
On the complexity of computing evolutionary trees

Leszek G�asieniec

�

Max-Planck Institut f�ur Informatik

Jesper Jansson

y

Lund University

Andrzej Lingas

y

Lund University

Anna

�

Ostlin

y

Lund University

Abstract

In this paper we study a few important tree optimization problems with applications

to computational biology. These problems ask for trees that are consistent with an as

large part of the given data as possible.

We show that the maximum homeomorphic agreement subtree problem cannot be

approximated within a factor of N

�

, where N is the input size, for any 0 � � <

1

18

in polynomial time, unless P=NP. On the other hand, we present an O(N logN)-time

heuristic for the restriction of this problem to instances with O(1) trees of height O(1);

yielding solutions within a constant factor of the optimum.

We prove that the maximum inferred consensus tree problem is NP-complete and we

provide a simple fast heuristic for it, yielding solutions within one third of the optimum.

We also present a more specialized polynomial-time heuristic for the maximum inferred

local consensus tree problem.

1 Introduction

An evolutionary tree models how di�erent species in a given set have evolved. The leaves in

an evolutionary tree correspond to species and internal nodes represent the species' ancestors.

The problem of �nding an evolutionary tree has been studied a lot recently [3, 4, 5, 8,

12, 14, 15, 17, 18]. There are many di�erent approaches, depending on among other things

what kind of data that is available. Therefore, various versions of this problem arise in,

for example, computational biology when one wants to �nd out how di�erent species are

related, and comparative linguistics, where it is central to �nd out how di�erent languages

have evolved. In this paper, we look at some of these problems.

�

Max-Planck Institut f�ur Informatik, Im Stadtwald, D{66123, Saarbr�ucken, Germany, email:leszek@mpi-

sb.mpg.de

y

Department of Computer Science, Lund University, Box 118, S-221 00 Lund, Sweden, email:

fJesper.Jansson, Andrzej.Lingas, Anna.Ostling@dna.lth.se

1

Given a set of evolutionary trees dealing with a �xed set of species, one might want to

identify a subtree contained within every given tree such that the number of leaves labeled

by species is maximized. This problem is known as the maximum homeomorphic agreement

subtree problem (MHT) [14]. More formally, it is de�ned as follows. Given k rooted trees

T

1

; T

2

; :::; T

k

, each with n leaves labeled distinctly with elements chosen from a set A of

cardinality n, �nd a maximum cardinality subset B of A such that the minimal homeomor-

phic subtrees of T

1

; T

2

; :::; T

k

(i.e., with all degree 2 nodes except for the root contracted)

containing exactly the leaves labeled by B are isomorphic. To measure the input size of an

instance of MHT, we let N denote the total number of nodes contained in the trees. MHT

restricted to instances with two trees is frequently called MAST; algorithms for MAST have

been developed since 1985 [6]. MAST has been shown to be solvable in polynomial time,

both for rooted trees [4, 5] and for UMAST, a variant of MAST with unrooted trees [15, 18].

In practice, however, the number of trees is often much larger than two [14]. For the spe-

cial case of MHT in which at least one of the given trees has bounded degree, there exist

polynomial-time algorithms [3, 14]. In contrast, MHT is known to be NP-complete even

for instances with three trees of unbounded degree [14]. Here we take one step further to

prove that, unless P=NP, MHT cannot be approximated within a factor of N

�

; where N

is the input size, for any 0 � � <

1

18

in polynomial time; see Section 2. Our result on the

non-approximability of MHT holds even for instances containing solely trees of height 2. On

the other hand, in Section 3, we show that MHT for instances with O(1) number of trees

of height O(1) can be approximated within a constant factor in time O(N logN): Similar

results also hold for the unrooted version of MHT which is at least as hard as MHT (this

can be seen by an argument analogous to that in [4] for MAST and UMAST).

Usually MHT instances do not admit a solution containing all the members of the species

set. Therefore, in some applications, other methods may be preferred. One alternative

approach is to attempt to construct an evolutionary tree from a set of constraints that relate

the species to each other. Already during the early eighties, Aho et al. [1] studied the

problem of inferring a tree from constraints on its lowest common ancestors in the context of

data bases and biological applications. They de�ned it as follows: Given a set of constraints

of the form fi; jg < fk; lg where fi; j; k; lg � f1; 2; :::; ng; if possible construct a tree on the

set of leaves f1; 2; :::; ng such that for each constraint of the aforementioned form, the lowest

common ancestor of i and j is a proper descendant of the lowest common ancestor of k and

l. Aho et al. showed how to decide whether an instance of this problem admits a solution,

and if so, how to construct it, both in time O(mn log n), where m denotes the number of

constraints.

Recently, many authors have studied the related problem of constructing the so called

consensus tree or local consensus tree [8, 12, 17]. For a set of binary rooted trees fT

1

; :::; T

k

g,

each one leaf-labeled by a subset L(T

i

) of f1; 2; :::; ng, the consensus tree problem asks

whether or not there is a tree T such that for i = 1; :::; k; T

i

is homeomorphic to the subtree

of T induced by the nodes in L(T

i

) and their ancestors. If the input trees are of constant

size it is termed the local consensus tree problem. A constraint of the form fi; jg < fi; kg (

2

denoted (fi; jg; k) for short) is easily seen to be equivalent to the constraint imposed by a

full binary tree on the leaves i; j; k in the local consensus tree problem. For this reason, we

shall call the tree inferring problem posed in [1] the inferred consensus tree problem.

