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Abstract

Data mining can in many instances be viewed as the task of computing a
representation of a theory of a model or a database. In this paper we present
a randomized algorithm that can be used to compute the representation of
a theory in terms of the most specific sentences of that theory. In addition
to randomization, the algorithm uses a generalization of the concept of hy-
pergraph transversal. We apply the general algorithm in two ways, for the
problem of discovering maximal frequent sets in 0/1 data, and for computing
minimal keys in relations. We present some empirical results on the perfor-
mance of these methods on real data. We also show some complexity theoretic
evidence of the hardness of these problems.

1 Introduction

Data mining has recently emerged as an active area of investigation and applications
[7]. The goal of data mining can briefly and informally be stated as “development
of eflicient algorithms for finding useful high-level knowledge from large masses of
data”. The exact formal meaning of what constitutes “useful high-level knowledge”
is determined by particular application, in particular by what type of knowledge
one is looking for in the raw data. The design of data mining algorithms typically
combines methods and tools from database theory, machine learning, statistics and
combinatorial mathematics.

A large part of current research in data mining can be viewed as addressing
instances of the following computational problem: given a language, a frequency
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criterion, and a database, find all sentences from the language that are true in
the database and satisfy the frequency criterion. Typically, the frequency criterion
states that there are sufficiently many instances in the database satisfying the sen-
tence. Examples of scenarios where this formulation works include the discovery
of association rules, strong rules, episodes, and keys. Using this theory eztraction
formulation [12, 13, 15] one can formulate general results about the complexity of
algorithms for various data mining tasks.

The known algorithms for instances of above mentioned problem typically oper-
ate in a bottom-up fashion: starting with the simplest, most general sentences from
the language which satisfy the truth and frequency criterion, successively bigger
and more specific true sentences are discovered until no bigger and more specific
sentences can be found. In this bottom up approach, the knowledge of the smaller
true sentences discovered already is used to focus the search for bigger true sen-
tences. In some applications, it is enough to compute only the most specific true
sentences satisfying the requirements because they determine the theory uniquely
i.e. they capture the information of all the true sentences. In these applications, an
alternative feasible approach is to search directly the most specific sentences without
going through the less specific true sentences. When the most specific true sentences
are large, the number of true sentences which are discovered before discovering the
most specific sentences is very large, which makes the above approach very time
consuming.

In this paper, we first present a randomized algorithm which efficiently finds a
random most specific true sentence. By running the randomized algorithm several
times, one can expect to find a sizable collection of most specific true sentences. To
extend this collection of most specific sentences to the complete set of most specific
true sentences, one must cut down the search space, so that the search focuses
only on the undiscovered most specific true sentences. We suggest a method which
is applicable to the situations where discovering all most specific true sentences
involves finding an anti-chain i.e. a collection of unrelated elements of a partial
order. Our method uses the simple fact that if some sets from an anti-chain are
known, then every unknown set in the anti-chain must contain a minimal transversal
of the complements of the We also present an algorithm to compute all transversals
of a given hypergraph (i.e. a collection of subsets of a finite sets).

Next, we propose to use the randomized algorithm along with the transversal
computation algorithm to compute all most specific true sentences. The algorithm
alternates between finding some undiscovered random most specific true sentences
and finding transversals of the complements of the discovered most specific true
sentences, until no new most specific true sentence can be found. We demonstrate
this method by applying it to the following problems: (i) computation of all maximal
frequent sets of a {0, 1} matrix for a given threshold (ii) computation of all minimal
keys in a database.

Computation of maximal frequent sets is a fundamental data mining problem
which is required in discovering association rules [1, 2]. Computation of minimal keys
is important for semantic query optimization, which leads to fast query processing
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in database systems [14, 11, 5, 17]. It turns out that our algorithms for finding
maximal frequent sets and minimal keys find all maximal frequent sets and minimal
keys respectively. We point out (Section 9) that whenever the computation involves
finding all maximal or minimal elements of an ideal or filter respectively, then an
analogous randomized algorithm will work.

Note that the computation of sentences of a theory is an enumeration problem i.e.
the computation involves listing combinatorial substructures related with the input.
For listing problems, one of the definitions of efficiency is that the running time of
algorithm be bounded by a polynomial function of input and output sizes. Such
an algorithm is called as an output-polynomial time algorithm. For both problems
that we discuss in this paper, output-polynomial algorithms are unknown. In the
absence of such provably efficient algorithms, we view our algorithms in the paper
as efficient alternatives which can perforin well in practice.

