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Abstract. This paper shows that �nding the row minima (maxima) in

an n�n totally monotone matrix in the worst case requires any algorithm

to make 3n � 5 comparisons or 4n � 5 matrix accesses. Where the, so

called, SMAWK algorithm of Aggarwal et al . �nds the row minima in

no more than 5n � 2 lg n � 6 comparisons.

1 Introduction

Finding the row minima (maxima) of monotone matrices was introduced by Ag-

garwal, Klawe, Moran, Shor, and Wilber [1]. They also gave an asymptotically

optimal sequential algorithm for �nding the row minima in totally monotone

matrices, among other things. Row minima problems and their variants are well

motivated due to their large host of applications. Two examples are the predic-

tion of RNA secondary structure [6] and the all{farthest{neighbor problem [1].

The row minima problem for an n � n matrix M , whose entries belong to

some totally ordered set, is to �nd the minimal element in each row. To be

more precise, let mc(i) denote the index of the leftmost column that contains a

minimal element of the i-th row. Then, the row minima problem is to �nd mc(i)

for 1 � i � n.

Throughout this paper, we assume that all entries of M are distinct. Clearly,

the row minima problem has time complexity �(n

2

). It turns out, however, that

many problems can be reduced to the row minima problem for a matrixM that

has a special form:

De�nition1. Let M be an n � n matrix. The matrix M is monotone if for all

1 � i < j � n, mc(i) � mc(j).

Given an n � n monotone matrix M of n

2

distinct elements, the monotone

row minima problem is to get the minimal value in each row of M . Aggarwal et

al. [1] gave an O(n logn) sequential algorithm for the row minima problem on a

monotone matrix and showed that it is asymptotically optimal.

De�nition2. An n � n matrix M is totally monotone if every 2 � 2 minor is

monotone. That is, for all 1 � i < k � n and 1 � j < l � n, if M [i; j] > M [i; l],

then M [k; j] > M [k; l].



Given a n� n totally monotone matrix M the totally monotone row minima

problem, or just the row minima problem, is to get the minimal value in each row

ofM . (The row minima and row maxima problems on totally monotone matrices

are symmetric, so our exposition only deals with the row minima problem.)

Aggarwal et al. [1] gave a sequential O(n)-time algorithm for the row minima

problem on a totally monotone matrix. This is the SMAWK algorithm.

The SMAWK algorithm illustrates that we do not need to generate the entire

n� n totally monotone matrixM , but rather we only have to compute selected

entries ofM when they are needed. In this paper, we attack the natural extension

to this: Exactly how many matrix elements must we generate to solve the row

minima problem on a totally monotone matrix?

An exact analysis by Larmore and Schieber [6] shows that Aggarwal et al.'s

algorithm takes at most 5n comparisons and Larmore [5] very recently strength-

ened this to 5n� 2 logn� 6 comparisons. We show that any algorithm needs at

least 3n�5 comparisons among totally monotone matrix elements. We also give

a 4n�5 matrix access lower bound. So any algorithm that solves the row minima

problem on a totally monotone matrix must `look at' 4n� 5 matrix elements.

Previous lower bounds for a variation of row minima problems were given

by Aggarwal et al. [1], who gave an 
(n logn) lower bound for the more general

row minima problem on monotone matrices and Klawe [3], who gave a 
(n�(n))

lower bound for the row minima problem on partial totally monotone matrices,

where �(n) is the inverse Ackermann function. Larmore [4] gives a provably op-

timal algorithm with unknown time complexity for the convex strictly monotone

triangular matrix searching problem. Lower bounds for related problems have

also been considered. Alon and Azar [2] show that the decision tree complexity

of sorting rows in totally monotone matrices is 
(n

2

). However, to our knowl-

edge there have been no exact lower bounds for the row minima problem on a

totally monotone matrix.

2 The Basics of Totally Monotone Matrices

For the rest of this paper assume all matrices are totally monotone. A dead

column is a column that has been shown not to contain any row minima through

only comparisons and inferences [1]. Similarly, a dead cell is a single matrix

element in a totally monotone matrix that has been shown to contain no row

minima. Showing a matrix element is dead is killing a matrix cell. The left side

of Figure 1 shows a dead column in a totally monotone matrix.

