques apply beyond equational theories to arbi-

trary (non-symmetric) transitive relations, quasi-orderings and inequalities,

and therefore may also contribute to a better understanding of the algorith-

mic aspects of deduction in general. The restricted attention paid to this

aspect of rewriting is perhaps surprising. First the applicability of rewrite-

techniques to transitive relations is quite obvious, since rewrite relations

themselves are transitive, but not symmetric. Second already Messequer

in his framework of rewrite logic [16] advocated a liberal understanding of

rewriting. Third, some of the ideas of our approach already appear in the

work of Levy and Agust�� [15], Levy [14], and Bachmair and Ganzinger [3, 4],

but were never generalized far enough to yield a generalization of equational

rewriting modulo a congruence. Moreover the main statements in the work

of Levy and Agust�� [15], Levy [14] are false. We will discuss the relation

between our work and theirs in a special section.

We develop our theory of non-symmetric rewriting as a commutation the-

ory for two arbitrary binary relations along the lines of and in full symmetry

to equational rewriting, studying these relations both as abstract reductions

and as induced by rewrite rules over a term algebra. We also include a third

relation, which plays a rôle similar to that of the unorientable equations

in equational rewriting modulo a congruence, but which is not assumed to

be symmetric. Concretely, we show how to localize a generalized Church-

Rosser property|essentially, the Church-Rosser property is a commutation

property|in presence of a reduction ordering to e�ective criteria on critical

pairs. A generalized critical pair lemma can even be proven by a simple

renaming some of the relations used in the equational case, since also the
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critical pair lemma is purely commutational. The theorems of equational

rewriting follow as easy corollaries in a special case and also the emergence

of normal forms can be easily understood. Besides the conceptual study, our

general formalism provides a basis for completion procedures|essentially,

completion is about commutation and reduction|for transitive relations as

well as for very general chaining calculi, including subterm-chaining and

congruences.

After a brief review of terminology in the �rst section we informally

sketch the basic ideas of our approach in the second section. In the third

section, an abstract local commutation theorem is proven and discussed.

It can be seen as a generalization of a similar theorem of Bachmair and

Ganzinger, a correction and generalization of the central abstract theorem

of Levy and Agust��, and as a generalization of the localization theorem

of equational abstract reduction modulo an equivalence. We also state a

counterexample to the statements of Levy and Agust�� and discuss their

abstract results. In the fourth section, we adapt our abstract theorem to

term rewriting and to the concept of critical pairs. Again our theorem is

more general that that of Levy and Agust��. In the �fth section we discuss

our results with respect to various restrictions and applications. The sixth

section we relate our work with that of Bachmair and Ganzinger, Levy and

Agust�� and Levy. The seventh and last section contains a conclusion.

2 Preliminaries

We presuppose the notation proposed by Dershowitz and Jouannaud [8]

and an elementary knowledge about abstract reduction and term-rewriting,

including uni�cation theory, as provided by the surveys of Dershowitz and

Jouannaud [7], and Klop [13].

We are concerned with abstract reduction systems (ARS) hS;A;B;Ci of

a (non-empty) set S endowed with binary relations A, B, and C. Usually

we omit the attribute `binary'. AB denotes the relational product of the

respective two relations. An R-chain or a proof of length n is a sequence

� = hs0; : : : ; sni whose adjacent elements are related by the relation R.

Replacement of a subproof of a proof � by a proof � is called a proof trans-

formation and denoted by �[�]. � =) � expresses the transformation of

a proof � to a proof �. For details, see [1]. Abusing notation, we also call

strings of relation symbols, like ABBACA, proofs.

R�1 denotes the converse, R$ the symmetric closure, R+, the transitive
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closure and R�, the re
exive transitive closure of a relation R. R is well-

founded, if there are no in�nite R-chains, a quasi-ordering, if it is re
exive

and transitive and a partial ordering, if it is also antisymmetric. For relations

R and S, R=S = S�RS�. S is not assumed to be symmetric, so R=S is not

a quotient relation.

We also study term rewrite systems (TRS) of the form hT�(X); A;B;Ci,

where T�(X) denotes the free algebra with generators X over a signature �

and A, B, and C are sets of rules inducing rewrite relations. We will also

use the letter C for context variables of the meta-language. We denote with

�!R=S the rewrite relation �!�
S�!R�!

�
S . A linear term has no multiple

occurrences of a variable. A rule hl; ri 2 R is left-linear, if l is linear, right-

linear, if r is linear and linear if it is left- and right-linear. It preserves

left variables, if all variables from r also occur in l, preserves right variables

in the converse case and preserves variables, if it preserves left and right

variables. A TRS is left-linear, right-linear, linear, preserves left variables,

preserves right variables or preserves variables, if all rules have this property.

3 General Ideas

In this section we informally develop the basic ideas of our approach. Or-

dering a theory presented by non-symmetric relations leads to two rewrite

relations, say A and B.