The rest of this paper is organized as follows. In Section 2 we present a model
of data mining which formally defines the theory extraction problem. In Section 3
we formulate our general algorithm in this setting. Section 4 adapts our algorithm
to the well-studied problem of finding maximal frequent sets, and also gives some
complexity-theoretic evidence of hardness of this problem. Empirical results on the
behavior of the algorithm are given in Section 5.

In Section 6 we adapt the general algorithm of Section 3 to the problem of ﬁnding
keys of relations; empirical results for this method are given in Section 7. In Section
8, we present the algorithm for computing all minimal transversals that we have
used in the algorithms for computing all maximal frequent sets and minimal keys.
In Section 9, we discuss the scope of our algorithms and point out some directions
of further work.

2 Data mining as theory extraction

The model of knowledge discovery that we consider is the following [12, 15, 13].
Given a database r, a language L for expressing properties or defining subgroups of
the data, and a frequency criterion g for evaluating whether a sentence ¢ € £ defines
a sufficiently large subclass of r. The computational task is to find the theory of r
with respect to £ and g, i.e., the set Th(L,r,q) = {¢ € L | q(r,¢) is true}.

We are not specifying any satisfaction relation for the sentences of £ in r: this
task is taken care of by the frequency criterion ¢q. For some applications, g(r, )
could mean that ¢ is true or almost true in r, or that ¢ defines (in some way) a
sufficiently large or otherwise interesting subgroup of r.
~ Obviously, if £ is infinite and g¢(r, ¢) is satisfied for infinitely many sentences, (an
explicit representation of) all of Th(L,r, g) cannot be computed feasibly. Therefore
for the above formulation to make sense, the language £ has to be defined carefully.
In case £ is infinite, there are alternative ways of meaningfully defining feasible
computations in terms of dynamic output size, but we do not concern ourselves
with these scenarios. In this paper we assume that £ is finite.



3 A randomized algorithm for computing

Th(L,r,q)

We make the following assumption about language L. There is a partial order <
on the set of sentences of £ such that ¢ is monotone with respect to <, that is, for
all ¥,0 € £ with 8 < ¥ we have: if g(r,¥), then g(r,6). ! Denote by rank(s) the
- rank of a sentence ¢ € L, defined as follows. If for no § € £ we have § < 1, then
rank(y) = 0, otherwise rank(v)) = 1 + max{rank(f) | § < ¢}. For T C L, let T,
denote the set of the sentences of £ with rank :.

The level-wise algorithm [15] for computing Th = Th(L,r,q) proceeds by first
computing the set T'hq consisting of the sentences of rank 0 that are in Th. Then,
assuming Th; is known, it computes a set of candidates: sentences ¢» with rank
i + 1 such that all # with # < % are in Th. For each one of these candidates 1,
the algorithm calls the function ¢ to check whether ¢ really belongs to Th. This
iterative procedure is performed until no more sentences in T'h are found.

This level-wise algorithm has been used in various forms in finding association
rules, episodes, sequential rules, etc. [2, 3, 16, 15].

The drawback with this algorithm is that it always computes the whole set
Th(L,r,q), even in the cases where a condensed representation of Th using most
specific sentences would be useful. Given Th, a sentence ¢ € Th is a most specific
sentence of Th, if for no § € Th we have ¢ < §. Denote by MTh = MTh(L,r,q, <)
the set of most specific sentences of Th(L,r, g) with respect to <.

Our general algorithm for computing MTh is based on repeatedly computing
random undiscovered most specific sentences in. Th. After every computation of
one or more random new most specific sentence in MTh, we compute the minimal-
orthogonal-elements (abbr. min-ortho-element) with respect to the collection of most
specific sentences found so far. The minimal orthogonal elements are the sentences
in £, which are defined using a generalization of the concept of transversals of a
hypergraph [6].

A hypergraph is collection of subsets (i.e. hyperedges) of a finite set (the vertez
set). A transversal of the hypergraph is a minimal set of vertices which intersects
every hyperedge of the hypergraph. A min-ortho-element with respect to a set S
of most specific sentence is a sentence ¥ such that it is unrelated to any sentences
in S under < and for no sentence ¢ < %, this property holds. Note that if there is
a sentence v in MTh which is not in S, then there is a min-ortho-element X with
respect to S such that X < . Therefore after computation of min-ortho-elements
the search can be limited to these sentences which are above the min-ortho-elements
with respect to <.