In the left side of Figure 1, we have A < A

0

; therefore, due to the total

monotonicity ofM we do not have to consider any elements directly above A

0

as

a candidate row minima. Likewise, in the left side of Figure 1, we have B

0

> B;

therefore, due to the total monotonicity of M we don`t have to consider any

elements directly below B

0

as candidate row minima. That is:

Lemma3 (Aggarwal et al. [1]). If M is a totally monotone matrix with the

situation depicted in the left of Figure 1, that is A < A

0

and B

0

> B, then the

shaded column is dead.
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Fig. 1. Left: The Middle Column is Dead Since it Can't Contain any Row Minima in a

Totally Monotone Matrix. Right: Two half-dead columns.

This lemma lies at the foundation of the SMAWK algorithm.

The right side of Figure 1 shows two half-dead columns. More formally, given

a matrix M a column c is half-dead column from row r up to row 1 i� there is

a column c

0

< c such that M [i; c

0

] < M [i; c], for i : r � i � 1. Symmetrically, a

column c is half-dead column from row r down to row n i� there is a column c

0

where c < c

0

is such that M [i; c] > M [i; c

0

], for i : n � i � r.

3 The Lower Bound

In this section we give our main result: a 3n� 5 lower bound on the number of

comparisons needed for �nding the row minima of a totally monotone matrix.

We begin with a trivial 2n�2 lower bound to �nd a certi�cate to verify a solution

to the row minima problem, then this is extended giving our 3n�5 lower bound.

We use an adversary based argument. The adversary �xes the input for any

algorithm. Of course, the input must be consistent, in that it must represent an

actual n�n totally monotonematrix. The adversary starts by choosing the input

such that every value in row i is smaller than the smallest value in row i+1. This

is so comparisons of elements between di�erent rows cannot help any algorithm.

This is done without loss of generality since choosing the values in di�erent rows

of M as just stated is consonant with De�nition 2.

Given an n�n totally monotone matrixM , a certi�cate for the row minima

problem is a set of comparisons that indicate that all but n cells in M are dead.

Certainly, �nding the actual solution of the row minima problem is at least as

hard as �nding a certi�cate for a solution. Hence we will show that our adversary

can make it costly for any algorithm to �nd a certi�cate.

3.1 Foundations for the Adversary

First we introduce some terminology which we illustrate in Figure 2. Along the

main diagonal we have a band of width seven. The cells in the matrix which are
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Fig. 2. A Banded Matrix with (2� 2){Boxes

to the upper right of the band are U -cells. Similarly the cells which are to the

lower left of the band are L-cells. Cells within the band are B-cells. Killing a

border cell for the �rst time is a border kill. Along the main diagonal there are

intersecting (2 � 2){Boxes which play a crucial role in our argument. Cells in

(2 � 2){Boxes are (2 � 2){Box-cells. The intersecting (2� 2){Boxes in Figure 2

are in canonical form, since their diagonal is the same as the diagonal of M and

they share one (2 � 2){Box-cell. If a comparison kills a cell in a (2 � 2){Box,

then this comparison is a (2� 2){Box-kill. We imagine that each row minimum

is always in some (2 � 2){Box, though the (2 � 2){Boxes can be moved up or

down one row by the adversary to make more comparisons necessary.

The cells lying in the band but bordering all of the intersecting (2�2){Boxes

are border cells. The border cells are the darkest cells in the band. If a (2� 2){

Box is moved up or down one row, then `its' border cells move with it. The

(2 � 2){Boxes will always remain in this band of width seven.

Figure 3 shows our adversary's association of border cells with (2 � 2)-Box-

cells. This association will turn out to be central for our adversary.

Two (2 � 2){Boxes are intersecting if they both share one or two matrix

elements. Two (2� 2){Boxes are neighboring if one is above the other and they

share at least one matrix cell border. A connected monotone falling chain or a

chain is a list of intersecting or neighboring (2 � 2){Boxes that include both

cells M [1; 1] and M [n; n] and in this list of (2 � 2){Boxes there is a path of

(2 � 2){Box-cells from M [1; 1] down to M [n; n].

