More general parallel tree contraction:
Register allocation and broadcasting in a

tree

Krzysztof Diks Torben Hagerup

MPI-1-96-1-024 October 1996

More general parallel tree contraction:
Register allocation and broadcasting in a tree

Krzysztof Diks* and Torben Hagerup!

Abstract

We extend the classic parallel tree-contraction technique of Miller and Reif to handle
the evaluation of a class of expression trees that does not fit their original framework. We
discuss applications to the following problems: (1) Register allocation, i.e., computing the
number of registers needed to evaluate a given expression if all intermediate results must be
kept in registers; and (2) Broadcasting in a tree, i.e., computing the number of steps needed
to transmit a message from the root to all other nodes in a given rooted tree if each node
is a processor that can communicate with a single neighbor in each step. We show that on
inputs of size n, both problems can be solved with optimal speedup in O((logn)?) time on
an EREW PRAM, in O(lognloglogn) time on a CREW PRAM, and in O(logn) time on a
CRCW PRAM.

1 Introduction

Register allocation for the evaluation of an expression is a central concern in code generation.
Atomic operands (variables and constants) occurring in the expression are generally assumed to
reside in main memory initially, while operators can take their operands from either registers
or main memory. For reasons of speed, all intermediate results are to be kept in registers.
Since registers are a scarce resource, the goal is to use as few registers as possible (this can be
shown to optimize other criteria as well). Before an expression can be evaluated, its nonatomic
immediate subexpressions must be evaluated and their values left in registers. The order in
which subexpressions are evaluated, which the compiler is free to choose, is what determines the
number of registers used.

The problem of information dissemination or broadcasting in a tree was introduced and
motivated in [21]. At time 0, the root of the tree generates a message to be distributed to all
other nodes in the tree. The goal is to minimize the broadcast time, the earliest instant in time
at which all nodes have received the message. At each integral time instant after it receives the
message, a node can pass it on to exactly one of its children. The order in which children are
notified, which can be chosen freely, is what determines the broadcast time.

The problems of register allocation for an expression and broadcasting in a tree show strong
similarities. These become most evident when one considers recursive characterizations of op-
timal solutions. Suppose that the immediate subexpressions of an expression E are Ej,..., Ej

*Instytut Informatyki, Uniwersytet Warszawski, ul. Banacha 2, 02-097 Warszawa, Poland. diks@mimuw.edu.pl
"Max-Planck-Institut fiir Informatik, Im Stadtwald, D-66123 Saarbriicken, Germany. torben@mpi-sb.mpg.de

Fig. 1. A tree in which each node u is shown with (a) the register requirements (b) the
optimal broadcast time of the maximal subtree rooted at u.

and that the number of registers needed to evaluate F; is b;, for i = 1,..., k. If the subexpres-
sions of E are evaluated in the order Ej, ..., Ex, the number of registers used in the evaluation
of E will be b = max;<;<x(b; + 7 — 1), the reasoning being that while E; is under evaluation,
i — 1 registers are needed to hold the values of Fi,..., E;_;. A moment’s thought reveals that
b is minimized, over all permutations of Fy,..., Eg, if by > by > --- > b (see [2, Fig. 9.23]).
Similarly, it is shown in [21, Theorem 1] that if T}, ..., T} are the maximal subtrees of a tree T
rooted at the children of the root of T, if b; is the optimal broadcast time of T}, for : = 1,..., k,
and if by > by > --- > by, then the optimal broadcast time of T' is max;<i<x(b; + 7). Thus the
only formal difference between the two problems is an additive constant, plus different boundary
conditions: The broadcast time of every 1-node tree is 0, whereas the register count assigned
to a leaf in [2] is 1 if the leaf is the leftmost child of its parent, and 0 otherwise (see Fig. 1);
we follow the latter convention, but note that different assignments of 0 and 1 to leaves may
be appropriate for different instruction sets. Both problems can be solved in linear time; in
the case of computing optimal broadcast times, this was shown in [21]. The register-allocation
and broadcasting problems make sense in a more general setting: One can ask for the minimum
number of registers needed to execute a straight-line program, represented as a directed acyclic
graph, or for the optimal broadcast time of an arbitrary connected, undirected graph with a
distinguished start node. The reason for restricting attention to expressions and trees, however,
is compelling: (Decision versions of) the more general problems are NP-hard [19, 21].

Let N = {1,2,...} and INg = IN U {0}. Motivated by the applications described above,
we take ©,, for u € {0,1}, to be the function from IN, the set of nonempty sequences of
nonnegative integers, to IVy defined as follows: For all k¥ € IV and all ay,...,ax € INg,

el Bl 88) = BAIIA S = 1),
where {b;,...,bx} is the same multiset as {aj,...,ax} and by > by > --- > br. In other words,
the arguments of @, are first sorted into nonincreasing order, then the position of each argument
in the sorted sequence minus p is added to the argument, and the value of ®, is the maximum
among the resulting numbers. We define the ©-problem as follows: An instance of the problem
is given by a rooted tree T in which each leaf is labeled with an element of IVy and each internal

()

node is labeled with one of the functions ®g and ©®;, and the task is to compute the value of
T, defined as the value of its root; the value of a leaf is its associated label, and the value of
an internal node u is ®,(by, ..., bx), where @, is the function labeling u and by,..., b are the
values of its children. (We have no use for “mixed” trees with both ®o and ®; labels, but the
generalization comes for free.)

While it is not difficult to show that the ®-problem is in NC, obtaining our best results
requires some care and rather intricate variants of tree contraction. Denoting the number of
nodes in the input tree by n and assuming that all leaf values are bounded by 1 (as in our
applications) and that n > 4 (so that loglogn is well-defined and at least 1), we achieve the
following time bounds, in all cases together with a linear time-processor product, i.e., with
optimal speedup: O((logn)?) on the EREW PRAM, O(lognloglogn) on the CREW PRAM,
and O(log n) on the CRCW PRAM. Using a reduction from the problem of computing the parity
of n bits, the latter two time bounds can be shown to be a factor of at most ©(loglogn) larger
than the minimum achievable (in the case of the CRCW PRAM, with any polynomial number
of processors). For the EREW PRAM, the actual time bound is O(lognlog(d + 1)), where d
is the maximum degree of any node in the input tree (the degree of a node in a rooted tree is
defined as the number of its children). For d = 2, our (EREW PRAM) result was obtained
previously by Miller and Teng [17].

2 Tree contraction

The ®-problem is a special case of the more general problem of evaluating an expression tree
over a domain D and a set Q of operators from D¥ to D. An instance is here given by a rooted
and ordered tree T in which each leaf is labeled with an element of D and each internal node
is labeled with an operator in 2. The goal again is to compute the value of the root, where the
value of a leaf is its label, and the value of an internal node with label &, whose k children, in
the order from left to right, have values by, ..., bg, is O(by, . . ., bk).

The tree-contraction technique, introduced by Miller and Reif [14] and developed further
in a series of papers [12, 15, 16, 17, 18], is a fundamental tool for the parallel evaluation of
expression trees. A very simple variant of tree contraction for the case of binary operators was
indicated in [1, 13]. The simple algorithm can also be applied in the case of unbounded-degree
trees whenever, for each operator & € Q, O(by, ..., bx) can be construed as by 0 by o - -0 by for
some binary associative operator ¢. This is not the case for our operators ®¢ and ©;, however,
so that we have to deal directly with high degrees; this is what makes the problem challenging.

Tree contraction evaluates an expression tree by repeatedly shrinking it, while modifying
labels stored in the tree in such a way as to preserve the value of the tree. Miller and Reif
formulate the technique in terms of two operations, RAKE and CoMPRESS. Described at a
high level that, in particular, ignores the calculations involving labels, RAKE removes a leaf
from the (current) tree, while COMPRESS merges two adjacent degree-1 nodes (the result of
merging a node v with its parent u is a new node with the same parent as u, if any, and a set of
children consisting of all children of v and all children of u except v). If RAKE and COMPRESS
operations can be carried out in constant time (this depends on the label calculations), then
tree contraction can reduce an n-node tree to a constant size in O(logn) time without changing
its value, after which the value of the tree can be determined in constant time. In our case,
COMPRESS operations can be executed in constant time, as required, but simultaneously raking

k leaves with the same parent involves sorting k items, which cannot be done in constant time.
Miller and Reif were faced with a similar problem in [16], where tree contraction is used to
compute so-called canonical labelings of trees. In their case, if k¥ > 2 children of the same node
simultaneously become leaves, due to the execution of RAKE operations, it is necessary to spend
©O(log k) time sorting labels associated with the k leaves, after which they can be removed. Miller
and Reif showed that even with this complication, the tree contraction finishes within O(logn)
time. What makes our problem more difficult is that even after any amount of processing, we
cannot remove any leaf children of a node u as long as u has two or more nonleaf children; this is
a reflection of the fact that even if all but one of the arguments of ®, are known, the value of &,
once the final argument is revealed, could still depend on all the other arguments individually.
We show how to cope with such a situation within the framework of tree contraction.

