
External Inverse Pattern Matching

Leszek G�asieniec

�

Piotr Indyk

y

Piotr Krysta

z

Abstract

We consider external inverse pattern matching problem. Given a text T of length n

over an ordered alphabet �, such that j�j = �, and a number m � n. The entire prob-

lem is to �nd a pattern

~

P

MAX

2 �

m

which is not a subword of T and which maximizes

the sum of Hamming distances between

~

P

MAX

and all subwords of T of length m. We

present optimal O(n log �)-time algorithm for the external inverse pattern matching

problem which substantially improves the only known polynomial O(nm log�)-time

algorithm introduced in [3]. Moreover we discuss a fast parallel implementation of our

algorithm on the CREW PRAM model.

Topics: algorithms and data structures, string algorithms, parallel algorithms.

�

Max-Planck Institut f�ur Informatik, Im Stadtwald D{66123 Saarbr�ucken, Germany.

E-mail: leszek@mpi-sb.mpg.de

y

Computer Science Department, Stanford University, Gates Building, CA{94305, USA.

E-mail: indyk@cs.stanford.edu

z

Institute of Computer Science, University of Wroc law, Przesmyckiego 20, PL{51151,

Wroc law, Poland. E-mail: pkrysta@ii.uni.wroc.pl

Research of this author was partially supported by KBN grant 2 P301 034 07.



1 Introduction

Given a string T (called later a text) of length n over an alphabet �. The inverse pattern

matching problem is to �nd a word P

MIN

2 �

m

(or P

MAX

2 �

m

) which minimizes (maxi-

mizes) the sum of Hamming distances [10] between P

MIN

(P

MAX

) and all subwords of length

m in the text T . One can also consider two variations of the problem when the optimal word

is supposed to occur in the text T or oppositely when its occurrence in T is forbidden. The

two variations of the problem are called respectively internal and external inverse pattern

matching problems. It is assumed that in the internal inverse pattern matching desired

internal pattern

~

P

MIN

must minimize the sum of distances, whereas in the external case

optimal external pattern

~

P

MAX

maximizes the entire sum. As reported in [3] the inverse

pattern matching appears naturally and �nds applications in several �elds like: information

retrieval, data compression, computer security and molecular biology. For example, the ex-

ternal inverse pattern matching can be used in a context of intrusion or plagiarism detection

(see [14]), or in the synthesis of molecular probes in genome sequencing by hybridization [2].

It was shown by Amir, Apostolico and Lewenstein in [3] that the inverse pattern matching

problem can be solved in timeO(n log �) when no additional restriction on P

MAX

(or P

MIN

)

is assumed. However it turned out that internal inverse pattern matching problem appears

to be signi�cantly harder. Amir et al. in [3] presented two algorithms for this problem.

The �rst algorithm, which is reasonably simple, has the running time O(nm log �). The

second one uses more sophisticated techniques (like convolutions [6]) for Hamming distance

computation [1] and it runs in timeO(n

p

m log

2

m). Amir et al. have shown a reduction from

all mismatches problem (see [1]) to the internal inverse pattern matching. Any improvement

in the all mismatches issue is a long standing open problem, thus it looks to be quite unlikely

to get a faster algorithm for the internal inverse pattern matching. However Amir et al. show

that using techniques from [12] one can get faster superlinear solution for the internal case

when approximate answers are allowed.

The best known (to our knowledge) O(nm log �)-time algorithm for the external inverse

pattern matching was given by Amir et al. in [3]. They presented the idea of m-stems for

the text T , i.e. all possible words of length at most m not belonging to T but whose all

proper pre�xes form subwords of T . It was shown in [3] that the optimal external pattern

~

P

MAX

can be composed of somem-stem of T extended by a proper size su�x of the maximal

word P

MAX

. Unfortunately the straightforward application of the m-stem approach leads

to O(nm log �)-time solution because one has to look for m-stems testing all text subwords

of length at most m. In this paper we show how to perform tests of text subwords more

e�ciently. We present new and optimal O(n log �)-time algorithm for the external inverse

pattern matching problem, showing that the internal case is a bottleneck in the inverse

pattern matching. The optimality comes from the complexity of element distinction problem

to which external inverse pattern matching can be reduced. The new e�cient solution is a

consequence of deeper analysis of relation between the maximal words P

MAX

,

~

P

MAX

and the

text T . Our main algorithm uses e�cient algorithmic techniques like: compact su�x trees

[16], range minimum queries [8] and lowest common ancestor queries in trees [11] supported

by an on-line computations of symbol weights (de�ned later).