Unfortunately, it is often impossible to construct an exact consensus tree. This makes

a need to deal with an optimization version of the inferred consensus tree problem whose

objective is to �nd a consensus tree for an as large as possible subset of the input set

of constraints of the form fi; jg < fk; lg: For brevity, we term this optimization problem

the maximum inferred consensus tree problem (MICT for short). We also distinguish the

restricted case of MICT where all constraints are of the form (fi; jg; k) and call it the

maximum inferred local consensus tree problem (MILCT).

In Section 4 we provide an NP-completeness proof for MICT. Section 5 contains a simple

O((n+m) log n)-time heuristic for MICT yielding solutions within one third of the optimum

and a more involved polynomial-time heuristic for MILCT. Both heuristics work equally well

for the weighted versions of MICT and/or MILCT where the objective is to �nd a consensus

tree for a subset of the input constraints of maximum total weight.

2 MHT is hard to approximate

Our main result in this section is as follows.

Theorem 2.1 For any 0 � � <

1

18

, MHT (even if restricted to trees of height 2) cannot be

approximated within a factor of N

�

in polynomial time, unless P=NP.

Proof: We show that if MHT can be approximated within a factor of N

�

in polynomial

time then the problem of �nding a maximum independent set in a graph with l nodes can be

approximated within a factor of l

3�+o(1)

. In part, our reduction can be seen as a generalization

of the reduction of three dimensional perfect matching to MHT restricted to instances with

three trees given in [14].

Let G = (V;E) be a graph where V = fv

1

; v

2

; :::; v

l

g and E = fe

1

; e

2

; :::; e

k

g: For 1 � i �

k and 1 � j � l; let e(i; j) = e

i

if v

j

is incident to e

i

; otherwise let e(i; j) = (i; j): Furthermore,

for 1 � i � k; let E

i

=

S

1�j�l

fe(i; j)g; and for 1 � j � l; let V

j

=

S

1�i�k

fe(i; j)g:

Remark 1 For distinct 1 � j; j

0

� l; V

j

n V

j

0

6= ;:

Remark 2 Two nodes v

j

; v

j

0
are adjacent in G i� V

j

\ V

j

0
6= ;:

Remark 3 For 1 � i � k; 1 � j; j

0

� l; j 6= j

0

at most two sets V

j

, V

j

0

contain e

i

:

Now, generalizing the reduction used in [14], we construct the trees T

1

; T

2

; :::; T

k

as

follows. Each tree T

i

has root r

i

which is a parent of l + q children. The �rst l children

are in one-to-one correspondence to the elements of E

i

: The remaining q are leaves labeled

by z

1

; z

2

; :::; z

q

: Next, for each 1 � j � l; we attach a child labeled V

j

to the child of r

i

corresponding to e(i; j):

Suppose that the roots r

1

; r

2

; :::; r

k

correspond to the root of a maximum agreement

subtree T of T

1

; T

2

; :::; T

k

: Then, no two overlapping sets V

j

; V

j

0

can simultaneously label

3

leaves in T by the construction of T

1

through T

k

and Remark 1. Hence, by Remark 2, the

maximum independent set in G has cardinality m i� T has m+ q leaves.

In order to force the roots r

1

; r

2

; :::; r

k

to correspond to the root of T we set q to 2. To

see that this is su�cient, assume that one of the non-leaf children of r

i

turned out to be the

root, for some i. By Remark 3, each non-leaf child of r

i

has at most two leaf children in T

i

,

so the size of this tree can be no larger than two. But we can always �nd an agreement tree

of size 3 by selecting r

i

as root and including z

1

, z

2

in addition to one leaf child.

The total size N of the trees T

1

; T

2

; :::; T

k

is k � O(l) = O(l

3

) = l

3+o(1)

. Clearly, they

can be constructed in polynomial time from G: Also, note that they are of height 2. Below

we will only consider approximations that can be carried out in polynomial time. If MHT

could be approximated within a factor of N

�

, then

OPT+2

s+2

� N

�

, where OPT + 2 refers

to the number of leaves in an optimal solution for a given instance of MHT and s + 2 is

the number of leaves in its corresponding, approximative solution. For s � 1, it follows

that

OPT

s

� 3 �

OPT+2

s+2

� 3N

�

= l

3�+o(1)

, which would imply that the problem of �nding

a maximum independent set in a graph could be approximated within a factor of l

3�+o(1)

.

However, Bellare and Sudan proved in [2] that this problem isn't approximable within l

1=6��

for any � > 0, unless P=NP. Hence, if P 6=NP, MHT cannot be approximated within a factor

of N

�

for any 0 � � �

1

18

� o(1). Finally, since

1

18

� o(1) can be made arbitrarily close to

1

18

by choosing N large enough, there exist instances of MHT which cannot be approximated

within a factor of N

�

for any constant 0 � � <

1

18

in polynomial time (unless P=NP).

