
Runtime Prediction of Real Programs on Real Machines

�

Ulrich Finkler

y

Kurt Mehlhorn

z

Abstract

Algorithms are more and more made available as part of

libraries or tool kits. For a user of such a library statements

of asymptotic running times are almost meaningless as he

has no way to estimate the constants involved. To choose

the right algorithm for the targeted problem size and the

available hardware, knowledge about these constants is im-

portant.

Methods to determine the constants based on regression

analysis or operation counting are not practicable in the

general case due to inaccuracy and costs respectively. We

present a new general method to determine the implementa-

tion and hardware speci�c running time constants for com-

binatorial algorithms. This method requires no changes of

the implementation of the investigated algorithm and is ap-

plicable to a wide range of of programming languages. Only

some additional code is necessary.

The determined constants are correct within a constant

factor which depends only on the hardware platform. As an

example the constants of an implementation of a hierarchy

of algorithms and data structures are determined. The hi-

erarchy consists of an algorithm for the maximum weighted

bipartite matching problem (MWBM), Dijkstra's algorithm,

a Fibonacci heap and a graph representation based on ad-

jacency lists. The errors in the running time prediction of

these algorithms using exact execution frequencies are at

most 50 % on the tested hardware platforms.

1 Introduction

Big-O analysis of algorithms is concerned with the

asymptotic analysis of algorithms, i.e., with the behav-

ior of algorithms for large inputs. It does not allow the

prediction of actual running times of real programs on

real machines and therefore its predictive value is lim-

ited.

� An algorithm with linear running time O(n) is faster

than an algorithm with running time O(n

2

) for su�-

ciently large n. Is n = 10

6

large enough? Asymp-

totic analysis of algorithms is of little help to answer

�

Supported by ALCOM-IT and Graduiertenkolleg 'E�zienz

und Komplexit�at von Algorithmen und Rechenanlagen', Univer-

sit�at Saarbr�ucken, Germany.

y

Max-Planck-Institut f�ur Informatik, Saarbr�ucken.

z

Max-Planck-Institut f�ur Informatik, Saarbr�ucken.

this question. It is however true that a well-trained al-

gorithms person who knows program and analysis can

make a fairly good guess.

� Algorithms are more and more made available as

part of software libraries or algorithms tool kits, LEDA

is a widely used example [10]. For a user of such

a library statements of asymptotic running times are

almost meaningless as he has no way to estimate the

constants involved. After all, the purpose of a tool kit

is to hide the implementations from the end user.

The two items above clearly indicate that we need

more than asymptotic analysis in order to have a theory

with predictive value. The ultimate goal of analysis

of algorithms must be a theory that allows to predict

the actual running time of an actual program on an

actual machine with reasonable precision (say within a

factor of two). We must aim for the following scenario:

When a program is installed on a particular machine

a certain number of well-chosen tests is executed in

order to learn about machine parameters relevant for

the execution of the program. This knowledge about the

machine is combined with the analysis of the algorithm

to predict running time on speci�c inputs. In the

context of an algorithms library one could even hope

to replace statements about asymptotic execution times

by statements about actual execution times during

installation of the library.

Asymptotic analysis of algorithms approximates the

running time T (x) of an algorithm on input x as

T (x) �

X

i

C

i

f

i

(x)(1.1)

where f

i

(x) measures the frequency of execution of a

certain set of operations M

i

and C

i

measures the exe-

cution time ofM

i

on an idealized RandomAccess Com-

puter. The theoretical analysis provides approximations

for the execution frequencies f

i

(x), for example in the

worst or average case.

Due to computer architectures with registers,

caches, pipelines etc. the execution time of a subset M

i

of the code is context sensitive and hence the execution

time is

T (x) =

X

i

X

1�j�f

i

(x)

C

i;j;x

1

2

where C

i;j;x

is the time for the j-th execution of M

i

on input x, taking into account whether or not data

are present in the cache, for example. The coe�cients

C

i;j;x

may vary by a factor F , which is the quotient

between the fastest and slowest possible execution of an

instruction. The execution time for a single instruction

may vary widely, e.g. on one of the architectures used

for experiments (Pentium with 8-3-3-3-burst and 60

MHz external clock) F is close to 30 for a 200 MHz

CPU (the burst access to main memory takes about

130 ns to transfer the �rst 64 bit package which is 26

times the clock cycle of the processor). Nevertheless

we will argue in section 3 that the execution time

of many interesting programs can be approximated as

in equation (1.1) within a constant factor

�

F which is

much smaller than F . Moreover, the set of necessary

constants C

i

is fairly small, even for complex algorithms

[6] and can be determined with automated experiments,

executed once for each platform.

There are basically two approaches for the determina-

tion of the C

i

in the literature:

Regression analysis: It is easy to instrument a pro-

gram such that the total running time T (x) and the

execution frequencies f

i

(x) are determined during a pro-

gram run ([6],[8]). It is therefore tempting to measure

T (x) and f

i

(x) for a large number of inputs x and to

determine the constants C

i

by regression analysis. We

will argue in section 4.1 that this approach is unsound in

general because of systematic measurement errors. For

example, we should expect the C

i

to systematically de-

pend on input size, e.g., due to cache misses. However,

regression analysis is only meaningful when measure-

ment errors are statistically distributed.