Consider a presentation of lattice theory with AC-operators _ and ^ and

assume a lexicographic path ordering corresponding to a precedence � with

_ � ^. We have the laws

x _ x �A x; x �B x ^ x; x ^ y �A x; x �B x _ y;

where � is a partial ordering, �A=� \ �, and �B=� [ �. Moreover we

have the isotony rules

x � y

z _ x � z _ y
;

x � y

z ^ x � z ^ y
;

expressing monotonicity of _ and ^. A proof of the distributive inequality

(x ^ y) _ (x ^ z) � x ^ (y _ z), for instance, can be visualized as
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(x ^ (y _ z)) _ (x ^ (y _ z))
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II
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(x ^ (y _ z)) _ (x ^ z)
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B
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x ^ (y _ z)

(x ^ y) _ (x ^ z)

::

B
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This proof has a peak structure. The arrows indicate the direction of the

relation �. When terms increase with respect to the lpo, arrows point

upwards, and they point downwards, when terms decrease. Here, B-steps

increase terms, whereas A-steps decrease them.

At a more abstract level, peaks and valleys alternate in proofs. In equa-

tional rewriting, B = A�1, and the Church-Rosser property states that for

an arbitrary proof consisting of A-steps and A�1-steps, there exists a so

called rewrite proof of the form A�(A�1)�. This property is equivalent to

the property of con
uence which states that all proofs of the form (A�1)�A�

can be replaced by rewrite proofs and thus amounts to say that A�-steps

commute over (A�1)�-steps. Con
uence makes the existence of more than

one normal form impossible. In this sense, the existence of normal forms in

equational rewriting can be seen as a side e�ect of commutation and of the

existence of unique rewrite proofs. Nevertheless di�erent proofs leading to

that normal form may exist.

In the setting of two relations A and B, the property that arbitrary

proofs consisting of A-steps and B-steps can be replaced by a rewrite proof of

the form A�B� generalizes the Church-Rosser property. Evidently our above

example does not have this property. The peak cannot be eliminated. In the

context of transitive relations, where A and B are obtained by intersection

with � and �, respectively, rewrite proofs of the form A+B� [B+ are even

more convenient. Con
uence is generalized to the commutation property

that all peaks of the form B�A� can be replaced by rewrite proofs. Rewrite

proofs again contain minimal elements (where A-steps switch to B-steps, or

else at the beginning or at the end of the rewrite proof), but these minimal

elements are no longer unique. Imagine that two di�erent minimal elements

exist. Then two divergences must exist along the proof, but the only criterion

to force uniqueness is to require that A or B�1 is con
uent, which makes

no sense in our non-symmetric context. So normal forms do not exist for

non-symmetric rewriting.
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In equational rewriting, con
uence is equivalent to local con
uence, i.e.,

the property that all A�1A-proofs can be replaced by rewrite proofs, in case

A+ is well-founded. Under this well-foundedness assumption, normal forms

become e�ective functions, and rewrite proofs can be calculated don't-care

nondeterministically. In our more general setting, local con
uence is an

instance of the commutation property that any proof of the form BA can

be replaced by a rewrite proof. To prove equivalence to the commutation

property of B�A�, Levy and Agust�� proposed well-foundedness of both A+

and (B�1)+. The counterexample in the next section shows, however, that

well-foundedness of (A [ B�1)+ must be required. Nevertheless, if both

A+ and (B�1)+ are well-founded, then rewrite proofs can be e�ectively

constructed, if they exist. In terms of graphs, a rewrite proof between two

objects s and t is constructed by generating the directed acyclic A-graph

from A from s and the directed acyclic B�1-graph from t and checking for a

common vertex of both graphs. Under the above assumptions, both graphs

have only �nite paths and if moreover all vertices have �nite out-degree,

then the construction is e�ective. Nevertheless, it is a search procedure

requiring backtracking and it depends on the implementation, which among

the rewrite proofs is found.

The above lattice example indicates that it is desirable to include for

some operators of the signature monotonicity properties as well as non-

orientable rules or equations, as for example the permutative congruence

AC. This means that critical pairs and a property similar to coherence also

have to be investigated.

Let us conclude this section with a summary and an outlook. We moti-

vated that in the context of rewriting in theories presented by non-symmetric

relations, commutation properties play a key rôle; they generalize con
uence

and local con
uence from the equational case. Moreover, normal forms no

longer exist, because the commutation properties of the non-symmetric case

are weaker than those of the equational case. Solving inequalities instead of

equalities, backtracking therefore replaces don't-care nondeterminism. It is

obvious that coherence also is a commutation property. Thus even extended

completion of equational theories is basically a procedure to calculate cer-

tain commutations and it should be possible, to specify such a procedure for

the non-symmetric case. The following sections will show that this is indeed

the case.
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4 Abstract Commutation

In this section we prove for an ARS hS;A;B;Ci that commutativity of peaks

and cli�s together with a well-foundedness assumption allow us to replace

any proof of the form (A [ B [ C)+ by an appropriate rewrite proof. This

statement implies its analog from equational rewriting by setting B = A�1

and requiring that C is symmetric. Our statement also implies the one used

by Bachmair and Ganzinger 1 by setting C = ;.