We first give the algorithm to compute a random most specific sentence from
Th. Denote ¥ <, 8, if ¥» < # and for no ¢ we have ¥ < ¢ < 6; in this case, we say
that 6 is an immediate specialization of ¥.

INote that this description is a fairly severe one. For example, a ¢ defined in terms of statistical
significance does not satisfy this condition.



Algorithm A_Random_MSS Find a random most specific sentence from Th.
1. ¢:=0.
2. ¢:= true.

3. While (there is an immediate specialization 8 of ¥
such that ¢(r, ) holds) do: select such a # randomly and let ¢ := 6.

4. Output 9.

The algorithm assumes that true € £, and proceeds to specialize it successively
until a most specific sentence is found. In Step 2, if ¢ is initialized with an arbitrary
sentence s € Th instead of “true”, then the algorithm will find a random most
specific sentence s’ such that s < s’ .

Denote by Algorithm A_Random_MSS(%;,i;) the parameterized version of the
Algorithm A_Random_MSS, which starts by initializing ¢» with the sentence ©;n;.

We now give the general algorithm for finding all most specific sentences.

Algorithm All_MSS Finding all most specific sentences in Th.

1. Run Algorithm A Random_MSS(“true”), k; times and let S be the set of most
specific sentences found.

2. While new most specific sentences are found:

(a) Compute the set X of all min-ortho-elements with respect to S.

(b) For each sentence z € X:
Run Algorithm A _Random_MSS(x), k, times and add any new most spe-
cific sentence found to §.

3. Output S.

The parameters k; and k, control the number of iterations of the randomized
algorithm in Steps 1 and 2b. Since the running time of the algorithm depends on
these values, there values are to be chosen suitably depending on the application of
the algorithm.

Computing the min-ortho-elements is in general computationally non-trivial. In
the experiments the randomized algorithm (in Step 1 above) typically produces a
good approximation to the collection MTh and so only a few iterations of transversal
computation are needed. Additionally, it is useful to notice that the transversal
computation does not look at the data, only at elements of £; if the input data is
large, a complicated computation on £ can still be much cheaper than just reading
the data once. '



4 Finding frequent sets using a randomized algb-
rithm

In this section, we discuss how to adapt the algorithms of the previous section to
find maximal frequent sets of a {0,1} matrix and threshold value o. We first discuss
association rules and how frequent sets arise in computation of association rules.

Given a 0-1 relation r with attributes R (i.e. a {0,1} matrix, whose set of columns
is R), an association rule is an expression X = B, where X C R and B € R. The
intuitive meaning of such a rule is that if a row has a 1 in all attributes of X, then
it tends also to have a 1 in column B.

An association rule has two values support and confidence associated with it,
which are defined as follows. Given a set X of attributes of a relation r, frequency
f(X,r) of X in r is the number of rows in r for which all attributes in X have a 1.
The support of X in r is the fraction of these rows among all the rows of . Given a
rule X = B, the support of the rule is defined to be the support of X U {B}. The
confidence of the rule is the fraction f(X U {B},r)/f(X,r).

The problem of mining association rules is to compute all association rules in a
0-1 relation such that the support of a rule is at least o and the confidence at least v. .
The first step in computing such association rules is to find all subsets of attributes
(i.e. columns), whose support is at least 0. Such subsets are called the frequent sets
of the relation r with threshold o (or o-frequent sets). A mazimal o-frequent set
X of relation r is an o-frequent set of r such that no proper superset of X is an
o-frequent set of 7. The collection of all o-frequent sets (resp. maximal o-frequent
sets) of relation r is denoted by Fr(r,o) (resp. MFr(r,0)). 2 Note that to identify
all o-frequent sets, it is enough to compute M Fr(r,o) because every frequent set
is a subset of some maximal frequent set and conversely every subset of a maximal
frequent set is a frequent set.

The computational problem that we study in this section is the following.

Problem 1 Given a 0-1 relation r over attributes R, and a support value ¢ € [0, 1],
find all maximal o-frequent sets of r.

We start by presenting two results which show the computational hardness of
the above problem.

Theorem 2 The problem of finding the number of o-frequent sets of a given 0-1
relation r and a threshold o € [0, 1] is #P-hard.