Operation counting: This technique basically counts

the operations of a program and estimates the time

for the execution of the underlying assembler structure.

[2] describes a technique called 'mem-counting', which

charges memory references by insertions of counter in-

structions into the source code for each such instruction.

Methods based on operation counting provide feasible

running time predictions, but they are costly to auto-

mate (section 4.2).

In this paper we present a new approach for the au-

tomated determination of the coe�cients C

i

, which we

call timing of equivalent code fragments. We will argue,

that it is possible to design experiments which execute

a fragment in isolation (so that the interpretation of the

timing needs no regression analysis), which execute the

fragment approximately within its real context (so that

the timing re
ects the actual running time) and which

execute the fragment many times (so as to minimize the

e�ect of measurement errors).

In order to reach these three goals the experiments

time slightly modi�ed code fragments. The fragments

are similar to the original as far as the executed oper-

ations and the locality of memory references are con-

cerned. We calls such fragments equivalent code frag-

ments.

As a test for our approach we have chosen an im-

plementation in C of a hierarchy of algorithms and data

structures. The top level consists of an algorithm for the

maximumweighted bipartite matching (MWBM) prob-

lem which uses Dijkstra's algorithm as a subroutine.

The implementation of Dijkstra's algorithm is based on

a Fibonacci heap. Both algorithms use a graph repre-

sentation based on adjacency lists.

This test set has many properties which complicate

running time prediction. It consists of several levels of

algorithms, only an amortized analysis of the costs is

possible and the execution frequencies depend strongly

on the distribution of the edge weights as well as the

order in the adjacency lists, not only on the number of

edges and nodes. Additionally, the Fibonacci heap is

a fairly complicated data structure which uses heavily

dynamic memory allocation for small objects.

We performed experiments on a variety of machines

with Pentium (CISC) and Sparc (RISC) architecture

and di�erent operating systems (Linux, SunOS and

Solaris) (section 4.3.1,page 6). We used random inputs

for the experiments, the execution frequencies of each

instance were determined experimentally. The input

sizes varied from 1000 up to 100000 nodes and 1000 to

400000 edges. The actual execution times varied from

a few milliseconds up to several minutes. In all cases

the measured time was within 50 % of the predicted

time (and usually closer, �g. 3, page 9). The actual

execution times varied from a few milliseconds up to

several minutes. Moreover, for the determination of

the running time constants inputs with less than 50000

nodes or edges were su�cient, since the constants reach

asymptotically a maximum once memory usage exceeds

the size of the cache. Thus our method allows not only

interpolation, but also extrapolation.

Due to the arguments in section 3 and the experi-

mental results it is likely that the method will produce

useful results for combinatorial algorithms in general.

The identi�cation of code fragments and their replace-

ment by equivalent code fragments is a potential source

of error. We implemented redundant experiments for

several code segments and found that di�erent experi-

ments produced similar running time coe�cients. We

conclude that the method is robust.

Additionally, the hierarchical structure demon-

strates the compatibility of our approach with the hier-

archical structure of algorithms. The constants of sub-

3

algorithms can be reused in the running time prediction

as the methods in implementations.

Running time constants can be combined with any

kind of theoretical analysis (known execution frequen-

cies, best case frequencies, worst case frequencies, aver-

age case frequencies) to make predictions. If the theoret-

ical analysis provides the execution frequencies within

a constant factor, time prediction is possible within a

constant factor. In the other cases the error in the time

prediction is dominated by the error of the theoretical

analysis. An example is given with an average case anal-

ysis of Dijkstra's algorithm (page 8). Additionally the

constants evaluated with our method allow comparisons

between di�erent implementations and hardware.

2 Code Fragments

How does one �nd feasible code fragments to be used in

equation (1.1)? A code fragment is a piece of straight-

line code with 'holes'. The identifying property of code

fragments is that execution of the program executes

every instruction of the fragment the same number of

times. Due to this fact feasible code fragments are de-

�ned quite naturally as loop bodies, branches of con-

ditionals and function bodies. The holes correspond to

nested fragments, e.g. nested loop or nested function

bodies.

Frequently one may merge code fragments into

larger units without violating this property, e.g. when

both branches of a conditional execute an approximately

equal set of instructions or a function call has constant

execution time. We found identi�cation of feasible code

fragments a fairly straightforward task.

3 Context Sensitivity

As mentioned, the execution time of an instruction

depends on its context. In this section we will show,

that for many interesting programs the variation of the

execution time of a code segment due to caching and

pipelining can be expected to be much smaller than the

worst case variation of the execution time of a single

instruction.