The rest of the paper is organized as follows. In section 2 we introduce notation and basic

techniques used in our algorithm. Section 3 contains the main algorithm with complexity

2



analysis and proof of correctness. In this section we also discuss a parallel implementation

of our algorithm. Section 4 contains the �nal remarks and states some open problems in the

related areas.

2 Preliminaries

Given an ordered alphabet � containing � symbols, i.e. j�j = �. Any sequence of concate-

nated symbols from � is called a word or a string. We use symbol � to denote operation of

concatenation, but the symbol is omitted in cases where the use of concatenation is natural.

We use a notation w[i] for the i

th

symbol of the word w, w[i::j] for the substring of w which

starts at position i and ends at j,

�

w stands for the string w without its �rst symbol, while

symbol " stands for the empty string. For example, let w 2 �

�

be a string of length n, i.e.

jwj = n. Then w = w[1::n],

�

w = w[2::n], w[i; i] = w[i] and w[i; j] = " when i > j. Any

subword of w of the form w[1::i], for all i 2 f1; : : : ; ng, is called a pre�x of w and a subword

of the form w[j::n], for all j 2 f1; : : : ; ng, is called a su�x of w. We use notation u 2 w

(u 62 w) when u is (not) a subword of string w. In case u 62 w we say that the word u is

external string for w. A search tree for a given set of words S � �

�

whose edges are labeled

by symbols drawn from the alphabet � is called a trie [7] for S. Any sequence v = v

1

; : : : ; v

k

of neighboring nodes (by parent-children relation) in a tree, such that all v

i

s are pairwise

disjoint, is called a path. Each word w 2 S is represented in the trie as a path from the root

to some leaf. Recall that a trie is a pre�x tree, i.e. two words have a common path from the

root as long as they have the same pre�x. A path v = v

1

; : : : ; v

k

, whose all internal nodes

but last have degree equal to 1, is called a chain.

2.1 Problem De�nition

Let T be a text over � such that jT j = n, and P be a string over � such that jPj = m � n.

The Hamming distance [10] between the word P and a subword of T starting at position i

is de�ned as follows:

H(P;T [i::i+ jPj � 1]) =

jPj

X

j=1

h(P[j];T [i+ j � 1]);

where for any two symbols a; b 2 �

h(a; b) =

(

0; a = b

1; a 6= b:

In other words the Hamming distance H(P;T [i::i+ jPj�1]) gives the number of mismatches

between symbols of the aligned words T [i::i+ jPj�1] and P. In this paper we are primarily

interested in the total Hamming distance between the word P and all its alignments in the

text T , which is de�ned as:

H(P;T ) =

jT j�jPj+1

X

i=1

H(P;T [i::i+ jPj � 1]): (1)

3



Now we are ready to introduce the entire problem:

Problem: External Inverse Pattern Matching.

Given a text string T 2 �

n

, where j�j = �, and a positive integer m, s.t. m � n. The

entire problem is to �nd a pattern

~

P

MAX

2 �

m

, s.t.

~

P

MAX

62 T and H(

~

P

MAX

;T ) �

H(P;T ), for all strings P 2 �

m

, which do not belong to T .

Notice that if text T contains all possible strings of length m then the external inverse

pattern matching has no solution.