3 Approximations of MHT with O(1) trees of O(1) height

We know that MHT is NP-complete already for instances with three trees [16] and hard to

approximate for instances with an arbitrary number of trees of height 2 by Theorem 2.1.

The natural question arises whether or not MHT for instances with bounded number of

trees can be tightly approximated in polynomial time. Here we partially settle this question

by proving the approximability of MHT for instances with O(1) trees of height O(1): This

result together with Theorem 2.1 yield a complete characterization of approximability of

MHT restricted to instances with trees of O(1) height.

Theorem 3.1 MHT restricted to instances with k trees of height not exceeding h can be

approximated within a factor of (

1

k

)

h

in time O(n log n):

To begin the proof of Theorem 3.1, we need to introduce the following notation. For a tree

T; V (T) stands for the set of nodes of T: Let v be a node of a rooted tree T: The minimal

subtree of T rooted at v, including v and all its descendants is denoted by T

v

: L(T

v

) stands

for the set of labels of the leaves in T

v

: The set of children of v in T is denoted by C(v):

Furthermore, by a k-partite hypergraph we shall mean a pair (V

1

[::: [V

k

; E) where V

1

4

through V

k

are pairwise disjoint sets and E is a subset of V

1

� V

k

� :::� V

k

: The elements of

V

1

[::: [V

k

are called the nodes of H whereas the elements of E are called the edges of H:

A matching of H is a subset of E in which no pair of edges includes a common node.

Let T

1

; :::; T

k

be the input trees. For (v

1

; v

2

; :::; v

k

); where v

i

2 V (T

i

) for i = 1; :::; k; let

Mht(v

1

; v

2

; :::; v

k

) denote the maximum size of an agreement subtree of the trees T

1

; :::; T

k

restricted to B = L((T

1

)

v

1

) \ L((T

2

)

v

2

) \ ::: \ L((T

k

)

v

k

): We can view Mht(v

1

; v

2

; :::; v

k

)

as the solution of MHT for (T

1

)

v

1

; :::; (T

k

)

v

k

: Next, let H(v

1

; :::; v

k

) denote the k-partite

hypergraph (C(v

1

) [::::[C(v

k

); C(v

1

)� C(v

2

) � :::� C(v

k

)) whose edges (w

1

; :::; w

k

) have

weight Mht(w

1

; :::; w

k

): Finally, let Match(v

1

; :::; v

k

) be the maximum weight of a matching

in H(v

1

; :::; v

k

) and Diag(v

1

; :::; v

k

) = maxfMht(w

1

; :::; w

k

)j(w

1

; :::; w

k

) 2 (fv

1

g [C(v

1

)) �

:::� (fv

k

g [C(v

k

))� f(v

1

; :::; v

k

)g.

Intuitively, in the �nal agreement subtree of (T

1

)

v

1

; :::; (T

k

)

v

k

either the roots of the trees,

i.e., v

1

through v

k

; are matched together which forces their children to be optimally matched

together (Match), or only some of the roots are matched together with some children of

the remaining roots (Diag). This yields the following lemma which is a straightforward

generalization of the basic lemma in the dynamic programming approach to MAST in [18]

(see also [4]).

Lemma 3.2 For any (v

1

; :::; v

k

); where v

i

2 V (T

i

) for i = 1; :::; k; if at least one of the v

i

's

is a leaf then:

{ Mht(v

1

; :::; v

k

) = jL((T

1

)

v

1

) \ :::\ L((T

k

)

v

k

)j else

{ Mht(v

1

; :::; v

k

) = maxfMatch(v

1

; :::; v

k

);Diag(v

1

; :::; v

k

)g.

It is easy to see that the recursive computation of Mht(v

1

; :::; v

k

) for (v

1

; :::; v

k

) 2

V (T

1

)� :::� V (T

k

) suggested by Lemma 3.2 can be bottom-up ordered by Hs(v

1

; :::; v

k

) =

P

k

i=1

height(v

i

): Hence, we have the following algorithm for MHT.

Algorithm 1

1. input T

1

; T

2

; :::; T

k

2. for each (v

1

; :::; v

k

) 2 V (T

1

)� :::� V (T

k

) in the increasing order of Hs(v

1

; :::; v

k

) do

compute Mht(v

1

; :::; v

k

) by using the expression of Lemma 3.2.

3. output Mht(r

1

; :::; r

k

) where r

i

is the root of T

i

for i = 1; :::; k:

It is hard to compute the exact value of Match(v

1

; :::; v

k

) in the expression of Lemma 3.2

since the problem of computing maximummatching in a 3-partite hypergraph is NP-complete

[16]. For this reason, we shall rely on a greedy method for approximating Match(v

1

; :::; v

k

)

yielding an approximation of Mht(v

1

; :::; v

k

): The greedy method consists in repeatedly pick-

ing the heaviest edge e and removing all edges overlapping e: It can be easily implemented

using a priority queue. Since e can overlap with at most k edges in an optimum solution

having total weight � k � weight(e); we obtain:

5

Lemma 3.3 Let H = (V;E) be a k-partite hypergraph on m edges with positive integer

weights. A matching in H of total weight within

1

k

of the maximum can be constructed in a

greedy fashion in time O(kjEj + jV j+m logm):

�

By combining the scheme of Algorithm 1 with the greedy method for approximating

Match(v

1

; :::; v

k

); we obtain the following lemma yielding Theorem 3.1.