We discuss caching �rst. We call a reference to

memory local if no cache miss occurs, and nonlocal

otherwise. The 90/10 rule [3] states that a program

executes 90 % of its instructions in 10 % of its code,

which we call the 'core' of the program. An example

calculation in [3] assumes, that only the fraction of the

core which �ts into the cache simultaneously produces

no cache misses. But the experimental results in the

same book show much better cache hit rates. Already

1 kB 2-way associative cache reduces the cache misses

on a Unix machine to 20 % of the instructions.

This result is not surprising. In most programs

the code of inner loops is smaller than a few thousand

bytes. The core of a program consists of many small

pieces which are executed in the cache one after the

other. Therefore it is realistic to assume that 80-90 %

of the instructions are local. So a highly associative

cache (2-way or more), that is bigger than the average

loop size, gives a minimum hit rate of about 80 % for

instructions. By the above, we should expect this hit

rate independent of program size.

Data access is less local than instruction access [3].

However, even for data references there are frequently

at least two local data references for every nonlocal

reference. For example, for a nonlocal access to an array

element, the access to the base address of the array and

to the o�set are usually local. The experimental data

in [3] con�rm, that at least 50 % of the data references

are local.

In the case of some kB highly associative cache

and ordinary programs the following rules of thumb are

plausible:

1. There are at least as many code references as data

references.

2. At least 50 % of the data references are local.

3. At least 80 % of the code references are local.

Consider a sequence of n

c

accesses to instructions

and n

d

accesses to data, and let n = n

c

+n

d

. Under the

assumptions above the maximumexperienced slowdown

� due to cache misses is

� =

(

4

5

+

1

5

F)n

c

+ (

1

2

+

1

2

F)n

d

n

�

7

20

F +

13

20

(3.2)

For F = 30, we have � � 11:15. We will next argue that

the actual factor is much smaller for equivalent code

fragments.

A code fragment, that belongs to a leading term

in the running time, is executed many times. It will be

embedded in a loop or recursion. After a certain number

of repetitions, the context of the loop is dominated by

the loop itself. Together with an input for the fragment

which produces a similar locality of code and data

references, caching e�ciency between experiment and

original will not di�er too much. For a similar context

the e�ciency of a pipeline is similar too.

There are cases, in which the context cannot be

reproduced well. These are code fragments, which are

executed multiple times, but between their executions

intermediate code is executed. But already with an

instruction cache of a few kB either the probability,

that the fragment is still present in the cache at the

time of the next execution, is high or the intermediate

code dominates the running time.

4

Usually the code fragments are about 1 kB or

smaller. If enough code is executed between two

repetitions of our hypothetic fragment to push it out

of several kB of instruction cache, it has to take several

times longer. Worst case scenarios can be constructed,

but the empirical results [3] show that they are not

likely to happen. Altogether, we conclude that for each

code fragment there is a constant C

j

such that the

context-sensitive execution time of the fragment lies in

some interval [C

j

=

�

F;C

j

�

F] for some hardware dependent

�

F << �.

The approximation neglects pipelining. The exper-

iments in [3] show that the speedup resulting from a

pipeline depends strongly on the optimization of the

compiler and the individual pipeline. There are three

classes of events that decrease the e�ciency of a pipeline

by producing a 'stall' [3]:

1. A resource con
ict of the hardware. An instruction

pair can not be executed with overlap.

2. A data con
ict, if an instruction needs the result of

a previous instruction.

3. Instructions that change the program counter, as

branches and jumps.

The proposed method of equivalent code fragments

times code fragments that are very similar to the actual

code fragments. Thus approximately the same number

of stalls is to be expected and therefore pipelining has

very little in
uence on the quality of our predictions.

4 Methods

A �rst idea about the execution time of an algorithm

can be obtained by simply running it on a few di�erent

inputs. Together with the theoretical analysis this

simple approach gives the order of magnitude of the

expected execution time in many cases. But no claim

about the accuracy of the determined values can be

made and automation requires generators for feasible

inputs and a more sophisticated analysis, which leads

us back to the determination of a set of running time

constants. Two approaches to determine the constants

C

i

are described in the literature.

4.1 Regression Methods

The �rst class of methods is the numerical analysis

of experiments. It is for example used in [6] and [8].

'Counters' at feasible positions in the program provide

the execution numbers for individual inputs. Even for

complex algorithms the number of necessary counters

is limited. In [6] the authors represent code subsets

with so called 'bottleneck operations'. Even if not only

the leading terms are taken into account, the number

of necessary counters is small. For Dijkstra's algorithm

based on a Fibonacci heap 9 counters are su�cient.

The result of a set ofN measurements with di�erent

inputs is a set of N data points (t

i

; f

(1)

i

: : : f

(M)

i

), i =

1; : : : ; N where t

i

is the measured running time and f

(l)

i

is the execution frequency of the l-th code fragment. We

also have a functional relationship

T =

M

X

j=1

f

(j)

C

j

(1 + "

j

)

with unknown constants C

i

and small "

j

's depending

on the context of the j-th execution. Fit methods

determine constants �

1

; : : : ; �

M

such that the model

function T

0

=

P

f

(j)

�

j

approximately passes through

the given data points. There is no reason to believe that

this implies that the �

j

's approximate the C

j

's. In fact

we saw negative values for �

j

's in experiments (which

used singular values decomposition [5] for the �t.

