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Abstract

We describe a re�ned superposition calculus for cancellative abelian monoids. They encompass

not only abelian groups, but also such ubiquitous structures as the natural numbers or multisets.

Both the AC axioms and the cancellation law are di�cult for a general purpose superposition

theorem prover, as they create many variants of clauses which contain sums. Our calculus requires

neither explicit inferences with the theory clauses for cancellative abelian monoids nor extended

equations or clauses. Improved ordering constraints allow us to restrict to inferences that involve

the maximal term of the maximal sum in the maximal literal. Furthermore, the search space is

reduced drastically by certain variable elimination techniques.
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1 Introduction

To be useful in applications such as program veri�cation and synthesis, a the-

orem prover must combine mathematical with meta-mathematical reasoning.

Theories from which program properties are to be derived are divided into

parts that specify standard mathematical structures, including numbers, lists,

multisets, graphs, and into other parts that provide the axioms for additional

free function and predicate symbols. The latter describe, in a more or less ad

hoc manner, objects, and their properties, of the particular domain of appli-

cation for which a program is to be written.

There are several distinct lines of investigation along which previous at-

tempts have been made for attacking this problem. In hierarchic situations

where free function symbols either do not exist or where they are de�ned in a

\su�ciently complete" manner on top of the primitive structures, mathemati-

cal knowledge can be incorporated by using decision procedures and constraint

solvers as black boxes. This is the case, for instance, in constraint logic pro-

gramming, in resolution theorem proving with theory uni�cation [10, 11], or

in theorem proving with constraints [19]. The case of su�cient-completely

de�ned free functions has been investigated e.g. by Bachmair, Ganzinger, and

Waldmann [6]; Avenhaus and Becker [1] have described a related order-sorted

approach.

In an algebraic context, however, su�cient completeness practically ex-

cludes uninterpreted function symbols. The situation is similar when one

considers, for instance, theorem provers based on extensions of Presburger

arithmetic. As they lack the possibility to handle existential quanti�cation,

they are suited for veri�cation (where instantiations are known), but not for

proof discovery and program synthesis (Hines [16]). Furthermore, experiments

by Boyer and Moore [9] show that mathematical routines rarely have a chance

to contribute to a proof, unless they are very tightly interwoven with the rest of

the prover. Heuristic approaches that involve such a more sophisticated combi-

nation of modules, e.g., in the Boyer-Moore prover or in the PVS-system [22],

have proven to be very useful in practice.

Our own line of research is based on the integrating approach, where the in-

ference rules are adapted to the theory in a speci�c way. Equality is the prime

example for this technique: In paramodulation and superposition, there are no

resolution inferences with the transitivity or symmetry axioms. Rather, the

equality axioms are coded as inference rules, which can be subject to speci�c

ordering restrictions. Other transitive relations, in particular orderings, can

be handled by related rewriting techniques yielding chaining calculi as they

have been investigated by Bledsoe, Kunen, and Shostak [8], Hines [15], and
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Bachmair and Ganzinger [3], among others. The laws of associativity and com-

mutativity of binary functions have previously been integrated into paramod-

ulation calculi: Extended clauses and uni�cation modulo AC make explicit

inferences with the AC axioms unnecessary (see Peterson and Stickel [23] for

the case of unit equations, and Wertz [29] and Bachmair and Ganzinger [2],

for the clausal case). Unfortunately, AC-uni�cation is doubly exponential,

and it shows in practice. By using constraints, AC-uni�cation can be replaced

by the \only" simply exponential problem of AC-uni�ability, as described by

Nieuwenhuis and Rubio [21], and Vigneron [28]. On the other hand, (some)

equality constraints need to be solved for simpli�cation. One of the results of

the present paper is that there are other ways to avoid especially proli�c cases

of AC-uni�cation in the presence of more algebraic structure.

The present paper describes a re�ned superposition calculus for cancellative

abelian monoids. They encompass not only abelian groups, but also such ubiq-

uitous structures as the natural numbers or multisets. Like the AC axioms,

the cancellation law is di�cult for a general purpose superposition theorem

prover, as it creates many variants of clauses which contain sums. The main

highlights of our calculus are the following. (i) There is no need for explicit

inferences with the theory clauses for cancellative abelian monoids. Hence,

there is no generation and recombination of di�erent variants of one and the

same clause. (ii) There is no need for extended equations or clauses. By virtue

of this fact, many especially proli�c instances of AC-uni�cation are avoided.

In fact, AC-uni�cation can be replaced by ACU-uni�cation. (iii) The ordering

constraints for superposition can be further re�ned. As in previous calculi one

may ignore non-maximal literals, as well as the smaller side of an equation for

chaining. Here, in addition, only the maximal term of a (maximal) sum can

participate in an inference. (iv) The general notion of redundancy as it was

introduced by Bachmair and Ganzinger in [4] can be appropriately re�ned. It

forms the basis for developing speci�c forms of the usual simpli�cation tech-

niques. Simpli�cation is an indispensable component of any saturation-based

theorem prover. In this paper, redundancy will in particular allow to show

admissibility of certain variable elimination techniques.

A crucial indication of the practicality of any approach for integrating

mathematical theories by speci�cally re�ned forms of resolution and paramod-

ulation or chaining is the extent to which they avoid a certain especially proli�c

form of inference. It is the type of inference in which the main term in one

of the premises is a variable, and, hence, uni�cation is no longer an e�ective

�lter. For the equational case it is known that paramodulation into or below

variables is not needed. For dense, total orderings without endpoints similar

results have been obtained in [3, 8, 15, 24]. In the calculus to be described
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below, inferences are computed with maximal terms in sums. The sum itself,

obviously, is not a variable, but the term may be one. The fact that certain

inferences involving such variables cannot be avoided is an indication for why

non-re�ned superposition strategies can perform badly for monoids with can-

cellation. In our re�ned calculus, only unshielded variables, i.e., variables that

do not occur somewhere else as arguments of free function symbols, pose a

problem in this regard. That leaves us with the problem of how to deal with

unshielded variables. Fortunately unshielded variables can be eliminated in

many, though not all cases without a�ecting refutational completeness.

With these characteristics, the present approach is a considerable improve-

ment over Hsiang, Rusinowitch, and Sakai's extension of ordered paramodula-

tion [17, 26] to handle cancellation laws. Our approach is related to normalized

rewriting modulo the group axioms (March�e [20]) and superposition for integer

modules (Stuber [27]). Both handle only the stronger case of groups. As will

become apparent, working in \non-groups" makes some aspects of equational

theorem proving signi�cantly more di�cult while others are simpli�ed. For in-

stance, there will sometimes be a need for abstraction1; in other situations, the

number of overlaps is reduced, and in non-groups it may be easier to eliminate

positive occurrences of unshielded variables.

2 Algebraic Foundations

An abelian semigroup is an algebraic structure consisting of a non-empty set

G and a binary relation + that satis�es the associativity axiom and the com-

mutativity axiom

(A) 8x; y; z: x+ (y + z) = (x+ y) + z

(C) 8x; y: x + y = y + x .

An abelian monoid is an abelian semigroup (G;+) with a constant 0 2 G such

that the identity axiom holds:

(U) 8x: x+ 0 = x .

An abelian semigroup (G;+) or monoid (G;+; 0) is called cancellative, if it

satis�es additionally the cancellation axiom

(K) 8x; y; z: x+ z = y + z ) x = y ,

or in other words, if the di�erence between two elements is uniquely de�ned

whenever it exists. A cancellative abelian semigroup or monoid is an abelian

1This would not even be possible in the purely equational framework of [20].
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group if and only if di�erence is a total function. Typical examples of can-

cellative abelian monoids where di�erence is partial are the natural numbers

under addition, the non-zero integers under multiplication, and multisets under

union.

We denote the set of the axioms (A), (C), (U), and (K) by ACUK, and

the respective subsets by AC, ACU, and ACK. For m 2 N+,
P

i2f1;:::;mg xi is

an abbreviation for the sum x1 + � � �+ xm and mx is an abbreviation for the

m-fold sum x+ � � �+ x. In a monoid,
P

i2; xi and 0x are de�ned as 0.

Lemma 2.1 Let (G;+) be a cancellative abelian semigroup and let b; c 2 G.

If b+ c = b, then G is a monoid and c is its unique identity element.

Proof. For every x 2 G, x+ b+ c = x+ b, hence by cancellation x+ c = x. If

furthermore b0 + c0 = b0 for some b0; c0 2 G, then b0 + c0 = b0 = b0 + c, hence by

cancellation c0 = c. 2

It is a well-known result that every �nite cancellative abelian semigroup is

a group. The following lemma generalizes this fact.

Lemma 2.2 Let (G;+) be a cancellative abelian semigroup and I be a �nite

non-empty set of indices. For all i 2 I, let ai 2 G and let fi be a function from

G to G. If _

i2I

x+ fi(x) = ai

holds for every x 2 G, then G is a group.

Proof. Let b =
P

j2I 2aj , then

_

i2I

X

j2I

2aj + fi(b) = ai :

Pick any k 2 I such that

X

j2I

2aj + fk(b) = ak

and let K = I n fkg. By Lemma 2.1,
P

j2K 2aj + ak + fk(b) is an identity

element of G. We denote it by 0.

X

j2K

2aj + ak + fk(b) = 0

4



As every ai occurs at least once in this sum, every ai has an inverse, namely

the remainder of the sum. Let us denote the inverse of ai by a
0

i, then for every

x 2 G _

i2I

x+ fi(x) + a0i = 0 :

Thus for every x 2 G there is an i 2 I such that fi(x) + a0i is the inverse of x.

As every x has an inverse, G is a group. 2

3 The Cancellative Superposition Calculus

3.1 Preliminaries

We will develop our calculus in the framework of equational clauses. An equa-

tion e is an unordered pair ft; t0g, usually written as t � t0. A literal is either an

equation e (also called a positive literal) or a negated equation : e (also called

a negative literal). The symbol [:] e denotes either of these. Instead of : t � t0,

we sometimes write t 6� t0. A clause is a �nite multiset of literals. Terms are

formed over a many-sorted signature (without subsorts or overloading), so ev-

ery variable x comes with a unique declaration x : S and every function symbol

with a unique declaration f : S1 : : :Sn ! S (for n 2 N). In particular, 0 and

+ have the declarations 0 :! SCAM and + : SCAMSCAM ! SCAM.
2 We consider

only well-formed terms and equations and assume that every sort is inhabited,

i.e., that for every sort there exists at least one ground term. Predicates p

di�erent from � are coded using function symbols p0, so the literal [:] p(t) is

represented by the equation [:] p0(t) � true . We assume that the reader is

familiar with standard concepts and notations in the area of rewriting (to be

found for instance in the survey of Dershowitz and Jouannaud [12]), and in the

area of superposition-based theorem proving (see Bachmair and Ganzinger [4]).

The symbol =ACU denotes the congruence generated by ACU. The ACU-

congruence class of a term t is [t]ACU = f t0 j t =ACU t
0 g.

De�nition 3.1 A function symbol that is di�erent from 0 and + is called a

free function symbol. A term is called atomic, if it is not a variable and its top

symbol is di�erent from +. A term t is called a proper sum, if t = t1 + t2 and

t1 6=ACU 0, t2 6=ACU 0.

The set of all terms is the disjoint union of the three sets f t j 9x: x is

a variable, t =ACU x g, f t j 9s: s is atomic, t =ACU s g, and f t j 9s: s is a

2There is no scalar multiplication in our signature, so mt is merely an abbreviation for
t+ � � �+ t.
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proper sum, t =ACU s g. We can therefore extend the terminology above to

ACU-congruence classes, and say that [t]ACU is a variable (an atomic term, a

proper sum), if there is some s 2 [t]ACU with this property.

We say that a term t occurs in s at the top, if there is a position o 2 Pos(s)

such that sjo = t and for every proper pre�x o0 of o, s(o0) equals +. We say

that t occurs in s below a free function symbol, if there is a position o 2 Pos(s)

such that sjo = t and s(o0) is a free function symbol for some proper pre�x

o0 of o. We extend this terminology to ACU-congruence classes, and say that

[t]ACU occurs in [s]ACU at the top (below a free function symbol), if there are

some t0 2 [t]ACU and s0 2 [s]ACU with this property. For instance, [2a]ACU and

[a + f(a + b)]ACU occur at the top of [3a + 2f(a + b)]ACU, [a]ACU occurs both

at the top and below a free function symbol.

De�nition 3.2 A reduction ordering � is called ACU-compatible, if s0 =ACU

s � t=ACU t
0 implies s0 � t0.

Every ACU-compatible reduction ordering extends naturally to a reduction

ordering on ACU-congruence classes.

For ground terms, we can obtain an ACU-compatible reduction ordering

� from an arbitrary AC-compatible ordering �1 by de�ning s � t if s# �1 t#,

where s# denotes the normal form of s under rewriting with the rule x+ 0! x.