Note that the chain may contain dead cells.
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Fig. 3. Some (2�2){Boxes and their associated border cells. Two intersecting (2�2){Boxes

never have coinciding border cells since the adversary only moves (2�2){Boxes up or down.

Fig. 4. The grey cells form a chain of (2 � 2){Boxes. Such a chain would only come to

light after an algorithm makes certain comparisons.

Lemma4. For a n� n totally monotone matrix, there are exactly 3n� 2 (2� 2){

Box-cells in any chain of (2� 2){Boxes.

The basic intuition behind our adversary is that each (2 � 2){Box alone

requires in the worst case two comparisons to certify its row minima. A (2� b){

Box is a sub-matrix with 2 rows and b columns. A (2 � b){Box requires in the

worst case 2(b� 1) comparisons to certify its row minima. That is, in the worst

case monotonicity does not help to �nd the minima in a (2 � b){Box.

In canonical form (see Figure 2) even though the (2 � 2){Boxes intersect,

their intersection does not diminish the number of comparisons necessary for

certifying minima in them. Since there are initially n� 1 of these (2� 2){Boxes

so at the start when they run right down the diagonal we get a 2n� 2 cost for

the entire certi�cate. However, we will see that we can charge to almost every

(2�2){Box a third comparison via moving some of the (2�2){Boxes up or down.

In particular, if comparisons are only done among matrix elements in the chain

in canonical form, then a simple adversary can keep many border cells (hence

half-columns) alive that may potentially contain row minima. Furthermore, if we

can move (2�2){Boxes in the canonical chain up or down one row depending on

the comparisons of an algorithm, then some of those comparisons in the original

canonical chain will have been for naught while at the same time we still have to
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check for row minima in the moved (2�2){Boxes. However, moving (2�2){Boxes

up or down can form a variety of `box-types' in the chain. The adversary must

ensure that these box-types have worst-case `su�ciently expensive' certi�cates.

Suppose it takes t comparisons to create a box-type T consisting of u (2 � 2){

Boxes. Assume these (2 � 2){Boxes contain no dead cells. Then the adversary

wants to make sure that the worst case comparison cost of �nding a certi�cate

in T plus t is at least 3u.

The basic structure of the argument in the rest of the paper is the following.

If no comparisons are made among elements in the chain and if elements of the

chain are not killed as part of a dead-column, then the row minima are unknown.

Suppose some comparisons are made between elements in the chain, then usually

the adversary can move (2� 2){Boxes to avoid the e�ect of these comparisons.

The moved (2� 2){Boxes creates certain box-types down the chain. Finally we

show that the adversary can make all of these box-types costly enough to certify

to complete the result claimed in this paper.

Fig. 5. The three di�erent isolated box-types ((2 � 2){Box, the (2 � 3){Box and the

(2� 4){Box) shaded in grey, with the arrows denoting the necessary half-dead columns to

create these box-types and the X's denote the border cells associated with each of these

(2� b){Boxes. The black boxes are neighboring boxes in the chain.

During the run of any algorithm, there are six basic box-types that can

emerge, the �rst three of these are depicted in Figure 5. These are isolated (2�

b){Boxes for b 2 f2; 3; 4g. An isolated (2 � b){Box is a (2 � b){Box with no

intersecting (2 � 2){Box-cells from any other (2 � c){Boxes above or below.

Recall that to verify a certi�cate in an isolated (2 � b){Box requires 2(b � 1)

comparisons in the worst case. However, to verify a certi�cate in a (3 � b){Box

requires less than 3(b� 1) comparisons in the worst case.
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Fig. 6. The three di�erent non-isolated box-types shaded in grey, with the arrows denoting

the necessary half-dead columns to create these box-types. (We omit the symmetric cases.)

The three non-isolated box-types (without their symmetric counterparts)

are in Figure 6. Non-isolated box-types consist of intersecting (2� b){Boxes and

(2 � c){Boxes. Whenever we write about non-isolated box-types we also mean

to include their symmetric counterparts. Since non-isolated box-types `�t inside'

(3� b){Boxes for some b 2 f4; 5g the adversary must take special care of these

since �nding the row minima of the middle row makes �nding the row minima

of the top and bottom row cheaper, even in the worst case.

Lemma5. The isolated, non-isolated, and canonical box-types are the only box-

types that can form by maintaining a chain via moving (2 � 2){Boxes up or down

one row.