The lemma below, which describes generic tree contraction, was essentially proved in a less
general form by Miller et al. [15, 16, 12, 17]. Their description does not provide a clean interface
between generic tree contraction and its various applications, however, so that the lemma can
be extracted from their exposition only with some effort. For this reason we provide a self-
contained proof of the lemma in an appendix. An informal explanation of the lemma is given
after its statement. We restrict attention to operators < that are commutative, i.e., whose value
is invariant under permutation of arguments. This is a genuine restriction, but the operators
(®p and ©®; of interest here are clearly commutative.

Let k£ and ! be integers with 0 < [< k, and let D be a set. An [-dimensional projection
of a function © from D* to D is the function from D' to D obtained from < by fixing k - [
arguments to be constants in D, while leaving the remaining ! arguments as indeterminates.
E.g., the [-dimensional projection of © obtained by fixing the k — [first arguments at the values
by, be—s maps (21;...,21) to O(by, ..., k=1, Z1,...,21) for all (zy,...,2;) € D'. Given sets
D and 2, where each element of Q is a function from D™ to D, let Tp.q be the set of all rooted
trees in which each leaf is labeled with an element of D and each internal node is labeled with
an element of €.

Lemma 2.1 Let D be a set, 2 a set of commutative functions from Dt to D, and T a subset of
Tp,a. If there are T, p and F satisfying Conditions (A)-(E) below, then, for all integers n > 2,
every n-node tree T € T can be evaluated in O(7(T')logn + log(p(T'))) time on a PRAM with
np(T) processors.

(A) F is a set of functions from D to D, and for all f € F and all z € D, f(z) can be
computed from f and x in constant time with one processor.

(B) For any two functions f and g in F, go f belongs to F and can be computed from f and
g 1n constant time with one processor.

(C) Every 1-dimensional projection of a function in Q belongs to F.

(D) 7 and p are functions from T to IN such that for all integers n > 2 and all n-node
trees T € T, 7(T) and p(T) can be computed from T in O(7(T)logn) time with np(T)
processors.

(E) Fiz an input tree T € T with n > 2 nodes, let 7 = 7(T*) and p* = p(T*) and consider
the following setting: A sequence aj,...,a; of s integers, where s is a nonnegative integer

4

bounded by the mazimum degree of a node in T™ and where 1 < a] < a3 < --- < a; =
O(7*logn), is available for preprocessing in O(7*logn) time with s processors. Assume
that the preprocessing finishes at time 0 (this is just a convention for fizing the origin of
the time azis). Subsequently, at time a7, for i = 1,...,s, the value b} of a node r; in
T* becomes known, and p*n; processors numbered p* Z;-;ll i+ Lo 0" E;;l n; become
available, where n; is the number of nodes in the mazimal subtree T} of T™ rooted at rj,
forj=1,...,s. Thus every value that becomes known contributes new processors, and the
available processors at all times are consecutively numbered. Moreover, the trees Ty, ..., Ty
are disjoint.

In these circumstances, for some constant C > 0 and for all O € 2, the function
f : D — D mapping z to O(b3,...,05,2), for all € D, must be computable with the
available processors to be ready by time
max _(j + Cr"log(|Fj| + 2)),
ay<j<aj
where Fj = {i : 1 £ i < s and a} = j}, for j = a},a] + 1,...,a}; for s = 0 we take this
condition to mean that f must be computable in constant time with one processor.

The model of computation is specified in Lemma 2.1 only as a PRAM; the lemma holds
for all variants of the PRAM at least as strong as the EREW PRAM. When there are no
restrictions on concurrent reading, the term log(p(7)) in the time bound can be removed. While
Conditions (A)—(C) of Lemma 2.1 are readily interpreted in the context of [15, 16, 12, 17] and
Condition (D) is a simple extension (allowing more time and processors), Condition (E) may
look unfamiliar. Its closest analogue in the work of Miller and Reif is their requirement [16] that
“the k leaf children of a node can be raked in O(logk) time”, but this formulation is neither
precise nor general enough for our needs. :

Since a major concern in the remainder of the paper will be to show that Condition (E)
is satisfied in a number of situations, we introduce terminology that facilitates the discussion.
First, the processing required in Condition (E), i.e., the computation of the function mapping
z to O(b3,...,b%,2), for all 2 € D, will be referred to as raking. The quantities b7,..., b} are
called keys to distinguish them from other integers. For 1 < ¢ < j < s, we consider b and b}
to be distinct keys even if they have the same numerical value. For i = 1,...,s, a; is called the
arrival time of the key b7, and for j = af,a] +1,...,aj, the set of keys with arrival time j will
be called a family, also considered to have arrival time j. We distinguish between families with
distinct arrival times even if they happen to be empty. The lead of a family with arrival time j
is t — 7, where ¢ is the time at which the raking finishes. Finally, for any finite set S, we define
the log-size of S as log(|S|+ 2). Condition (E) can now be expressed by saying that the lead of
some family must be within a constant factor of 7° times its log-size.

3 The algorithms

In our application of tree contraction to the ®-problem, we take D = INy and Q = {®g, ®1}-
For all a, 3,7 € INy with a < 3, denote by ¢4 3~ the function from INy to IVg given by

Vs lfIL'<a’
$a,p4(2) = {'y+1, ifa<z<p,
y+2+z-46, ifz> 0,

for all z € INy, and take F = {¢ap, | @,8,7 € Ny and o < B}. The function ¢n 5., € F
can be represented via the triple (a,3,v). Condition (A) of Lemma 2.1 is clearly satisfied, and
Conditions (B) and (C) are demonstrated in the following lemmas.

Lemma 8.1 For any two functions f and g in F, go f belongs to F and can be computed from
f and g in constant time with a single processor.

PROOF Given a function f = ¢4, € F, we define f~! as the function from {y € IV | y > v}
to INo with f~1(y) = min{z € INy | f(z) = y}, for all y > 7. f~! can be evaluated in constant
time and is strictly increasing, and f~ (y+ 1) = f~1(y) + 1 forall y > v + 2.

Now let f = ¢a,3, and g be functions in F, take h = go f and define v’ as g(y) and A" as
f~log!. Since g71(v'+ 1) = g7 (g9(7) + 1) > v, the domain of A* includes {ye INo |y > 7'}

We claim that A = ¢qa g4, where o/ = h*(y' + 1) and B = h*(y' 4+ 2). First observe
that for all y > 4/, h*(y) = min{z € INy | A(z) = y}. Thus h(z) = 4/ for all z < o/, and
h(z) = 7'+ 1 for all z with o/ < z < f'. Since clearly A(8) = v’ + 2, what remains is to show
that h(z + 1) = h(z) + 1 for all z > 3. But this follows from the fact that for all y > v/ + 2,

Ky+1) = y+ D))= W) +1) = F e (@) + 1 =R (y) + 1.

|

Lemma 3.2 For all u € {0,1}, all k € INg and all by, ...,bx € INy, the function fu from INy to
INg mapping x to ®p(b1,...,bk, z), for all z € INy, belongs to F.

PROOF For k =0, f, = ¢1,2,1—4, 50 assume that k > 1. We first consider the case © =0 and let
© = ©@o. Given a sequence @, ..., a of arguments to ® with a; > --- > aj, we consider a;, for
i =1,...,k, to have a value, a;, an indez, i, and a contribution, a; + i. Define an index i and an
argument a; to be critical if a; + 1 = O(ay, . .., ax).

Assume without loss of generality that b; > --- > br. The insertion of z into the sorted
sequence by, ..., by increases the contribution of every element following z by 1 and leaves the
contribution of every element preceding z unchanged. Let i be the maximal critical index of the
sequence by, ...,b; and consider three cases:

Case 1: z < b;. Then ®(by,...,bk,z) = O(by,-..,br) = b; +1. For no element following z in
the sorted sequence was critical before the insertion of z, and the contribution of z itself exceeds
©(by, ..., bx) only if z immediately follows an element of the same value that was critical before
the insertion of 2, which contradicts the assumption z < b;.

Case 2: b; <z < bij+i+1. Now ®O(by,...,bk,) = b;+i+1. For certainly Gy, i b 22>
bi + ¢ + 1, since z can now be placed before b;, which increases the contribution of b; by 1. On
the other hand, either the contribution of z is z +1 < b; +7 + 1 (if z is inserted in the first
position in the sorted sequence), or the contribution of z is at most one more than that of its
predecessor, i.e., again bounded by ®(by,...,b) + 1.

Case 3: ¢ > b;+ i+ 1. Then z > by and O(by,...,bx,z) =z + 1.