Proof: We show a polynomial time reduction from the problem of computing the
number of satisfying assignments of a monotone-2CNF formula to the problem of
computing the number of frequent sets. Since the problem of computing the number
of satisfying assignment of monotone-2CNF formulae is known to be #P-hard [19],
this will show the #P-hardness of the frequent set counting problem.

2The collection of all maximal s-frequent sets of a matrix and threshold s, is an ideal of the
boolean lattice over the set of columns (attributes) of the matrix.
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A monotone-2CNF formula is a boolean formula in conjunctive normal form in
which every clause has at most two literals and every literal is unnegated. Given
a monotone-2CNF formula f with m clauses and n variables, construct an m x n
{0,1} matrix M as follows. Value of M;; is 0 iff the j** variable is present in 7**
clause. An assignment of variables falsifies f iff the set of columns corresponding
to variables with value 1, form a frequent set of M with threshold —71; Therefore,
the number of frequent sets of M with threshold % is (2" - the number of satisfying

assignments of f). This completes the reduction. |

Note that the above result still does not rule out the possibility of an output
polynomial algorithm for computing all maximal frequent sets.
The next result shows the hardness of computing a large frequent set.

Theorem 3 The problem of deciding if there is a maximal o-frequent set with at
least ¢ attributes for a given 0-1 relation r, and a threshold o € [0, 1], is NP-complete.

Proof: It is easily seen that the problem is in NP. To show the NP-hardness, we
show a polynomial time reduction from the Balanced Bipartite Clique problem to
the above problem. Since the Balanced Bipartite Clique is known to be NP-hard,
the result will follow ([8]).

Given a bipartite graph G = (V4, V4, E), a balanced clique of size k is a complete
bipartite graph with exactly k vertices from each of Vj; and V,. The Balanced
Bipartite Clique problem is, given a bipartite graph G and a positive integer k,
check if there exist a balanced bipartite clique of size k.

Given a bipartite graph G with and a positive integer k, let n; and n, be the
number of vertices in V; and V; respectively. Define an n; X n, {0,1} matrix M as
follows. M;; is 1 iff i** vertex of V] is connected to the j** of V;. Then there is a
bipartite clique of size k in G iff there is a frequent set of M of size at least k with
threshold —r-ﬁ— |

The above theorem rules out the possibility of an efficient algorithm which out-
puts the maximal frequent sets in the decreasing order of their size.

We now discuss a refinement of the algorithm of Section 3 for computing all
maximal frequent sets. To use the framework of Section 3, we define £L = {X | X C
R}, and let g(r, X) be true iff s(X,r) > 0. Next, the relation < is defined by X <Y
ift X CVY; it is easy to see that the monotonicity condition holds. We also have
X 2 YfY = X U{A} for some A € R. A most specific sentence corresponds to
a maximal frequent set.

A useful way to think about the maximal o-frequent sets problem is the lattice
that is formed by the subsets of R. The level 7 of the lattice includes all subsets of
size ¢, and two subsets are connected if they are on consecutive levels and one is the
subset of the other (see Figure 1.) Note that the collection of all maximal o-frequent
sets of a matrix and threshold o, is an ideal of the boolean lattice over the set of
columns (attributes) of the matrix. The lattice view makes also the drawbacks of
the level-wise algorithm evident: it can be that F'r is large, but M Fr is quite small.
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Figure 1: A relation with four attributes. The shaded area represents the o-frequent
sets. The solid line represents a run of the algorithm for the permutation C, A, D, B.

To apply the general algorithm (Algorithm A_Random MSS), we can use the
lattice structure efficiently: the process can be seen as a random walk in the lattice.
Given X, in order to select a random sentence/set Y such that X =<; Y the only
thing we have to do is to get a random element A € R\ X and let Y = X U {A}.

Once a collection of maximal o-frequent sets is found, any new maximal o-
frequent set cannot be subset or superset of a known maximal o-frequent set. It
follows that any new maximal o-frequent set must include a set of attributes that
is not a subset of any of the maximal o-frequent sets found so far. Similarly for any
 new maximal o-frequent set, there must be set of attributes such that it intersects
every known maximal o-frequent set and does not intersect the the new maximal
o-frequent set. We can express these conditions more succinctly using the concept
of minimal transversal of a hypergraph. A minimal transversal of a hypergraph is
a transversal of the hypergraph, such that no proper subset of it is a transversal.
Therefore if we view a given collection C of maximal o-frequent sets as a hypergraph,
then for any new maximal o-frequent set F', the following two conditions hold:

(i) F is a transversal of the hypergraph whose edges are the complements of all
subsets in C.
(i1) Complement of F' is a transversal of C.