The proof of Lemma 5 follows from the fact that adversary only moves a

(2� 2){Boxes up or down one row at most.

3.2 Details of the Adversary

The adversary gives answers to an algorithm when it makes a comparison of two

elements x = M [i; j] and y = M [i; k] from cells in row i, where j < k and x and

y are in either in the matrix regions U;L; or B. The adversary starts with the

con�guration of Figure 2 when all of the (2 � 2){Boxes are in canonical form.

In Figure 7 we listed all but the B : B comparisons since they are more com-

plicated. Without loss of generality, take B : B comparisons to be comparisons

of two elements in the chain. Given our adversary, any comparison numbered 1

through 5 in Figure 7 can only increase the worst cost of any algorithm.

Now we focus on B : B comparisons.
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Number Type of comparison Outcome

1 x : y L : L x > y

2 x : y L : U x > y

3 x : y U : U x < y

4 x : y L : B x > y

5 x : y B : U x < y

Fig. 7. The adversaries answers to an algorithm's comparisons of cells from various regions.

Assume all B : B comparisons involve two cells that are both in (2� b){Boxes.

Isolated Box-Types Here we consider B : B comparisons in the isolated box-

types, depicted in Figure 5. This part of the adversary also applies to B : B

comparisons in (2 � 2){Boxes in canonical form. The three box-types depicted

in Figure 5 are the only types of isolated (2 � b){Boxes that can emerge in the

chain while an algorithm is run.

Assume some algorithm makes a B : B comparison, say x : y. Let Box

1

be

the (2� 2){Box x is in and let Box

2

be the (2� 2){Box y is in. These boxes can

be uniquely de�ned: Box

1

and Box

2

must always be di�erent boxes where one

contains x and the other contains y and killing x or y will kill a border cell of

Box

1

or Box

2

, respectively. If we answer x < y, then a is the number of (2� 2){

Box-cells killed. If we answer x > y, then b is the number of (2 � 2){Box-cells

killed. The numbers a and b are computed without letting a (2� 2){Box move.

Then the adversary answers by the following three Rules:

1) If a < b, then answer x < y and if Box

2

has not moved before, and if moving

Box

2

down will not break the chain, then move Box

2

down one row.

2) If a > b, then answer x > y and if Box

1

has not moved before, and if moving

Box

1

up will not break the chain, then move Box

1

up one row.

3) If a = b, then answer so no border cell is killed{if possible. If both answers

kill a border cell, try to move either of Box

1

or Box

2

(up or down one row)

without breaking the chain. If no movement is possible answer arbitrarily.

Rules (1) and (2) are easily justi�ed, for example consider these rules as

applied to an algorithm that starts to make comparisons among elements in the

canonical chain. Rule (3) is for box cells that are separated by at least one cell.

In Rule (3) if both answers kill a border cell, then either answer will save one

border cell. In Rule (3) if no box movement is possible, then Box

1

and Box

2

already have their `third' comparisons accounted for.

In Figure 8, we let `2-Top,' denote the cell labeled `2' in the top of the non-

isolated boxes. Further, the 4-right cell is the rightmost cell labeled `4,' etc.

In the last three parts of Figure 8 a comparison can be made in the neighbor-

ing (non-intersecting) dark (2� 2){Boxes invoking Rules (1),(2) and (3) making

the dark (2 � 2){Boxes intersect the (former) isolated box-type. These non-

isolated box-types are handled with Rules (4) through (7).
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Whenever a (2 � 2){Box is moved, then no (2 � 2){Box-cells are killed by

comparison that caused the movement. So, this �rst comparison that cause a

(2 � 2){Box to move, is the \third comparison" associated with verifying the

certi�cate in the moved (2 � 2){Box. The moved (2 � 2){Box has one alive

border-cell remaining.

With the exception of the upper leftmost and lower rightmost (2 � 2) or

(2 � 3){Boxes (those containing cells M [1; 1] and M [n; n] respectively), every

(2� b){Box, b 2 f2; 3; 4g has b border cells assigned to it.