Putting together Cases 1-3, we see that fy = oy € F,wherea=b;, 3=0b;+:+1 and
7 = b; +¢ > 1. This also implies that f; = ¢a,5-1- o

3.1 The EREW PRAM algorithm

For the EREW PRAM we take 7 = Tpgo and 7(T) = [log(d + 1)], where d is the maximum
degree of a node in T, and p(T) = 1 for all T € 7. Then Condition (D) of Lemma 2.1 is easily
seen to be satisfied. What remains is to show how to satisfy Condition (E). But this is also easy:

We simply wait until time a, i.e., until all of the keys b3, ...,b}; are available, and then process
them as implicit in the proof of Lemma 3.2. For & = ®,, this involves sorting b7,...,b; into
nonincreasing order, adding ¢ — p to the ith element in the sorted sequence, for i =1,...,s (we

call this “adding appropriate offsets”), computing the maximum in the resulting sequence, and
determining the largest position of an occurrence of the maximum. Since s < d, all of this can
be done in O(7*) time on an EREW PRAM with s processors, the only nontrivial subroutine
needed in fact being one for logarithmic-time sorting with optimal speedup [3, 8]. We have
proved:

Lemma 8.3 For all integers n > 2 and d > 1, ®-problems can be solved on input trees with n
nodes and mazimum degree d in O(lognlog(d+1)) time on an EREW PRAM with n processors.

3.2 The CRCW PRAM algorithm

For the CRCW PRAM we take 7(T) = 1 and p(T) = [logn]? for all T € T with n > 2 nodes;
T will be specified below. Again Condition (D) of Lemma 2.1 is obviously satisfied. Consider
Condition (E).

We cannot follow the strategy of the EREW PRAM algorithm of waiting until all keys
bj,...,b: have become available before starting the raking, the reason being that a PRAM with
a polynomial number of processors cannot sort in constant time. Instead we have to carry out
the sorting incrementally, i.e., to sort keys as they arrive. More precisely, our raking algorithm
proceeds as follows:

Let A € IV be a constant to be fixed later. We divide the s keys into ¢ = [(aX — a] + 1)/(2))]
generations Gi,...,G4. For it = 1,...,q, a key belongs to the ith generation G; if its arrival
time lies in the set {aX —#(2\)+1,...,a; — (i — 1)(2))}, called the span of G;. In other words,
the generations are numbered “backwards”, and except for G4, which may be smaller, each
generation spans exactly 2) time units. We say that a family belongs to a generation G if its
arrival time lies in the span of G. The raking algorithm sorts the keys within each generation; we
will use G; also to denote the sorted sequence obtained by sorting the keys in the ¢th generation,
for ¢ = 1,...,q, relying on context to resolve any ambiguity. In addition, with Hy = G,
G; is merged with H;,; to create the sorted sequence H;, for ¢ = ¢ — 1,...,1 (see Fig. 2).
Each sorting and merging operation is started as soon as its input is available. Thus several
generations may be sorted simultaneously, while the merges must happen in a strictly sequential
fashion. When the final sorted sequence H; has been produced, we remember its maximum M
and add appropriate offsets in the range {0, . .., s}. Since the maximum of the resulting sequence
S obviously lies in the range {M, ..., M + s}, computing this quantity reduces to computing the
maximum of the sequence S’ obtained from S by subtracting M from each of its elements and
replacing negative elements by zero. The elements of S’ lie in the range {0,..., s}, which means
that their maximum can be computed in constant time with s processors [11, Theorem 1]. The
final nontrivial step of the raking, the computation of the position in S of the last occurrence
of the maximum, also reduces to computing the maximum of s integers in the range {0, ...,s}

time
I last busy run #id o

waiting

'\ ¢ merging
A : sorting
o : afamily

Fig. 2. Sorting and merging generations.

(replace every occurrence of the maximum by its position and every other number by zero).
Thus the raking finishes within a constant delay after the end of the last merge.

We still have to specify the routines used for sorting and merging. We employ a standard
sorting algorithm using logarithmic time and a linear number of processors [3, 8] and a constant-
time merging algorithm characterized in the lemma below.

Lemma 3.4 For all integers N and M with 2 < N < M and all fized ¢ > 0, two sorted
sequences, each containing N integers in the range {0,...,M}, can be merged on a CRCW
PRAM using constant time and O(N(M/N)¢log N) processors.

PRrOOF If M > N+1/¢ at least N2 processors are available, and it is very easy to carry out
the merging of arbitrary values (not necessarily integers) in constant time, even on a CREW
PRAM. We will therefore assume that M < N'+1/¢ so that log M = O(log N).

The segmented-broadcasting problem of size N takes as input an array A of N cells, some
of which contain significant objects, and the goal is to mark each cell in A with the position
of the nearest significant object to its left, if any. It is known that for all integers N > 2,
segmented-broadcasting problems of size N can be solved on a CRCW PRAM using constant
time and O(NN log V) processors (53, 7).

Returning to the merging problem, let X and Y be the two input sequences. Multiplying
all elements in X and Y by 2 and subtracting 1 from those in X only, we ensure that no value

occurs in both X and Y. It now suffices to compute the rank of each element z of X and Y in the
opposite sequence, i.e., the number of elements < z in that sequence, since this number added
to the position of the element in its own sequence yields its position in the output sequence. We
describe how to compute the rank in Y of each element in X.

Let Y = (y1,...,yn). For i = 1,..., N, store the rank in Y of y; in A[y;], where A[0..2M]
is an array. This is easy to do in constant time with N processors: For ¢ = 1,...,N,if : = N
Or ¥; # Yi+1, then store 7 in Afy;]. Considering the values thus stored in some of the cells of A
as significant objects, the remaining task is, for each value = occurring in X, to compute the
nearest significant object to the left of A[z], since this is the desired rank of z in Y. We could
carry out this task by solving the segmented-broadcasting problem defined by A. However, A
is large, and we will instead compute only the N entries actually needed.

Let T be a tree of constant height with the cells of A in the natural order at its leaves and
with the following degree restrictions: The root of T is of degree O(N), and all other nodes in
T are of degree O((M/N)¢). Mark each node in T that is the root of a subtree containing a
significant object, and subsequently solve a segmented-broadcasting problem for each marked
internal node u in T'. The problem associated with u is defined over the sequence of its children
by taking a marked child to be significant object. In order to solve these segmented-broadcasting
problems, we use O(N log N) processors at the root of T and O((M/N)¢log N) processors at
each remaining marked internal node, a total of O(N(M/N)¢log N) processors.

Now a single processor associated with an element z in X can use the information stored in
T to navigate to the nearest marked leaf to the left of A[z]. First it moves upwards, starting
at A[z], until it hits a marked node u with a marked sibling to its left. If this never happens,
z is smaller than all elements in Y. Otherwise the processor descends from the nearest marked
sibling of u to the left of u, always proceeding to the rightmost marked child of the current node.
When it reaches a leaf, this will be the nearest marked leaf to the left of A[z].

The description given in the previous paragraph implicitly assumed that an uninitialized node
in T can be recognized as such. This assumption can be obviated simply by augmenting the
marking of a node with a proof of its validity, namely a pointer to an element in Y corresponding
to a marked leaf descendant. m

As can be seen, the algorithm of Lemma 3.4 applies only to input sequences consisting of small
integers, for which reason we will place restrictions on the labels in the input tree. More precisely,
we fix a constant ¥ € IN and let 7 be the set of those trees T in 7p o whose leaf labels are all
bounded by m = (logn)”, where n > 2 is the number of nodes in T (fix any convention for n = 1).
It is easy to see by induction that the value of every tree in 7p o with NV nodes and leaf labels of at
most m is bounded by mNN. Thus, whenever our raking algorithm merges two sequences involving
N > 2 keys and a maximum key value of M, the number of processors available for the merge
will be at least p* max{N, M/m} > max{N (logn)?, M/m}. With e = 1/(3v), this is at least
N(M/N)¢log N. Forif (M/N)¢ < log n, the claim is obvious; and if not, (M/N)Y/3 > m > log N
and hence M/m = N(M/N)Y/3(M/N)\/3(M/N)/3/m > N(M/N)¢log N. It now follows from
Lemma 3.4 that every merge carried out by the raking algorithm can be executed in constant
time. We choose the constant A € IV anticipated above as any constant upper bound on the
number of time steps needed for a single merge.

Define the lead of a generation G as the number of time steps from the beginning of the
sorting of G to the end of the raking. In order to show that the raking is sufficiently fast, we

must find a generation whose lead is within a constant factor of its log-size; to see this, we use
the facts that the log-size of each generation is within a constant factor of the log-size of the
largest family in the generation (since there are at most 2\ such families), and that the lead of
every family in a generation G is within a constant factor (in fact, within an additive term of
2)) of the lead of G. We can clearly assume that ¢ > 2, i.e., that at least one merge takes place.