According to the de�nition of entire problem the i

th

symbol of the desired pattern

~

P

MAX

can be aligned only with positions from i to n�m+ i in the text T , since we are interested

only in full alignments of the pattern

~

P

MAX

in T . The latter observation de�nes naturally

m di�erent ranges in the text T , s.t. the i

th

range is associated with the i

th

position in

pattern

~

P

MAX

. We call these m consecutive ranges windows Win

1

; : : : ;Win

m

. So simply

Win

i

= T [i::n � m + i]. Let �

i

be a frequency function de�ned in the i

th

window Win

i

,

i.e. �

i

(a) equals to the number of all occurrences of symbol a in Win

i

, for all a 2 � and

i 2 f1; : : : ;mg. The weight w

i

of symbols in the i

th

window is de�ned as follows:

w

i

(a) = (n�m+ 1)� �

i

(a); for all i 2 f1; : : : ;mg and a 2 �:

In terms of the weights the entire problem can be viewed as looking for a string P 62 T of

length m, which maximizes the sum:

m

X

i=1

w

i

(P[i]): (2)

Notice that the sum (2) is maximizedwhen the i

th

position in the pattern P is occupied by the

least frequent, or equivalently the heaviest symbol in the window Win

i

, which corresponds

to the de�nition of the maximal word P

MAX

(the maximal solution of the general inverse

pattern matching). However in the external inverse pattern matching optimal pattern

~

P

MAX

maximizes the sum (2) among all external strings for the text T .

Through the rest of the paper we will use the weighted version of the external inverse pattern

matching. Moreover, before the main algorithm starts, we transform the input string to one

which consists of numbers from the range 1 to �, s.t. every symbol from the alphabet

� is substituted by a unique number. Thus from now on we assume that symbols can be

treated as small numbers. Since the alphabet � is ordered, the transformation can be simply

performed in time O(n log �), which does not violate the complexity of the entire algorithm.

2.2 Basic Techniques

In the following section we recall some basic techniques used in our algorithm.

4



2.2.1 Compact su�x tree and compact trie

A su�x tree [16] of a word w 2 �

�

is a trie which represents all su�xes of w. Notice that

in the worst case the size of the su�x tree can be quadratic in the size of the input string.

However, since the su�x tree has exactly jwj = n leaves (corresponding to all su�xes) it

can be stored in linear space as follows. Every chain in the su�x tree is represented by a

pair of integers (i; j) which refers to the subword w[i::j]. There are exactly n leaves in the

su�x tree, thus the number of internal nodes of degree greater than one and the number

of chains are both not greater than n. The linear representation of a su�x tree is called

compact su�x tree and it is a known fact [16] that for a word w, such that jwj = n, it can

be constructed in time O(n log �). In this paper we consider tries with compact description

of chains. Recall that a chain is a path v = v

1

; : : : ; v

k

whose all nodes but last have degree

1. For our purposes there are stored subwords of only one text in the trie, which means that

all the chains in the trie represent substrings of the same text. All the chains are exchanged

by edges labeled by pairs of indices describing a position of the corresponding subword in

the text. It is important that our de�nition of the chain implies that each node of the trie

of degree � 2 has all outgoing edges of length 1. This means that these edges are labeled by

single symbols.

2.2.2 Range minimum search

Given a vector V = V [1::n] of n numbers. A range query for a pair (i; j), where 1 � i � j � n,

is a question about minimum among all numbers in the range V [i::j]. The main goal in range

minimumsearch problem is to preprocess e�ciently vector V , such that the range queries can

be answered as fast as possible. Gabow et al. [8] gave a linear time preprocessing algorithm

for the range minima that results in constant-time query retrieval.

2.2.3 Lowest common ancestor in a tree

Let T be a rooted tree with a root r. For any node x 2 T let branch(x) denote a path from

the node x to the root r, and depth(x) denote a distance (length of the path) from the node x

to the root r. Given two nodes v;w 2 T . Node v is an ancestor of node w i� v 2 branch(w).

For example the root r is an ancestor of all nodes in T . A lowest common ancestor for

any pair of nodes v;w 2 T is a node u 2 T with the greatest possible depth(u), such that

u 2 branch(v) and u 2 branch(w). In [11] there was shown that after a linear preprocessing

of a tree T all lowest common ancestor queries can be answered in constant time. Moreover

[15] introduced a simpler algorithm with the same sequential time bounds and its parallel

counterpart with linear O(log n)-time preprocessing and constant time queries.