Lemma 3.4 For all (v

1

; :::; v

k

) 2 V (T

1

) � :::� V (T

k

); we can approximate Mht(v

1

; :::; v

k

)

within a factor of (

1

k

)

h

where h = maxfheight(v

i

)j1 � i � kg in time O(n log n):

Proof: For (v

1

; :::; v

k

) 2 V (T

1

) � ::::� V (T

k

); let s(v

1

; :::; v

k

) denote the size of the inter-

sections L((T

1

)

v

1

) \ ::: \ L((T

k

)

v

k

): Clearly, we have Mht(v

1

; :::; v

k

) � s(v

1

; :::; v

k

), and in

particular if one of the v

i

's is a leaf then Mht(v

1

; :::; v

k

) = s(v

1

; :::; v

k

): For a leaf label j; we

can determine all k-tuples (v

1

; :::; v

k

) for which j 2 L((T

1

)

v

1

) \ ::: \ L((T

k

)

v

k

) by �nding, in

each T

i

; i = 1; :::; k; the nodes on the path of length � h from the leaf labeled by j to the

root. It follows that the number of these tuples is (h + 1)

k

: Consequently, the set L of all

k-tuples for which s(v

1

; :::; v

k

) > 0 has size not exceeding n(h + 1)

k

: To list L e�ciently, we

sort the pointers to leaves in the trees T

1

through T

k

by the leaf labels. Such a sorted list of

pointers can be produced in time O(jV (T

1

)j+ :::+ jV (T

k

)j): Using it, we can easily generate

L by �nding appropriate tree paths in time O(jV (T

1

)j+ :::+ jV (T

k

)j+ (h+ 1)

k

):

For the k-tuples (v

1

; :::; v

k

) in L including at least one leaf we have clearly s(v

1

; :::; v

k

) = 1

and Mht(v

1

; :::; v

k

) = 1: To compute approximations of Mht(v

1

; :::; v

k

) for the remaining k-

tuples in L; we build a balanced search tree S

L

for L, with respect to the lexicographic order

of k-tuples in V (T

1

) � :::: � V (T

k

); in time O(jLj log jLj): Next, we follow the scheme of

Algorithm 1 using the greedy method to approximate Match(v

1

; :::; v

k

) in the hypergraph

H

L

(v

1

; :::; v

k

) which is the hypergraph H(v

1

; :::; v

k

) de�ned in Lemma 3.2 restricted to edges

in L:

Each k-tuple (w

1

; :::; w

k

) 2 L occurs at most once as an edge in every hypergraph

H

L

(v

1

; :::; v

k

) for (v

1

; :::; v

k

) 2 L (only when w

i

2 C(v

i

) for i = 1; :::; k). Hence, the hy-

pergraphs H

L

(v

1

; :::; v

k

) for (w

1

; :::; w

k

) 2 L; have no more than jLj edges totally and can

be constructed (without weights) by scanning L and using S

L

in total time O(jLj log jLj):

Clearly, each H

L

(v

1

; :::; v

k

) has at most s(v

1

; :::; v

k

) edges with positive weights. For each of

its edges (w

1

; :::; w

k

); we haveHs(w

1

; :::; w

k

) = Hs(v

1

; :::; v

k

)�k and maxfheight(w

i

)j1 � i �

kg = h�1: Hence, we may inductively assume that we have already (

1

k

)

h�1

approximations of

Mht(w

1

; :::; w

k

); i.e., of the weights of (w

1

; :::; w

k

) in the hypergraph. Consequently, we obtain

an approximation ofMatch(v

1

; :::; v

k

) within a factor of (

1

k

)

h

by applying the greedy method.

By Lemma 3.3, the total cost of the greedy method isO(kjLj+(

P

(v

1

;:::;v

k

)2L

s(v

1

; :::; v

k

)) log n)

time. By induction on Hs(v

1

; :::; v

k

); we also obtain an approximation of Diag(v

1

; :::; v

k

)

within a factor of (

1

k

)

h

by considering solely k-tuples (w

1

; :::; w

k

) in L \ ((fv

1

g [C(v

1

)) �

�

Interestingly, in the unweighted case there are known (much slower, but still) polynomial-time heuristics

yielding solutions within almost

2

k

of the optimum [10].

6

::: � (fv

k

g [C(v

k

)) � f(v

1

; :::; v

k

)g). Each (w

1

; :::; w

k

) 2 L can contribute to the value of

Diag(v

1

; :::; v

k

) for at most 2

k

�1 k-tuples (v

1

; :::; v

k

) 2 L: Hence, the total size of the subsets

of L contributing to Diag(v

1

; :::; v

k

) over all (v

1

; :::; v

k

) 2 L; and consequently the total cost

of �nding maxima of Mht-approximations over these subsets, is O(2

k

jLj): We can create

these subsets, again by scanning L and using S

L

; in total time O(2

k

jLj log jLj):

Each of the trees T

1

through T

k

has size not exceeding 2n by its binarity. Hence,

we obtain the O(n log n) bound by jLj � (h + 1)

k

n;

P

(v

1

;:::;v

k

)2L

s(v

1

; :::; v

k

) � (h + 1)

k

n

h = O(1); k = O(1); and straightforward calculations.