Say that a time step is busy if some merge is in progress during the step. Note that sorting
may take place during a nonbusy step—we care only about merges. Define a busy run as a
maximal sequence of busy time steps, let k¥ be the number of merges carried out during the last
busy run and consider two cases:

Case 1: k < 2. What triggers the last busy run is the completion of the sorting of some
generation G. Since the last busy run takes only constant time, certainly the lead of G is within
a constant factor of its log-size.

Case 2: k > 3. Let t be the time at which the last busy run begins and note that the
last merge completes no later than at time ¢ + Ak. The fact that Gy and Hjyy; cannot start
merging before time ¢ implies that for some ! with k¥ < I < ¢, the sorting of G; has not been
completed by time ¢t — 1. Since generations begin only every 2\ steps, the sorting of G; starts
no later than 2A(! — 1) steps before the beginning of the last merge, i.e., no later than at time
t+ Ak —2X(1—-1) <t+ Ak —2X(k—1) =t — A(k — 2). Thus the time r needed for the sorting
of Gy is at least A(k — 2) > Ak/3, and the lead of G; is at most r + Ak. It follows that the lead
of G is within a constant factor of its log-size, as desired.

Lemma 3.5 For all integers n > 2 and all constants v € IN, ®-problems can be solved on input
trees with n nodes and all leaf labels bounded by (logn)” in O(logn) time on a CRCW PRAM
with O(n(log n)?) processors.

3.3 The CREW PRAM algorithm

For the CREW PRAM we again allow all input trees (7 = Tp,q) and take 7(T) = [loglog n]
and p(T) = [logn]%for all T € T with n > 4 nodes. The raking now has to perform not only the
sorting, but also the maximum-finding in an incremental fashion, since a CREW PRAM cannot
carry out either task in sublogarithmic time (even for inputs consisting of small integers). Our
approach to incremental maximum-finding is to extend the sorted sequences employed by the
CRCW PRAM algorithm by additional information, as expressed in the definition of an R-
structure below. A range query about a sequence ay,...,ayN of integers specifies two integers k
and [/ with 1 < k£ <1< N and asks for the position of the last occurrence of maxx<i<s@; in the
subsequence ag, ..., q.

Definition Given a multiset S of NV keys, an R-structure for S consists of

(1) The sorted sequence by > by > ... > by, where S = {b;,...,bn}.

(2) For N > 4, a range-query structure @ that allows arbitrary range queries about the
sequence by +1,...,bxy+ N to be answered in O(loglog V) time with O(log N) processors.

It is easy to see that in the context of Condition (E) of Lemma 2.1, an R-structure for the full
multiset {b7,...,b;} will allow us to finish the raking in O(loglog n) time. Except in the trivial
case s = 0, we obtain such an R-structure by repeatedly combining R-structures for smaller
multisets with the algorithm described in the following lemma.

10

Lemma 3.6 Given R-structures for two multisets X and Y with N = |X| and M = |Y| ele-
ments, where 2 < M < N, an R-structure for X UY can be constructed in O(loglog N +log M)
time on a CREW PRAM with O(N (log N')?) processors.

PRrOOF It is well-known that X and Y can be merged within the stated bounds to create item (1)
of an R-structure for X UY [6]. Now each element in X or Y knows its position in the opposite
sequence. We begin by creating new range-query structures Q’y and @} for X and Y that are
defined as the old structures Q x and Qy, but with respect to sequences with the quantity b; + ¢
replaced by b;+1', where ¢ is the position of the element in question in the sorted sequence X UY .

' and @} have a straightforward structure and simply consist of precomputed positions of
the last range maxima within selected standard ranges, namely the whole range in question, its
first and second halves, its four quarters, etc. It is easy to see that an arbitrary query interval
can be decomposed into O(log V) disjoint standard ranges, so that the query can be answered in
O(loglog N) time by combining the information associated with the relevant standard ranges. In
the case of @}, the relevant information for the standard ranges can be computed from scratch
in O(log M) time using M processors. For Q'y, focus on one particular standard range and note
that it decomposes into at most M + 1 segments, each consisting of consecutive elements of X
with no intervening elements from Y. All elements within one segment increase their position
by the same amount ¢ in going from X to X UY, namely by the number of smaller elements in
Y. With ©((log N)?) processors associated with each element of X UY’, we can devote ©(log V)
processors to each segment, and we can easily arrange that these processors learn the value of :.
The team of ©(log V') processors queries the old range-query structure Q x about its associated
segment, after which one processor in the team adds ¢ and collaborates with one processor from
every other segment within the standard range under consideration to compute the position
of the last occurrence of the new overall maximum for that standard range. The queries need
O(loglog N) time, and the subsequent combination of at most M + 1 answers takes O(log M)
time.

Having Q'y and Q}, we can easily create a new structure of the same kind for X UY. BEach
standard range of X UY is composed of the elements from one interval in X and the elements
from one interval in Y, these intervals can be determined in constant time, and all that remains
is to query about the intervals in Q' and @} and combine the two answers obtained. O

We will use the phrase “R-merging X and Y” to denote the procedure described in Lemma 3.6.
The most noteworthy aspect of Lemma 3.6 is its time bound: When used to R-merge sets of
comparable sizes, the algorithm of Lemma 3.6 offers no advantage whatsoever over sorting—
the time bound is logarithmic. An edge over sorting is obtained only in heavily unbalanced
R-merges, where one input set is much larger than the other one. It is interesting that this
behavior can be put to good use.

Except for the fact that R-merges take the place of usual merges, our CREW PRAM raking
algorithm is similar to the CRCW PRAM algorithm described in the previous subsection. The
only other difference is a new definition of the generations G, ...,G,4. Let A be a positive integer
with A = ©(loglog n) such that A steps suffice to (1) sort any sequence of at most K = [log n]?
keys, and (2) R-merge any sequence of at most K keys with any sequence of at most n keys.
Let g be the function from {aj,...,a%} to IV given by

o) = [1og (| %57] +1) | +1,

1L

Fig. 3. Generations of geometrically increasing sizes.

for all z € {a],...,a}}, and define G;, for : = 1,...,¢ = g(a;), as the set of those keys whose
arrival time is mapped to ¢ by g. Thus G; comprises the last 3\ families, G2 spans the previous
6 families, and so on. In general, for i = 2,...,¢, G; spans twice as many families as G;_;,
except that G4 may be smaller (see Fig. 3).

We must demonstrate the existence of a family whose lead is within O(loglogn) of its log-
size. Recall that a busy run is a maximal sequence of steps in which (R-)merging takes place.
Take k£ = 0 if ¢ = 1, and otherwise let £ be the number of R-merges in the last busy run. We
define a final-merger as follows: The generations Gy, ..., Gy are final-mergers. Additionally, if
k = 0 or the sorting of G4, finishes after that of Gi, Gi4 is a final-merger. Let G, be a largest
final-merger and consider two cases:

Case 1: |G,| < K. In this case each final-merger can be sorted in at most A steps, and
every R-merge in the last busy run, if any, takes at most A steps. We can conclude that &£ < 1,
since otherwise, when the R-merging of Gy with Hyy; completes, the sorting of Gx—; has not
vet begun, contradicting the fact that the last busy run is in progress. But then any family in
G, has a lead of O(loglog.n).

Case 2: |G,| > K. Let L be the log-size of G,. It suffices to show that the lead of G,
is O(Lloglogn). To see this, note the following: First, since the total number of families is
O(log n loglog n), the log-size of G, is within a constant factor of the log-size of a largest family
in G,. And second, the lead of G, is at most three times that of any of its families if » > 1,
while it is at most an additive 3\ = O(loglogn) larger if r = 1. In particular, this allows us to
assume that ¢ > 2 and hence k£ > 1.

Since the size of G, dominates that of any final-merger, every R-merge that takes place
during the last busy run can be executed in O(L) time. Because the total number of R-merges

12

is O(loglog n), the length of the final busy run is O(L loglogn). The last busy run is triggered
by the completion of the sorting of a generation G; whose size is dominated by that of G,.
Moreover, [> r, i.e., the sorting of G, starts no earlier than that of G;. Thus the sorting of G,
starts no earlier than O(L) steps before the beginning of the last busy run, which implies that
the lead of G, is O(L loglogn).

Lemma 3.7 For all integers n > 4, O-problems can be solved on n-node input trees in
O(log nloglog n) time on a CREW PRAM with O(n(logn)?) processors.

4 Achieving optimal speedup

In this section we show how the algorithms of the previous section can be modified to achieve
optimal speedup. To a first approximation, we describe preprocessing that reduces the size of
the input tree by any desired polylogarithmic factor. Part of the preprocessing evaluates small
expression trees sequentially, for which reason we first consider this problem. Let 7 be the set
of rooted trees in which each leaf is labeled with 0 or 1, and each internal node is labeled with
one of the functions ®g and @;.

Lemma 4.1 Every n-node tree in Ty can be evaluated sequentially in O(n) time.