We can lift this ordering to non-ground terms by de�ning s � t if s� � t� for all

ground instances s� and t�. However, as shown by Jouannaud and March�e [18],

it happens quite frequently that � orders a pair of terms in an operationally

undesirable way, or that s[x] and t[x] are uncomparable because s[0]� t[0] but

s[u] � t[u] for all non-zero ground terms u.3 This is a serious problem, if one is

interested in classical rewriting. It is not a hindrance, though, for calculi like

superposition or unfailing completion, which are preferably implemented using

constraints. (In fact, Jouannaud and March�e's method can be considered as a

variant of unfailing completion with constraints.)

De�nition 3.3 We say that an ACU-compatible ordering has the multiset

property, if whenever a ground atomic term u is greater than vi for every i

in a �nite index set I 6= ;, then u �
P

i2I vi.

From now on, � will always denote an ACU-compatible ordering that has

the multiset property and is total on ACU-congruence classes.4 Examples of

3Jouannaud and March�e's statement that \AC1-rewrite orderings cannot really exist" [18]
should be taken with a grain of salt, however.

4In practice, it is su�cient if the ordering can be extended to a total ordering.
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orderings with these properties are obtained from the associative path ordering

(Bachmair and Plaisted [7]) or the ordering of Rubio and Nieuwenhuis [25] with

precedence fn � : : :� f1 � + � 0 by comparing s# and t# as described above.

A ground literal e is called true in a set E of ground equations, if e 2 E. A

ground literal : e is called true in E, if e =2 E. A ground clause is called true

in E, if at least one of its literals is true in E. If a ground literal or clause is

not true in E, it is called false in E.

A set E of ground equations is called a model of a clause C, if every ground

instance C� of C is true in E; it is called a model of a set N of clauses, if it is

a model of every C 2 N . If N and N 0 are sets of clauses, we write N j= N 0 if

every model of N , ACUK, and the equality axioms is a model of N 0. In other

words, j= denotes entailment modulo ACUK. If C is a clause, N j= C is a

shorthand for N j= fCg.

Convention 3.4 For the remainder of this paper, we will work only with

ACU-congruence classes, rather than with terms. To simplify notation, we

will omit the [ ]ACU and drop the subscript of =ACU. So all terms, equations,

substitutions, inference rules, etc., are to be taken modulo ACU, that is, as

representatives of their congruence classes.

The ordering restrictions that we use are more re�ned than usual, in that

they are based primarily on maximal terms in sums.

De�nition 3.5 Let e be a ground equation, then the maximal atomic term

of e (with or without multiplicity) is de�ned in the following way:

� If e is an equation of the form nu +
P

i2I si � mu +
P

j2J tj , where u,

si, and tj are atomic terms, n � m � 0, n � 1, and u � si and u � tj
for all i 2 I, j 2 J, then mt(e) = u and mt#(e) = nu.

� If e is an equation of the form u � v, where u doesn't have sort SCAM
and u � v, then mt(e) = mt#(e) = u.

De�nition 3.6 The symbol ms(t) denotes the multiset of all non-zero atomic

terms occurring at the top of a ground term t, i.e.,

� ms(t) = f vj j j 2 J g, if t =
P

j2J vj and all vj are non-zero atomic

terms. (In particular ms(0) = ;, as J may be empty.)

� ms(t) = ftg, if t doesn't have sort SCAM.

If e is a ground equation t � t0, then ms(e) is the multiset union of ms(t) and

ms(t0).
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De�nition 3.7 The ordering �x on ground terms is de�ned as follows: s �x t

if there is an s0 2ms(s) such that s0 � t0 for all t0 2ms(t). For arbitrary terms,

s �x t if s� �x t� for all ground instances s� and t�.

De�nition 3.8 The ordering � on terms is extended to an ordering �L on

literals as follows: Every ground literal [:] s � t is mapped to the quadruple

(mt#(s � t); pol ;ms(s � t); fs; tg);

where pol is 1 for negative literals and 0 for positive ones. Two ground literals

are compared by comparing their associated quadruples using the lexicographic

combination of the ordering � on terms, the ordering > on N, the multiset

extension of � and the multiset extension of �. The ordering is lifted to

possibly non-ground literals in the usual way, so [:] e1 �L [:] e2 if and only

if [:] e1� �L [:] e2� for all ground instances [:] e1� and [:] e2�. In order to

use the ordering �L to compare equations, the latter are identi�ed with positive

literals.

The ordering �C on clauses is the multiset extension of the literal order-

ing �L.

As�L and �C are obtained from noetherian orderings by multiset extension

and lexicographic combination, they are noetherian, too.

De�nition 3.9 A substitution � is called t-preserving, if t� = t.

Any ACU-uni�cation algorithm (e.g., Herold and Siekmann [14]) can be

used to compute complete sets of t-preserving ACU-uni�ers by simply taking

all variables in t as constants.

We need the concept of t-preservation when we deal with variables that

are known to correspond to atomic terms on the ground level. Consider the

two terms s1 = 2x and s2 = 2y + z. There are uni�ers of s1 and s2, e.g.,

fx 7! y0 + z0; y 7! y0; z 7! 2z0g. There is no uni�er, though, that maps z to a

non-zero atomic ground term. Neither does a z-preserving uni�er of s1 and s2
exist.

Lemma 3.10 Let s1 =
P

i2I mixi + m0u and s2 =
P

j2J njyj + n0u, where

the xi and yj are pairwise distinct variables, u is either atomic or a variable,

and none of the xi and yj occurs in u. Let U be a complete set of u-preserving

ACU-uni�ers of s1 and s2. Suppose that � is an ACU-uni�er of s1 and s2 and

that u� is a non-zero atomic ground term. Then � = �� for some � 2 U and

some substitution �.
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Proof. Let U 0 be a complete set of ACU-uni�ers of s1 and s2, and let �0 2 U 0

such that � = �0�0.

If u is atomic, we may assume without loss of generality that �0 maps all

variables in u to fresh variables. So there is a variable renaming � such that

�0� is a u-preserving ACU-uni�er of s1 and s2. Hence �0� = �� 0 for some

� 2 U , and � = �� 0��1�0.

If u is a variable, we may assume without loss of generality that u�0 =P
k2K �kzk for �k 2 N+ and fresh variables zk . As u� = u�0�0 is a non-zero

atomic ground term, K = fk0g [K0, where zk�
0 = 0 for k 2 K0 and �k0 = 1.

Let �00 be the substitution that maps zk to 0 for every k 2 K0 and let � be

the variable renaming fzk0 7! ug. Then � = �0�0 = �0�00���1�0. As �0�00� is a

u-preserving ACU-uni�er of s1 and s2, we have �
0�00� = �� 0 for some � 2 U .

Thus � = �� 0��1�0. 2

De�nition 3.11 Let x be a variable occurring in some literal or clause. We

say that x is shielded in the literal or clause, if it occurs at least once below a

free function symbol. Otherwise, x is called unshielded.

For example, the variables x and z are shielded in x + y + f(x) � g(z),

whereas y is unshielded.

We assume to be given a selection function that assigns to every clause a

(possibly empty) subset of its negative literals.

De�nition 3.12 A variable x that occurs in a literal [:] e of a clause C is

called eligible, if either C has no selected literals and x is unshielded in C, or

: e is a selected literal of C and x is unshielded in : e.

The importance of unshielded variables stems from the fact that they may

correspond to maximal atomic subterms in a ground instance. If a variable x

is shielded in a clause (or selected literal), then the clause or literal contains

an atomic subterm t[x]. As x� � (t[x])�, an atomic subterm of x� cannot be

maximal.

3.2 The Ideas

We will describe a refutationally complete theorem proving method for �rst-

order theories that include the axioms of cancellative abelian monoids. As the

precise rules, to be given in section 3.3, turn out to be rather complex, we

will start with a somewhat informal step-by-step presentation of the essential

ideas.
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The Superposition Calculus The superposition calculus of Bachmair and

Ganzinger [4] is a refutationally complete theorem proving method for arbi-

trary �rst-order clauses with equality. Starting from an initial set of formulae,

a superposition-based theorem prover computes inferences, e.g.,

D _ s � s0 C _ [:] t[u] � t0

(D _ C _ [:] t[s0] � t0)�
� = mgu(s; u)

and adds their conclusions to the set of formulae. If the initial set is incon-

sistent, then every fair derivation will eventually produce a contradiction (i.e.,

the empty clause). The inference rules are restricted forms of paramodula-

tion, resolution, and factoring. For instance, it is su�cient to perform only

those superposition inferences that involve maximal literals and maximal sides

of equalities. Besides, a global redundancy criterion allows to discard certain

inferences and formulae. More precisely, a formula is redundant in a set of

formulae N and may be deleted, if it is entailed by smaller clauses in N . An

inference is redundant in N (and may be omitted in a fair derivation), if its

conclusion follows from clauses in N that are smaller than the largest premise.

Our goal is to develop a re�ned and otherwise similar calculus for can-

cellative abelian monoids that makes superpositions with the ACUK axioms

superuous.

Cancellative Superposition Let us �rst restrict to the case that + is the

only non-constant function symbol. In a cancellative abelian monoid, the

congruence law and the cancellation law are in a certain sense complementary.

The congruence law states that adding equal terms on both sides of an equation

preserves truth, and conversely, that dropping equal terms on both sides of an

equation preserves falsity. The cancellation law states that dropping equal

terms on both sides of an equation preserves truth, and that adding equal

terms on both sides of an equation preserves falsity. Hence, if we have an

equation u+ s � s0 where the atomic term u is larger than s and s0, then we

can infer s0+ u+ t� u+ s+ t0 from u+ t � t0 by congruence, and s0+ t � s+ t0

by cancellation. Similarly, we can infer s0 + u + t 6� u + s+ t0 from u+ t 6� t0

by cancellation, and s0 + t 6� s+ t0 by congruence. Intuitively, this means that

rather than replacing the left hand side of a rewrite rule by the right hand

side, we replace the maximal atomic part by the remainder: We rewrite u to

s0 while adding s to the other side of the (possibly negated) equation. This is

the essential reason why extended rules are unnecessary in our calculus.

The method can be generalized to equational clauses. Taking into account

that u might occur more than once in a sum we get the (ground) inference rule

10



Cancellative Superposition
D _ mu+ s � s0 C _ [:] nu + t � t0

D _ C _ [:] (n�m)u+ t + s0 � t0 + s

where n � m � 1.5

Together with the cancellation, equality resolution, and cancellative equal-

ity factoring rules, this rule is refutationally complete for sets of ground clauses,

provided that + is the only non-constant function symbol.

Cancellation
D _ [:] nu+ t � mu+ s

D _ [:] (n�m)u+ t � s

Equality Resolution6
C _ : 0 � 0

C

Cancellative Eq. Factoring
D _ nu+ s � s0 _ nu+ t � t0

D _ : s + t0 � s0 + t _ nu+ t � t0

The inference system remains refutationally complete if we add ordering re-

strictions, such that inferences are computed only if the literals involved are

maximal (or selected) in their clauses and u is atomic and strictly larger than

s, s0, t, and t0.

Example 3.13 Suppose that the ordering on constant symbols is given by b �

b0 � c � d � d0. We will show that the following four clauses are contradictory

with respect to ACUK. (The maximal part(s) of every clause are underlined.)

2b+ c � d (1)

b0 + c � d0 (2)

d � d0 (3)

2b 6� b0 (4)

Cancellative superposition of (1) and (4) yields

d 6� b0 + c (5)

Cancellative superposition of (2) and (5) yields

d+ c 6� d0 + c (6)

5Recall that we are working with terms modulo ACU. In particular, this implies that s
and t may be missing (i.e., zero).

6As the cancellation rule transforms C _ : s � s into C _ : 0 � 0, it su�ces to handle
only the latter by equality resolution.
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By cancellation of (6) we obtain

d 6� d0 (7)

Cancellative superposition of (3) and (7) produces

d0 6� d0 (8)

which by cancellation and equality resolution yields the empty clause.

Speaking in terms of AG-normalized completion (March�e [20]), we can work

directly with the symmetrisation; March�e's 	AG and �AG have no counterpart

in our framework. Consequently, the number of overlaps that have to be

considered is reduced. On the other hand, we lack an inverse, which will lead

to certain problems once free function symbols are introduced.