The isolated (2� 3){Boxes and (2� 4){Boxes already have at least one or at

least two dead border cells, respectively (see Figure 5). Therefore, the adversary

must keep one more border cell alive per (2 � 3){Box or (2 � 4){Box while a

certi�cate is veri�ed for these boxes. This is easy to do by keeping alive a (2�2){

Box-cell directly under or directly above a border cell. Since a (2 � 4){Box is

made of three (2�2){Boxes this accounts for three comparisons per (2�2){Box

in the (2� 4){Box.

Theorem6. Given an isolated (2� b){Box, for b 2 f2; 3; 4g, except the leftmost

and the rightmost such (2 � b){Boxes. Using Rules (1) through (3), our adversary

can keep alive at least one border cell of the (2� b){Box while an algorithm makes

2(b� 1) comparisons among cells of the (2 � b){Box.

These border cells can always be chosen to be consistent with a totally mono-

tone matrix. A border cell (and the associated alive half-column up or down)

must eventually account for an additional comparison, otherwise the row minima

are not known. Considering the border cells (of the isolated (2 � b){Box) that

were killed to generate each of the isolated box-types along with the compar-

isons for �nding a certi�cate an isolated (2� b){Box and the extra comparison

implied by Theorem 6, we have a total of 3(b� 1) comparisons. That is for b� 1

(2� 2){Boxes, three comparisons each.

1

1

2

2
3 4 5

1

1

2

2
3 4 45

1

1

2

2
3 34 45
0

0 12
3 34 45

# 4 # 5 # 6 # 7

0 or 1 with 2-Top 3,4 or 5 with 3-Top 3,4 or 5 with 4-Top

Fig. 8. Details of non-isolated (2� b){Boxes and (2� c){Boxes. The leftmost box is type

of non-isolated Boxes we will consider.
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Non-Isolated Box-Types Here we consider non-isolated boxes as in Figure 6.

These boxes consist of intersecting (2 � b){Boxes and (2 � c){Boxes. Rules (1)

through (3) work for the �rst non-isolated box-type in Figure 6. The second non-

isolated box-type can be handled very similarly to the third non-isolated box-

type, so we focus on the third non-isolated box-type. The basic idea is that given

a (3� b){Box, getting a certi�cate for the middle row makes �nding certi�cates

for the top and bottom rows cheaper. To foil this, after some comparisons are

made the adversary `switches back' from a (3 � b){Box to a (2 � b

0

)-Box and

another (2� b

00

)-Box that do not intersect with each other.

If an algorithm makes a B : B comparison between elements in the third

case of Figure 6, then we augment the adversary with the following additional

rules. (See Figure 8.)

Without loss of generality, suppose that we have not made any B : B com-

parisons between any of the (2� 3){Box cells. Take the cell numbering given in

Figure 8 and the following additional rules.

4) Comparing a 1-cell and a 0-cell. Always kill the 1-cell and without loss of

generality assume that no (2�3){Box cells are dead. Apply these rules again

if another B : B comparison is done in such non-isolated boxes.

5) Comparing a 0-cell or a 1-cell with the 2-cell. Kill the 2-cell while shifting

down the (2� 2){Box containing the 2-cell. (See Figure 8 # 5).

6) Comparing cells 3-left, 4-left or 5-cell with cell 3-right. Here kill the 3-cell

and the half column above it while moving down the one (2� 2){Box. Note

that this (2�2){Box avoids the now-dead 3-cell, but it now contains the dead

border cell that was killed and caused the creation of the non-isolated boxes.

That is, a dead cell is swapped for a dead cell, while moving a (2� 2){Box.

7) Comparing a 3-left, 4-left or 5-cell with cell 4-right. Kill the 4-cell while

moving down two (2 � 2){Boxes that are under the now-dead 4-cell. Note

that these (2�2){Boxes avoid the now-dead 4-cell, but they now contain the

dead border cell that was killed and caused the creation of the non-isolated

boxes. That is, a dead cell is swapped for a dead cell, while moving two

(2� 2){Boxes.