ProOF The claim was proved in [21] for the case in which each leaf is labeled with 0 and each
internal node is labeled with ®g. For the general case, choose for each internal node u of degree
> 2 in the given tree T a child v of u whose value is second-largest (i.e., if the values of the
children of u are arranged into nonincreasing order, the integer occurring in the second position
will be the value of v), and call v the second-largest child of u. We now process the nodes of T
in postorder, at each internal node u computing the value of u from those of its children. By
treating the maximum separately and using bucket sorting, we can carry out the processing at
a node u of degree > 2 in time proportional to the value of its second-largest child. It therefore
suffices to show that the sum B of the values of all second-largest children in T is O(n). To this
end consider the forest F obtained from T' by removing the edge between each second-largest
child and its parent. As is easily seen by induction, the value of each node (with respect to T')
is bounded by twice the number of its descendants in F. Thus B < 2n. O

Lemma 4.2 Suppose that the value of a single leaf v in an n-node tree T € Ty s considered as
an indeterminate x (the values of all other leaves being integer constants). Then the value of T,
as a function of z, can be computed in O(n) time.

ProoF We begin by evaluating all trees in the forest obtained by removing all nodes and edges
on the simple path = in T from its root to v. Using the algorithm of Lemma 4.1, this can be
done in O(n) time. We then sort the values obtained lexicographically, with the parent on 7 of
the corresponding root as the primary key and the value itself as the secondary key; this can be
done in O(n) time using radix sorting. It produces sorted arrays, one for each node on 7 other
than v, with the aid of which we can shrink T to the path 7, without changing the value of the
root, by associating appropriate functions in F with the nodes on 7 according to Lemma 3.2.
The time to do this is proportional to the total size of all sorted arrays, which is certainly O(n).

13

Fig. 4. A tree, its 5-critical nodes, and its partition into two edge bridges and five leaf bridges.

Finally, in time proportional to the length of =, we can compose the functions associated with
its nodes according to Lemma 3.1 to obtain the final result as a function in F. O

Another concept central to the preprocessing is that of m-bridges, as introduced by Gazit et
al. [12]. Given a positive integer m and a rooted tree T', define the m-rank of a node u in T as
[w/m], where w is the number of descendants of u, and say that an internal node u is m-critical
if its m-rank differs from that of each of its children. An m-bridge (for brevity: a bridge) in T is
a subtree of T spanned by a maximal set of edges, any two endpoints of which can be joined by
a path in T without m-critical nodes in its interior (see Fig. 4). An attachment of a bridge W
is a node shared between W and another bridge; it is necessarily m-critical. Gazit et al. prove
that a bridge can have at most one leaf attachment and that, except possibly for its root, it has
no other attachments. An bridge is called an edge bridge if it has a leaf attachment, and a leaf
bridge otherwise. Gazit et al. also show that if T has n nodes and 1 < m < n, then the number
of m-critical nodes and, hence, the number of edge bridges is bounded by 2r/m, and that the
size of every m-bridge W, defined as the number of nodes in W, is bounded by m + 1. Finally,
they argue that the set of m-critical nodes in an n-node tree can be computed in O(logn) time
using O(n) operations on an EREW PRAM by means of the Euler-tour technique [22] and
optimal list ranking [10, 4, 18]. The same method allows us to select a unique leading edge from
each m-bridge and to mark it with the size of the bridge.

Assume that we are given an input tree T € To with n > 4 nodes and maximum node
degree d. In order to obtain an EREW PRAM algorithm with optimal speedup, we choose m
as a positive integer with m = ©O(lognlog(d + 1)) and carry out the computation of m-bridges
described above. Using the information associated with the leading edges to distribute the
work among the processors, we then process each bridge W sequentially, contracting W while
preserving the attachments of W and their labels as well as the value of the full tree. This is
done using the algorithm of Lemma 4.1 if W is a leaf bridge, and using that of Lemma 4.2 if
W is an edge bridge. Let r be the root of W. If r is not an attachment, we apply Lemma 4.1
or 4.2 to all of W, labeling r with the resulting value or function in F; besides r, the only node
in the resulting tree is the leaf attachment of W, if any. If r is an attachment, it has a single
child u in W. Unless u is an attachment (in which case W contains only the two nodes r and
u), we apply Lemma 4.1 or 4.2 to the maximal subtree of W rooted at u, labeling u with the

14

resulting value or function in F; besides r and u, the only node in the resulting tree is the leaf
attachment of W, if any. This uses O(m) time and O(n) operations and yields a tree T’ with
at most n nodes and the same value as T. Moreover, since every nonroot internal node in 7" is
m-critical in T or has an m-critical child, the number of internal nodes in 7’ is O(n/m). Define a
phantom as a leaf of T’. For each internal node in T, we sort the values of its phantom children
into nondecreasing order. Since all of these values are bounded by m + 1, as is easily seen by
induction, this can be done in O(m) time using O(n) operations [9, 23]. For each internal node
u in T’, we then conceptually remove all of its phantom children, while replacing the function
labeling u by its corresponding projection. In terms of the representation, what we actually do
to the label of u is nothing if u is left with two or more (nonleaf) children (i.e., in that case
the projection of its associated function is represented in a “raw” form by the sorted sequence
of the values of its phantom children). If u is left with exactly one child, we label it with the
appropriate function in F, and if it becomes a leaf, we label it with its value. All of this can be
done in O(logn) time using O(n) operations. The resulting tree T” has internal nodes labeled
not just with ®p and ©;, but also with projections of these functions; still, it is easy to see that
Conditions (A)—(C) of Lemma 2.1 continue to hold for this more general set Q of operators. T
has O(n/m) nodes, and we evaluate it using the algorithm of Lemma 3.3, with one difference:
Suppose that the raking at an internal node u is about to finish, so that a sorted sequence of the
values of all except one of the children of u in T” is available. We need to merge this list with the
sorted sequence of the values of the phantom children of u, after which we can proceed to add
appropriate offsets, compute the position of the last occurrence of the maximum and finish the
raking, now with the phantom children of u taken appropriately into account. The computation
just described can be carried out in O(log(d+1)) time, as required, but not necessarily using only
the processors “provided” by Condition (E) of Lemma 2.1 (since their number is independent
of the number of phantom children of u). We thus have to allocate additional processors to
u to help with the raking. The computational effort is O(1) per phantom involved, so that
the total number of operations needed to process all phantoms is O(n). The allocation of the
additional processors essentially reduces to sorting the phantoms by their raking times, while
keeping sibling phantoms with the same raking time together and in the same order, and can be
done “off-line” in O(m) time using O(n) operations before the processing of T”. Because of the
use of additional processors, we are not in full compliance with Condition (E) of Lemma 2.1.
It is easy to see, however, that the lemma continues to hold even if such additional processors
are employed, provided that they are accounted for in the total resource requirements. Thus we
have proved:

Theorem 4.1 For all integers n > 2 and d > 1, ©-problems can be solved on input trees
with n nodes, mazimum degree d and all leaf labels bounded by 1 on an EREW PRAM using
O(lognlog(d + 1)) time and O(n) operations.

For the CREW PRAM, we choose m = O((log n)®), compute m-bridges as in the EREW
PRAM algorithm, and subsequently process each bridge using the EREW PRAM algorithm.
This again means contracting each bridge W, while preserving the attachments of W and their
labels as well as the value of the full tree. In the case of leaf bridges this can be done using
the algorithm of Theorem 4.1. We have not proved a lemma corresponding to Lemma 4.2 to be
used for the edge bridges. It is not difficult to see, however, that the algorithm of Theorem 4.1
performs as desired if the leaf attachment of an edge bridge under consideration is treated as an

15

internal node with several children; alternatively, one can proceed as in the proof of Lemma 4.2,
applying the algorithm of Theorem 4.1 separately to each subtree hanging from the path = and
subsequently contracting = by means of pointer doubling. The processing of all m-bridges uses
O((loglog n)?) time and O(n) operations and produces a tree 7’ with at most n nodes, O(n/m)
internal nodes and the same value as T. Moreover, since the leaf values in 7’ are the values of
subtrees of disjoint m-bridges, each such leaf value is bounded by m + 1, and the sum of all leaf
values is at most n. Let U be the set of internal nodes in 7”. As in the EREW PRAM algorithm,
we define a phantom as a leaf in 77 and sort the phantom children of each node in U by their
values (now using radix sorting in 6 passes). For each u € U, we then replace all phantom
children of v with a common value by a packed phantom. If a packed phantom v is formed out
of r phantoms with a common value of b, we call b and r the value and the multiplicity of v,
respectively, and represent v via the triple (b, r, R), where R is the sum of the multiplicities of
all packed phantoms with the same parent as v and values of at least b; in other words, in the
sorted sequence of packed phantom siblings, the third components are the prefix sums of the
second components. The conversion of (simple) phantoms to packed phantoms can be done in
O(logn) time using O(n) operations.