The Non-Ground Case Lifting the calculus to non-ground clauses turns

out to be a non-trivial task. In the standard superposition calculus, for lifting

one simply needs to replace equality in the ground inference by uni�ability (or

by equality constraints). The situation is similar here, as long as all variables

in our clauses are shielded. If a variable is unshielded, however, we have to

take into account that it might be instantiated with a sum and that only the

maximal atomic part of the sum takes part in the uni�cation. Consider the

clauses D = D0(x) _ 3x+ d � e and C = C0(y) _ 5y + 2b � c, where b is the

maximal constant. A substitution may map x to �b + s and y to �b + t, for

some �; � 2 N and arbitrary ground terms s and t. If 3� � 5� + 2, then the

resulting ground clauses allow the cancellative superposition inference

D0(�b+ s) _ 3�b+ 3s+ d � e C0(�b+ t) _ (5�+2)b+ 5t � c

D0(�b+ s) _ C0(�b+ t) _ (5�+2�3�)b+ 5t+ e � c+ 3s + d

How can we represent this in�nite number of ground clauses �nitely on the

non-ground level without introducing second-order variables?

For the left premise, it's easy. We map the variable x to a sum of two fresh

variables, x̂+ ~x. The variable x̂ is meant to subsume the part of �b + s that

is consumed during the ground inference (namely �b); the second variable is

meant to subsume the part that is left over (namely s).

For the right premise, the situation is a bit more complicated, since not all

b's need to be consumed. Each of the � b's produces 5 copies. If � = 2, then

there are 6 b's to be consumed, thus � � 1. We may assume that these 6 b's

consist of 5 copies of one of the � b's and one of the 2 b's that were present in

12



the non-ground clause. As for the left premise, it su�ces to map y to a sum

of two fresh variables, ŷ + ~y.

If � = 3, then there are 9 b's to be consumed, thus � � 2. Again we may

assume that 5 of the 9 b's are copies of one of the � b's. In this case, however,

the remaining 4 b's have to be taken from the 5 copies of the second of the �

b's. Therefore, we have to map y to the sum ŷ + b+ ~y. The variable ŷ is meant

to subsume those b's, whose 5 copies are completely consumed. The variable

~y is meant to subsume the part of �b+ t that is left over. Finally, there is one

b, for which � of its 5 copies are consumed, where 3 � � � 4.

We obtain two kinds of non-ground inferences: First, for the case that each

of the � b's is either completely consumed or left over:

D0(x) _ 3x+ d � e C0(y) _ 5y + 2b � c

(D0(x̂+ ~x) _ C0(ŷ + ~y) _ (2��)b+ 5~y + e � c+ d+ 3~x)�

where 0 � � � 2 and � is a most general ACU-uni�er of 3x̂ and 5ŷ + �b.

Second, for the case that one of the � b's is only partially consumed:

D0(x) _ 3x+ d � e C0(y) _ 5y + 2b � c

(D0(x̂+ ~x) _ C0(ŷ + b+ ~y) _ (7��)b+ 5~y + e � c+ d+ 3~x)�

where 3 � � � 4 and � is a most general ACU-uni�er of 3x̂ and 5ŷ + �b.

In the general case, the maximal equations of the two clauses may have the

form X

j2J

njyj +
X

l2L

n0lvl + t � t0

with variables yj and uni�able non-variable terms vl. Using the idea above we

can still obtain an inference rule that produces only �nitely many conclusions.

Let v be a most general common instance of all vl (modulo ACU). In the left

premise, we map every variable xi to x̂i + ~xi. In the right premise, there are

two possibilities: If every v that is substituted into the yj 's is either completely

consumed or left over, then it su�ces to map every yj to ŷj + ~yj . Otherwise,

we have to map some yj0 to the sum ŷj0 + v + ~yj0 , where � of the nj0 copies

of v are consumed. (It is in fact su�cient to pick one j0 2 J and to restrict

to
P

l2L n
0

l < � < nj0 . Furthermore, we will show that we may set ŷj = 0 if

either nj �
P

l2L n
0

l + nj0 � � or nj > nj0 .) A similar technique is also used

for cancellation inferences and cancellative equality factoring inferences.

It is obvious that inferences involving unshielded variables may be very

proli�c. In practice, they should be avoided whenever possible. In Section 5

we will discuss suitable techniques to do this.
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Free Function Symbols So far, we have considered signatures where +

is the only non-constant function symbol. If we add free function symbols,

and possibly other sorts, then we also have to use the inference rules of the

traditional superposition calculus, that is equality resolution, standard super-

position, and standard equality factoring. But this is not su�cient, as shown

by the following example.

Example 3.14 Suppose that the ordering on constant symbols is given by b �

b0 � c � d � d0. In every model of the three clauses

2b+ c � d (1)

b0 + c � d0 (2)

d � d0 (3)

the terms 2b and b0 are equal. As we have shown in Example 3.13 we can thus

refute the set of clauses (1){(4).

2b 6� b0 (4)

However, the cancellative superposition rule is limited to superpositions at the

top of a term. There is no way to perform a cancellative superposition inference

below a free function symbol, hence there is no way to derive the empty clause

from the clauses (1), (2), (3), and (9).

f(2b) 6� f(b0) (9)

If we were working in groups, we could simply derive f(d� c) 6� f(b0). But

this is impossible in our context.

Hsiang, Rusinowitch, and Sakai [17, 26] have solved this problem by intro-

ducing the following inference rule:

D _ u+ s � s0 C _ v + s � s0

D _ C _ u � v

In the example above, this rule allows to derive 2b � b0 from the �rst three

clauses, which can then be applied to (9) by standard superposition. However,

there is a drawback of this approach. Before we can apply the rule of Hsiang,

Rusinowitch, and Sakai, we have to use clause (3) to replace d by d0 in (1).

Since the term d is not maximal in (1), the rule can be only used in conjunction

with ordered paramodulation (where inferences may involve smaller parts of

maximal literals), but does not work together with strict superposition (where

such inferences are excluded).
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The concept of abstraction yields another solution for the problem, which

�ts more smoothly into the superposition calculus. Abstracting out an occur-

rence of a term v in a clause C[v] means replacing v by a new variable x and

adding x 6� v as a new condition to the clause. In our case, we have to abstract

out a term v of sort SCAM occurring immediately below a free function symbol,

if there is some other clause D _ mu + s � s0 such that (i) mu occurs at the

top of v, but (ii) a standard superposition of mu+ s into v is impossible. We

emphasize that the new variable x is shielded in the resulting clause.

Abstraction
D _ mu+ s � s0 C _ [:] w[nu+ t] � w0

C _ : x � nu+ t _ [:] w[x] � w0

where n � m.

Using this inference rule, the set of clauses (1), (2), (3), and (9) of Exam-

ple 3.14 can be refuted as follows:

Example 3.15 Abstraction of (1) and (9) yields

x 6� 2b _ f(x) 6� f(b0) (10)

By (non-ground) cancellation of (10) with the uni�er fx 7! b0g we obtain

b0 6� 2b _ 0 6� 0 (11)

which can be refuted in the same way as (4) in Example 3.13.

The abstraction rule is extended to non-ground premises in the same way

as the cancellative superposition rule.

3.3 Inference System

General Remarks

In an expression like
P

i2I mixi +
P

k2K m0

kuk + s, every xi is a variable of

sort SCAM, every uk is an atomic term of sort SCAM, and s is an arbitrary term

of sort SCAM. The coe�cients mi and m0

k are elements of N+. Both I and K

are linearly ordered sets of indices; I and K may be empty, s may be 0, unless

explicitly said otherwise.

To simplify the presentation, we give the inference rules for unconstrained

clauses. However, it should be mentioned that in fact all ordering conditions

may be turned into constraints which are inherited by the conclusions of the

inferences. Similarly, it may be advisable in an implementation to work with
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uni�ability constraints as much as possible rather than computing uni�ers

eagerly.

We use the phrase \most general (t-preserving) ACU-uni�er of u and v"

to denote some member of a �xed complete set of (t-preserving) ACU-uni�ers

of u and v.

Cancellation

D _ [:] e1

(D _ [:] e0)�

if the following conditions are satis�ed:

� e1 =
X

j2J

njxj +
X

l2L

n0lvl + t �
X

i2I

mixi +
X

k2K

m0

kuk + s.

� e0 = �z +
X

j2 ~J

~nj ~xj + t �
X

i2~I

~mi~xi + s.

� I [K 6= ; and J [ L 6= ;.

� f xi j i 2 I g is the set of all eligible variables of [:] e1 that occur in the

right hand side of e1; f xj j j 2 J g is the set of all eligible variables of

[:] e1 that occur in the left hand side of e1.

� ~I = I n f i 2 I \ J j ni � mi g, ~J = J n f i 2 I \ J j mi � ni g, ~mi = mi

if i 2 I n J , ~mi = mi � ni if i 2 I \ J and mi > ni, ~ni = ni if i 2 J n I ,

~ni = ni �mi if i 2 I \ J and ni > mi.

� m0 =
P

k2Km0

k and n0 =
P

l2L n
0

l.

� Either J� = ~J , J0 = J= = J+ = ;, 0 � � � n0, and � = n0 � �; or

J0 = fj0g � ~J , n0 < � < ~nj0 , J= = f j 2 ~J j ~nj � n0 + ~nj0 � � g,

J� = f j 2 ~J j n0 + ~nj0 � � < ~nj < ~nj0 _ (~nj = ~nj0 ^ j < j0) g,

J+ = f j 2 ~J j ~nj > ~nj0 _ (~nj = ~nj0 ^ j > j0) g, and � = n0 + ~nj0 � �.

� �1 maps xi to x̂i + ~xi for i 2 ~I [ J�, to x̂i + z + ~xi for i 2 J0, and to

~xi for i 2 J= [ J+; �2 is a most general ACU-uni�er of all uk, vl, and

z (k 2 K, l 2 L); �3 is a most general z�2-preserving ACU-uni�er ofP
i2~I ~mix̂i +m0z�2 and

P
j2J�[J0

~nj x̂j + �z�2; and � = �1�2�3.

� Either : e1 is a selected literal, or the premise has no selected literals

and [:] e1� is a maximal literal in (D _ [:] e1)�.

� z� 6� s�, z� 6� t�, z� 6� ~xi� for i 2 ~I [ J+, z� 6�x ~xi� for i 2 J= [ J� [ J0.
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Equality Resolution

C _ : u � v

C�

if the following conditions are satis�ed:

� Either u� = v� = 0 or u and v don't have sort SCAM and � is a most

general ACU-uni�er of u and v.

� Either : u � v is a selected literal, or : (u � v)� is a maximal literal in

(C _ : u � v)�.

Standard Superposition

D _ u � v C _ [:] t[w] � t0

(D _ C _ [:] t[v] � t0)�

if the following conditions are satis�ed:

� w is not a variable.

� If t has sort SCAM, then w occurs below a free function symbol in t. If t

is a proper sum, then w occurs in a maximal atomic subterm of t.

� � is a most general ACU-uni�er of u and w.

� u� 6� v� and t� 6� t0�.

� The �rst premise has no selected literals.

� u� � v� is a strictly maximal literal in (D _ u � v)�.

� Either : t[w] � t0 is a selected literal, or the second premise has no

selected literals and ([:] t[w]� t0)� is a maximal literal in (C _ [:] t[w]�

t0)� (strictly maximal, if it is a positive literal).

� (D _ u � v)� 6�C (C _ [:] t[w] � t0)�.
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Cancellative Superposition

D _ e1 C _ [:] e2
(D _ C _ [:] e0)�

if the following conditions are satis�ed:

� e1 =
X

i2I

mixi +
X

k2K

m0

kuk + s � s0.

� e2 =
X

j2J

njyj +
X

l2L

n0lvl + t � t0.

� e0 = �z +
X

j2J

nj ~yj + t+ s0 �
X

i2I

mi~xi + s+ t0.

� I [K 6= ; and J [ L 6= ;.

� f xi j i 2 I g is the set of all eligible variables of e1 that occur in the left

hand side but not in the right hand side of e1; f yj j j 2 J g is the set of

all eligible variables of [:] e2 that occur in the left hand side but not in

the right hand side of e2.

� The left hand side of e2 is not a variable (i.e., either
P

j2J nj > 1 orP
l2L n

0

lvl + t 6= 0).

� m0 =
P

k2Km0

k and n0 =
P

l2L n
0

l.

� Either J� = J , J0 = J= = J+ = ;, 0 � � � n0, and � = n0 � �; or

J0 = fj0g � J , n0 < � < nj0 , J= = f j 2 J j nj � n0 + nj0 � � g,

J� = f j 2 J j n0 + nj0 � � < nj < nj0 _ (nj = nj0 ^ j < j0) g,

J+ = f j 2 J j nj > nj0 _ (nj = nj0 ^ j > j0) g, and � = n0 + nj0 � �.

� �1 maps xi to x̂i + ~xi for i 2 I and yj to ŷj + ~yj for j 2 J�, to ŷj + z + ~yj
for j 2 J0, and to ~yj for i 2 J= [ J+; �2 is a most general ACU-uni�er of

all uk, vl, and z (k 2K, l 2 L); �3 is a most general z�2-preserving ACU-

uni�er of
P

i2I mix̂i+m0z�2 and
P

j2J�[J0
nj ŷj +�z�2; and � = �1�2�3.