4.1.1 Least Square Approximation

Least square approximation is a popular �t method.

It assumes that the deviation

�

i

= t

i

�

X

j

f

(j)

i

C

j

in the i-th measurement is normally distributed with

some standard deviation � (independent of i) and that

the errors in the measurements are independent. Under

this assumption the probability P for a given set of N

measurements (assuming the �

i

to be correct) is given

by

P =

N

Y

i=1

0

@

exp

2

4

�

1

2

t

i

� t(f

(1)

i

; : : : ; f

(M)

i

)

�

!

2

3

5

�t

1

A

Least square approximation determines the parameters

�

1

; : : : ; �

M

so as to maximize P .

In our case the deviation �

i

consists of two parts,

namely the modeling error

P

f

(j)

i

C

j

"

j

and the mea-

surement error (the di�erence between the true running

time and the measured running time). Only the mea-

surement error is statistical, the modeling error is sys-

tematic.

4.1.2 Systematic Errors

For the time measurements described in section 3,

the dominating error is caused by the context sensitivity

of the execution time of an instruction, since the model

does not take features as caching and pipelining into

account. For example, an input with high locality is

processed signi�cantly faster than an input with lower

locality. This is a systematic error.

How does this systematic error in
uence the �t of

a running time function? The systematic error de�nes

5

a qualitative behavior that is approximated by the �t.

Assume a model function

m(N) = A+ B logN + CN

and a set of measurements of m(N) for di�erent N ,

where N is the input size and a smaller N is equiva-

lent to a higher locality in the program. A cache causes

a positive second derivative of m(N). The �t approxi-

mates this positive second derivative by increasing the

value of C and by makingB negative. The relative error

of B is bigger than 1. Additionally, the leading coe�-

cient is increased by an unknown factor that depends

on the choice of the input sizes.

Fit methods are extremely sensitive against system-

atic errors as they appear in the running time measure-

ments. Even if a set of experiments is chosen 'well',

bounding the errors in the coe�cients is impossible,

since the conditions for the statistical analysis, correct-

ness of the model function and a known error distribu-

tion, are not ful�lled.

4.2 Operation Counting

The second class of methods basically counts all

operators, function calls and references in a program.

Since these instructions can be mapped to assembler

code, the expected number of clock cycles for the

execution is known and on this base a time constant

can be calculated. This method gives feasible results [2]

but it is di�cult to automate.

One approach for automation is the modi�cation

of a compiler. The compiler just counts the weighted

operators (function calls are represented by the ()

operator) in a loop or function for subsets of code

identi�ed by the user. But this solution depends on

the compiler which has to be available on all di�erent

hardware platforms and for the di�erent programming

languages. Additionally the calculation of the context

dependent weights and the modi�cation of a compiler is

costly.

Operator overloading provides a second way to

count operators automatically. The operations of a pro-

gramare replaced with versions, which count themselves

depending on the context. But in this case a data struc-

ture has to be maintained that tracks the context during

the execution of the program. The implementation of

this data structure is basically as complex as the in-

vestigated algorithm itself. Additionally, this approach

depends strongly on the language and requires usually

changes in the implementation of the algorithm. In

C++ the whole class of pointer declarations can not

be overloaded. For example each declaration of an ar-

ray type a[] and each access a[i] has to be replaced in

the implementation by de�ning an appropriate class.

A pro�ler determines directly the running times for

code fragments. If the pro�ler provides the execution

time for each line of code, the running time constants

can be determined out of these data. But the pro�ler

requires additional code in the program and code opti-

mization is impossible or disturbs the measurement of

the pro�ler. The pro�ler gives information about the

relations between the running times of a program, but

not the absolute values.

As a result, operation counting provides feasible

values for the constants, but the automation is costly

and depends on the language or the compiler.

4.3 Equivalent Code Fragments

Since �tting data for di�erent inputs is not su�cient

to control the error in the time prediction, a di�erent

method is necessary to determine the constants C

i

. The

following properties are required:

1. The constants C

i

are determined within a constant

factor, that depends only on the hardware. It is

su�cient to control the error in the single coe�cients,

since the running time is a linear function in these

coe�cients.

2. The results are compatible with modular or object

oriented programming. If an algorithm is used as a

subroutine, its constants can be reused. Only the new

code has to be investigated.

3. No changes in existing code are necessary. For

the automatic determination of the constants only an

additional set of functions, or methods from the object

oriented point of view, is necessary. The concept is

independent of the programming language in a certain

range (C, C++, Pascal, assembler, ...). Programming

environments that include the execution of indirect

tasks, like automatic garbage collection, are not allowed.

Such tasks are separate algorithms which have to be

analyzed separately.