4 MICT is NP-complete

The problem of deciding whether or not a 3-partite hypergraph (V;E) has a perfect matching

(3PM), i.e., if V is covered by a subset of pairwise disjoint edges in E, is known to be

NP-complete [16]. To show the NP-completeness of MICT, we provide a reduction of 3PM

to MICT.

Let H = (V;E) be a 3-partite hypergraph and k a parameter that will be speci�ed later

on. Let C be the minimal set of constraints satisfying:

1. for each e; f 2 E with e 6= f , (fe

i

; e

l

g; f

j

) 2 C, where i = 0; 1; l = 2; :::; k + 1;

j = 2; :::; k+ 1.

2. for each e = (a; b; c) 2 E; the three constraints fa; bg < fe

0

; e

1

g; fa; cg < fe

0

; e

1

g; and

fb; cg < fe

0

; e

1

g 2 C.

Thus, C consists of 2k

2

(jEj

2

� jEj) constraints of the �rst type and 3jEj constraints of

the second type.

To characterize consensus trees for large subsets of C, we need the following de�nitions.

De�nition 4.1 In a rooted tree T; the lowest common ancestor of a sequence of nodes

v

1

; :::; v

m

will be denoted by lca(v

1

; :::; v

m

): Furthermore, the path from a node v to the root

of T will be denoted by R(v): The subtree of T induced by a sequence of nodes v

1

; :::; v

m

is

the smallest subtree of T including the paths R(v

i

); i = 1; :::;m:

De�nition 4.2 The full binary tree on four leaves a; b; c; d; where lca(a; b) and lca(c; d)

form the intermediate level, will be denoted by B

4

(a; b; c; d).

Lemma 4.3 If T is a consensus tree for at least jCj � k

2

+ 1 constraints in C, then for

each e; f 2 E with e 6= f; the subtree induced of T by fe

0

; e

1

; f

0

; f

1

g is homeomorphic to

B

4

(e

0

; e

1

; f

0

; f

1

).

7

Proof: By the assumption on the number of constraints satis�ed by T; for each e; f 2 E

with e 6= f; there are indices l; j 2 f2; :::; k + 1g such that for i = 0; 1; the constraints

(fe

i

; e

l

g; f

j

); (ff

i

; f

j

g; e

l

) are satis�ed by T:

By (fe

0

; e

l

g; f

j

) and (fe

1

; e

l

g; f

j

), the path R(lca(e

0

; e

1

; e

l

)) cannot be included in the

path R(f

j

). Thus, R(lca(e

0

; e

1

; e

l

)) 6� R(lca(f

0

; f

1

; f

j

)). Similarly, by (ff

0

; f

j

g; e

l

) and

(ff

1

; f

j

g; e

l

), we have R(lca(f

0

; f

1

; f

j

)) 6� R(lca(e

0

; e

1

; e

l

)). This means that the paths from

lca(e

0

; e

1

; e

l

) and lca(f

0

; f

1

; f

j

) to lca(e

0

; e

1

; e

l

; f

0

; f

1

; f

j

); respectively, must be edge-disjoint.

Corollary 4.4 Let T be a consensus tree for at least jCj � k

2

+ 1 constraints in C. For

each node a 2 V and two di�erent edges e; f in E, if T satis�es a constraint of the form

fa; g < fe

0

; e

1

g then T cannot satisfy any constraints of the form fa; g < ff

0

; f

1

g.

Lemma 4.5 Let k >

q

3jEj � jV j. The hypergraph H has a perfect matching i� there is a

consensus tree for a subset of 2k

2

(jEj

2

� jEj) + jV j constraints in C.

Proof: Suppose �rst that H has a perfect matching M . We can easily construct a

consensus tree T satisfying at least 2k

2

(jEj

2

� jEj) + jV j of the constraints in C. The root

of T has jEj children which are in one-to-one correspondence with the edges in E. For every

e 2 E, a subtree rooted in the corresponding child has as children the leaves e

0

; e

1

; ::::; e

k+1

.

Furthermore, if e = fa; b; cg is in M , then the subtree has another child which in turn is the

parent of the leaves labeled a; b; c.

Suppose in turn that there is a consensus tree T satisfying 2k

2

(jEj

2

� jEj) + jV j con-

straints in C. The total number of constraints in C is 2k

2

(jEj

2

� jEj) + 3jEj. It follows by

k >

q

3jEj � jV j that T satis�es at least jCj � k

2

+ 1 constraints. Thus, by Corollary 4.4,

for each node a 2 V , there is at most one edge e 2 E such that some constraint of the form

fa; g < fe

0

; e

1

g is satis�ed by T . On the other hand, for a given node a and a given edge

e, at most two constraints of the form fa; g < fe

0

; e

1

g can be satis�ed by T by the con-

struction of C. Consequently, V can be partitioned into three disjoint subsets V

r

, r = 0; 1; 2,

respectively consisting of nodes a 2 V for which r constraints of the form fa; g < f ; g are

satis�ed by T . It is easily seen that T satis�es at most jV

2

j +

jV

1

j

2

constraints of the form

f ; g < f ; g. Since there are 2k

2

(jEj

2

� jEj) constraints of the form (f ; g;), we conclude

that V has to be as large as possible, i.e., V

2

= V . It follows that for each edge e 2 E, if a

constraint of the form f ; g < fe

0

; e

1

g is satis�ed by T , then all the three constraints of this

form are satis�ed by T . Hence, H has a perfect matching.