� The �rst premise has no selected literals.

� e1� is a strictly maximal literal in (D _ e1)�.

� Either : e2 is a selected literal, or the second premise has no selected

literals and [:] e2� is a maximal literal in (C _ [:] e2)� (strictly maximal,

if e2 occurs positively).
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� (D _ e1)� 6�C (C _ [:] e2)�.

� z� 6� s�, z� 6� s0�, z� 6� t�, z� 6� t0�, z� 6� ~xi� for i 2 I , z� 6� ~yj� for

j 2 J+, z� 6�x ~yj� for j 2 J= [ J� [ J0.

Abstraction

D _ e1 C _ [:]w[ŵ] � w0

C _ : x � ŵ _ [:] w[x] � w0

if the following conditions are satis�ed:

� e1 =
X

i2I

mixi +
X

k2K

m0

kuk + s � s0.

� ŵ =
X

j2J

njyj +
X

l2L

n0lvl + t.

� I [K 6= ; and J [ L 6= ;.

� f xi j i 2 I g is the set of all eligible variables of e1 that occur in the left

hand side but not in the right hand side of e1.

� None of the variables yj occurs in the non-variable terms vl. (The yj
may occur in t, however.)

� ŵ occurs in w immediately below some free function symbol. If w is a

proper sum, then ŵ occurs in a maximal atomic subterm of w.

� m0 =
P

k2Km0

k and n0 =
P

l2L n
0

l.

� Either J� = J , J0 = J= = J+ = ;, and 0 � � � n0; or J0 = fj0g � J ,

n0 < � < nj0 , J= = f j 2 J j nj � n0 + nj0 � � g, J� = f j 2 J j

n0 + nj0 � � < nj < nj0 _ (nj = nj0 ^ j < j0) g, and J+ = f j 2 J j nj >

nj0 _ (nj = nj0 ^ j > j0) g.

� �1 maps xi to x̂i + ~xi for i 2 I and yj to ŷj + ~yj for j 2 J�, to ŷj + z + ~yj
for j 2 J0, and to ~yj for i 2 J= [ J+; �2 is a most general ACU-uni�er of

all uk, vl, and z (k 2K, l 2 L); �3 is a most general z�2-preserving ACU-

uni�er of
P

i2I mix̂i+m0z�2 and
P

j2J�[J0
nj ŷj +�z�2; and � = �1�2�3.

� The �rst premise has no selected literals.

� e1� is a strictly maximal literal in (D _ e1)�.
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� Either : w[ŵ] � w0 is a selected literal, or the second premise has no se-

lected literals and [:] (w[ŵ]� w0)� is a maximal literal in (C _ [:]w[ŵ]�

w0)� (strictly maximal, if it is a positive literal).

� If J = fj1g, nj1 = 1, and L = ;, then t = t1 + t2, where t1 is non-zero

and either t1 is a variable or yj1� 6� t1�.

� If I = ;, then there exists no t0 such that t� = s� + t0.

� (D _ e1)� 6�C (C _ [:]w[ŵ] � w0)�.

� z� 6� s�, z� 6� s0�, (w[ŵ])� 6� w0�.

Standard Equality Factoring

D _ u � v _ u0 � v0

(D _ : v � v0 _ u0 � v0)�

if the following conditions are satis�ed:

� u, u0, v, and v0 don't have sort SCAM.

� The premise has no selected literals.

� � is a most general ACU-uni�er of u and u0.

� u� 6� v� and u� 6� v0�.

� u� � v� is a maximal literal in (D _ u � v _ u0 � v0)�.

� u� is maximal in (D _ u � v _ u0 � v0)�.

Cancellative Equality Factoring

D _ e1 _ e2

(D _ : e0 _ e2)�

if the following conditions are satis�ed:

� e1 =
X

i2I

mixi +
X

k2K

m0

kuk + s � s0.

� e2 =
X

j2J

njxj +
X

l2L

n0lvl + t � t0.
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� e0 =
X

i2I

mi~xi + s+ t0 �
X

j2J

nj ~xj + s0 + t.

� I [K 6= ; and J [ L 6= ;.

� f xi j i 2 I g is the set of all eligible variables of e1 that occur in the left

hand side but not in the right hand side of e1; f xj j j 2 J g is the set of

all eligible variables of e2 that occur in the left hand side but not in the

right hand side of e2.

� m0 =
P

k2Km0

k and n0 =
P

l2L n
0

l.

� �1 maps xi to x̂i + ~xi for i 2 I [ J ; �2 is a most general ACU-uni�er

of all uk, vl, and z (k 2 K, l 2 L); �3 is a most general z�2-preserving

ACU-uni�er of
P

i2I mix̂i +m0z�2 and
P

j2J nj x̂j + n0z�2.

� The premise has no selected literals.

� e1� is a maximal literal in (D _ e1 _ e2)�.

� z� 6� s�, z� 6� s0�, z� 6� t�, z� 6� t0�, z� 6� ~xi� for i 2 I [ J .

Theorem 3.16 For every inference rule

C1 : : :Cn

C0

of the cancellative superposition calculus, we have fC1; : : : ; Cng j= C0.

Proof. By routine computation. 2

3.4 Redundancy and Saturation

To make a saturation-based theorem proving technique practically useful, the

inference system has to be complemented with a redundancy criterion. Both

clauses and inferences may be redundant. A redundant clause can be deleted

from the current set of clauses at any point of the saturation process. A

redundant inference may be ignored during the saturation process without

endangering the fairness of the derivation. (See [4, 6] for a more detailed

discussion of these aspects of superposition. Note that \redundancy" is called

\compositeness" in [4].)
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De�nition 3.17 Let N be a set of clauses. A ground clause D is called

ACUK-redundant with respect to N , if ground instances D1; : : : ; Dn of clauses

in N exist such that fD1; : : : ; Dng j= D and Di �C D for every i 2 f1; : : : ; ng.

A non-ground clause is called ACUK-redundant with respect to N , if all its

ground instances are.

Traditionally, an inference is considered to be redundant, if its conclusion

follows from clauses that are smaller than the maximal premise. Since the

conclusion of an abstraction inference is non-ground even if the premises are

ground, we have to modify this scheme slightly.

De�nition 3.18 LetN be a set of clauses. A ground inference with conclusion

C0 and maximal premise C is called ACUK-redundant with respect to N in the

following two cases:

� If it is not an abstraction inference and if there are ground instances

D1; : : : ; Dn of clauses in N such that fD1; : : : ; Dng j= C0 and Di �C C

for every i 2 f1; : : : ; ng.

� If it is an abstraction inference

D0 _ mu+ s � s0 C0 _ [:] w[nu+ t] � w0

C0 _ : x � nu+ t _ [:] w[x] � w0

and if for every substitution � that maps x to a ground term r � nu +

t there exist ground instances D1; : : : ; Dn of clauses in N such that

fD1; : : : ; Dng j= C0� and Di �C C for every i 2 f1; : : : ; ng.

To extend this de�nition to non-ground inferences, we need the concept of

an instance of an inference.

De�nition 3.19 Let C1; : : : ; Cn be clauses and let � be a substitution such

that all Ci� are ground. If there are inferences (modulo ACU)

C1� : : :Cn�

D�

and
C1 : : :Cn

D

then the former inference is called a ground instance of the latter.
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It should be noted that not every inference from C1� : : :Cn� is a ground

instance of an inference from C1 : : :Cn. As in the standard superposition

calculus [4], a ground superposition may take place below a variable position

of Cn. For instance, if C1 = a � b and C2 = f(x; x) � x, then there is a

standard superposition inference from the ground instances C1� = a � b and

C2� = f(a; a) � a, but not from C1 and C2 themselves.

Cancellation inferences pose an additional di�culty. If a variable x occurs

on both sides of an equation in a clause C, then in a non-ground cancellation

inference it is removed completely, whereas a ground inference from C� may

remove x� only partially. Consider the following example. Let b, c, d be

constants such that b � c � d, and let C be a clause x+ c � x+ d. Then there

is a cancellation inference from C, namely

x+ c � x+ d

c � d

In a ground instance of C, x might be instantiated with a sum b+ d. But

b+ c+ d � b+ 2d

c � d

does not qualify as a cancellation inference. Conversely,

b+ c+ d � b+ 2d

c+ d � 2d

quali�es as a cancellation inference, but it is not an instance of the non-ground

inference above. The notion of a weak instance will encompass such cases.

De�nition 3.20 Let C = C0 _ [:] e be a clause and let � be a substitution

such that C� is ground. If there are cancellation inferences (modulo ACU)

C0� _ [:] e�

C0� _ [:] s + t � s+ t0

and
C0 _ [:] e

D

and D� = C0� _ [:] t � t0, then the former inference is called a weak ground

instance of the latter.

De�nition 3.21 A non-ground inference is called ACUK-redundant with re-

spect to N in the following two cases:
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� If it is not a cancellation inference and if all its ground instances are

ACUK-redundant.

� If it is a cancellation inference and if all its weak ground instances are

ACUK-redundant.

One way to make an inference from clauses in N redundant is to add its

conclusion to N .

De�nition 3.22 We say that a set N of clauses is saturated up to ACUK-

redundancy, if every inference from non-ACUK-redundant clauses in N is

ACUK-redundant.

Under which conditions is an inference from ground clauses Ci� a (weak)

ground instance of an inference from Ci ? This question will be answered by

the so-called \lifting lemmas". To prove them, we need the following technical

lemma.

Lemma 3.23 Let J be a �nite and linearly ordered set of indices. Suppose

that m;n 2 N, and nj 2 N+, �j 2 N for every j 2 J. Furthermore, assume

that m �
P

j2J nj�j + n. Then one of the following two properties holds:

(i) There exist � 2 N and �j 2 N, such that � � n, �j � �j for j 2 J, and

m =
P

j2J nj�j + �.

(ii) There exist � 2 N, �j 2 N, and j0 2 J such that n < � < nj0 , �j � �j
for j 2 J, �j0 < �j0 , �j = 0 whenever nj > nj0 _ (nj = nj0 ^ j > j0),

�j = 0 whenever nj � n+ nj0 � �, and m =
P

j2J nj�j + �.

Proof. Let m0 =
P

j2J nj�j . Assume that property (i) does not hold. Then

obviously n < m < m0, and hence �j > 0 for some j 2 J . Let nmax be the

maximum of fnj j j 2 J; �j > 0 g, and let j0 be the maximum of f j 2 J j nj =

nmax; �j > 0 g.

Let M denote the set of all � 2 N such that there are �j 2 N with

�j � �j for j 2 J , �j0 < �j0 , and � =
P

j2J nj�j . It is easy to see that

f0; m0 � nj0g � M � f0; 1; : : : ; m0 � nj0g. Furthermore, if �1 and �2 are

elements of M such that �1 < �2 and f� 2 M j �1 < � < �2 g is empty, then

�2 � �1 � nj0 . Therefore, there exist � 2 M such that � � m < � + nj0 .

Let �0 be the smallest � 2 M with this property, and let � = m � �0, then

m =
P

j2J nj�j + � as required. Obviously, � = m� �0 < nj0 . Besides, � � n

would imply that property (i) holds, so n < � < nj0 .
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It remains to show that �j = 0 whenever nj � n + nj0 � �. Assume

there were a j1 2 J such that nj1 � n + nj0 � � and �j1 > 0. Then de�ne

�0j = �j for j 6= j1 and �0j1 = �j1 � 1. Consequently, m =
P

j2J nj�j + � =P
j2J nj�

0

j + nj1 + �. If nj1 < nj0 � �, then this contradicts the minimality of

�0. Otherwise nj0 � � � nj1 � n+ nj0 � �. Let �0 = nj1 + �� nj0 , �
00

j = �0j for

j 6= j0, and �00j0 = �0j0 + 1, then m =
P

j2J nj�
0

j + nj0 + �0 =
P

j2J nj�
00

j + �0.

As �0 � n, this contradicts our assumption that property (i) does not hold.

2

Lemma 3.24 Let C be a clause and let � be a substitution such that C� is

ground. Then every cancellation inference from C� is a weak ground instance

of a cancellation inference from C.