De�nition 4.1 For an ARS hS;A;B;Ci and arbitrary relations AC and BC

satisfying A � AC � A=C and B � BC � B=C, the set of rewrite proofs

is de�ned as P #= A+
CC

�B�
C [ A

�
CC

�B+
C . Rewrite proofs, i.e., elements of

P # are denoted by � #. A is said to commute over B, if BA is contained

in P #.

These de�nitions are quite similar to, and chosen for the same reasons as

in the equational case; so we do not discuss them. Our rewrite proofs � #,

however, are only a subset of the proofs of the form A�CC
�B�

C , which one

would expect from the equational case. This has two reasons. First, our

abstract commutation theorem does not hold for the latter rewrite proofs,

as our counterexample from the end of this section shows|not even for

proofs from P # [C+. Second, our rewrite proofs are conceived for the case,

where the relations A, B and C stem from the intersection with a syntactic

ordering. The case of a transitive relation with re
exive part or a quasi-

ordering is then an easy consequence of our result. We now introduce some

terminology for the following proof.

De�nition 4.2 We call proofs of the form siBACsj and siBCAsj peaks

and proofs of the form siCACsj and siBCCsj cli�s. We call si the initial

vertex of the peak or cli� and sj the �nal vertex. We call initial steps with

respect to a cli� CAC the steps of the cli� and the initial C-proof and �rst

A-step of the corresponding rewrite proof. We call �nal steps with respect

to a cli� BCC the steps of the cli� and the �nal B-step and C-steps of the

corresponding rewrite proof.

In the following theorem, we will assume that the relation �= (A=C [

(B=C)�1)+ is well-founded. Under this assumption, rewrite proofs corre-

sponding to cli�s have a special form: Those corresponding to a cli� CAC

must contain at least one A-step; those corresponding to a cli� BCC must

1c.f. Lemma 1 of [4]
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contain at least one B-step. All other rewrite proofs would lead to circles

with respect to �. Transformation of peaks can therefore be visualized as

��A ??
??

??
?

//

??

BC

�������

��
AC

+
//
//
//

//

//
C

�

GG
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������

��A ??
??

??
?

//
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�������

��
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�
//
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//

//

//
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�
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������
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?

//
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+
//
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//

//
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C

�
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�

������
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??
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?

//
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B

�������

��
AC

�
//
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//

//

//
C

�

GG

BC
+

������

and transformation of cli�s as

// //
C

��

AC
+

//
//
//
//
//

/

��AC ??
??

??

//

//
C

�

??

BC

�
������

//
C

//

//

??

BC

������

��AC

�

??
??

??

//
C

�

GG

BC
+

����
�������

We are now in the position to prove the following abstract commutation

theorem:

Theorem 4.1 Let hS;A;B;Ci be an ARS and let �= (A=C [ (B=C)�1)+

be a well-founded relation. Then (A [B [ C)+ is contained in P # [C+, if

BAC , BCA, CAC and BCC are contained in P #.

Proof The general scenario is to show that the proof transformation

de�ned by the above commutation relations terminates. An induction mea-

sure M(�) together with a well-founded ordering� over the domain of M ,

satisfying the replacement property, is associating with each proof �. It

then remains to show that � =) � implies M(�) � M(�) for all genera-

tors h�;�i. This is a necessary and su�cient condition to ensure the above

statement of termination [6]. Our induction measure, however, will be non-

local in a sense speci�ed below and therefore the replacement property does

not hold a priori, but must be veri�ed during the induction.
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It is obvious that (A [B [C)-proofs containing only C-steps are not in

P #, but they trivially ful�ll the condition of the premise of the theorem.

We can therefore restrict to the case, where the (A [B [C)-proofs contain

at least one A-step or B-step.

In equational rewriting an induction ordering on equivalence classes can

be de�ned, but here C is not assumed symmetric. But similarly to equational

rewriting, one must distinguish C-steps within AC-steps or BC-steps from

`non-covered' ones. Transforming for instance a cli� to a rewrite proof by

CA =) ACC = (CCCA)C, C-steps originating from an AC-step must

lead to a measure smaller than that of the C-step of the cli�, which is not

`covered' by an AC -step.

In general, call the left C-steps of an AC-step left-covered and the right

C-steps of a BC-step right-covered. Clearly this de�nition is non-local and

can destroy the replacement property of the induction measure.

Associate with the i-th step of a proof � = hs0; : : : ; sni an ordered pair

��i = hs�(i); �
�
i i. For the initial (�nal) steps of a cli�, set �(i) = ki, where ki

is the index of the initial (�nal) vertex of the cli�. Otherwise, for non-initial

and non-�nal steps, set �(i) = i�1 for A-steps and C-steps and and �(i) = i

for B-steps.