The construction of C for k equal to jEj can be done in polynomial time. Hence, MICT

is NP-hard by the NP-completeness of 3PM and Lemma 4.5. The membership of MICT in

NP is obvious.

Theorem 4.6 MICT is NP-complete.

8

5 Approximation heuristics for MICT

Our heuristics in fact work for the generalization of MICT where with each input constraint

c a positive weight w(c) is associated, and the objective is to construct a consensus tree for

a subset of constraints of maximum total weight.

5.1 Heuristic 1

For a constraint fi; jg < fk; lg; where all the leaves are di�erent, k and l are said to have

an upper occurrence in the constraint, and i and j are said to have a lower occurrence in the

constraint. For a constraint fi; jg < fi; kg; where i; j; k are di�erent, i and j are said to

have a lower occurrence in the constraint and k is said to have an upper occurrence in the

constraint. The weight of an upper or lower occurrence in a constraint equals the weight of

the constraint.

Lemma 5.1 For any instance I of MICT, the total weight of upper occurrences is at least

one third (half if all constraints contain four leaves) of the total weight of all occurrences in

the constraints in I:

Heuristic 1

input: a set C of m weighted constraints on leaves 1 through n;

output: a consensus tree T for a subset of C whose weight is at least one third (half if all

constraints contain four leaves) of the total weight of the constraints in C;

1. LEFT C; LEAV ES f1; :::; ng;

T fvg;

2. if LEFT = ; then extend T by adding jLEAV ESj children to v; label them uniquely

with elements in LEAV ES; and return T ;

3. pick a leaf y in LEAV ES which achieves the maximum ratio between the total weight

of its upper occurrences and the total weight of its lower occurrences in the constraints

in LEFT ;

4. set Y to the set of constraints in LEFT which contain y;

5. LEFT LEFT n Y ;

6. LEAV ES LEAV ES n fyg;

7. extend T by adding two children to v; label the �rst child by y; set v to the second

child;

8. go to 2

9

Theorem 5.2 Heuristic 1 constructs a consensus tree for a subset of the input set of con-

straints C; whose total weight is at least one third (half if all constraints contain four leaves)

of the total weight of C; in time O((m+ n) log n):

Proof: By Lemma 5.1 and the choice of y; the ratio between the total weight of upper

occurrences and lower occurrences of y in the constraints in LEFT is at least one third. All

the constraints in Y in which y has an upper occurrence are satis�ed by T by the construction

of T:

To implement Steps 3, 6 e�ciently, we arrange LEAV ES in a priority queue partially

ordered by the ratio between the total weight of their upper and lower occurrences in con-

straints in LEFT: All the priority queue operations, i.e., creating the priority queue, picking

the y's, updating the priority queue after Step 5, totally take O((n +m) log n) time.

To implement Steps 4, 5, we sort lexicographically C four times according to four cyclic

permutations of the four leaves in each constraint. For i = 1; :::; 4; the i-th permutation

puts the i-th leaf as the �rst, the i+ 1-st (in the cyclic order) as the second etc. Next, four

search trees are built on the basis of the sorted lists. Using the search trees, we can �nd Y in

LEFT and remove it from LEFT in time O(jY j log n): We conclude that Steps 4, 5 totally

take time O((m+ n) log n) (inclusive the preprocessing).

The absolute factors of one third and half respectively provided by Heuristic 1 are in

fact worst-case optimal. For instance, in a sequence (fa

i

; b

i

g; c

i

); (fb

i

; c

i

g; a

i

); (fc

i

; a

i

g; b

i

);

i = 1; :::; k; any consensus tree can satisfy at most one constraint from each consecutive triple.

In case all constraints contain four leaves, the following sequence fa

i

; b

i

g < fc

i

; d

i

g; fc

i

; d

i

g <

fa

i

; b

i

g, i = 1; :::; k; yields the lower bound

1

2

.

The consensus tree produced by Heuristic 1 has the form of a linear chain with singular

leaves pending where only the last chain node can have larger degree. It is easy to slightly

modify Heuristic 1 to output the set of the input constraints (a priori) satis�ed by the tree.

By running the algorithm of Aho et al. for the inferred consensus tree problem [1] on this set

we can obtain a minimumheight consensus tree for at least one third of the input constraints

in time O(mn log n):

In case the minimum number of constraints necessary to delete in order to build a con-

sensus tree for the remaining part is very small, and the number m of constraints relative to

the number of leaves is high (it is always O(n

4

)), an approach di�erent from that of Heuristic

1 might be more useful.