Proof. Suppose that C� = C0� _ [:] e1� and e1� = n�u + �t � m�u + �s, such

that �u is an atomic ground term, �u � �s, �u � �t, and n �m � 1. If either : e1�

is a selected literal, or C� has no selected literals and [:] e1� is maximal in

C�, then this clause allows a cancellation inference

C0� _ [:] n�u + �t � m�u+ �s

C0� _ [:] (n�m)�u+ �t � �s

By maximality, �umay only result from instantiating eligible variables or atomic

terms. Let f xj j j 2 J g and f xi j i 2 I g be the sets of all eligible variables

of [:] e1 that occur in the left or right hand side of e1, respectively. We may

assume that

e1 =
X

j2J

njxj +
X

l2L

n0lvl + t �
X

i2I

mixi +
X

k2K

m0

kuk + s

such that

xi� = �i�u+ �si for i 2 I [ J , where �i 2 N and �u � �si;

vl� = �u for l 2 L;

uk� = �u for k 2 K;

n0 =
P

l2L n
0

l;

m0 =
P

k2K m0

k;

n =
P

j2J nj�j + n0;

m =
P

i2I mi�i +m0;
�t =
P

j2J nj�sj + t�;

�s =
P

i2I mi�si + s�:

Let ~I = I n f i 2 I \ J j ni � mi g, ~J = J n f i 2 I \ J jmi � ni g, ~mi = mi

if i 2 I n J , ~mi = mi � ni if i 2 I \ J and mi > ni, ~ni = ni if i 2 J n I ,
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~ni = ni �mi if i 2 I \ J and ni > mi, pi = minfmi; nig for i 2 I \ J . Note

that ~I and ~J are disjoint. Let ~n =
P

j2 ~J ~nj�j + n0, ~m =
P

i2~I ~mi�i +m0, and

~p =
P

i2I\J pi�i, then ~n + ~p = n and ~m+ ~p = m. As m � n, we obtain

~m � ~n =
X

j2 ~J

~nj�j + n0 :

We have to distinguish two cases. If there exist �; �j 2N such that � � n0,

�j � �j for j 2 ~J , and ~m =
P

j2 ~J ~nj�j + �, then let � = n0 � �, J� = ~J and

J0 = J= = J+ = ;.

Otherwise, by Lemma 3.23, there exist �; �j 2 N and j0 2 ~J such that

n0 < � < ~nj0 , �j0 < �j0 , �j � �j for j 2 J , �j = 0 for j 2 J+, �j = 0 for

j 2 J=, and ~m =
P

j2 ~J ~nj�j + �, where J= = f j 2 ~J j ~nj � n0 + ~nj0 � � g

and J+ = f j 2 ~J j ~nj > ~nj0 _ (~nj = ~nj0 ^ j > j0) g. Let � = n0 + ~nj0 � �,

J0 = fj0g, and J� = f j 2 ~J j n0 + ~nj0 � � < ~nj < ~nj0 _ (~nj = ~nj0 ^ j < j0) g.

We de�ne two substitutions �1 and �1 as follows: Let �1 map xi to x̂i + ~xi
for i 2 ~I [ J�, to x̂i + z + ~xi for i 2 J0, and to ~xi for i 2 J= [ J+. Let �1
map x̂i to �i�u for i 2 ~I and to �i�u for i 2 J� [ J0, ~xi to �si for i 2 ~I [ J+, to

(�i��i)�u+ �si for i 2 J= [ J�, and to (�i��i�1)�u+ �si for i 2 J0, xi to �i�u+ �si
for i 2 (I [ J) n (~I [ ~J), z to �u, and every other variable y 2 Var(C) to y�. It

is easy to verify that � equals �1�1 over Var(C).

As �1 equals � over all variables occurring in uk and vl, �1 is a uni�er of uk,

vl, and z (k 2 K, l 2 L). Hence there is a most general ACU-uni�er �2 of all

uk, vl, and z and a substitution �2 such that �1 = �2�2 over Var(C)[ Ran(�1).

We may assume that Dom(�2) � Var(f uk; vl; z j k 2 K; l 2 L g).

Now consider the terms r =
P

i2~I ~mix̂i +m0z�2 and r0 =
P

j2J�[J0
~nj x̂j +

�z�2. As x̂i�2 = x̂i�1 and z�2�2 = z�1 = �u, we obtain r�2 = r0�2 = ~m�u.

Besides, �2 maps z�2 to the non-zero atomic ground term �u. By Lemma 3.10,

there is a most general z�2-preserving ACU-uni�er �3 of r and r0, such that

�2 = �3�3 over Var(C)[ Ran(�1)[ Ran(�2). Let � = �1�2�3.

We de�ne

e0 = �z +
X

j2 ~J

~nj ~xj + t �
X

i2~I

~mi~xi + s

then
C0 _ [:] e1

(C0 _ [:] e0)�

is a cancellation inference from C that we denote by �. It is easy to see that

the ordering conditions of the inference rule are satis�ed.
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It remains to show that the cancellation inference �0 given by

C0� _ [:] n�u + �t � m�u+ �s

C0� _ [:] (n�m)�u+ �t � �s

is a weak ground instance of �. We apply the substitution ��3 to the premise

and the conclusion of �. First, ��3 equals � over Var(C) and � is idempotent,

so C0���3 = C0��3 = C0� and e1��3 = n�u+ �t � m�u+ �s.

Second, ���3 equals �1 over Var(e0). Thus, after some computation,

e0���3 = e0�1 turns out to be (~n� ~m)�u+
P

j2 ~J ~nj�sj + t� �
P

i2~I ~mi�si + s�.

Now n�m = (~n+~p)� ( ~m+~p) = ~n � ~m. Furthermore, if w =
P

i2I[J pi�si,

then �t =
P

j2 ~J ~nj�sj + t� + w and �s =
P

i2~I ~mi�si + s� + w, hence �0 is a weak

ground instance of �. 2

Lemma 3.25 Let C be a clause and let � be a substitution such that C� is

ground. Then every equality resolution, standard equality factoring, or can-

cellative equality factoring inference from C� is a ground instance of a cancel-

lation inference from C.

Proof. For equality resolution and standard equality factoring inferences, this

is proved as in the classical case. The proof for cancellative equality factoring

inferences is similar to the proof of Lemma 3.24. The main di�erences are that

we can work directly with I and J (so there is no need to compute ~I and ~J

�rst), and thatm and n in the proof of Lemma 3.24 are now identical (so every

variable xi is mapped to x̂i + ~xi). 2

Lemma 3.26 Let C1 = C0

1 _ s � s0 and C2 = C0

2 _ [:] t � t0 be two clauses

(without common variables) and let � be a substitution such that C1� and C2�

are ground.

If there is a cancellative superposition inference

C0

1� _ s� � s0� C0

2� _ [:] t� � t0�

D

(where the maximal atomic subterms of s� and t� are overlapped), and t is not a

variable, then the inference is a ground instance of a cancellative superposition

inference from C1 and C2.

If there is a standard superposition inference

C0

1� _ s� � s0� C0

2� _ [:] t�[s�] � t0�

D
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and s� does not occur in t� at or below a variable position of t (i.e., x� = w[s�]

for some x 2 Var(t)), then the inference is a ground instance of a standard

superposition inference from C1 and C2.

If there is an abstraction inference

C0

1� _ s� � s0� C0

2� _ [:] t�[ŵ�] � t0�

C0

2� _ : x � ŵ� _ [:] t�[x] � t0�

where ŵ� = t0 + t1 doesn't occur below a variable position of t, the maximal

atomic subterms of s� overlap with t0, and if ŵ = z + t̂ and t0 occurs below

z, then t̂ = t̂0 + t̂00 and t̂0 is a variable or 0 � t̂0� � t0, then the inference is a

ground instance of an abstraction inference from C1 and C2.

Proof. For standard superposition inferences, this is proved as in the classical

case. For cancellative superposition and abstraction inferences, the proof is

again similar to the proof of Lemma 3.24. The main di�erence is that we can

work directly with I and J (so there is no need to compute ~I and ~J �rst).

2

4 Refutational Completeness

4.1 Rewriting on Equations

To show that the inference system described so far is refutationally complete

we have to demonstrate that every saturated clause set that doesn't contain the

empty clause has a model. The traditional approach to construct such a model

is rewrite-based: First an ordering is imposed on the set of all ground instances

of clauses in the set. Starting with an empty interpretation all such instances

are inspected in ascending order. If a reductive clause is false and irreducible

in the partial interpretation constructed so far, its maximal equation is turned

into a rewrite rule and added to the interpretation. If the original clause set is

saturated and doesn't contain the empty clause, then the �nal interpretation is

a model of all ground instances, and thus of the original clause set (Bachmair

and Ganzinger [4]).

In our case, we have to modify this scheme. For an adequate treatment

of cancellative superposition it is not su�cient to be able to replace equals by

equals inside a term. Rather, we need a rewrite relation on equations.

De�nition 4.1 A ground equation e is called a rewrite rule if mt(e) doesn't

occur on both sides of e.
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Every rewrite rule has either the form nv + s � s0, where v is an atomic

term, n 2 N+, v � s, and v � s0, or the form v � s0, where v (and thus s0)

does not have sort SCAM. This is an easy consequence of the multiset property

of �.

At the top of a term, we will use rewrite rules in a speci�c way: Application

of a rule nv + s � s0 to an equation nv + t � t0 means to replace nv by s0

and simultaneously to add s to the other side, obtaining s0 + t � t0 + s.7

However, this is only possible at the top of an equation, not below a free

symbol. Consequently, there may be equations t � t0 that can be reduced to

0 � 0, whereas f(t) � f(t0) is irreducible. To compensate for this fact our

rewrite relation takes two sets of rewrite rules as parameters: one set of rules

generated directly from the clause set, and a second set of \derived" rules,

which are applied only below a free symbol and will �x the problem above.

De�nition 4.2 Given a pair (R;R0) of sets of rewrite rules, the three relations

!;(R;R0), !�;(R;R0), and !� are de�ned (modulo ACU) as follows:

� nv + t � t0 !;(R;R0) s0 + t � t0 + s,

if nv + s � s0 is a rule in R.

� t[s] � t0 !�;(R;R0) t[s0] � t0,

if (i) s � s0 is a rule in R [ R0 and (ii) s doesn't have sort SCAM or s

occurs in t below some free function symbol.

� u+ t � u+ t0 !� t � t0,

u � u !� 0 � 0,

if u is di�erent from 0.

The union of !;(R;R0), !�;(R;R0), and !� is denoted by !(R;R0).

We say that an equation e is -reducible, if e ! e0 (analogously for �

and �). It is called reducible, if it is -, �-, or �-reducible.

Unlike �-reducibility, - and �-reducibility can be extended to terms: A

term t is called -reducible, if t � t0 ! e
0, where the rewrite step takes place

at the left hand side (analogously for �). It is called reducible, if it is - or

�-reducible.

7While we have the restriction v � s, v � s0 for the rewrite rules, there is no such
restriction for the equations to which rules are applied.
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Lemma 4.3 The relation !(R;R0) is contained in �L and thus noetherian.

De�nition 4.4 Given a pair (R;R0) of sets of rewrite rules, the truth set

tr(R;R0) of (R;R0) is the set of all equations t � t0 for which there exists a

derivation t � t0 !�

(R;R0) 0 � 0.

4.2 Model Construction

De�nition 4.5 A ground clause C _ e is called reductive for e, if e is a

rewrite rule and strictly maximal in C _ e.

De�nition 4.6 Let N be a set of (possibly non-ground) clauses and let N be

the set of all ground instances of clauses in N . Using induction on the clause

ordering we de�ne sets of rules RC, R
K
C , EC, and E

K
C , for all clauses C 2 N .

Let C be such a clause and assume that RD, R
K
D , ED, and EK

D have already

been de�ned for all D 2 N such that C �C D. Then

RC =
[

D�CC

ED and RK
C =

[

D�CC

EK
D :

EC is the singleton set feg, if C is a clause C 0 _ e such that (i) C is reductive

for e, (ii) C is false in tr(RC ; R
K
C ), (iii) C

0 is false in tr(RC [ feg; R
K
C ), and

(iv) mt#(e) is irreducible with respect to (RC ; R
K
C ). Otherwise, EC is empty.

The set EK
C is non-empty only if EC contains a rule nv + s � s0. In this

case, EK
C is the set of all knv + r � r0 2 tr(RC [ EC ; R

K
C ) such that v � r,

v � r0, and knv + r � r0 is ��-irreducible with respect to (RC ; R
K
C ).

Finally, the sets R1 and RK
1

are de�ned by

R1 =
[

D2N

ED and RK
1 =

[

D2N

EK
D :

Our goal is to show that tr(R1; R
K
1) is a model of the axioms of cancella-

tive abelian monoids, and, for certain clause sets N , also a model of N . To

this end, we will �rst put together some basic properties of RC and RK
C . In

Section 4.3 we prove that the rewrite relation associated with (RC ; R
K
C ) sat-

is�es a restricted conuence property. The equality axioms and the laws of

cancellative abelian monoids follow as easy corollaries. Then we show in Sec-

tion 4.4 that tr(R1; R
K
1
) is in fact a model of N , provided that N is saturated

and does not contain the empty clause.
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Lemma 4.7 Let C and D be two clauses from N such that C �C D. If

EC = fe1g and ED = fe2g, then mt(e1) � mt(e2).