The general problem of finding a set F' satisfying the above two conditions for
a given collection C of subsets is a non-trivial problem. In fact, it follows from the
co-NP hardness of the Hypergraph Saturation problem ([6]) that this problem is NP-
hard. Thus we cannot hope to find a set F satisfying conditions (i) and (ii). Rather



we note that given a collection C of maximal o-frequent sets, any new maximal
o-frequent set must contain a minimal transversal of the hypergraph whose edges
- are the complements of subsets in C. Therefore to discover new maximal o-frequent
set, an approach is to start with a minimal transversal of the above type and extend
it to a superset which is a maximal o-frequent set. If every minimal transversal of
the above type is considered for this extension, then we are sure that every new
maximal o-frequent set has a nonzero chance of being discovered.

We now present the algorithm in detail. First we give the algorithm
A Random MFS, which finds a single random maximal o-frequent set containing
a given set S of attributes. This algorithm corresponds to the parameterized ver-
sion of the algorithm A _Random _MSS.

Algorithm A_Random _MFS(S) Given a {0,1} matrix M with attributes R =
{Ai1,..., A} and n tuples (rows), a threshold o and the set S of attributes
{As,, ..., As }; find a maximal o-frequent set F' containing all the attributes in S.

1. Find a permutation p of (1,...,|R|) such that for : < |S|, p(¢) = S;, and for
i > |S|, p is a random permutation of the atributes in the set R\ S.

2. Set X = 0.
3. For: =1 to |R]:

(a) If X U{Ap)} is a o-frequent set, add A,y to X.
4. Return X

The following theorem shows the basic properties of the algorithm.

Theorem 4 Let S be a o-frequent set of relation r. Then the algorithm
A _Random_MFS(S) finds the lexicographically first (according to the ordering given
by p) maximal o-frequent set containing attributes in S. Further its time complexity

1s O(|r]).

Proof: The basic operation of the algorithm is to add a new attribute in the
o-frequent set X. We keep the set of rows a(X,r) that support X as a vector
s =(s1,...,5m). When attribute R; is considered, we take the intersection of s and
the ¢-th column of r. This is the support of the set X U R;. This process takes O(m)
time, so the total running time of the algorithm is O(m|R|) = O(|r|), linear to the
size of the relation r.

Note that with respect to a given permutation, a maximal frequent set F} is
lexicographically smaller than another maximal frequent set F5, if the smallest at-
tribute (w.r.t. the order of attributes defined using permutation) in the symmetric
difference of F} and F3 is in Fj.

It 1s clear that the output set X is a maximal o-frequent set. Assume that it is
not the lexicographically first maximal o-frequent set with respect to the ordering
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p that contains S. S has to be a frequent set itself, and all the attributes of S
are in the beginning of p, they will all be included in X is Step 3. Thereafter,
the algorithm will add greedily into X attributes in the order given by p. Let
LF = {RLR,--.,RLr } be the lexicographically first maximal o-frequent set with
the attributes sorted according to p, and let P; be the first attribute that is included
to LF but not X. But the set {Rrpg,...,R;} is a frequent set, and therefore the
algorithm would add P; to X when it was considered. It follows that at the end
of the algorithm F' will represent the lexicographically smallest maximal o-frequent
set containing S. |

We recall the property that we mentioned earlier about maximal frequent sets
that are outside a given collection of maximal frequent sets.

Lemma 5 Let C be a collection of maximal o-frequent sets of a relation, and F be
a maximal o-frequent set not in C. Then there exists a minimal transversal T of
the hypergraph defined by the complements of the sets in C such that T C F.

Proof: A transversal of a hypergraph G = (V, E) is a set of vertices that intersects
all the edges of the hypergraph. A minimal transversal is a minimal such set.