5.2 Heuristic 2

Heuristic 2 for MILCT simply mimics the algorithm of Aho et al. for the inferred consensus

tree problem restricted to constraints of the form (fi; jg; k) given in [1]. The basic idea of

the latter algorithm is simple. The input set of the leaves 1; 2; :::; n is partitioned into a

minimal set of blocks satisfying the following requirement:

10

(*) If (fi; jg; k) is a constraint then i and j are in the same block.

Now, if the number of blocks in the minimal set is at least two then the algorithm of Aho

et al. creates the consensus tree by connecting the roots of the consensus trees recursively

computed for the respective blocks with a common parent root node. Otherwise, the number

is one and it returns a null consensus tree.

For a subset S of leaves, let G(S) denote the auxiliary graph on S where the edges

are induced by the requirement (*), and their weights are equal to the total weight of the

constraints inducing them.

Whenever the algorithm of Aho et al. is stuck at a non-divisible subset S of the set of

leaves and has to return a null tree, Heuristic 2 simply �nds a minimum weight edge cut of

the auxiliary graph G(S) (with respect to the current set of constraints). Next, the edges of

the min-cut are deleted from G(S) and the connected components of G(S) are computed.

Consequently, the constraints corresponding to the edges of the min-cut are also deleted.

Finally, the approximation consensus trees for the connected components are recursively

computed and connected by a common parent node.

In the appendix, we present an implementation of Heuristic 2 based on the recent, e�cient

implementation of the algorithm of Aho et al. restricted to constraints of the form (fi; jg; k)

due to Henzinger et al. [8]. As a result, we obtain the following lemma.

Lemma 5.3 Heuristic 2 can be implemented in expected time O(n

3

log n+m log

3

n).

Proof: A minimum weight edge cut can be computed with high probability in time

O(n

2

log n) [13], and in the worst case it has to be done n times. Hence, all calls for mini-

mum weight edge cut take O(n

3

log n) expected time. All other operations can be performed

in expected time O(m log

3

n) like in the algorithm of Henzinger et al. (cf. [8]). Thus, the

total expected time is O(n

3

log n+m log

3

n).

Lemma 5.4 Let I be an instance of MICT, and let T be the tree produced by Heuristic 2 for

I: The total weight of constraints in I not satis�ed by T is within height(T) of the minimum.

Proof: Let J be a subset of I of minimum total weight such that I n J has a con-

sensus tree. Next, let D be the set of connected components in the auxiliary graph where

the edges corresponding to the constraints in J are deleted. Suppose that Heuristic 2 at

some stage �nds a min-cut in a currently connected fragment C: Clearly, C cannot be a

subset of a simple component in D since then there wouldn't exist a consensus tree for I nJ:

Hence, there is a subset J

C

of J such that the set of edges corresponding to the constraints

in J

C

disconnects G(C) into disjoint components. Clearly, the total weight of J

C

is not

smaller than the weight of minimum cut of G(C): Now, it is su�cient to observe that the

subsets J

C

for distinct C

0

s on the same recursion level of Heuristic 2 are pairwise disjoint.

11

Theorem 5.5 Let n; w; t be respectively the number of leaves, the total weight of con-

straints, and the minimum total weight of the constraints to remove in an instance I of

MILCT. Heuristic 2 constructs a consensus tree for a subset of the constraints in I whose

total weight is not smaller than w � nt:

Note that the number of constraints in I might be even cubic in n and that Heuristic 2

yields a better approximation factor than Heuristic 1 for MILCT whenever t <

2w

3n

:

6 Open problems

The approximability of MHT for instances with a constant number of trees of unbounded

height is an open problem. Neither do we know whether or not it is possible to �nd a

polynomial-time approximation scheme for instances of MHT with O(1) trees of height O(1):

It follows from Theorem 4.6 and the de�nition of MICT that this problem is strongly

NP-complete. Hence, it cannot admit a fully polynomial-time approximation scheme [16].

However, it is an open question whether MICT admits a polynomial-time approximation

scheme or at least a polynomial-time heuristic with a smaller approximation factor.

The complexity status of MILCT is also an interesting open question. If MILCT is

NP-complete, does it admit a polynomial-time approximation scheme?

On a high level, the de�nitions of MICT and MILCT resemble those of MAX SAT

and MAX k-SAT (see [9, 11]). In the design of Heuristic 1 we have utilized this similarity

taking inspiration from the early heuristic for MAX k-SAT due to Johnson [11]. Recently,

substantial progress in approximating MAX SAT and MAX k-SAT has been made by using

linear programming, semide�nite programming, and randomized rounding [7, 9]. One of the

main obstacles in applying these techniques to MICT is the complexity of \arithmetization"

of the proper-descendant lowest-common-ancestor relation (the case of MILCT seems more

promising).

References

[1] A.V. Aho, Y. Sagiv, T.G. Szymanski, and J.D. Ullman. Inferring a tree from lowest common

ancestors with an application to the optimization of relational expressions. SIAM Journal of

Computing, Vol. 10, No. 3, 1981, pp. 405-421.

[2] M. Bellare and M. Sudan. Improved non-approximability results. Proc. of the 26th Annual

ACM Symposium on the Theory of Computing (STOC), 1994, pp. 184-193.

[3] M. Farach, T. Przytycka, and M. Thorup. Computing the agreement of trees with bounded

degrees. Proc. of the 3rd Annual European Symposium on Algorithms (ESA), 1995, pp. 381-

393.