Set the cover-number � to ��i = 0 for A-steps and B-steps, ��i = 1 for

left-covered and right-covered, ��i = 2 for left-covered but not right-covered,

��i = 3 for right-covered but not left-covered, and ��i = 4 for non-covered

C-steps. Let M(�) = f��1 ; : : : ; �
�
n g be the induction measure for �.

De�ne the induction ordering as �= ((�; >)lex)mul, where > denotes

the (strict) ordering on natural numbers. Thus the � are compared lexi-

cographically with � for the �rst and > for the second component. This

ordering is extended to multisets to compare proofs.

Now consider the transformation of a peak or a cli� to a rewrite proof

and compare the induction measures involved according to �. For peaks,

which are either of the form BCA or BAC , the �rst component of the �

associated with the B-step of the peak majorizes those of the rewrite proof

by � and therefore M(�[BCA]) � M(�[(BCA) #]) and M(�[BAC ]) �

M(�[(BAC) #]).

For cli�s, which are of the form CAC or BCC, the arguments are more

involved. First consider a cli� of the form CAC . It is transformed to a

rewrite proof of the form A+
CC

�B�
C . The �rst step of the rewrite proof can

be an A-step or a C-step, but then the �rst component of �CAC1 and the �rst

component of �
(CAC)#
1 are the same. So for our argument we can entirely
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concentrate on �, the second component of �.

If the �rst step from the �rst AC -step of the rewrite proof (CAC) # is

an A-step, then �
(CAC)#
1 = 0 and �CAC1 > 0. If the �rst such step is a

C-step, then �
(CAC)#
1 � 2. Now the C-step from the cli� could be either not

covered, or right-covered, or left-covered and right-covered. But in the last

case we have to consider a peak instead of a cli�. In both of the other cases,

�
CAC
1 � 3. These cases are exhaustive and we can conclude that always

�
(CAC)#
1 < �

CAC
1 . Hence �

(CAC)#
1 is smaller than �

CAC
1 on the lexicographical

combination of � and >, because the �rst components are the same for all

these �. Therefore �CAC1 majorizes all the �
(CAC)#
i ,M(CAC)�M((CAC) #

) and M(�[CAC ])�M(�[(CAC) #]).

The case analysis for cli�s of the form BCC exploits the symmetry to

CAC-cli�s, which is established by reading proofs backwards. Only the case,

where the C-step in the cli� is left-covered and the corresponding rewrite

proof starts with a C-step too, is critical, because the � of this step would

majorize those of the cli�. Fortunately we can analyze this case as a CAC-

cli�.

This �nishes the case analysis of peaks and cli�s. The transformation

process terminates and the minimal proofs are the rewrite proofs. 2

The necessity of well-foundedness of unions of relations, not only of both

the particular relations, is illustrated by the following simple example:

//
B

B

��

A

CC //
A

A commutes over B, but globally there is no rewrite proof. A+ and (B�1)+

are well-founded, but of course (A[B�1)+ cycles. This counterexample also

justi�es the shape of our rewrite proofs. Replacement of B by C in the left di-

agram leads to a counterexample for candidates of the form P # [A�CC
+B�

C

and thus also for A�CC
�B�

C . In our proof, these C-steps would not be covered

and a rewrite proof could have a bigger measure than a cli�.

Another important feature is that our well-foundedness assumption did

not assume C to be symmetric. This weaker assumption is not trivial be-

cause well-foundedness of a relation R=C is not generally preserved under

symmetric closure of C. Our result clearly expresses the commutative con-
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tent of equational rewriting. We will later see that if C is symmetric, the

rewrite proofs can be chosen similar to the equational case and also the

induction measure can now incorporate equivalence classes.

5 Term Commutation

Theorem 4.1 su�ces as a basis for ordering transitive relations. Here we

consider the re�nement to a TRS with monotonic operators, like for example

the lattice operators satisfying the isotony laws. Along the lines of equational

rewriting modulo a congruence, we reduce theorem 4.1 to a statement on

critical pairs. Nevertheless our rewrite proofs contain three relations instead

of two. Therefore we have to consider also variable critical pairs and the

concept of overlap has to be generalized to cover variable positions. Let

us �rst consider how two rewrite steps �!R and �!S commute in a term

with respect to the positions where they apply. This purely commutational

lemma has a direct counterpart in standard rewriting.

Lemma 5.1 Let hT�(X); R; Si be a TRS with rewrite relations �!R and

�!S.

(i) For disjoint positions p and q

�!
R

p�!
S

q��!
S

q�!
R

p;

(ii) if p is a pre�x of q = pq0q00 and S applies below a variable-position

q0 of a variable from R, then

�!
R

p�!
S

q � �!
S

ql[q�!
R

p �
S

qr ;

�!
S

q�!
R

p �  �
S

ql�!
R

p�!
S

qr[q;

where �!ql

S (�!qr

S ) denotes parallel rewriting at all left-hand (right-hand)

positions qi such that qi = pq0iq
00 and qi 6= q is a variable-position associated

with the same variable as q0.