The concept of equivalent code fragments provides

these properties. As we mentioned, even complex

algorithms consist of a limited number of subsets of

code (code fragments), executing each fragment with

a certain frequency. The target is the approximation of

the running time of the individual code fragments that

are the constants C

i

in the model function.

Since the separation of individual constants by

a �t is not feasible, the constants are determined

with individually designed experiments. However, real

problem instances and the original code are not used,

they are represented by modi�ed code fragments and

special inputs for these fragments. The modi�ed code

fragments have to be similar in the number of operations

and the locality to the original code fragments, they are

equivalent.

6

As an example we present here one of the equivalent

code fragments for the investigated implementation of

Dijkstra's algorithm, the interior of the loop which

cuts nodes out of the heap during a DecreaseKey-

operation. MFHeapCut is a function with code,

which is executed once per call. The code fragment

is embedded in a loop performing the repetitions to

achieve su�ciently long execution times.

InitMeasure();

for (j=0;j<r;j++) {

x = parent;

do {

y = x->parent;

MFHeapCut(H,x);

if (x->key < H->min_ptr->key)

H->min_ptr = x;

x=y;

} while(x->mark);

}

EndMeasure();

blackhole(1, &(H->min_ptr->key));

Two problems have to be considered in the determi-

nation of the constants. The �rst is the design of feasible

equivalent code fragments for the individual constants.

The second is the automation of measurements and their

analysis. If a measurement is not successful this has to

be recognized instead of providing a wrong constant if

possible.

Goal of the experiments is the determination of the

running time for the execution of a code fragment of

the implementation. From the analysis of the possible

errors follow some rules for the design of equivalent code

fragments.

� The running time of the experiments depends on the

amount of memory that is used, since this in
uences the

locality of the references. An experiment should use a

similar amount of memory as the original code. In the

memory range, that requires no swapping, the running

time approaches asymptotically a maximum. As a

result a good extrapolation behavior can be expected.

� To guarantee a su�cient accuracy of the time mea-

surement, 'minimummeasurement time loops' (MMTL)

should be used wherever possible. The experiment mea-

sures the time for a number of repetitions of the code

fragment. This number is increased if the total time is

smaller than some constant. All tested systems provide

a timer with an accuracy of at least 50 ms, so a mini-

mum time of 2000 ms guarantees a su�cient accuracy.

� The measured code should execute at least 5 times

more instructions than the MMTL environment.

� The system calls malloc and free have to be handled

with care. They do not have a constant running time

per call on all systems. They are separate algorithms,

that have to be analyzed separately. The SunOS version

of free has a worst case running time that is linear

in the number of earlier allocated blocks. The Linux

version does not show this e�ect. But on the tested

platforms the assumption of constant execution time for

these functions is feasible.

� Experiments have to be designed in a way, so that an

optimizer isn't able to remove repetitions. A function

blackhole can be used which accepts a pointer as an

argument and is compiled in its own module. Calling

this function with a data structure 'by reference' outside

of the measurement loop is a helpful tool for this task.

4.3.1 Automation

The determination of the running time constants is

performed automatically by two additional programs,

the controller and the worker. They perform the

individual experiments and calculate the execution time

constants. We discuss some design issues for the

controller and the worker.

� Cumulative memory fragmentation from one exper-

iment to the next has to be avoided. For this pur-

pose, the experiments are combined in one program (the

worker), which performs one of them per call, controlled

by command line parameters. The management of the

experiments is done by a second process (the controller),

which starts the worker with the Unix system call 'sys-

tem()' or an equivalent system function on other sys-

tems. Due to this structure each experiment starts with

a freshly initialized internal memorymanagement of the

worker.

� To consider di�erent cache hierarchies and timing ac-

curacies on the target platforms, the experiments accept

parameters to control the number of repetitions, the

minimum execution time and the amount of elements

(memory) for the execution. As a result the dependency

of constants on memory usage can be investigated.

� During the experiments, only the necessary system

processes are allowed to run, since the elapsed time

is measured, not the CPU time. CPU time does not

consider minor and major page faults and time spent

with waiting for data from hard-disk or network [9].

Programs which use dynamic storage allocation cause

minor page faults even if no swapping is necessary. CPU

time can be used as an approximation but then only

CPU time is predicted, not elapsed time.

� If not enough free memory is available for the algo-

rithm, inactive code is swapped or rearranged to obtain

su�cient connected memory. Repeated execution of the

experiment and careful evaluation of the data insures,

that the calculated constants are not disturbed by this

e�ects. As a result, the execution of the algorithm in

a program might take a small and constant amount of

time longer than the predicted time, depending on the

total amount of memory the system has to provide for

7

it. But for bigger instances which need more than a

few seconds this error is neglectable. The times for real

problem instances given in �gure 3 are measured execut-

ing the algorithm once, but with su�cient free memory

for the process.

� Obviously the predicted running times apply only if

there is su�cient memory to keep algorithm and data

in main memory during execution.