Proof. Suppose that mt(e1) � mt(e2). Then either mt#(e1) � mt#(e2), so by

the de�nition of the clause ordering, we would have C �C D. Or mt(e1) =

mt(e2) and mt#(e1) � mt#(e2), then mt#(e1) could be - or �-reduced using

e2. This is impossible, however. 2

Lemma 4.8 For every C 2 N, RC [ RK
C � tr(RC ; R

K
C ) and R1 [ RK

1
�

tr(R1; R
K
1
).

Lemma 4.9 If the rewrite rule e is contained in tr(RC ; R
K
C ), then mt#(e) is

reducible by (RC ; R
K
C ).

Proof. Suppose that e = nv + s � s0, where v = mt(e), n 2 N+, v � s, and

v � s0. Then there is a derivation

nv + s � s0 !�

(RC ;R
K

C
)
0 � 0 :

During this derivation, all occurrences of v are deleted eventually. As s and s0

are smaller than v, it is impossible to derive an occurrence of v on the right-

hand side. Therefore, the occurrences of v cannot be deleted by �-steps, but

only by - or �-steps, so nv is reducible.

The case that e = v � s0 and v doesn't have sort SCAM is proved in the

same way. 2

Lemma 4.10 If nv + s = s0 is a rewrite rule from EC , then for every knv +

r � r0 2 EC [EK
C there is an (RC [EC ; R

K
C )-derivation

knv + r � r0 !+
 r + ks0 � r0 + ks !� 0 � 0

starting with k-fold application of nv + s = s0.

Proof. If knv + r � r0 2 EC , then this is obvious, as EC is a singleton. If

knv + r � r0 2 EK
C , then by de�nition, there is a derivation

knv + r � r0 !�

(RC[EC;R
K

C
) 0 � 0 :

During this derivation, all occurrences of v are deleted eventually. As knv+ r �

r0 is ��-irreducible with respect to (RC; R
K
C ), this can only happen by k-fold

-application of nv + s = s0. These -steps are independent of any preceding

rewrite steps, hence we can shift them to the front of the derivation. 2
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Lemma 4.11 Let v be an atomic term, n 2 N+. If nv is -reducible by

(R1; R
K
1
) or (RC ; R

K
C ) for some C 2 N then nv is �-irreducible by (R1; R

K
1
)

and (RD; R
K
D) for every D 2 N .

Proof. If nv is -reducible, then there exists a rule kv + s � s0 2 EC0 , where

k � n. Suppose that nv were �-reducible using a rule t � t0 2 ED0 [ EK
D0 . We

distinguish between three cases:

If D0 �C C0, then t would have to be a subterm of v. Consequently, kv

would be reducible with respect to (RC0 ; R
K
C0), which is impossible by the

de�nition of EC0 .

If D0 �C C0, then t is strictly larger than k0v for any k0 2 N+, hence nv

cannot be �-reduced by t � t0.

If D0 = C0 then t has the form k0kv + r, and a �-reduction using t � t0

may take place only below a free function symbol. Again, it is impossible to

�-reduce nv by t � t0. 2

Lemma 4.12 If C 2 N and if e 2 tr(RC [ EC ; R
K
C ) is ��-irreducible with

respect to (RC [EC ; R
K
C ), then e 2 RK

C [EK
C [ f0 � 0g.

If C 2 N and if e 2 tr(RC ; R
K
C ) is ��-irreducible with respect to (RC ; R

K
C ),

then e 2 RK
C [ f0 � 0g. Similarly, if e 2 tr(R1; R

K
1) is ��-irreducible with

respect to (R1; R
K
1
), then e 2 RK

1
[ f0 � 0g.

Proof. Suppose that e is di�erent from 0 � 0 and let v = mt(e). Without loss

of generality we may assume that e = nv + s � s0, v � s, and v � s0. During

the derivation

nv + s � s0 !�

(RC[EC;R
K

C
) 0 � 0 ;

all occurrences of v are deleted eventually. This can be done only by (possibly

several) -rewriting steps. Therefore, RC [ EC contains (exactly!) one rule

kv + t = t0 2 ED for some D �C C. Since nv is deleted completely, n must

be equal to k0k where k0 is the number of -rewriting steps. The remaining

subterms in the equation are smaller than v, so all further reduction steps can

use only rules from (RD; R
K
D). Thus e 2 EK

D � RK
C [ EK

C .

The second part of the lemma is proved analogously. 2

4.3 Conuence

It is easy to see that the relation !(RC;R
K

C
) is in general not conuent:

Example 4.13 Let N = N = fCg where C is the clause 2c � d. Then

R1 = f2c � dg and RK
1 = ;. Now the equation 2c � c can be rewritten to
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d � c, using an -step, and also to c � 0, using a �-step. Both equations are

irreducible.

We can merely show that !(RC ;R
K

C
) is conuent on tr(RC ; R

K
C ), that is, that

any two derivations starting from an equation e can be joined, provided that

there is a derivation e!+ 0 � 0. In fact, this will be su�cient for our purposes.

Theorem 4.14 The relation !(RC;R
K

C
) is conuent on tr(RC; R

K
C ) for every

C 2 N . The relation !(R1;RK
1
) is conuent on tr(R1; R

K
1
).

Proof. Let us consider the relation !(RC ;R
K

C
). (The case of !(R1;RK

1
) is simi-

lar.) We have to prove that for any two (RC ; R
K
C )-derivations e!

+ 0 � 0 and

e!+ e0 there exists a derivation e0!� 0 � 0. As usual, this is done by analyz-

ing critical pairs and by noetherian induction over the size of e. However, we

need the induction hypothesis not only to show that local conuence implies

global conuence, but even to prove local conuence (in particular in Case 2

below). Let us consider a peak

e0

zz

(RC ;R
K

C
)

tt
tt
tt
tt
t

$$

(RC;R
K

C
)

JJ
JJ

JJ
JJ

J

e1 e2

where either e1 or e2 can be reduced to 0 � 0.

Case 1: Trivial peaks.

As in the traditional term rewriting framework, every peak converges if the

two rewrite steps take place at disjoint redexes. Furthermore, local conuence

is obvious, if both steps are �-steps, if both steps are -steps (since there is

at most one rule that can be applied in an -step at some nv), or if there is

one �- and one �-step. Finally, Lemma 4.11 shows that - and �-steps can

only take place at disjoint redexes. It remains thus to consider =�-peaks and

�=�-peaks.

Case 2: =�-peaks.

Closing a peak between a �-step and an -step is trivial if the latter takes place

at some free function symbol. It su�ces therefore to consider the situation

where a rewrite rule nv + s � s0 2 ED � RC with n � 2 is applied at the top

of an equation nv + t � v + t0. This yields a peak
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nv + t � v + t0

vv


1

mm
mm
mm
mm
mm
mm

&&
�

2

NN
NN

NN
NN

NN
N

s0 + t � v + s + t0 (n� 1)v + t � t0

where either s0 + t � v + s + t0 or (n � 1)v + t � t0 can be rewritten to 0 � 0

by (RC ; R
K
C ).

Case 2.1: s0 + t � v + s+ t0 !� 0 � 0.

At some step of the (RC ; R
K
C )-derivation s0 + t � v + s+ t0 !� 0 � 0 the term

v must be eventually deleted. Suppose that the deletion happens by another

application of nv + s � s0. Such a step requires the presence of n � 1 further

occurrences of v. As these occurrences cannot be derived from s or s0, we may

assume without loss of generality that the derivation has the form 3- 4- 5:

nv + t � v + t0

uu


1

jjj
jjj

jjj
jjj

jjj

''
�

2

OO
OO

OO
OO

OO
O

s0 + t � v + s + t0

�� �

3

(n� 1)v + t � t0

���

8

s0 + w � v + s + (n� 1)v + w0

��

4

(n� 1)v + w � (n� 1)v + w0

��

�

+

9

��
�
�
��
�
�
��
�
�
��
�
�
�
��

s + s0 + w � s0 + s+ w0

�� �

5
))

�

�6
TTT

TTT
TTT

TTT
TTT

T

w � w0

uu
�

7
jjj

jjj
jjj

jjj
jjj

jjj
j

0 � 0

On the other hand, we can use �-steps 6 to rewrite s + s0 + w � s0 + s + w0

to w � w0. By the induction hypothesis, the peak between 5 and 6 can be

joined, hence there is a derivation 7. As the steps 3 take place only at t and

t0, we can simulate them by 8. Finally, the diagram is closed by using n � 1

�-steps 9.

If v is not deleted by another application of nv + s � s0, then it must be

deleted by a �-step. Again, this requires the existence of another occurrence
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of v, which cannot be derived from s or s0. We may thus assume that the

derivation has the form 10- 11- 12:

nv + t � v + t0

uu


1

kkk
kkk

kkk
kkk

kkk

((

�

2

RR
RR

RR
RR

RR
RR

RR

s0 + t � v + s + t0

�� �

10

(n� 1)v + t � t0

���

13

s0 + w + v � v + s + w0

��

�11

(n� 1)v + w + v � w0

rr



14
eeee

eeee
eeee

eeee
eeee

eeee
eeee

ee

s0 + w � s+ w0

�� �

12

0 � 0

As the steps 10 take place only at t and t0, we can simulate them by 13. Finally,

we can close the diagram using -rewriting 14 by nv + s � s0.

Case 2.2: (n� 1)v + t � t0 !� 0 � 0.

This is proved in nearly the same way as Case 2.1.

Case 3: �=�-peaks.

It remains to show that every �=�-peak converges. Suppose that the �rst

rewrite step uses a rule from some ED or EK
D , and that the second rewrite step

uses a rule from some ED0 or E
K
D0, where D �C D0. We have to distinguish

two cases: Either the two steps rewrite overlapping parts of a sum, or they

take place one below the other.

Case 3.1: Overlaps below a free symbol.

Suppose that there are two rules s[t] � s0 2 ED [EK
D and t � t0 2 ED0 [EK

D0 ,

such that t occurs in s below a free function symbol. Obviously, D0 must

be smaller than D. As all rules from EK
D and the maximal terms of rules

from ED are �-irreducible with respect to (RD; R
K
D ), s[t] � s0 must be a rule

nv + u[t] � s0 2 ED and the peak has the form
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e[nv + u[t]]

ww
�

1

oo
oo
oo
oo
oo
oo

%%
�

2

KK
KK

KK
KK

KK

e[nv + u[t0]] e[s0]

where nv + u[t] occurs in e below a free function symbol.

Starting from the equation nv + u[t0] � s0 we construct a derivation as

follows:

nv + u[t0] � s0

��

�
�

3

nv + w + w0 � w0 + w0

��

�

�

4

nv + w � w0

��

5

s0 + w � w0 + u[t]

��

�6

s0 + w � w0 + u[t0]

��

�
�

7

w0 + w0 + w � w0 + w + w0

��

�

�

8

0 � 0

First we �-normalize the equation with respect to (RD; R
K
D ) by rewriting u[t0]

to w+ w0 and s0 to w0+ w0 3. Then we use �-steps 4 to cancel the common

part w0 (if any) on both sides of the equation. Using an -step by nv+ u[t] � s0

5 and a �-step by t � t0 6 we obtain s0 + w � w0 + u[t0], As the steps 3

take place only at u[t0] and s0, we can simulate them by 7. Finally, we can

use �-rewriting 8 to reduce the equation to 0 � 0.

By the construction of w and w0 and by Lemma 4.11, the equation nv+w �

w0 is ��-irreducible with respect to (RD [ ED; R
K
D ). By Lemma 4.12, it is

contained in EK
D . Hence we can join the peak between 1 and 2 as follows:
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e[nv + u[t]]
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e[nv + u[t0]]

��

�
�

9

e[s0]

��

�
�

10

e[nv + w + w0] //
�

11
e[w0 + w0]

where steps 9 and 10 simulate 3, and step 11 uses nv + w � w0.

Case 3.2: Overlaps at the top.

Suppose that two rules u � u0 2 ED [ EK
D and s � s0 2 ED0 [ EK

D0 are

used in �-steps to rewrite the same redex or overlapping parts of a sum in an

equation e. Without loss of generality let D �C D
0. If u or s doesn't have sort

SCAM, then D and D0 and thus s � s0 and u � u0 must be identical, so the

peak converges trivially. We can therefore assume without loss of generality

that u = mnv + r0 + r1 and s = knv + r0 + r2, where ED contains the rule

nv + t � t0. Deviating from our standard notational convention we allow k = 0

(if and only if D �C D
0) so that we can handle the cases D �C D

0 and D = D0

simultaneously. If D = D0, we assume by symmetry that m � k. The peak

has the form

e[mnv + r0 + r2 + r1]

tt
�

1

iii
iii

iii
iii

iii
ii

))
�

2

RR
RR

RR
RR

RR
RR

R

e[(m�k)nv + s0 + r1] e[u0 + r2]

As s � s0 and u � u0 are contained in ED [RD [EK
D [RK

D , there exist (RD [

ED; R
K
D)-derivations 3- 4 and 5- 6 starting with k- or m-fold -application

of nv + t � t0.

s0 � knv + r0 + r2

��



�

3

mnv + r0 + r1 � u0

��



+
5

s0 + kt � kt0 + r0 + r2

�� �

4

mt0 + r0 + r1 � u0 +mt

���

6

0 � 0 0 � 0
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Consider the two equations s0 + kt � kt0 + r0+ r2 and mt0 + r0+ r1 � u0 +mt.