(iii) Under the same assumptions as in (ii), if moreover R preserves

right variables, then ql in the �rst equation of (ii) is non-void and if R

preserves left variables, then qr in the second equation of (ii) is non-empty.

2

The proof of lemma 5.1 is a straightforward adaption from equational

rewriting. We can think of the right-hand sides of the above equations
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as rewrite proofs induced by the commutation properties of terms. These

rewrite proofs now have to be compared with those de�ned in the last sec-

tion, to be compatible with our abstract results. But �rst we �x the rewrite

relations induced by AC and BC and adapt some notions from standard

rewriting. Due to the fact that C is non-symmetric, we cannot simply

C-unify terms in the sense of semantic uni�cation. So we �rst de�ne a

corresponding non-symmetric concept.

De�nition 5.1 For a TRS hT�(X); Ri and two terms s and t, we say that

a substitution � is a solution to the R-reduction problem for s and t, if

s� �!�
R t�. The concept of a complete minimal set of such solutions is

de�ned as usual.

This de�nition can be seen as a kind of one-way semantic uni�cation; it

is also closely related to narrowing. This reduction problem again requires

backtracking and unique solutions do not in general exist. We do not want

to discuss this de�nition further, because in practical cases, C will most

probably be a permutative congruence, and therefore symmetric.

De�nition 5.2 Let hT�(X); A;B;Ci be a TRS. Then

�!
AC

p=
�
�!
C

�p�!
A

p; �!
BC

p=�!
B

p �
�!
C

�p;

where `� p' denotes that all positions of the C-reductions apply below p 2.

Two rules overlap, if the left-hand side of the one and a subterm of the

right-hand side of the other have a solvable C-reduction problem, or vice

versa 3. If the overlap occurs at a variable position, it is called a variable

overlap and else a proper overlap. The critical pairs generated by such

overlaps are called proper or variable critical pairs. So for rules hl1; r1i

and hl2; r2i and a solution � for the C-reduction problem of r1jp and l2,

hr1�[l1�]p; r2�i is a proper critical pair, if r1jp 62 X and hr1[C[l1]]p; r2i is a

variable critical pair, if r1jp 2 X and C is a context variable. The set of

variable critical pairs is denoted by PX
C , the set of proper critical pairs by

PP
C ; PC = PX

C [ P
P
C is the set of critical pairs.

2The de�nition is compatible with the requirements of the previous section, namely

�!A��!AC��!A=C and �!B��!BC��!B=C .
3The de�nition deviates from standard rewriting, where left-hand sides unify with left-

hand sides. If C is symmetric, we de�ne the overlap with respect to a complete minimal

set of C-un�ers
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Lemma 5.2 Let hT�(X); A;B;Ci be a TRS with complete minimal sets of

solutions of the C-reduction problem. Let p be a pre�x of q, if a rule from

A is applied at p and a strict pre�x, if a rule from B or C is applied at p 4.

(i) For disjoint p and q in general and variable-overlaps with A left-

linear, B right-linear and C linear in the respective variable, and moreover

variable preserving

(�!
B[C

p�!
AC

q [ �!
BC

q�!
A[C

p) � P # :

(ii) For proper overlaps and non-linear variable overlaps

(�!
B[C

p�!
AC

q [ �!
BC

q�!
A[C

p) �
�
�!
C
�!
PC

�
�!
C

;

where all C-steps at the left-hand side go to and all C-steps at the right-hand

side come from-hand below variable positions of the rule. 2

Lemma 5.2 compares the rewrite proofs induced by lemma 5.1 with the

ones from the abstract commutation theorem. The lemma documents the

necessity of considering variable critical pairs. Unfortunately there can be

in�nitely many of them even in the case when C is empty and therefore,

in presence of monotonicity, the completion process is faced with a severe

obstacle. We will discuss this issue further in the next section. The lemma

is a straightforward generalization of the critical pair lemma of equational

rewriting. Its proof is a simple renaming of relations from the equational

case. Thus the critical pair lemma of equational rewriting is purely commu-

tational.

In lemma 5.2 we assumed that C preserves variables. This assumption

rules out that a cli� is transformed to a single �!+
C -step. In general, every

well-founded rewrite relation is induced by rules which preserve right vari-

ables and consequently the relation is �nitely branching. Moreover if R and

S induce a well-founded rewrite relation �!R=S and R contains at least one

rule with a variable in a right-hand side, then S preserves right variables.

It is easy to construct a self-embedding chain by reductio ad absurdum. So

in our case, if A is well-founded, then it preserves right variables, if B�1

is well-founded, then it preserves left variables. In the following we assume

that at least one rule from A contains a variable in its right-hand side and

some rule from B contains a variable in its left-hand side. If this was not

4The variable restrictions are tailored for the case analysis in theorem 5.3.
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the case we could also assume that C preserves left and right variables, to

prove the following theorem.