Experiments were performed on the following hard-

ware platforms:

1. Pentium 133 MHz, 32 MB RAM (60 ns), 8 kB in-

ternal cache for instructions and 8 kB for data, 256 kB

external pipeline-burst-cache, operating system Linux.

2. Sparc ELC, 16 MB RAM, operating system SunOS.

3. Sparc 5, 85 MHz, 64 MB RAM, 16 kB internal cache

for instructions and 8 kB internal cache for data, oper-

ating system Solaris.

4.Sparc 4, 110 MHz, 64 MB RAM, internal cache, 16

kB for instructions and 8 kB for data, operating system

Solaris.

Since only a few basic system calls are used, the

sources, make�les and scripts could be used on all

platforms without change. Only a possibility for time

measurement and the execution of processes out of

another process are necessary, so the transfer to non-

Unix systems is not costly.

4.3.2 Analysis of the Measurement Results

Each experiment provides one (single run) or a

sequence of values (MMTL) for a constant. For the time

measurement the function gettimeofday() is used. The

evaluation of the measurements is non-trivial. There

are systematic errors and outliers. Outliers, which are

much higher than the other values, occurred in many of

our experiments. They occur especially on multitasking

systems, but not only on them. Even if no other

user processes are running, some interruptions by the

system are possible. Another typical error is observed

in the results of MMTLs. The short total time of a

small number of repetitions produces an error due to

the accuracy of the time measurement. For a high

number of repetitions the memory management causes

an increase of the values even before the system reports

a major page fault in the result of a getrusage() call,

due to minor page faults.

To eliminate outliers before calculating the average,

a robust method is necessary for the evaluation. Fig. 1

shows a sequence from a MMTL run, which contains

several outliers.

If no other processes disturb the measurements, a

cumulation of values can be expected. This property is

used to eliminate strongly defective values. Let M be

a set of N measurements. We choose a constant � > 1

2 8 16

0.00

0.20

0.40

� � � � � � �

�

�

� �

� �

� �

�

�

�
� �

�

�

[ms]

repetitions

Figure 1: Sequence of values from a MMTL

with 1, 2, 4, 8, ... repetitions.

(we used � = 10) and search for an interval

[R�

R

�

; R] with #([R�

R

�

] \M) >

1

2

N ;

i.e. a short interval containing the majority of the data

points. All data points outside the interval [R � R=�]

are considered outliers.

The measurement values are sorted by their value

and the algorithm starts with an interval I

r

= [R �

R=�; R] where R is the biggest value. Now smaller

measurement values are chosen in decreasing order for R

as long as I

r

contains less than N=2 values. If no interval

is found the set of measurements is not accepted,

otherwise the average of the values in the interval with

lowest R found is returned as approximation of the

constant.

5 Example Algorithms

As mentioned above we have chosen a hierarchy of algo-

rithms to test our method.The top layer is a MWBM-

algorithm which determines the heaviest matching in a

weighted bipartite graph (Contrary to the assignment

problem, the maximum matching does not have to be

perfect).

The MWBM-implementation uses a modi�ed ver-

sion of Dijkstra's algorithm. The modi�cation is an

additional condition which stops execution if a feasible

augmenting path is found. The original implementation

of Dijkstra's algorithm as well as the modi�ed version

both use the implementation of a Fibonacci heap as

priority queue and a data structure GRAPH based on

adjacency lists. Due to the similarity the modi�ed ver-

sion of Dijkstra's algorithm is assumed to have the same

execution time constants as the original.

Running time predictions for these algorithms is

complicated by the following facts: Only an amortized

8

analysis of the costs is possible and the execution

frequency of the code fragments depends strongly on

the choice of the edge weights and the order of the edges

in the adjacency lists, not only on the size of the input

graph G.

Dijkstra's algorithm needs O(N + M) steps of

constant time and N Insert, N DeleteMin andO(M)

DecreaseKey operations on the priority queue for a

graph with N nodes andM edges. Let G

b

= (V

a

; V

b

;M)

be a bipartite graph, and V

a

the smaller set of nodes

without loss of generality. Our implementation of the

weighted bipartite matching algorithm starts Dijkstra's

algorithm for each node x 2 V

a

to determine a feasible

augmenting path starting at x, augments along this

path by reversing the edges and updates the node

potentials. N

a

= jV

a

j calls of Dijkstra's algorithm, N

a

augmentations along paths with a length of at most 2N

a

and N

a

updates of at most N

a

+N

b

node potentials are

performed.

5.1 Running Time

Although a detailed description of the implemen-

tations and the resulting constants exceeds this paper,

we give expressions for the di�erent running times as

examples for possible types of running time predictions.

5.1.1 Fibonacci Heap

The basic operations Insert, DeleteMin, De-

creaseKey, CreateHeap and DestroyHeap can be ex-

pressed in terms of 8 counters and 12 constants. Each

execution time is an equation of the type (1.1). The set

of constants is determined by 13 experiments.