3 External Inverse Pattern Matching Algorithm

We start this section recalling known facts about the external inverse pattern matching

introduced by Amir et al. in [3]. The following notion of m-stems plays a crucial role in

Amir et al. approach, as well as in our algorithm.

5



De�nition 3.1 Any string R = R[1::l] over the alphabet �, for l 2 f2; : : : ;mg, is called an

m-stem for the text T = T [1::n] i� the whole word R 62 T [1::n �m+ l], but R[1::l � 1] 2

T [1::n�m+ l� 1].

Assume that we have already computed the optimal maximal word P

MAX

using techniques

from [3]. Recall that the cell P

MAX

[i] contains the heaviest symbol in the window Win

i

.

Roughly speaking construction of the word P

MAX

can be done as follows. First one has to

compute the frequencies of all symbols in the window Win

1

, and this can be done in linear

time. Since the di�erence between symbol frequencies in any two neighboring windows is

small (only one symbol comes in and only one comes out when we change the window),

we can compute the heaviest symbols in the consecutive windows Win

2

; ::;Win

m

allowing

constant time for each window. Additionally we compute two arrays F

1

[1::m] and F

2

[1::m],

where F

1

[i] contains the second heaviest symbol in the window Win

i

, and F

2

[i] contains

the di�erence w

i

(P

MAX

[i])� w

i

(F

1

[i]). The arrays are called tables of 
ips for the pattern

P

MAX

. More detailed description of a data structure, which gives the weights of symbols in

the consecutive windows, is given in section 3.1.1.

If P

MAX

62 T then we take P

MAX

as desired pattern

~

P

MAX

and the external inverse pattern

matching is solved. Otherwise if P

MAX

is a subword of T , then the following fact holds:

Fact 3.1 [3] If

~

P

MAX

is the solution of the external inverse pattern matching problem, then

~

P

MAX

= � � �, where � is some m-stem for the text T and � = P

MAX

[j�j+ 1::m].

According to the Fact 3.1 searching for the optimal pattern

~

P

MAX

has been reduced to

testing (weights) of all O(nm�) possible words of the form � � �. In fact Amir et al. in [3]

reduced the number of words for testing to O(nm), skipping over non-reasonable solutions.

More precisely they build a trie for all the substrings of T of length m and they traverse it

(node by node) in BFS order, testing a maximal external string leaving the trie at a current

node. Since the size of the trie is O(nm), their approach gives an algorithm with running

time O(mn log �). In this paper we show how to search the nodes of the trie more e�ciently.

Let v be a node in the trie on depth k. Let C(v) = fc

1

; : : : ; c

l

g be set of children of the node

v and X(v) = fx

1

; : : : ; x

l

g be set of symbols on �rst positions of edges e

1

; : : : ; e

l

connecting

the node v to its children respectively. Let s be a string represented by a path from the root

of the trie to v, see Figure 1. Moreover let y be the heaviest symbol in the window Win

k+1

which is not in X(v), i.e. w

k+1

(y) � w

k+1

(z), for all z 2 � n X(v). The following lemma

shows the advantage of m-stem approach.

Lemma 3.1 The string s � y � P

MAX

[k+2::m] is the heaviest possible external string leaving

the trie at the node v.

Proof: Since the weight of the string s is �xed and the su�x P

MAX

[k+2::m] is the heaviest

possible extension (see the de�nition of P

MAX

), thus the string s � y � P

MAX

[k + 2::m] is the

heaviest possible external string leaving trie at the node v. 2

Let

�

X(v) = �x

1

; : : : ; �x

l

0

� X(v) be a set of symbols on �rst positions in the edges �e

1

; : : : ; �e

l

0

(�e

p

= e

q

i� �x

p

= x

q

), such that w

k+1

(�x

i

) � w

k+1

(y) for all i 2 f1; : : : ; l

0

g.