Another fact from lemma 5.2 is crucial, namely the fact that the outer

C-steps arising with proper and variable critical pairs lie below variables.

This phenomenon is well-known from equational rewriting. A critical pair

corresponding to a cli� is (with respect to uni�cation) the most general way

in which such an overlap may occur. Thus a most general solution of the

corresponding reduction problem (or the uni�cation problem) of the critical

pair must be further instantiated to yield a substitution for the cli�. This

instantiation generally leads to C-steps connecting the cli� with the rewrite

proof, coming from the substitution. In equational rewriting the fact that

under additional assumptions these outer C-steps lie `deep' in the terms is

used to make the proof transformation work. We will transfer this method

to the non-symmetric case.

Theorem 5.3 Let hT�(X); A;B;Ci be a TRS with a complete minimal set

of solutions of the C-reduction problem 5, let � denote the (strict) subterm

relation. Let (�!A=C [  �B=C)
+ and �!+

>=C$
be well-founded. Then

(�!A [ �!B [ �!C)
+ is contained in �!P# [ �!

+
C , if �!PC , the

rewrite relation induced by the set of proper and variable critical pairs, is

contained in �!P#.

Proof As we have seen, well-foundedness of A=C and of (B=C)�1

imply that C preserves variables. Thus cli�s cannot simply be closed by

C-steps. Part of the theorem is already proven by theorem 4.1. However,

the induction measure has to be strengthened, as transformations of critical

pairs may introduce non-covered C-steps via substitution in the converted

proof which could let terms increase. A cli� �!C�!AC , for instance, could

be transformed to �!C�!C�!P#�!C , and the measure of the reduct

could be bigger than that of the cli�. Fortunately, by lemma 5.2, the outer

�!C-steps of the converted proof lie `deeper' in the terms than those of the

cli� and this fact can be included in the � of the induction measure M , as

long as the encompassment ordering is well-founded.

So for the induction measure M , de�ne ��i = hs�(i); �
�
i ; �

�
i i, where �

�
i =

[si�1jpi ], the brackets denote equivalence classes with respect to C$, and pi
is the position at which the reduction occurs for C-steps, and ��i =? other-

wise. The rest of the measure is de�ned as in theorem 4.1. The � are com-

5If C is symmetric, assume a complete minimal set of C-uni�ers.
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pared with respect to the ordering ��=C$, de�ned on the encompassment-

ordering ��
6. ��=C$ is well-founded if and only if �=C$ is [1]. This is the

case if all C$-congruence classes are �nite. ? is supposed to be minimal in

the subterm ordering.

The disjoint case and the pre�x case can be considered separately. The

disjoint case is obvious. The analysis of the pre�x case is suggested by lemma

5.2. Consider a cli� of the form �!o
B

�
�!

�p
C �!

q
A, where � p denotes that

all C-rewrites occur below p. If q � o � p we analyze this as a �!B�!AC

chain. Thus o must be strictly greater than q and greater than p to analyze

the case as a �!BC�!A chain. Also A-steps and B-steps absorb adjacent

C-steps as long as the latter are not strictly bigger. This covers all cases, and

therefore lemma 5.2 provides all information necessary for cli�s. Moreover

the consideration of cli�s is su�cient, as the rest is implied by theorem 4.1

and by symmetry we can even restrict our attention to cli�s of the form

�!q
C�!

p
AC

, where p is a (non-strict) pre�x of q. Assume it is transformed

to a chain

�
�!
C

�p0 +
�!
AC

p00 �
�!
C

p000 �
�!
BC

q00 �
�!
C

�q0

Then by lemma 5.2, p0 � p. By assumption, �=C is well-founded and thus

the leftmost term of the cli� may not be a variable. Thus p0 < p and there-

fore the measure of the C-step of the cli� majorizes those of the C-steps

from the reduct by comparing the �. To the A-step and the further steps we

can apply our arguments from theorem 4.1. Thus the measure of the whole

reduct is smaller than that of the cli� and the proof is �nished. 2

Obviously our assumption of well-foundedness of the subterm relation

modulo C$ holds whenever the C$-equivalence classes are �nite [12]. As a

counterexample for the converse direction let C$ = fhf(g(a)); f(g(g(a)))ig.

Obviously equivalence classes are in�nite, but it is easy to see that the

subterm-ordering modulo C$ is well-founded. As in the case of equational

rewriting, this assumption excludes rules like identity or idempotence from

C.

6s ��t i� sjp = t� where p is not the root-position, and s��=C$t i� either s ��t or

s �!C$ s[t�], where the rewrites occur strictly below the root. Note that the syntactic

restriction in the de�nition plays a rôle in the proof only in so far as well-foundedness of

the relation must be assured.
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6 Discussion

In this section we brie
y discuss some syntactic restrictions, sketch a com-

pletion procedure and describe some consequences for theorem proving.