Let P be the set of nonempty sequences (by, 71, R1), ..., (bk, "k, Ri) of triples of nonnegative
integers with b; > by > -+ > b and R; = ;'=1 rj, fori = 1,...,k. We view a sequence in
P derived from a nonincreasing sequence S of integers, as described above for the case of a
sequence of phantom values, as just a convenient way of representing S. This allows us, e.g., to
apply the operators @ and @, originally defined on INJ, also to sequences in P; it is easy to
see that for all sequences (b1, 71, Ry), ..., (bk, 7k, Rk) in P and for u € {0,1},

Oulbiy ras Bidye o oo (bryTs Bi)) = 112?5)3c(bi + Ri —).

One can also observe that for all N € IV and all fixed € > 0, two sequences in P of length N
each can be merged (to create another sequence in P) in constant time on a CREW PRAM with
O(N'*¢€) processors: It suffices to let each triple carry out a ©(N¢)-way search for the value of
its first component in the opposite sequence, after which it can deduce its position in the output
sequence as well as its new third component in constant time; note that we make no attempt to
coalesce adjacent triples with identical first components.

The final step is to apply the algorithm of Lemma 3.7 to T”, for which we have more than
enough processors. As in the case of the EREW PRAM algorithm, we must describe how to
incorporate phantom leaves at the time of a raking. Note first in general that if k£, [and h are
positive integers with [< k and a,,...,ak,b;,...,b, are nonnegative integers with a; > a; >
-+ > ag and a; > by > by > --- > by, then for u € {0,1},

Ouul@rss 'oa G By o o1 D) = X O (a1, 5 v Bided o+ OpilBhitis ey Bk B s - . o baidhs

We will use this in a situation where ay, . . ., ax is the sorted sequence of values of the nonphantom
children of a node u € U, while by, ..., by is the sorted sequence of values of the phantom children
of u. Since b; < m + 1, the observation shows t}zat it suffices to combine the phantom leaves
with the subsequence a;41, ..., ar of nonphantom leaves with values bounded by m; we can also
assume that £ > I. We begin by converting the sequence a;4i,...,ax to a sequence in P of
length ¢ = min{k — [,m+ 1}. If k — | < m + 1, the sequence a;4,,...,ar is augmented with
second and third components and used as is; otherwise we compute the rank in the sequence

16

@41, - - -, ar of each integer in {0, ..., m} that occurs in the sequence and extend the information
to the remaining values by means of segmented broadcasting. Since m = (log n)o(l), this can
be done in O(loglogn) time with k — [processors, which are certainly available.

Suppose that the sequence by, ..., by is represented by a sequence in P of length r. We will
show that Q((q+r)4/ 3) processors can be devoted to the raking. Then the packed representations
of the sequences aj41,. .., ax and by, ..., by, of lengths ¢ and r, can be merged in constant time,

as described above, after which the raking can be finished in O(loglogn) time by computing
maxima in sequences of length O(q + r) = O(m) = (logn)°M). To see that the required
number of processors is available, first recall that |U| = O(n/(log n)®), so that we can associate
O((log n)*) processors with each edge in T’ without using more than O(n/(logn)?) processors.
In particular, this provides Q(g(logn)*) processors for the raking under consideration. Since
¢ < m+1= 0((logn)®), this number is always Q(¢g*/3), and it is Q(r*/3) unless r > (logn)?,
which we can therefore assume. For each u € U, let r, be the number of packed phantom
children of u. The values of the packed phantom children of u, being distinct, must sum to at
least 04+ 1+4-- -+ (ry —1) = ry(ry—1)/2. Since the sum of the values of all phantoms is bounded
by n, it follows that ¥ ,ep 72 = |U| + Xyev Tulru — 1) < n+2n = O(n). Thus, forallu € U
with ry > (logn)3, we can allocate Q(r2/(log n)?) = Q(r*/3) processors to u without using more
than O(n/(logn)?) processors altogether, which is what was to be shown.

This completes the description of an algorithm for the CREW PRAM with optimal speedup
and a running time of O(lognloglogn). In order to lower the running time to O(logn) for the
CRCW PRAM, it suffices to provide constant-time algorithms for the two tasks that need more
time without concurrent writing, namely segmented broadcasting and computing the maximum.
In both cases, the number of processors available to solve problems of size IV is Q(N 4/ 3), so that
very simple solutions are possible. For segmented broadcasting, a stronger result was already
used in the proof of Lemma 3.4, while computing the maximum was described in [20]. Note
that when the algorithm of Lemma 3.5, applied to the contracted tree T, merges two sequences
containing a total of N keys, then the maximum key value involved is at most (m + 1)N =
N(logn)°M), so that the algorithm is indeed applicable; this is because, for each node u in
T', the maximal subtree of T rooted at u contains at most m + 1 times as many nodes as the
maximal subtree of T” rooted at u.

Theorem 4.2 For all integers n > 4, ®-problems can be solved on n-node input trees with all
leaf labels bounded by 1 using O(n) operations and either O(lognloglogn) time on a CREW
PRAM or O(logn) time on a CRCW PRAM.

Appendix: Proof of the tree-contraction lemma

This appendix provides a proof of Lemma 2.1, reproduced below for the reader’s convenience.
The lemma was essentially shown by Miller et al. [15, 16, 12, 17], in a somewhat less general
form, but we believe an explicit statement and proof of the lemma to be useful.

Lemma 2.1 Let D be a set, Q a set of commutative functions from D' to D, and T a subset of
Tp.a. If there are T, p and F satisfying Conditions (A)-(E) below, then, for all integers n > 2,
every n-node tree T € T can be evaluated in O(7(T)logn + log(p(T))) time on a PRAM with
np(T') processors.

(A) F is a set of functions from D to D, and for all f € F and all z € D, f(z) can be
computed from f and x in constant time with one processor.

(B) For any two functions f and g in F, go f belongs to F and can be computed from f and
g wn constant time with one processor.

(C) Every 1-dimensional projection of a function in Q belongs to F.

(D) T and p are functions from T to IN such that for all integers n > 2 and all n-node
trees T € T, 7(T) and p(T) can be computed from T in O(r(T)logn) time with np(T)
processors.

(E) Fiz an input tree T* € T with n > 2 nodes, let 7 = 7(T*) and p* = p(T™) and consider
the following setting: A sequence ai,...,a} of s integers, where s is a nonnegative integer
bounded by the mazimum degree of a node in T* and where 1 < g Slle & - <4 %
O(r™logn), is available for preprocessing in O(r*logn) time with s processors. Assume
that the preprocessing finishes at time 0 (this is just a convention for fizing the origin of
the time azis). Subsequently, at time a}, for i = 1,...,s, the value b; of a node r; in
T becomes known, and p*n; processors numbered p* 23;11 TR T Zj-:l n; become
available, where n; is the number of nodes in the mazimal subtree T} of T™ rooted at rj,
for j=1,...,s. Thus every value that becomes known contributes new processors, and the
available processors at all times are consecutively numbered. Moreover, the trees 1-g N o
are disjoint.

In these circumstances, for some constant C > 0 and for all & € Q, the function
f + D — D mapping x to O(b3,...,b%,2), for all z € D, must be computable with the
available processors to be ready by time
max _(j +Cr*log (|| + 2)),
ay<j<a;
where Fj = {i:1 < i< sand a} =3}, forj = 6181+ X .. a8 for 8 = 0. we take this
condition to mean that f must be computable in constant time with one processor.

PROOF We assume that the input tree is given according to a standard adjacency-list represen-
tation, where each node has an adjacency list with an entry for each of its children, and each
nonroot node has a pointer to its entry in the adjacency list of its parent. When merging a node
v with its parent u, we will identify the resulting node with the parent u—to emphasize this,
we also denote the operation as “merging v into u”. In terms of the representation, we simply
remove v after appending its adjacency list to that of u.

Let T" = (V*, E™) be the input tree and take n = |V*|, 7* = r(T*) and p* = p(T*). We
construct a new tree Ty = (Vj, Ep) as follows (see Fig. 5): For each node v € V* with k children
V1, ..., Uk, we introduce k new nodes uy, ..., ux, make u; the parent of v;, for i = 1,..., k, make
u;—1 the parent of u;, for i = 2,..., k, and make v the parent of u;. This is very easy to do; in
fact, it can be viewed largely as adopting a new interpretation of the adjacency list of v. We
will call the original nodes in V* “black”, while the new nodes in Vo\V* are “white”.

We now associate a processor with each node in Ty and contract Ty in a sequence of stages,
ending when only one node remains. We will use “T” to denote the evolving tree, reserving “Tp”

18

[]
et Uk Uy U2 Uk

Fig. 5. The transformation from 7™ to Tp.

for its original value. A stage ends, in general, with a number of nodes grouped into disjoint
clusters; initially, there are no clusters. We will call a node free if it does not belong to a cluster.
Each stage takes constant time and comprises the following four phases:

Phase 1: Cluster formation;
Phase 2: Cluster processing;
Phase 3: Cluster removal;
Phase 4: Leaves-cutting.