Rule (4) makes comparing 0-cell and 1-cell do nothing for any algorithm

since it just re-kills one of the border cells that caused the creation of the non-

intersecting boxes. Rule (5) causes an additional border kill. This border kill, in

conjunction with Theorem 6, gives three comparisons per (2 � 2){Box in these

non-isolated boxes. Rule (6) produces a new instance of the �rst non-isolated

box-type (See the �rst part of Figure 6, note that here we have this one upside-

down and with one dead cell in it.). Further, take # 6 in Figure 8 and there the

lowest and rightmost (2 � 2){Box that was in the non-isolated boxes now has

one dead cell in it and one dead border cell. But this (2�2){Box needs one more

comparison to verify its certi�cate. Rule (7) introduces one isolated (2� 3){Box

and an instance of the �rst non-isolated box-type with one dead (2�2)-Box-cell

in it and another dead border cell.

The most important idea these rules introduce is that sometimes we swap one

dead-cell for another by moving one or two of the (2� 2){Boxes. That is, in the
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worst case we can essentially go from a (3� b){Box (or a non-isolated box type)

back to a (2�b

0

){Box and a (2�b

00

){Box that don't intersect each other. Where

one of these (2�b){Boxes is isolated and the other is a smaller non-isolated box-

type. In particular, by this swapping of (2�2){Boxes in Rules (5),(6) and (7) we

never kill more (2� 2)-Box-cells, but rather we trade one dead (2 � 2)-Box-cell

for another in order to get another sub-case we know how to deal with. This

\trading" of dead cells allows us to keep enough alive border cells to continue.

All of this leads to the following lemma.

Lemma7. Given two non-isolated (2�3){Boxes. Rules (4) through (7) make �nd-

ing a certi�cate in these two non-isolated boxes take at least 12 comparisons.

Lemma 7 is based on keeping a border cell (hence half-column) alive that

may contain the row minima. That is, the adversary can keep a border cell alive

that is consistent with a totally monotone matrix.

Lemma 7 holds with 9 comparisons in the case of a non-isolated (2� 2){Box

and a (2 � 3){Box (in the middle of Figure 6). That is, three comparisons per

(2� 2){Box in this case.

As Figure 8 shows, if the adversary is in a situation where there is a non-

isolated box, then it adjusts its strategy to charge three comparisons to each

(2 � 2){Box. Furthermore, consider the cells immediately surrounding the two

non-isolated (2 � 3){Boxes. If any of these bordering cells are killed before the

�rst B : B comparison is made between the (2�2)-Box-cells, then the adversary

focuses on keeping one border cell alive. The adversary can do this by Theorem 6.

In all four parts of Figure 8 a comparison can be made in the neighboring

(non-intersecting) black (2�2){Boxes forcing the black (2�2){Boxes to overlap

the grey non-isolated boxes. This is simply another case of non-isolated boxes

which the adversary deals with as the non-isolated case.

Consider if two of the situations in #7 of Figure 8 `collide.' Take the case

where the lower (2 � 3)-Box in #7 of Figure 8 forms another instance of the

non-isolated box of #4 in this �gure. If the 4-right cell was already dead, then

we would not have formed such a non-isolated box. On the other hand, say we

compare the 4-right with the 5-cell, then the adversary will just execute Rule (7)

as usual.

Completing the Lower Bound We are now ready to put everything together

and prove our main result.

Theorem8. Any algorithm solving the row minima problem on a totally monotone

n� n matrix must make at least 3n� 5 comparisons between matrix elements.

Proof. Since there are n�1 (2�2){Boxes we know by Theorem 6 and Lemma 7

that we can assign to n� 3 of the (2� 2){Boxes a border kill that did not kill a

(2�2){Box-cell. However all minima are within the (2�2){Box-cells. So to �nd

them we must kill all but n of the (2�2){Box-cells. By Rules (1) through (7) we

know that we can kill at most one (2� 2){Box-cell with a single comparison. So
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by Lemma 4 we have to do 2n�2 comparisons to kill the dead (2�2){Box-cells.

Together with the n � 3 comparisons for border cells as just mentioned gives a

total of 3n� 5 comparisons.

Certainly any algorithm must access all of the elements in a chain giving at

least 3n � 5 di�erent matrix accesses. By Theorem 6 and Lemma 4 a total of

4n� 5 matrix accesses are necessary to solve the row minima problem.

4 Conclusions

This work leaves the open problem of closing the gap between the lower and

upper bounds of the row minima problem in a totally monotone matrix.
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