A particularly simple consequence of theorem 4.1 in the case C = ; is

the following: If (A[B�1)+ is well-founded and BA is contained in the set

of rewrite proofs A+B� [B+, then all (A [B)-proofs are contained in that

set. This can easily be proven with the �rst component of our induction

measure alone. Note that by assumption, A+ and B+ are irre
exive. If the

relation R, which is intersected by a strict ordering to obtain A and B, has a

re
exive part, then one can put it into C. If C contains nothing else, then the

commutation relations for cli�s are very simple, namely CAC � AC � ACC

and similar for BC . In particular, we can handle quasi-orderings by assuming

that x � x is in C. An alternative approach to quasi-orderings would

be to prove that if (A [ B�1)+ is well-founded and BA � A�B�, then

(A[B)� � A�B�. This is also straightforward. The result just stated easily

carries over to a TRS hT�(X); A;Bi.

For a TRS hT�(X); A;B;Ei with E symmetric, critical pairs can be de-

�ned, and theorem 5.3 can be stated in terms of E-uni�cation. Also theorem

5.3 can be proven more like the equational case, because the induction mea-

sure can now use equivalence classes of terms in the �rst component. We can

even allow pure E-chains as rewrite proofs. The crucial point in the anal-

ysis of peaks and cli�s is that closing a cli� with only E-steps is excluded

by the well-foundedness assumption. This could not be done in the abstract

non-symmetric case, as our counterexample showed; here it contains a cycle

with an  !E-step, contradicting the well-foundedness assumption.

In a TRS hT�(X); A;B;Ci, variable critical pairs can be avoided in case

A is left-linear, B is right-linear, and C linear. In equational rewriting, the

case of a left-linear rewrite system modulo a congruence has a Church-Rosser

theorem with particularly simple rewrite proofs [10]. In the non-symmetric

case, as a corollary of theorem 5.3, one can show for rewrite proofs of the

form PL #=�!
+
A�!

�
C�!

�
B [ �!

�
A�!

�
C�!

+
B that any proof (�!A [ �!B

[ �!C)
+ is contained in �!PL# [ �!

+
C , if (�!A=C [  �B=C)

+ is well-

founded, �!A commutes over �!B and �!C , and �!B commutes over

�!C with respect to PL #. Moreover only proper critical pairs between the

above relations have to be considered. This suggests splitting a completion

procedure into a linear and a non-linear part, like in equational rewriting.

A similar case is to require C linear and containing all monotonic operators.

For example, AC is a linear theory.
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As one can develop the theorems of non-symmetric rewriting along the

lines of standard rewriting, one can also develop a completion procedure

along these lines|with two exceptions. First, one must somehow handle

the context variables induced by variable critical pairs. Levy [14] proposes

to use a restricted second-order uni�cation procedure to this purpose. We

propose using a pre-completion procedure which stops, when all critical pairs

except those needing superposition into a context variable, are computed.

Then the completion can be continued by hand. Second, there is no simpli-

�cation or collapse mechanism like in rewriting. For example, if ha; bi and

ha; ci are in a relation and this relation is an equivalence, then hb; ci is in

that relation. If the relation is non-symmetric, this is no longer the case;

and we cannot simply generate new (undirected) rules by a simpli�cation

mechanism. Nevertheless one can implement simpli�cation as a search pro-

cedure and delete rules where they can be replaced by a rewrite proof. The

speci�cation of the remainder of a completion procedure working with the

extended-rule method is straightforward and so should be the proof of its

completeness by combining our methods with those of equational comple-

tion proofs with extended rules. As already stated, equational completion

is a commutational procedure.

In the domain of theorem proving, our ordering constraints considerably

restrict variable chainings, in the sense that one of two terms to be uni�ed

is a variable. First, from lemma 5.2, these chainings are only necessary,

if the variable is non-linear. Second, for theories allowing for elimination

of quanti�ers, like for example discrete orderings or dense linear orderings

without endpoints, variable chainings can even be completely avoided [3].

Another restriction in ordered chaining calculi is that variable chaining is

not needed for negative literals and if the variable is shielded, i.e., has an

occurance below an operator in the same clause. It might be useful to

consider theories, where elimination of at least some variables is possible, in

particular.

7 Related Work

Our work is inspired �rst of all by the work of Levy and Agust�� [15],

Levy [14], and Bachmair and Ganzinger [3, 4].

Levy and Agust�� seem to have been the �rst to partition an quasi-

ordering into two sets of rewrite rules, intersecting it with a (total) syn-

tactic simpli�cation order and its inverse. Consequently, they have called
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their approach bi-rewriting.