6



c

e 1

 1

T
1c

ei

ci c l

Tcl

 le

s

Tci

v

y

P
MAX

[k+2..m]

k

k+1

.

Figure 1: Heaviest external string leaving the trie at the node v.

Lemma 3.2 Maximal external string s � y � P

MAX

[k+ 2::m] leaving the trie at the node v is

heavier than all strings of the form s � �x

i

� P

MAX

[k + 2::m] for all i 2 f1; : : : ; l

0

g, and there

is no need to test external strings going out of the trie at and below the edges �e

1

; : : : ; �e

l

0

.

Proof: Notice that all external strings passing through the node v have the same pre�x s.

Since the su�x y � P

MAX

[k+2::m] is heavier than all possible su�xes starting from symbols

of the set

�

X(v), the results follows. 2

Lemma 3.2 has interesting consequences if the maximal external symbol y = P

MAX

[k + 1].

Corollary 3.1 If the maximal external symbol y = P

MAX

[k+1], then the string s�P

MAX

[k+

1::m] is the heaviest possible external string passing through the node v, and there is no need

to traverse the trie below the node v.

The advantage of the Corollary 3.1 becomes more clear when it is used in the context of the

nodes of some chain in the trie. The following lemma plays a crucial role in our e�cient

searching of chains in the trie of the text subwords.

Lemma 3.3 Let u = u[1::r] be a string which is represented by the only chain �

u

going out

from a node v (v has degree one). If u[1::r] 6= P

MAX

[k + 1::k + r] then:

A. the string s � P

MAX

[k + 1::m] is the heaviest possible external string passing through the

node v and there is no need to search the trie below v, otherwise

B. let j be the position in the word u[1::r] for which the corresponding di�erence in the 
ip

table F

2

[k + j] is the smallest in range k + 1; : : : ; k + r, then the word s � P

MAX

[k +

1::k + j � 1] � F

1

[k + j] � P

MAX

[k + j + 1::m] is the heaviest possible external string

among all external strings leaving the trie at nodes of the chain �

u

. In this case a part

of the trie below the chain �

u

is a subject for further search.

7



s

v

Tci

y

ci

k+1

k

k+j+1

ρu k+j

P
MAX

[k+j+1..m]
y = F[k+j]

.

1

Figure 2: Heaviest external string leaving the trie at the chain �

u

.

Proof:

ad A. The string s �P

MAX

[k+1::m] is an external string for T and it is the heaviest possible

external string which passes through the node v in the trie.

ad B. It is enough to change only one symbol in the word u to create an external string

which leaves the trie at some node of the chain �

u

, see Figure 2 and Fact 3.1. According

to the de�nition of the tables of 
ips, the position j in u gives the minimal lose of weight

among all possible swaps of one symbol in u. Since it is still possible that the maximal

external string leaves the trie below the chain �

u

, the part of the trie hanged below �

u

is a subject of further search.

2

Now we are ready to present our main algorithm.

3.1 Algorithm

The algorithm consists of two stages. The �rst one, called preprocessing, contains a con-

struction and initialization of all data structures used later during the actual search. The

second stage, called searching phase, consists of an actual construction of the desired optimal

external solution

~

P

MAX

.

3.1.1 Preprocessing

First of all, we �nd the maximal pattern P

MAX

using techniques from [3]. If P

MAX

is an

external string for the text T (which can be checked by any string matching algorithm, e.g.

see [13]) then we are done, otherwise instead of the full trie of text subwords we build a

compact trie T

T

. It is reconstructed from a compact su�x tree for the text T by cutting

all deep paths (from the root to leaves) on depth m, and skipping all shallow paths (shorter

than m). At every node v of T

T

we keep information about the string s (subword of the

8



text T ) which is represented by the path from root of the trie to the node v. Additionally

we build a common su�x tree T

�

for the text T and the maximal word P

MAX

(i.e. a su�x

tree for the word T $P

MAX

) and we preprocess it for LCA queries. Construction of all the

trees can be done in time O(n log �) as well as the preprocessing for LCA queries.