If we add the left-hand sides and right-hand sides, respectively, we obtain a

new equation that can be rewritten to 0 � 0 using a combination 7 of 4

and 6:

s0 + kt+mt0 + r0 + r1 � kt0 + r0 + r2 + u0 +mt

�� �

7

**
� �

8

UUU
UUU

UUU
UUU

UUU
UU

(m�k)t0 + s0 + r1 � r2 + u0 + (m�k)t

��

�
�

9

(m�k)t0 + w+ w0 � w0 + w0 + (m�k)t

��

�

�

10

(m�k)t0 + w � w0 + (m�k)t

tt
�

11
iii

iii
iii

iii
iii

iii
iii

0 � 0

We will now show how to construct an alternative derivation starting from

s0 + kt +mt0 + r0 + r1 � kt0 + r0 + r2 + u0 +mt. First we use �-steps 8 to

cancel kt, kt0 and r0 on both sides of the equation. Then the resulting equation

is partially ��-normalized, �rst by �-rewriting s0 + r1 to w + w0 and r2 + u0

to w0 + w0 9, then by cancelling 10 the common part w0 (if di�erent from 0).

Using the induction hypothesis, we see that the peak between 7 and 8- 9- 10

can be joined, thus there is a derivation 11 which closes the diagram.

Consider now the equation (m�k)nv + w � w0. Using (m�k)-fold -

rewriting by nv + t � t0 and continuing as in 11, we obtain a derivation

(m�k)nv + w � w0

��



�

12

(m�k)t0 + w � w0 + (m�k)t

�� �

13

0 � 0

Furthermore, by the construction of w and w0 and by Lemma 4.11, the equa-

tion (m�k)nv + w � w0 is ��-irreducible with respect to (RD [ ED; R
K
D).
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By Lemma 4.12, (m�k)nv + w � w0 is contained in RK
D [ EK

D [ f0 � 0g.

Therefore, we can join the peak between 1 and 2 as follows:

e[mnv + r0 + r2 + r1]

tt
�

1

iii
iii

iii
iii

iii
ii

))
�

2

SSS
SS

SSS
SSS

SSS

e[(m�k)nv + s0 + r1]

��

�
�

14

e[u0 + r2]

��

�
�

15

e[(m�k)nv + w + w0] //oo
� �

16
e[w0 + w0]

where steps 14 and 15 simulate 9, and step 16 uses (m�k)nv + w � w0. 2

Corollary 4.15 For every C 2 N , tr(RC; R
K
C ) and tr(R1; R

K
1) are models of

the equality axioms.

Proof. We consider only tr(RC ; R
K
C ); the proof for tr(R1; R

K
1) is similar. It is

obvious that u� u 2 tr(RC ; R
K
C ) for every term u, and that u� v 2 tr(RC ; R

K
C )

implies v � u 2 tr(RC ; R
K
C ). For the transitivity axiom, consider two equations

u � v and v � w 2 tr(RC ; R
K
C ).

u � v

�� �

1

v � w

���

2

0 � 0 0 � 0

If u, v and w have sort SCAM, we can combine the derivations 1 and 2 and

obtain a derivation 3:

u+ v � v + w

�� �

3
&&

� +

4

MM
MM

MM
MM

MM

u � w

xx
� 5
qq
qq
qq
qq
qq
q

0 � 0

On the other hand, we can use �-steps 4 to cancel v on both sides of the equa-

tion. By Theorem 4.14, there is a derivation 5, hence u � w 2 tr(RC ; R
K
C ).

If u, v and w don't have sort SCAM, the derivations 1 and 2 must have

the form 6- 7 and 8- 9:
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u � v

��

�
�

6

v � w

��

�
�

8

s � s

��

�7

t � t

��

� 9

0 � 0 0 � 0

As the �-steps in 6 and 8 rewrite each side of the equations separately,

we can use the same rules to rewrite v � v 10 and u � w 11.

v � v

��

�12
""

�

�10 EE
EE

EE
EE

u � w

{{

�

� 11vv
vv
vv
vv
v

s � t

||
+ 13yy

yy
yy
yy

0 � 0

On the other hand, we can rewrite v � v immediately to 0 � 0 12. By

conuence, there is a derivation 13 and u � w 2 tr(RC ; R
K
C ).

It remains to show that u� v 2 tr(RC ; R
K
C ) entails t[u]� t[v] 2 tr(RC ; R

K
C ).

If there is no free symbol in t above u, this is trivial, so let us assume that u

occurs in t below a free symbol. Consider the derivation 1:

u � v

�� �

1

''
� �

2

OO
OO

OO
OO

OO
OO

w + w0 � w0 + w0

��

�

�

3

w � w0

ww
� 4
oo
oo
oo
oo
oo
oo

0 � 0

We can ��-normalize u� v, �rst by �-rewriting u to w+w0 and v to w
0+w0 2,

then by cancelling 3 the common part w0. (If u and v don't have sort SCAM, 2
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yields w � w0 directly.) According to Theorem 4.14, there exists a derivation

4. The equation w � w0 is ��-irreducible with respect to (RC; R
K
C ), hence it

is contained in RK
C [ f0 � 0g by Lemma 4.12. Without loss of generality we

assume w � w0. This allows us to construct the following derivation:

t[u] � t[v]

��

�
�

5

t[w + w0] � t[w0 + w0]

��

�
�

6

t[w0 + w0] � t[w0 + w0]

��

�

+
7

0 � 0

where step 5 simulates 2 and step 6 uses w � w0 (if di�erent from 0 � 0).

Summarizing we get t[u] � t[v] 2 tr(RC ; R
K
C ). 2

Corollary 4.16 For every C 2 N , tr(RC; R
K
C ) and tr(R1; R

K
1
) are models of

ACUK.

Proof. The cancellation axiom is proved in the same way as the transitivity

axiom (Corollary 4.15). The associative, commutative, and identity axioms

are obvious. 2

4.4 Completeness

Lemma 4.17 Let C be a clause from N. If C is true in tr(RC ; R
K
C ), then it

is also true in tr(R1; R
K
1
) and tr(RD; R

K
D ) for any D �C C.

Lemma 4.18 Let C = C0 _ e be a clause from N such that EC = feg. Then

C is true and C0 is false in tr(R1; R
K
1) and tr(RD; R

K
D) for any D �C C.

Lemma 4.19 Let N be a set of clauses that is saturated up to ACUK-redun-

dancy and doesn't contain the empty clause. Then for every ground clause

C 2 N we have:

(i) If C is an instance of a clause in N with selected literals, then C is true

in tr(RC ; R
K
C ).

(ii) If C is redundant, then it is true in tr(RC; R
K
C ).

(iii) EC = ; if and only if C is true in tr(RC ; R
K
C ).

(iv) C is true in tr(R1; R
K
1) and in tr(RD; R

K
D) for every D �C C.
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Proof. We use induction on the clause ordering �C and assume that (i){(iv)

are already satis�ed for all C0 2 N with C �C C0. Note that the \if" part

of (iii) is obvious from the model construction and that condition (iv) follows

immediately from (iii), Lemma 4.18, and Lemma 4.17. Let C = Ĉ� for some

Ĉ 2 N .

Case 1: C is redundant.

If C is redundant, then there are clauses C1; : : : ; Cn 2 N such that Ci �C C

for every i 2 f1; : : : ; ng and fC1; : : : ; Cng j= C. By part (iv) of the induction

hypothesis, all Ci are true in tr(RC ; R
K
C ). As tr(RC ; R

K
C ) satis�es ACUK, C

is true in tr(RC ; R
K
C ).

Case 2: x� equals some smaller term.

Suppose there is a variable x in Ĉ and a ground term w such that x� � w

and x� � w 2 tr(RC ; R
K
C ). Let the substitution � be de�ned by x� = w and

y�= y� for every variable x 6= y. The clause Ĉ� is smaller than C. By part (iv)

of the induction hypothesis, it is true in tr(RC; R
K
C ). As tr(RC ; R

K
C ) satis�es

the equality axioms, every literal of Ĉ� is true in tr(RC; R
K
C ) if and only if the

corresponding literal of Ĉ� is true; hence C is true in tr(RC; R
K
C ).

Case 3: C contains a selected or maximal negative literal.

Suppose that C = C0 _ : e doesn't fall into the preceding two categories and

that the literal : e is either an instance of a selected literal in Ĉ or or that Ĉ

contains no selected literal and : e is maximal in C. If e =2 tr(RC; R
K
C ), there

is nothing to show, so assume that there is a (RC ; R
K
C )-derivation from e to

0 � 0. Let v = mt(e).

Case 3.1: v occurs on both sides of e.

If e equals v � v where v either doesn't have sort SCAM or equals 0, then

there is an equality resolution inference from C = C 0 _ : e yielding C0. This

inference is a ground instance of an equality resolution inference from Ĉ. By

saturation up to ACUK-redundancy, it is redundant, hence there are clauses

C0

1; : : : ; C
0

n 2 N such that C0

i �C C and fC0

1; : : : ; C
0

ng j= C0. By the induction

hypothesis, all C0

i and thus C0 and C are true in tr(RC ; R
K
C ).

If e equals nv + t � mv + t0 with n � m � 1 then there is a cancellation

inference from C = C0 _ : e yielding C0 _ : (n�m)v + t � t0. This inference

is a weak ground instance of a cancellation inference from Ĉ. As above, we

deduce that C0 _ : (n�m)v + t � t0 and C are true in tr(RC; R
K
C ).
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Case 3.2: v occurs on only one side of e.

If v occurs only on one side of e, then e has either the form nv+ s � s0 or v � s0

and v doesn't have sort SCAM. We write e[v] if the distinction between these

two cases is irrelevant.8 By Lemma 4.9 we may assume that the reduction

from e to 0 � 0 starts with an - or �-step at nv or v.

Case 3.2.1: Reduction by RC.

Suppose that the reduction from e to 0 � 0 starts with the application of a

rule e0 2 ED � RC , where D = D̂� =D0 _ e0 for some D̂ 2 N . By part (i)-(iii)

of the induction hypothesis and Lemma 4.18, D is not redundant, D̂ has no

selected literals, and D0 is false in tr(RC ; R
K
C ).

Case 3.2.1.1: Reduction at the top and v has sort SCAM.

If v has sort SCAM and the reduction takes place at the top, then e0 is a rewrite

rule mv + t � t0. Consider the cancellative superposition inference

D0 _ mv + t � t0 C0 _ : nv + s � s0

D0 _ C0 _ : (n�m)v + s+ t0 � s0 + t

If nv + s were equal to x� for some variable x occurring in Ĉ, then x� �

s0 2 tr(RC ; R
K
C ), so C would be subject to Case 2 above. By Lemma 3.26 the

inference is therefore a ground instance of a cancellative superposition inference

from D̂ and Ĉ. As N is saturated, it is redundant, thus its conclusion is true in

tr(RC; R
K
C ). Both D0 and : (m�n)v + s+ t0 � s0 + t are false in tr(RC ; R

K
C ),

so C0 and C must be true in tr(RC ; R
K
C ).

Case 3.2.1.2: Reduction below a free function symbol or v doesn't have sort

SCAM.

If v does not have sort SCAM or if the reduction takes place below a free function

symbol, then e0 is a rewrite rule t � t0 and e = e[v[t]]. If t occurred in e at or

below a variable position of Ĉ, say, x� = w[t], then x� � w[t0] 2 tr(RC; R
K
C ), so

C would be subject to Case 2 above. Consequently, the standard superposition

inference
D0 _ t � t0 C0 _ : e[v[t]]

D0 _ C0 _ : e[v[t0]]

is a ground instance of a standard superposition inference from D̂ and Ĉ.

Again, by saturation, its conclusion is true in tr(RC ; R
K
C ); and since D0 and

: e[v[t0]] are false in tr(RC ; R
K
C ), both C0 and C must be true.

8Recall that nv is merely an abbreviation for the n-fold sum v+ � � �+ v. If e= nv+ s� s0,
then the hole in e[ ] is the position of one of the n v's.
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Case 3.2.2: Reduction by RK
C .