In Phase 1 (Cluster formation), certain free nodes are grouped into new clusters. Say that
a bond exists between a node v and its parent u if they are both of degree < 1 and both free
and if either they are both white, or u is black and v does not have a white child (i.e., either
it is a leaf, or it has a black child). Each node incident on one or two bonds becomes part of
a new cluster, the other members of the cluster being those nodes that it can reach via one or
more bonds. Note that no global information about a cluster is computed; each node merely
determines whether it belongs to a cluster and, if so, which of its neighbors belong to the same
cluster.

In Phase 2 (Cluster processing), each cluster carries out the task of repeatedly merging pairs
of adjacent nodes in the cluster until just a single node remains, at which point the cluster (but
not the remaining node) is removed in Phase 3 (Cluster removal). In each stage, however, only a
constant number of steps of the task are executed, which is the reason why clusters may survive
from one stage to the next. It is well-known and easy to see that the task of a cluster with k£ nodes
can be carried out in O(log k) time, viewing the cluster as a linked list and performing repeated
pointer doubling; as observed in [9, 12], concurrent reading during the pointer doubling can be
avoided by letting each node maintain an indication of whether it points to the last element of
the list. In Phase 4 (Leaves-cutting), every free nonroot leaf is merged into its parent.

Since only nodes of degree < 1 are merged into their parents, it is easy to see that no node
degree ever increases. Thus the degree of every white node remains bounded by 2, and the
degree of every black node remains bounded by 1. We already used this implicitly above by
assuming that all free leaves can be merged into their parents in constant time.

As an aid in analyzing the number of steps needed by the algorithm described above to
contract T to a single node, we attach conceptual weights to nodes and clusters. Every free
node is of weight 1. When k nodes form a cluster, their combined weight of k is transferred to

19

the cluster. At the end of each phase, the weight of each cluster is reduced by a factor of 6,
where 6 is a constant with 0 < @ < 1 chosen so that the weight of no cluster ever drops below 1;
this is possible because the initial weight of a cluster formed out of k nodes is k > 2, while the
cluster survives for only O(logk) stages. When a cluster is removed, finally, the single node
emerging from the cluster is restored to have a weight of 1; because the weight of the cluster was
at least 1, this does not increase the total weight. Since the total weight is 2n — 1 initially and
clearly never drops below 1, the processing of T' works in O(log n) time if we can show that each
stage decreases the total weight by at least a constant factor. As the processing and removal of
clusters certainly does not decrease the number of leaves, this is a consequence of the following
claim.

Claim At the beginning of Phase 2 (Cluster processing) in every stage, at least 1/20 of the total
weight is contributed by leaves and clusters.

PRrROOF Define a bad chain to be a maximal sequence vy, ..., v; of free degree-1 nodes such that
vi—1 is the parent of v;, for i = 2,... k. At the beginning of Phase 2, a bad chain can contain at
most 4 nodes, since any sequence of 5 or more nodes must contain two consecutive white nodes,
three consecutive black nodes, or a white node between two black nodes; in each case, a bond
would exist in Phase 1.

Consider a tree T” derived from the current tree T by merging the nodes in each cluster to
form a single cluster node (i.e., finishing the task of the cluster), merging the nodes in each bad
chain into a bad node, and finally merging each node of degree > 2 with a bad node as its parent
into its parent. The weight of a cluster node is the weight of the corresponding cluster, and the
weight of a bad node is the total weight of the nodes from which it was formed.

Let U be the set of leaves and cluster nodes in T’. We must show that at least 1/20 of the
total weight (in 7”, and therefore also in T') is contributed by nodes in U. Since the average
degree in T” is < 1, as in every tree, more than half of the nodes in 7’ belong to the set U
of nodes of degree < 1. U C Uy, and every node in U;\U is the parent of a node in U. Thus
|U| > [U1\U|, which implies that U contains at least one quarter of the nodes in 7”. Since every
node in U is of weight at least 1, while the weight of no node exceeds 5, the claim follows. O

The procedure above, just shown to work in O(log n) time, serves exclusively to gather timing
information for a second run, still to be described, which is augmented with computation that
actually evaluates the input tree 7*. During the first run, whenever a black node is merged into
its parent, it is marked with the time at which this happens, called its completion time, where
we assume the origin of the time axis placed at the start of the procedure. We will actually
slow the procedure down by a factor of ¢7*, where ¢ € IN is a suitably large constant to be
chosen later; we here use Condition (D) of Lemma 2.1. This has the effect of multiplying all
completion times by ¢7*. After the first run, for each node u in T, we sort the children of u
by their completion times [9, 23], after which we consider T to be an ordered tree. We use
the Euler-tour technique as described in [22] to determine, for each node u € V*, the smallest
and the largest preorder number in T™ of a descendant of u. For each node u in T* with k > 1
children, the sorting provides us with an array 4,[1..%] of the sorted completion times of the
children of u. Reinterpreting these as arrival times, in the sense of Condition (E) of Lemma 2.1,
and ignoring the last entry, we have one half of the input to a raking problem of size s = k — 1
associated with u. We describe below how to obtain the other half of the input.

20

In addition to the processor associated with each node in T, the second run of the tree
contraction employs np* special processors numbered 1, ...,np*. We assume that the additional
processing carried out in the second run is “hidden”, by means of extra processors and/or the
slowdown mentioned above, so that the timing information gathered for the first run will be
accurate also for the second run. During the second run we maintain the following invariants:
In every stage, at the end of Phase 2 and at the end of Phase 4,

(1) If a black node is a leaf in T, it is labeled with its value (in the input tree T);

(2) If a black node u has a black child v in T, u is labeled with a function in F that maps the
value of v to its own value.

If we copy leaf labels from T™ to Tp, Invariant (1) is satisfied initially, and Invariant (2) holds
vacuously. If Invariant (1) holds at the end of the second run, the root of T' (and therefore of
T*) will be labeled with its value, and we are done. In order to maintain the invariants, we
augment the first run with the following steps:

(a) Whenever a black leaf v merges into a black parent u, the function f labeling u (Invari-
ant (2)) is applied to the value z labeling v (Invariant (1)), and f(z) is attached as the
new label of u, thus maintaining Invariant (1). By Condition (A) of Lemma 2.1, this can
be done in constant time.

(b) Whenever a black nonleaf v merges into a black parent u, the rules for the formation of
clusters imply that v has a black child. Thus u and v are labeled with functions f, and f,,
respectively (Invariant (2)). We replace the label of u by f, o f,, maintaining Invariant (2).
By Condition (B), this can be done in constant time.

(c) Whenever a black node v merges into a white parent, the rules for the formation of clusters
imply that v is necessarily a leaf. Thus the value of v is known (Invariant (1)). We supply
the value of v as an input key to an ongoing raking computation associated with the parent
u of v in T*. Moreover, if the smallest and largest preorder numbers of a descendant of v
in T* are [; and Iy, respectively, we dedicate the special processors numbered (/; — 1)p™ +
1,...,1lop* to this task. When the raking finishes, we label u with the resulting function
which, by Condition (C), belongs to F.

In Step (c), suppose that v is the ith child of u in T*. It is easy to see that if we take T}" to be
the maximal subtree of 7™ rooted at v, then the number of processors dedicated to the raking
in Step (c) above is precisely as required by Condition (E). Furthermore, the trees I7,...,T¢
indeed are disjoint, and since they receive preorder numbers in the order in which their roots
complete, the special processors allocated to the raking at all times are consecutively numbered,
as required; they are not numbered starting at 1, but this is easy to take care of.

Steps (a)—(c) above specify no action in the case of a white node merging into another node.
The operation may create a black leaf or a give a black node a black child, however, so that
we must show the invariants to be satisfied. Say that a node u in T contains a node v € Vj if
either u = v, or (recursively) a node containing v at some point merged into u. A simple yet
useful observation, easy to prove by induction on the number of merges involved in deriving T
from Tp, is that if u and v are nodes in T, then u is an ancestor of v in T if and only if it is an

21

ancestor of v in Tp. Another observation of this kind is that every node u in T} is contained in
the closest ancestor of u in T that still belongs to T'.