The additional operation DestroyHeap deallocates

the elements in the heap by traversing the data structure

recursively, which is more e�cient than repeated calls

of DeleteMin. This allows an improvement in the

MWBM-implementation, since the modi�ed version of

Dijkstra's algorithm used by the MWBM-algorithm

does not remove all elements from the heap.

The worst case analysis provides an upper bound

for each counter in the execution time. Replacing the

counters with this bounds gives a worst case approxima-

tion of the running time. For a sequence of N Insert-,

L DeleteMin- and M DecreaseKey-operations we have

T

heap

(N;L;M) � C

H1

+ (N � L) C

H2

+ N C

H3

+M C

H4

+ L C

H6

+ 1:5L log

2

(N) C

H5

The constants C

Hx

in this expression are sums of

subsets of the 13 values determined experimentally. If

each DecreaseKey violates the heap conditions, this

prediction is tight within a small constant factor.

5.1.2 Dijkstra's Algorithm

The execution time for Dijkstra's algorithm involves

four additional constants.

T

Dijk

() = N

D1

C

D1

+ N

D2

C

D2

+ N

D3

C

D3

+

N

DecKey

X

j=1

T

DecKey

(j)

+ C

D4

+ T

Destroy

() +

N

D3

X

j=1

T

DelMin

(j)

With upper bounds for the counters N

x

the worst case

execution time is approximated by

T

Dijk

(N;M) � M C

D1

+ T

heap

(N;N;M)

+C

D4

+N (C

D2

+ C

D3

)

for an input graph with N nodes and M edges.

For random connected graphs the execution time

can be approximated by

T

Dijk

(N;M) � C

D4

+C

H1

+M C

D1

+N (K

D2

+K

D3

+C

H3

+ C

H6

)

+ 1:5 N log

2

(N) C

H5

+ (N log

2

(1 +M=N)� N) 0:5 C

H4

since it is unlikely that the shortest paths contain a large

number of edges [11] [12].

The execution time for the maximum bipartite

matching algorithm is

T

Mwbm

() =

N

A

X

i=1

[T

Dijk

(i) + T

MAug

(i) + T

MUpd

(i)]

+C

Mwbm

T

Aug

(i) = C

Aug

+ N

Aug

(i) C

AugL

T

Upd

(i) = C

Upd

+ N

Upd

(i) C

UpdL

The code of the main loop can be neglected compared

to the function calls. In the worst case, the execution

time is

T

Mwbm

(N

a

; N

b

;M) =

C

Mwbm

+ [N

A

+N

B

] C

MInitL

+N

A

C

MwbmL

+N

a

[T

Dijk

(N;N;M) + T

Aug

(N

a

) + T

Upd

(N)]

5.1.3 A Code Fragment - CutLoop

In this section the experiments for the code frag-

ment listed in section 4.3 are described as an exam-

ple. The code fragment corresponding to the con-

stant C

CutLoop

is performed during the DecreaseKey-

operation. Two experiments were implemented to de-

termine C

CutLoop

to get the possibility to compare the

9

128 2k 32k 512k 8M

0.0

3.0

6.0

?

?

?

?

?
?

?

?

?

?

?

?
? ?

?

?
?

?

?
? ?

?
?

?

?

?

?

?
?

?

?

? ?
?

.

.

.

.

.

.

.

.

.

.

.

.

. .
.

.

.

.
.

.

. . .

.
.

.

.

.

. .

.

. .

.

�

�
�
�
� �

�

� �
�
�
�
� � � �

�

� �
�
�
�
�

�

�

�

�

�

�

�

� �
� �

�

�

� �
� �

�

�

�

� �

�

�

�

� �
�

�

� �
� � �

�

�

�

�

�

�

�

�
�
� �

[ms]

Figure 2: The dependency of C

CutLoop

on memory

usage, with and without optimization. (. = ELC ; �

= Sparc 5 ; ? = Sparc 4 ; � = Pentium 133) .

results of a direct loop on the original code and a mod-

i�ed code fragment in a MMTL. Both experiments use

the same special heap structure that results in N exe-

cutions of the loop.

The di�erence of the 2 experiments is the function

call to cut a node. The �rst version of the experiment

uses the original function FHeapCut, the second ver-

sion uses a modi�ed version MFHeapCut that per-

forms almost the same operations, but without chang-

ing the data structure. This means the nodes are not

really cut. Since the �rst experiment changes the data

structure, no MMTL is possible in this case.

The amount of memory usage is 64 bytes per

element. The cache structure of the di�erent platforms

is visible in the experiments (Figure 2). The direct

experiments with 100000 elements give similar values

to the values in �gure 2 (P133 -g: 0.951 �s , -O: 0.811

�s; Sparc 5 -g: 1.9 �s , -O: 1.25 �s; Sparc ELC -g:

7.6 �s , -O: 4.6�s).

5.1.4 Time Prediction

The running time constants were automatically de-

termined with identical code on the di�erent hardware

platforms. Constants for code fragments with �xed

memory usage were calculated as the average of 10 mea-

surements. The constants for scalable experiments were

determined out the set of values given by the MMTL.