An on-line computation of the weights of symbols in the consecutive windows plays a crucial

role in the preprocessing and the searching phase. According to the need of the algorithm

a data structure which represents the weights of symbols must keep also the current order

between the weighted symbols. The data structure is represented by an array M =M [1::n],

s.t. the i

th

cell of the array contains a pointer to a (double-linked) horizontal list of all

symbols having weight i. Moreover all non-empty cells of the array are connected into a

(double-linked) vertical list. The non-empty cell in the arrayM with the largest index (which

contains a list of the heaviest symbols) is accessible directly by a variable max. Symbols in

the lists are also accessible directly by the symbol index. The construction (initialization)

of the data structure, which corresponds to Win

1

, can be simply done in linear O(n) time,

since we assumed that symbols from the alphabet � are substituted by unique numbers from

the range 1; : : : ; �. The data structure supports the following three operations.

The �rst operation gives the weight of any symbol a 2 � in the current window. The weight

of the symbol a corresponds to the position of a horizontal list containing a in the array

M . Since the symbols in the horizontal lists are accessible by the symbol index thus this

operation works in constant time.

The second operation is needed when the algorithm changes a window fromWin

i

to Win

i+1

,

for all i 2 f1; : : : ; n �mg. When the window is changed, only two symbols change slightly

their weights, i.e. T [i] comes out and the symbol T [n�m+ i] comes into the window. We

�nd the weight w

i

(T [i]) using the symbol index, then we exclude the symbol T [i] from the

list linked at M [w

i

(T [i])], and then the symbol T [i] is inserted at the beginning of the list

linked at M [w

i

(T [i]) � 1]. In the meantime the pointers to the neighbors of M [w

i

(T [i])]

and M [w

i

(T [i])� 1] in the vertical list are modi�ed if necessary. Finally the symbol index

is decreased by one at the position T [i]. Similar operation is performed when the symbol

T [n�m+i] increases by one its level in the arrayM . Thus the whole step can be implemented

in constant time.

The third operation is performed when we look for the heaviest symbol in a window Win

i

,

not belonging to the given set of symbols X(v) = fx

1

; ::; x

l

g � �. After a sequence of

l deletions in the horizontal lists and at most l deletions in the vertical list, the desired

symbol is accessible at M [max]. Finally the current structure of symbol weights is restored

by the reverse sequence of insertions to the horizontal lists and the vertical list. And the

whole step can be implemented in time O(l).

Using the on-line computation of weights we compute in time O(m) the 
ip tables: F

1

[1::m]

which contains the second heaviest symbols in the consecutive windows and F

2

[1::m] whose

i

th

cell contains the di�erence w

i

(P

MAX

[i])�w

i

(F

1

[i]). The second table F

2

is preprocessed

in linear time for the minimum range queries. Finally we compute the weights of all su�xes

of the maximal pattern P

MAX

and we store them in a table S[1::m] also in time O(m).

9



3.1.2 Searching phase

The searching phase consists of two rounds. During the �rst search of T

T

for every node v

we compute the heaviest external string, called a candidate, which leaves the trie at a node

v or at a chain which is placed under the node v. Finally, if there is any candidate, the trie

is searched again to �nd the maximal external pattern

~

P

MAX

. Otherwise the entire problem

has no solution.

During the �rst round the algorithm traverses the tree T

T

in the BFS-like order, s.t. children

are inserted into a waiting list according to their depth in the tree. Assume that the algorithm

just took from the waiting list a node v of depth k in T

T

. It is assumed recursively that

the weight of a string s, which is represented by a path from the root of T

T

to the node v,

has been already computed and the on-line weight data structure is currently set to answer

queries in the window Win

k+1

.