Levy and Agust�� have also realized that in presence of a Church-Rosser-

like property quasi-orderings can be computed by searching for rewrite

proofs from both ends and that non-linear rules lead to variable critical

pairs. Their attempt to compute with the Church-Rosser property, how-

ever, is far from satisfactory. In the equational case of rewriting without

congruence classes, it is easy to make the Church-Rosser property e�ective

by showing that it is equivalent to local con
uence in presence of some well-

foundedness assumption. Levy and Agust��, trying to generalize this lemma

to bi-rewriting, used well-foundedness of both A+ and (B�1)+, but not of

(A[B�1)+ which|as our counterexample at the end of section 4 shows|is

too weak and makes all the main statements of their work false 7. This

error also has consequences for completion: Levy [14] proposes a canonical

system for lattice theory, but the system contains a loop and thus cannot

be obtained by completion. The correctness proof for this system therefore

remains an open problem. Levy and Agust�� also do not localize coherence

in case of congruence classes 8. They must eliminate cli�s in one step and

therefore their approach does not yield an e�ective procedure. Moreover

they use a very restrictive concept of rewrite proof 9 and have to restrict to

congruence classes generated by rules with linear terms.

Aware of our counterexample, Levy and Agust�� revised their work 10, but

they merely changed well-foundedness ofA+
C and (B�1

C )+ to well-foundedness

of (AC[B
�1
C )+|all the other restrictions remain. At �rst sight this assump-

tion looks weaker than ours (well-foundedness of (A=C[(B=C)�1)+), but we

believe that in practice the two assumptions make no di�erence for a TRS.

It is not obvious that there are interesting cases of orderings which are well-

founded under the �rst assumption, but not under the second one. It is �rst

of all this well-foundedness assumption which lead Levy and Agust�� to their

severe restrictions, and this seems to be too high a prize to be paid: Levy

and Agust�� cannot draw the analogy to equational rewriting, they cannot

localize cli�s, which is an obstacle for e�ectivity, their simpli�cation mecha-

nisms are much weaker than ours and they have to impose strong syntactic

7c.f. lemma 4.8, lemma 4.10, lemma 4.14, lemma 4.15, theorem 4.19 and theorem 5.13

of Levy's thesis [14]
8c.f. Lemma 4.14 and Lemma 4.15 of Levy's thesis [14].
9Consider their property \extensionally closed", which allows to replace any cli� CAC

by a rewrite proof of the form ACC
�.

10This revised compilation of results of [15] and [14] has been submitted to the Journal

of Symbolic Computation.
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restrictions both on the form of rewrite proofs and of terms.

Bachmair and Ganzinger [3, 4], in the context of ordered chaining calculi

for transitive relations, have restated the Church-Rosser-like property in the

more general setting of two arbitrary binary relations and have noticed its

equivalence to a (local) commutation property between these relations 11.

They have stated Levy's and Agust��'s simplest localization lemma 12 with the

right well-foundedness assumption, but have developed their commutation

concept only as far as needed for ordered chaining without subterm-chaining

or chaining on equivalence classes. Hence they have considered commutation

only abstractly, not for term rewriting.

8 Conclusion

We have presented a general framework for non-symmetric rewriting with

arbitrary transitive relations. We think that it provides a new perspective on

rewriting. Moreover it allows to specify a completion procedure and can be

used as a basis for general chaining systems in automated theorem proving.

Compared to the work of Bachmair and Ganzinger, we introduce subterm

chaining and congruences; compared to the work of Levy and Agust��, we

not only improve and correct their results, we also present them in a more

general framework. Our main results can be summarized as follows: (i)

We proved commutation theorems both abstractly and over a term algebra,

which generalize the Church-Rosser theorem of equational theorem proving

modulo an equivalence. (ii) The form of rewrite proofs leads to variable crit-

ical pairs. (iii) Completion is based on search and simpli�cation techniques

are quite weak. (iv) If C is non-symmetric, a kind of `directed uni�cation'

must eventually be considered. Its applicability is not obvious. We think

that the case where C is symmetric is more relevant. (v) If C is symmetric,

we can easily reproduce the equational theorems. (vi) and as a conclusion

we showed that term rewriting is a theory of reduction and commutation

which is not restricted to equations and where normal forms only arise as a

side e�ect for a special case.

Our results can be applied in automated theorem proving to theories,

which can be presented by orderings or quasi-orderings in a natural way. A

11Commutation properties have been studied earlier by Bachmair and Dershowitz [2],

Bellegarde and Lescanne [5], and Geser [9], among others, mostly in the context of

termination.
12c.f lemma 4.8 of Levy's thesis [14]. Interestingly enough, Bachmair and Ganzinger did

not consider this lemma worth proving...
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completeness proof of the system for lattice theory proposed by Levy would

show its relevance for solving word problems, where equational rewriting

fails. We can also imagine applicability to boolean algebras with opera-

tors (modal logics), to sort-checking or type-checking, to reasoning in set

theory, to Messeguer's rewrite logic, to non-deterministic algebraic speci�-

cations [11], and to concurrency in the context of process algebra. In the

wide context of deduction we think that non-symmetric rewriting helps to

understand the algorithmic properties of tableaux or the sequent calculus,

since it can express the property of permutation invariance of deduction

steps. But all these possible applications require further investigations.
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