First the smallest value is identi�ed. This value belongs

to an experiment with low memory usage. As a sec-

ond value the biggest value out of the experiments with

4 10 40 100 400

0

0:1

0:2

0:3

0:4

�

�

�

�

�

�

�

�

�

�

�

�

�

�

?

?

?

?

?

?

?

4 10 40 100 400

�

�

�

�

�

�

�

�

�

�

�

�

�

�

?

?

?

?

?

?

?

4 10 40 100 400

0

5

10

15

�

�

�

�

�

�

�

�

�

�

�

�

�

�

4 10 40 100 400

�

�

�

�

�

�

�

�

�

�

�

�

�

�

4 10 40 100 400

0

50

100

150

� �

�

�

�

�

� �

�

�

�

�

4 10 40 100 400

�
�

�

�

�

�

�
�

�

�

�

�

[s]

� 1000 edges

Dijkstra

1000 nodes

P133

Dijkstra

1000 nodes

Sparc 4

MWBM

2 � 1000 nodes

P133

MWBM

2 � 1000 nodes

Sparc 4

MWBM

2 � 10000 nodes

P133

MWBM

2 � 10000 nodes

Sparc 4

Figure 3: Execution times (� = predicted

with frequencies ; ? = average case analysis; �

= measured), compiled with 'gcc -O'.

higher memory usage than the �rst identi�ed experi-

ment is chosen. This prevents taking errors into account

due to the MMTL environment code which increases the

constants for very low memory usage in some cases.

Although with � = 10 a strong stability criteria

was used during the elimination of strongly defective

data points, most experiments were successful. Only a

few values for a certain size of an experiment were not

determined in the �rst run. But in this case su�cient

values for other sizes were obtained to calculate the me-

dian out of the values for di�erent sizes. An experiment

is called successful if the point elimination terminated.

The algorithm stops without result if no intervals with

more than 50 % of the data points are found.

If an experiment is not successful, an automatic 3

step strategy is possible to get a result. In many cases a

simple repetition of the experiment is successful, if the

drop out was caused by a temporary interruption. If the

10

experiment used an MMTL, the rate of the exponential

increase of the repetitions can be decreased. So more

points in the range with high accuracy are obtained. As

a last step the parameter � can be decreased.

6 Conclusion

As the experimental results show, the concept of equiva-

lent code fragments provides a method for the automatic

determination of running time constants within a small

constant factor. Even without the investigation of the

memory dependency of the constants good approxima-

tions can be expected by choosing experiments with a

memory usage in the order of magnitude of the size of

the cache.

Only basic system functions are used, which are

available in most programming environments. Since the

experiments are supposed to be similar to the original

code fragments, their design and implementation is less

costly than the implementation of the algorithm itself.

The calculated coe�cients are compatible with the

concepts of modular and object oriented programming

when the algorithm is used in a wider context.

The comparison with operation counting shows,

that the method of equivalent code fragments is less

costly to automate. Additionally the context of the

executions is considered partly due to the similarity

between code and experiments, which is very di�cult

in the case of pure operation counting.

References

[1] Donald E.Knuth, The Art of Computer Programming.

Addison-Wesley (1968)

[2] D.E. Knuth. The Stanford Graph Base. Addison Wes-

ley, New York (1994)

[3] J.L. Hennessy, D.A. Patterson. Computer Architecture

- A Quantitative Approach. Morgan Kaufmann Pub-

lishers, Inc., California (1990)

[4] T.H. Cormen, C.E. Leiserson, R.L. Introduction to

Algorithms. MIT Press, Cambridge, Massachusetts

(1990)

[5] W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vet-

terling. Numerical Recipes in C. Cambridge University

Press (1988)

[6] R.K. Ahuja, T.L. Magnanti, J.B. Orlin. Network

Flows: Theory, Algorithms, Applications. Prentice

Hall, Englewood Cli�s, NJ (1993)

[7] A.V. Aho, J.E. Hopcraft, J.D. Ullman. Data Struc-

tures and Algorithms. AddisonWesley, Reading, Mass.

(1983)

[8] R.G. Bland, D.L. Jensen. On the computational be-

havior of a polynomial-time network
ow algorithm.

Mathematical Programming, 54 (1992) 1-39

[9] Kevin Dowd. High Performance Computing. O'Reilly

& Associates, Inc., 103 Morris Street, Sebastopol, CA

95472 (1993)

[10] Kurt Mehlhorn, Stefan N�aher. LEDA, a Platform for

Combinatorial and Geometric Computing. Communi-

cations of the ACM, volume 38, (1995), pp. 96-102

[11] Koshei Noshita. A Theorem on the Expected Complex-

ity of Dijkstra's Shortest Path Algorithm. J. Algorithms

6, (1985), pp. 400-408

[12] A,V, Goldberg, R.E. Tarjan. Expected Performance

of Dijkstra's Shortest Path Algorithm. NEC Research

Institute Report 96-062.