If the node v is of degree � 2, all edges coming out of v are labeled by single symbols

(de�nition of the compact trie, see section 2.2.1). We �nd the maximal external symbol y

using the on-line weight data structure. The weight of the word s�y �P

MAX

[k+2::m] is clearly

composed of weights of: the string s (stored at the node v), the symbol y (described by weight

function in the current window) and the su�x of pattern P

MAX

(stored in the table S). The

weight of the word s � y � P

MAX

[k + 2::m] is stored at the node v. According to Lemma 3.2

all light edges (and corresponding subtrees hanged under them) with symbols lighter than

y can be ignored. For the rest of edges we update at their ending nodes information about

the weight of a string which is represented by the path coming from the root, to ful�ll the

recursive assumption. The weight of the string is composed of the weight of the string s

(stored at v) and the weight of a symbol placed on the edge (given by the weight function).

All nodes below heavy edges are inserted into the waiting list on level k + 2.

If the node v is a �rst node (its degree is 1) of a chain �

u

, we check if a string u = u[1::r]

represented by the chain symbols, is a subword of the pattern P

MAX

, i.e. if u[1::r] =

P

MAX

[k+1::k+ r]. This can be done by asking for a lowest common ancestor of the proper

su�x of T (string s and its extension in T ) and the pattern su�x P

MAX

[k + 1::m]. If the

lowest common ancestor for both su�xes is placed on a level < r in T

�

, then we know

that u[1::r] 6= P

MAX

[k + 1::k + r] and according to part A of Lemma 3.3 we have only one

candidate s � P

MAX

[k + 1::m], and we do not search the trie below the chain �

u

. Otherwise,

when the equality holds, we recover the candidate from the 
ip tables F

1

and F

2

. First we

ask a minimum range query in F

2

[k + 1::k + r], getting index of a position j whose change

gives the smallest lose of weight, and getting the candidate s � P

MAX

[k + 1::j � 1] � F

1

[k +

j] � P

MAX

[k + j + 1::m]. The information about the weight of a string represented by path

coming from the root to the node under the chain �

u

is updated with a help of the table S.

In both cases the time at node v is proportional to degree of the node v, thus searching of

the whole trie T

T

can be done in time proportional to the size of the trie, i.e. in time O(n).

At last the trie T

T

is searched again to �nd the maximal weight, which is the weight of the

maximal external pattern

~

P

MAX

.

Theorem 3.1 The external inverse pattern matching problem can be solved in optimal time

O(n log �). 2

10



3.2 Parallel Approach

In this section we discuss shortly a parallel implementation of our external inverse pattern

matching algorithm on the CREW PRAM model. Most of the steps in our algorithm can

be easily parallelized when we allow for superlinear work and space.

Theorem 3.2 The external inverse pattern matching algorithm can be implemented in time

O(log n) and work O(n log n+m� log �) on the CREW PRAM.

Proof: Both trees T

T

and T

�

can be computed in O(log n)-time and O(n log n) work when

subquadratic space is available, see [4]. Moreover the tree T

�

can be preprocessed in time

O(log n) and linear work for LCA queries, see [15]. Since we can not use on-line computation

of weights in all windows at the same time we have to compute the whole table of weights

which is of size O(m�). The table of weights can be easily computed in time O(logm) and

work O(m�) but since we still need to keep order between weights of symbols we have to

sort all m columns, by parallel merge-sort [5], which gives total work O(m� log �). When

the table is ready, we compute the pattern P

MAX

, 
ip tables F

1

, F

2

and the table S in time

O(logm) and linear work. Then the table F

2

is preprocessed for minimum range queries

in logarithmic time and work O(m logm) (computing minimum in every block of size 2

i

,

for i = 1; ::;m). When all data structures are ready we start the searching algorithm. We

assume that at every node v of the trie T

T

there is a linear number of processors according

to the degree of v. We compute in constant time the weights of all feasible edges, i.e. the

edges of length 1 placed under nodes of degree � 2 (with help of the table of weights) and

the edges representing chains which are subwords of P

MAX

(using LCA queries and table

S). If the path from root of the trie to the node v is composed only of feasible edges, then

the node v is called feasible node. We use any Euler tour technique, see e.g. [9], to compute

all feasible nodes and the weights of a strings which are represented by paths from the root.