Suppose that at some time ¢, a white node merging into a black node u causes u to acquire
a black child v. Let U be the set of proper descendants of u in T that are not descendants of
v, and let Z be the set of (black) children of u in T™ that are not ancestors of v. By the first
observation made above, no node w in U can still be present in T at time ¢, since it could not
be a descendant of u without being a descendant of v. Since this holds for all nodes w in U, the
second observation implies that at time ¢, all nodes in U are contained in u. A node in Z has
no black proper ancestor that is also a proper descendant of u. Since it cannot merge into u
(then u could never again acquire a white child, contrary to the fact that it has one at time t),
it must merge into a white node in U, at which point its value is supplied to the raking problem
- associated with u. Suppose that this happens simultaneously in the step immediately before
time j for a nonempty group F; of nodes in Z. Since nodes merge only in disjoint pairs (or
triples, if we allow two leaves to merge simultaneously with a common parent) and at least |F};|/2
white nodes in U are still present in T at time j, we must have t > j+c’cr* log(|F;|+2), for some
constant ¢’ > 0 (recall that we slow down the contraction of T by a factor of ¢r*). Since this
holds for each integer j in the range aj, ..., a}, where a] and a} are the first and last completion
times of a node in Z, Condition (E) guarantees that with the constant ¢ chosen suitably (in
dependence of C), the raking associated with u will finish before time ¢. The function computed
by the raking is precisely as required by Invariant (2), which can therefore be satisfied.

Suppose now instead that at time ¢, a white node merging into a black node u makes u a
leaf. An argument very similar to the one above, taking U as the set of proper descendants of u
in Tp and Z as the set of (black) children of u in T, shows that before time ¢, there will have
been enough time to compute a function in F mapping the value of the last child v of u in T~
to the value of u. Invariant (1) and Condition (A) imply that when v becomes a leaf, constant
time suffices to label u with its value, maintaining Invariant (1).

If a special processor is dedicated to the raking at two distinct (black) nodes u and w, then
one of the two nodes is an ancestor in 7 of the other one. Suppose that u is an ancestor of
w in T and let v be the child of u in 7™ that is also an ancestor of w. As argued above, the
raking at w finishes before w can acquire a black leaf or become a leaf itself. In particular, when
the raking at w finishes, w still exists as a node in 7. On the other hand, a special processor
participating in the raking at w is not needed in the raking at u before v merges into a white
parent, at which point v must be a leaf and w, if different from v, must have merged into a
parent. Thus no special processor is simultaneously dedicated to different raking operations.

An issue that was ignored above is how to inform a special processor of the raking problem on
which it is supposed to work at any given time. If concurrent reading is allowed, we can simply
associate the special processors numbered (i — 1)p*+1,...,ip* with the node v; of preorder ¢ in
T, fori=1,...,n, and let each of these processors keep track of the node in T containing v;.
For the EREW PRAM, we offer the following more complicated solution:

Divide the np* special processors into n teams of p* consecutively numbered processors each.
All members of a team are assigned to the same O(log n) raking problems. Thus if one processor
in the team is informed of the identities of these problems, it can communicate this information
to the other members of the team in O(log n+log p*) time by distributing it in a pipelined fashion
via a binary tree—this is where the EREW PRAM algorithm may need more than O(7*logn)
time. We can therefore assume, in the interest of simplicity, that p* = 1, so that each special

N
o

processor forms a team by itself. Divide the n special processors into O(n/logn) groups of
O(logn) consecutively numbered processors each and choose a leader from each group. Each
black node v that merges into a white parent generates the triple (Iy,/2,t), where [; and /5 are
the smallest and largest preorder numbers of a descendant of v, and ¢ is the completion time of v.
The remaining task is to distribute each such triple, called a message, to the special processors
numbered [q,...,l;. The first step is to send each message (ly,l2,t) to all leaders of groups
containing at least one processor whose processor number lies in the range [;,...,l5. To this
end, each message is replicated into as many copies as it has (leader) recipients. Subsequently
the message copies are sorted by their destinations. We here use the fact that there are n black
nodes, and hence O(n) copies, to conclude that the sorting can be carried out in O(logn) time.
Subsequently each group leader is informed of the positions in the sorted sequence of the first
and last messages destined for it. Possibly aided by auxiliary processors, each group leader
proceeds to “expand” each message that it received into individual messages for all concerned
processors in its group, after which the individual messages within each group are sorted by their
destinations. Since there are O(nlogn) individual messages and O(logn) destinations within
each group, this can be done in O(logn) time with the available processors [9, 23]. Finally each
special processor is informed of the positions of the O(log n) messages destined for it. O

Acknowledgment. We thank Wojtek Plandowski for pointing out the similarity between
register allocation and broadcasting.

References

[1] K. Abrahamson, N. Dadoun, D. G. Kirkpatrick, and T. Przytycka, A simple parallel tree
contraction algorithm, J. Algorithms 10 (1989), pp. 287-302.

[2] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques, and Tools,
Addison-Wesley, Reading, MA, 1986.

[3] M. Ajtai, J. Komlés, and E. Szemerédi, An O(n log n) sorting network, In Proc. 15th Annual
ACM Symposium on Theory of Computing (STOC 1983), pp. 1-9.

[4] R.J. Anderson and G.L. Miller, Deterministic parallel list ranking, In Proc. 3rd Aegean
Workshop on Computing (AWOC 1988), Springer Lecture Notes in Computer Science, Vol.
319, pp. 81-90.

[5] O. Berkman and U. Vishkin, On parallel integer merging, Inform. and Comput. 106 (1993),
pp- 266-285.

[6] A. Borodin and J. E. Hopcroft, Routing, merging, and sorting on parallel models of com-
putation, J. Comput. System Sci. 30 (1985), pp. 130-145.

[7] S. Chaudhuri and T. Hagerup, Prefix graphs and their applications, In Proc. 20th Interna-
tional Workshop on Graph-Theoretic Concepts in Computer Science (WG 1994), Springer
Lecture Notes in Computer Science, Vol. 903, pp. 206-218.

[8] R. Cole, Parallel merge sort, STAM J. Comput. 17 (1988), pp. 770-785.

23

[9] R. Cole and U. Vishkin, Deterministic coin tossing with applications to optimal parallel list
ranking, Inform. and Control 70 (1986), pp. 32-53.

[10] R. Cole and U. Vishkin, Approximate parallel scheduling. Part I: The basic technique with
applications to optimal parallel list ranking in logarithmic time, SIAM J. Comput. 17
(1988), pp. 128-142.

[11] F. E. Fich, P. Ragde, and A. Wigderson, Relations between concurrent-write models of
parallel computation, SIAM J. Comput. 17 (1988), pp. 606-627.

[12] H. Gazit, G.L. Miller, and S.-H. Teng, Optimal tree contraction in the EREW model, In
Concurrent Computations: Algorithms, Architecture, and Technology, S. K. Tewksbury, B.
W. Dickinson, and S. C. Schwartz (eds.), Chap. 9, pp. 139-156, Plenum Press, New York,
1988.

[13] S. R. Kosaraju and A.L. Delcher, Optimal parallel evaluation of tree-structured compu-
tations by raking, In Proc. 3rd Aegean Workshop on Computing (AWOC 1988), Springer
Lecture Notes in Computer Science, Vol. 319, pp. 101-110.

[14] G. L. Miller and J. H. Reif, Parallel tree contraction and its application, In Proc. 26th
Annual Symposium on Foundations of Computer Science (FOCS 1985), pp. 478-489.

[15] G.L. Miller and J. H. Reif, Parallel tree contraction, Part 1: Fundamentals, preprint, 1987.
The final version (not available to us) appeared in Randomness and Computation, Advances
in Computing Research, Vol. 5, S. Micali (ed.), pp. 47-72, JAI Press, Greenwich, CT, 1989.

[16] G.L. Miller and J. H. Reif, Parallel tree contraction, Part 2: Further applications. SIAM
J. Comput. 20 (1991), pp. 1128-1147.

[17] G.L.Miller and S.-H. Teng, Tree-based parallel algorithm design, manuscript. A preliminary
version appeared in Proc. 2nd International Conference on Supercomputing (1987), pp.
392-403.

[18] M. Reid-Miller, G.L. Miller, and F. Modugno, List ranking and parallel tree contraction. In
Synthesis of Parallel Algorithms, J. H. Reif (ed.), Chap. 3, pp. 115-194, Morgan Kaufmann
Publ., San Mateo, CA, 1993.

[19] R. Sethi, Complete register allocation problems, STAM J. Comput. 4 (1975), pp. 226-248.

[20] Y. Shiloach and U. Vishkin, Finding the maximum, merging, and sorting in a parallel
computation model, J. Algorithms 2 (1981), pp. 88-102.

[21] P.J. Slater, E.J. Cockayne, and S. T. Hedetniemi, Information dissemination in trees. STAM
J. Comput. 10 (1981), pp. 692-701.

[22] R.E. Tarjan and U. Vishkin, An efficient parallel biconnectivity algorithm, STAM J. Com-
put. 14 (1985), pp. 862-874.

[23] R. A. Wagner and Y. Han, Parallel algorithms for bucket sorting and the data dépendent

prefix problem, In Proc. International Conference on Parallel Processing (ICPP 1986), pp.
924-930.