12

[4] M. Farach and M. Thorup. Fast Comparison of Evolutionary Trees. Proc. of the 5th Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA), 1994, pp. 481-488.

[5] M. Farach and M. Thorup. Optimal evolutionary tree comparison by sparse dynamic pro-

gramming. Proc. of the 35th Annual Symposium on the Foundations of Computer Science

(FOCS), 1994, pp. 770-779.

[6] C.R. Finden and A.D. Gordon. Obtaining common pruned trees. Journal of Classi�cation 2,

1985, pp. 255-276.

[7] M.X. Goemans and D.P. Williamson. New

3

4

-approximation algorithms for MAX SAT. SIAM

Journal of Discrete Mathematics, 7, pp. 656-666, 1994.

[8] M.R. Henzinger, V. King, and T. Warnow. Constructing a Tree from Homeomorphic Subtrees,

with Applications to Computational Biology. Proc. of the 7th Annual ACM-SIAM Symposium

on Discrete Algorithms (SODA), 1996, pp. 333-340.

[9] D.S. Hochbaum (editor). Approximation Algorithms for NP-hard Problems. PWS Publishing

Company, Boston, 1995.

[10] C.A.J. Hurkens and A. Schrijver. On the size of systems of sets every t of which have an SDR,

with an application to the worst-case ratio of heuristics for packing problems. SIAM Journal

of Discrete Mathematics, Vol. 2, No. 1, 1989, pp. 68-72.

[11] D.S. Johnson. Approximation algorithms for combinatorial problems. Journal of Computer

and System Sciences, 9, pp. 256-278, 1974.

[12] S. Kannan, T. Warnow, and S. Yooseph. Computing the Local Consensus of Trees. Proc. of

the 6th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 1995, pp. 68-77.

[13] D.R. Karger. Minimum Cuts in Near-Linear Time. Proc. of the 28th Annual ACM Symposium

on Theory of Computing (STOC), 1996, pp. 56-63.

[14] D. Keselman and A. Amir. Maximum agreement subtree in a set of evolutionary trees -

Metrics and e�cient algorithms. Proc. of the 35th Annual Symposium on the Foundations of

Computer Science (FOCS), 1994, pp. 758-769.

[15] T.W. Lam, W.K. Sung, and H.F. Ting. Computing the Unrooted Maximum Agreement

Subtree in Sub-quadratic Time. Proc. of the 5th Scandinavian Workshop on Algorithm Theory

(SWAT), 1996, pp. 124-135.

[16] C.H. Papadimitriou. Computational Complexity, Addison-Wesley, Reading, 1994.

[17] C. Phillips and T.J. Warnow. The Asymmetric Median Tree - A New Model for Building

Consensus Trees. Proc. Combinatorial Pattern Matching, LNCS 1075, 1996, pp. 234-252.

[18] M. Steel and T. Warnow. Kaikoura tree theorems: Computing the maximum agreement

subtree. Information Processing Letters 48, 1993, pp. 77-82.

13

Appendix: the implementation of Heuristic 2

Using recent dynamic data structures for graph connectivity, Henzinger et al. gave e�-

cient implementations of the algorithm of Aho et al. restricted to constraints of the form

(fi; jg; k) [8]. Their randomized implementation takes O(m log

3

n) expected time. They use

the undirected graph U and the directed graph D de�ned as follows.

� U = (V;E) with V equal to the set f1; 2; :::; ng of leaves and where for each constrain

(fa; bg; c) in C edges fa; bg and fb; cg are in E.

� D = (V

0

; A) where for each constrain (fa; bg; c) in C nodes fa; bg and fb; cg are in V

0

and fa; bg ! fb; cg is in A.

At the beginning the graph U is colored yellow. The graph U is used for �nding yellow

components. The consensus tree returned is found by combining the trees constructed for

the yellow components. The graph D is used for �nding edges in U that can be colored red,

these edges correspond to the so-called maximal nodes in D.

A maximal node in D is a node with no outgoing edges, and a red edge whose endpoints

are in di�erent yellow components is called a separable red edge.

By slightly modifying the algorithm of Henzinger et al. and combining it with an algo-

rithm for minimum weight edge cut [13], we can implement Heuristic 2 as follows.

Heuristic 2

1. Construct U and D. Add weights to the edges in U . The weight of an edge fa; bg in U

is equal to the sum of the weights of constraints of the form (fa; bg;). Color all nodes

in D and edges in U yellow.

2. Identify maximal nodes in D. Recolor these nodes and the corresponding edges of U

red.

3. If U has no edges, then return the consensus tree T with a root and all nodes in U

children of the root. Otherwise, compute yellow components of U . If there is only one

yellow component then �nd a minimum weight edge cut, delete the edges in the cut

from U and the corresponding nodes from D; and recompute the yellow components.

Let C

1

; C

2

; :::; C

k

be the current yellow components. Form a tree T by creating the

root of T and connecting the root of the consensus trees recursively computed for the

components C

1

; C

2

; :::; C

k

to it. For each current yellow component, identify the set

E

sep

of separable red edges incident to that new component. Delete these edges from

U and the corresponding nodes from D. Go to Step 2.

14