Suppose that e can be reduced using a rule e00 = kmu+ r � r0 from RK
C , but

not using a rule from RC . Let D = D̂� = D0 _ e0 such that e0 = mu+ s � s0,

ED = fe0g, and e00 2 EK
D . We may assume that some sum kmu+ r+ r00 occurs

in v immediately below a free function symbol. As e can't be reduced using e0,

there is no s00 such that r+ r00 = s+ s00, hence there is an abstraction inference

D0 _ mu+ s � s0 C0 _ : e[v[kmu+ r + r00]]

C0 _ : y � kmu+ r + r00 _ : e[v[y]]

If kmu + r occurred in e at or below a variable position of Ĉ, then C would

be subject to Case 2 above. Hence let Ĉ = Ĉ0 _ : ê[v̂[t̂]], where ê[ ]� = e[ ],

v̂[ ]� = v[ ], and t̂� = kmu+ r+ r00. Assume that t̂ had the form z +
P

j2J t̂j ,

where z� �mu and all t̂j are atomic terms and are either zero or t̂j� � z�. Then

z� could be written as kmu+ r + r000, since u � r. This is impossible, though,

as kmu + r must not occur at or below a variable position. By Lemma 3.26,

the inference is therefore a ground instance of an abstraction inference from D̂

and Ĉ. By saturation,

C0 _ : r0 + r00 � kmu+ r + r00 _ : e[v[r0+ r00]]

is true in tr(RC ; R
K
C ); and since r0+ r00 � kmu+ r+ r00 2 tr(RC ; R

K
C ), C must

be true likewise.

Case 4: C doesn't contain a selected or maximal negative literal.

Suppose that C doesn't fall into one of the cases 1{3. Then C can be written

as C0 _ e, where e is a maximal literal of C. If EC = feg or C0 is true in

tr(RC; R
K
C ), then there is nothing to show, so assume that EC = ; and that

C0 is false in tr(RC ; R
K
C ). Let v = mt(e).

Case 4.1: v occurs on both sides of e.

Obviously e cannot have the form v � v, since then C would be a tautology

and thus redundant. If e equals mv + t � nv + t0 with n � m � 1, then there

is a cancellation inference from C. As in case 3.1, we can show that C is true

in tr(RC; R
K
C ).

Case 4.2: v occurs on only one side of e.

If v occurs only on one side of e, then either e = nv + s � s0, or e = v � s0

and v doesn't have sort SCAM.
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Case 4.2.1: C0 is true in tr(RC [ feg; R
K
C ).

Suppose that C0 is false in tr(RC ; R
K
C ), but true in tr(RC [ feg; R

K
C ). (This

includes in particular the case that e is maximal, but not strictly maximal

in C.) Then C0 = C00 _ e1, where the literal e1 in C0 is not larger than e

and has an (RC [ feg; RK
C )-derivation to 0 � 0 in which e is used. Since

the latter condition implies mt#(e1) � mt#(e), e1 must be a rewrite rule and

mt#(e1) = mt#(e).

Case 4.2.1.1: v has sort SCAM.

If v has sort SCAM, let e = nv + s � s0 and e1 = nv + t � t0. Without loss of

generality, the (RC [ feg; R
K
C )-derivation of e1 starts with an -application of

e and has the form

nv + t � t0 ! s0 + t � s + t0 !�

(RC ;R
K

C
)
0 � 0

The cancellative equality factoring inference

C00 _ nv + s � s0 _ nv + t � t0

C00 _ : s+ t0 � s0 + t _ nv + t � t0

is a ground instance of a cancellative equality factoring inference from Ĉ. By

saturation, its conclusion is true in tr(RC; R
K
C ). As s+ t0 � s0+ t 2 tr(RC ; R

K
C ),

C00 _ s0 + t _ nv + t � t0 and thus C must be true in tr(RC ; R
K
C ).

Case 4.2.1.2: v doesn't have sort SCAM.

If v doesn't have sort SCAM, then let e = v � s0 and e1 = v � t0. Analogously to

case 4.2.1.1 we can show that the conclusion of the standard equality factoring

inference
C00 _ v � s0 _ v � t0

C00 _ : s0 � t0 _ v � t0

is true in tr(RC ; R
K
C ) and that s0 � t0 2 tr(RC; R

K
C ). Again, C must be true

in tr(RC; R
K
C ).

Case 4.2.2: C0 is false in tr(RC [ feg; R
K
C ).

So far we have considered the cases that C is not reductive for e, or that

C is true in tr(RC ; R
K
C ), or that C

0 is true in tr(RC [ feg; R
K
C ). If none of

these conditions applies but EC is empty, then mt#(e) must be reducible with

respect to (RC ; R
K
C ). We can then show that C is true in tr(RC ; R

K
C ), using

essentially the same techniques as in case 3.2. This concludes the proof of this

lemma. 2
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Theorem 4.20 Let N be a set of clauses that is saturated up to ACUK-

redundancy. ThenN [ACUK is equality unsatis�able if and only if N contains

the empty clause.

Proof. If N contains the empty clause, then it is unsatis�able. Otherwise,

tr(R1; R
K
1
) is a model of the equality axioms (by Corollary 4.15), of ACUK

(by Corollary 4.16), and of N (by part (iv) of Lemma 4.19). 2

5 Simpli�cation Techniques

Let N be a set of clauses. We say that M � N is simpli�ed to another set of

clauses M 0, if N j= M 0 (so that we may add M 0, once we have got N), and

if M is ACUK-redundant with respect to N [M 0 (so that we may delete M ,

once we have added M 0).

For example, every clause

C1 = C _ [:] s+ t � s + t0

can be simpli�ed to

C0 = C _ [:] t � t0

(independently of N). We can also extend the classical simpli�cation by de-

modulation to cancellative superposition, so that a clause

C1 = C _ C0 _ [:] s+ t � t0

can be simpli�ed to

C0 = C _ C0 _ [:] w0 + t � t0 + w

provided that N contains a clause D such that

D� = C0 _ s+ w � w0

where s �x w, s �x w0, and C1 �C D�. For instance, every inference in

Example 3.13 is a simpli�cation of the maximal premise. In particular, this

technique can in nearly all cases be used to eliminate any remaining occurrences

of the redex in the conclusion of a cancellative superposition inference.

Bachmair and Ganzinger [4] list a number of general simpli�cation tech-

niques such as case analysis or contextual rewriting. These methods can easily

be extended to our framework. In this section, we will concentrate on tech-

niques that help to reduce the number of clauses with eligible variables.
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Whereas the ordering conditions of our inference rules make cancellative

superposition inferences into shielded variables superuous, cancellative super-

position inferences into unshielded variables cannot generally be avoided. As

an example, consider the clauses b + c � d and x + c 6� d with the ordering

b � c � d. Since uni�cation is not an e�ective �lter, clauses with eligible

variables are extremely proli�c. Simpli�cation techniques o�er the possibility

to remove certain clauses with eligible variables from the clause set, or at least

to render inferences with them redundant.

Lemma 5.1 Let C 2 N be a clause
_

i2I

nix+ si � ti

where x occurs in neither of the ti. Then every model of ACK [ N can be

extended to a model of x + 0 � x and x + (�x) � 0, where 0 and � are new

function symbols.

Proof. Let � be a substitution that maps all variables in C except x to con-

stants. LetM be an arbitrary model of ACK[N , whereMCAM is the carrier set

of the sort SCAM. Then ti corresponds to a constant in MCAM and (ni�1)x+ si
to a (possibly constant) function from MCAM to MCAM. By Lemma 2.2, MCAM

is a group. Hence we can interpret 0 and � appropriately in M so that M

becomes a model of x+ 0 � x and x+ (�x) � 0. 2

Lemma 5.2 Let C be a clause

C0 _
_

i2I

nix+ si � ti

where x occurs neither in C0 nor in the ti. Let N be a set of clauses and 0

and � be new function symbols. Then every model of fCg [ ACK is either a

model of C0 or it can be extended to a model of x + 0 � x and x + (�x) � 0.

In particular, N [ fCg [ACK is satis�able if and only if N [ fC 0g [ ACK or

N [ fCg [ fx+ (�x) � 0g [ACUK is.

Proof. Suppose that there is a model M of fCg [ ACK that is not a model

of C0. Let � be a substitution with domain Var(C0) such that the ground clause

C0� is false in M . Consequently,
_

i2I

nix + si� � ti�

must be true inM . By Lemma 5.1,M can be extended to a model of x+ 0� x

and x + (�x) � 0. 2
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In its most general form, we can use this lemma to split one theorem

proving derivation into two branches in a tableaux-like manner (cf. [5]). It

is particularly useful if one of the two branches can immediately be seen to

fail. This happens in two situations: First, if C0 is empty, the �rst branch

can be closed immediately. In this case C implies the identity and inverse

axioms, and, although it not required by fairness, it may be wise to add them

to �nd an easier proof.9 Second, if N contains some subset N 0 that implies

that SCAM is not a group, the second branch can be closed immediately. (For

instance, N 0 might consist of the single clause y + a 6� b.) In this case, C can

be simpli�ed to C0. In \non-groups" it is thus always possible to get rid of

unshielded variables that occur only positively.

Unshielded variables occurring negatively are somewhat harder to handle.

There is a variant of \rewriting with equations of conditions" which can some-

times be applied if an unshielded variable occurs in two di�erent literals. A

clause

C1 = C _ :mx+ s � s0 _ [:] nx + t � t0

with n �m � 1 is equivalent to

C0 = C _ :mx+ s � s0 _ [:] (n�m)x+ t+ s0 � t0 + s :

Repeated use of this inference leads to a clause in which x occurs only in

one negative literal kx + w � w0 and possibly in some positive literals (with

coe�cients smaller than k). Unfortunately, this is not a simpli�cation for all

instances of C1�, but just for those that satisfy x� �x s� and x� �x s0�.10

Hence adding C0 makes it unnecessary to consider inferences with C1 that

involve only x but no subterm of s or s0. Inferences that involve both x and a

subterm of s or s0 are still necessary, though.

If an unshielded variable occurs only in one negative literal (and no positive

one), we can eliminate it, provided that the inverse axiom has been derived

and that the coe�cient of the variable is 1. In a group, every clause of the

form

C _ : x + s � s0 ;

where x doesn't occur in C, can be simpli�ed to C.

What can be done to eliminate unshielded variables that occur negatively

with a coe�cient k larger than 1, and possibly also positively with coe�cients

9The reader might try to refute ACUK[ f 2x� a _ x� b; 2b 6� a g without �rst deducing
the inverse axiom.

10It is not possible to weaken this condition to x� 6�x s� and x� 6�x s
0�. For instance, if C1

is the clause 2x+ 4b 6� c _ 3x 6� d and b � c � d, then C0 is 2x+ 4b 6� c _ x+ c 6� d+ 4b,
and C0� is larger than C1� if � maps x to b.
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smaller than k ? A clause like 2x 6� a is true in some groups and some non-

groups (take the integers or the naturals and a = 1), and false in others. To

remove such a literal, additional properties of the model class are required,

namely, that for every k 2 N+ and u there is a v such that kv � u.

If a clause has the form

C _ : kx+ s � s0 _ nx + t � t0

with n < k, then it is possible to derive

C _ : kx+ s � s0 _ kt+ ns0 � kt0 + ns :

In general, this is not a simpli�cation, since the second clause does not imply

the �rst one. To show the equivalence of the two clauses, one needs that

ky � kz implies y � z. This property does not hold in Z=4, for instance. On

the other hand, it does hold in totally ordered cancellative abelian monoids, if

the ordering is compatible with addition. It is still to be investigated to which

degree we can exploit this.

6 Conclusions

We have presented a calculus for �rst-order equational theorem proving in the

presence of the axioms of cancellative abelian monoids. The calculus is refu-

tationally complete without requiring extended clauses or explicit inferences

with the theory clauses. Compared with the conventional superposition calcu-

lus, on which it is based, the ordering constraints are strengthened in such a

way that we may not only restrict to inferences that involve the maximal side

of the maximal literal, but even to inferences that involve the maximal atomic

terms. The calculus may further be furnished with selection functions.

In traditional AC-superposition, extended rules show a rather proli�c be-

haviour. In our approach, AC-uni�cation is replaced by ACU-uni�cation. Fur-

thermore, cancellative superposition makes extended rules superuous, and

the ordering constraints mentioned above allow to exclude inferences involving

shielded variables altogether. Many occurrences of unshielded variables can be

eliminated by appropriate simpli�cation techniques. Unfortunately cancella-

tive superpositions into variables in sums cannot be completely avoided. More

ways to eliminate unshielded variables are possible in the presence of further

algebraic structure. This is still a matter of further investigation.

At the time of writing this paper, we cannot yet report about practical

experiences with our calculus. An implementation in the Saturate system [13]

is under way.
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