Computation of the feasible nodes is done in timeO(log n) and linear work. Now if a feasible

node v (placed on depth k and under a string s) is the �rst node of a chain, the weight of a

candidate is composed from the weight of the string s, table S and 
ip tables. If the node

v has degree l � 2, then O(l) processors associated with the node �nd in logarithmic time

the heaviest symbol y in column k+1 after deletion of l symbols placed in edges coming out

of v. This can be done by testing only l+ 1 heaviest symbols in column k + 1. In this case

the weight of the candidate is composed from the weight of the string s, symbol y and table

S[1::m]. When the weights of candidates are ready, we apply any tree contraction algorithm,

see e.g. [9], looking for the maximum in the tree representing optimal pattern

~

P

MAX

. 2

4 Conclusion

We have presented a new and optimal O(n log �)-time algorithm for the (sequential) external

inverse pattern matching, showing that the internal case is the hardest part of inverse pattern

matching. It is an interesting question if there exists a faster algorithm solving internal

inverse pattern matching but it looks this question has no simple answer. Another interesting

task for further research is to improve the bounds of the external inverse pattern matching

11



in the parallel issue. Notice that if the product of m and � is small, i.e. m� = O(n), our

parallel implementation is fast and e�cient. But if we want to keep linear complexity for all

feasible values of n, m and �, one has to pass the bottleneck hidden in the computation of

the weights of symbols in every window Win

i

. Another interesting question appears when

we ask for the complexity of sequential and parallel inverse pattern matching in case of other

measures of distances, e.g. the edit distance.

References

[1] K. Abrahamson, Generalized String Matching, SIAM Journal on Computing, 16(6):1039-1051,

1987.

[2] B. Alberts, D. Bray, J. Lewis, M. Ra�, K. Roberts and J.D. Watson, Molecular Biology of the

Cell, Garland Publishing, N.Y., 1989.

[3] Amihood Amir, Alberto Apostolico and Moshe Lewenstein, Inverse Pattern Matching,

Manuscript, to appear in Journal of Algorithms.

[4] A. Apostolico, C. Ilioppoulos, G.M. Landau, B. Schieber and U. Vishkin, Parallel construction

of a su�x tree with applications, Algorithmica, 3:347{365, 1988.

[5] R. Cole, Parallel merge sort, SIAM, J. Computing, 4(1988), pp 770{785.

[6] M.J. Fischer and M.S. Paterson, String matching and other products, Complexity of Compu-

tation, R.M. Karp (editor), SIAM-AMS Proceedings, 7:113{125, 1974.

[7] E. Fredkin, Trie Memory, Communications of the ACM, 3:490{499, 1962.

[8] H.N. Gabow, J.L. Bentley and R.E. Tarjan, Scaling and related techniques for geometry prob-

lems, In Proceedings of 16th ACM Symposium on Theory of Computing (STOC), pp. 135{143,

1984.

[9] A. Gibbons and W. Rytter, E�cient Parallel Algorithms, Cambridge University Press, 1988.

[10] R.W. Hamming, Error detecting and error correcting codes, Bell. Sys. Tech. Journal,

26(2):147{160, 1950.

[11] D. Harel and R.E. Tarjan, Fast algorithms for �nding nearest common ancestors, SIAM Journal

on Computing, 13:338{355, 1984.

[12] H. Karlo�, Fast algorithms for approximately counting mismatches, Information Processing

Letters, 48(2):53{60, 1993.

[13] D.E. Knuth, J.H. Morris, and V.B. Pratt, Fast pattern matching in strings, SIAM J. Comput.

6 (1977), 323{350.

[14] D. Russel and G.T. Gangemi, Sr., Computer Security Basics, O'Reilly and Associates, Inc.,

Sebastopol, California, 1991.

[15] B. Schieber and U. Vishkin, On �nding lower common ancestors: simpli�cation and paral-

lelization, In Proceedings of 3rd Aegean Workshop on VLSI Algorithms and Architecture,

LNCS 319:111{123, 1988.

[16] P. Weiner, Linear pattern matching algorithms, In Proceedings of 14th IEEE Symposium on

Foundations of Computer Science (FOCS), pp. 1{11, 1973.

12