Any new maximal o-frequent set F' cannot be a superset or a subset of an
existing maximal o-frequent set. F' must therefore intersect the complements of all
the complements of the sets in M FS(r,o). This means it must intersect all the
edges of Gr s, and so it must be a transversal. I

We now give the final algorithm which uses algorithm A_Random_MFS to find all
maximal frequent sets. After finding some of the maximal frequent sets, it computes
all the minimal transversals of the hypergraph as defined in the lemma, to focus the
search on undiscovered maximal frequent sets. In the algorithm below, we have
omitted the details of how transversals are computed. We discuss it separately in
Section 8.

Algorithm ANl_MFS Given a {0,1} relation r in the form of an n x m matrix M
and a threshold o, find all maximal o-frequent sets. Parameters k;, k, are positive
integers. '

1. Preprocess the matrix to remove all the columns (i.e. attributes) in which the
number of 1’s is less than on.

2. Run algorithm A_Random _MFS(¢) k; times and let C' be the set of maximal
o-frequent sets discovered in these runs.

3. While new maximal frequent sets are found:

(a) Compute the set X of all minimal transversals of the hypergraph defined
by complements of sets in C.

10
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Figure 2: The lower shaded area represents the known o-frequent sets. Any new
maximal o-frequent set must be a superset of {A, D} or {C, D}.

(b) For each z € X:
Run algorithm A _Random MFS(x) k, times and add any new maximal
frequent set found to C.

4. Output S.

It is somewhat surprising that even though the search steps 2 and 3b are random-
1zed, the algorithm for all positive integer values of k;, k, actually finds all maximal
o-frequent sets before stopping. )

Theorem 6 The algorithm All MFS finds all maximal o-frequent sets of the input
matrix M.

Proof: After the preprocessing in Step 1, each remaining attribute in the matrix
1s a frequent set. Since k; is positive, Step 2 results in a nonempty collection S of
maximal o-frequent sets. Let S be the (nonempty) collection of maximal o-frequent
sets, which are output in Step 4 at the end of the algorithm. Since the algorithm
exited the while loop, it must be that in the last iteration of the while loop, S
remained unchanged. Equivalently, for no transversal x of the complements of sets
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in S, any maximal o-frequent set containing x was found in Step 3b. Suppose to the
contrary, there is a maximal o-frequent set F', which is not in S. Then by Lemma 5,
there is a minimal transversal (say ) of the complements of sets in S, such that F'
contains z. Therefore z must be a o-frequent set. So in the iteration of the for loop
at Step 3b, corresponding to z, algorithm A _Random_MFS(x) must have found at
least one new maximal frequent set (Theorem 4). This contradicts the claim made
earlier that S was unchanged in the last iteration of the while loop. Therefore every
maximal o-frequent set must be in S. |

5 Some experimental results for finding maximal
frequent sets

We have implemented the algorithm A_Random_MFS, and we used the implemen-
tation to find maximal frequent sets in real data sets taken from the University of
Helsinki. In these data sets each column represents a course offered, and the rows
represent students. A given column has a 1 for each student that took this course
and 0 for the rest. We have used two different threshold values, and we try to de-
termine the rate at which the probabilistic algorithm finds new maximal frequent
sets. We compare our results with the output of the level-wise algorithm ([1, 2]).

The preliminary results of our experiments are summarized in the following ta-
bles.

Matrix o (nov. Runs | MFSs | MFSs | Time

Size of rows) found | present | (sec)
2670 x 20 100 500 78 93 15
2670 x 20. 100 1000 86 93 26
2670 x 20 100 2000 88 93 50
2670 x 20 | © 100 4000 89 93 99
2670 x 20 400 100 23 23 )
2670 x 20 400 500 23 23 14

2836 x 129 100 300 178 315 36
2836 x 129 100 1000 244 315 108
2836 x 129 100 2000 283 315 208
2836 x 129 100 4000 303 315 409

2836 x 129 400 100 27 27 18
2836 x 129 400 500 27 27 64
Matrix s (no. | MFSs | Time
Size of rows) | found | (sec)
2670 x 20 100 93 355
2670 x 129 400 23 6
2836 x 20 100 315 1512
2836 x 129 400 27 10
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Figure 3: These two graphs plot the number of MFS found after running the algo-
rithm from 500 to 4000 times on the smaller dataset (left) and on the larger dataset
(right).

In the first table we present the runs of the randomized algorithm. The two
datasets have sizes of 2670 x 20 and 2836 x 129 respectively, and the threshold
value was set to 100 and 400 rows. We run the algorithm for 500 to 4000 times
before colecting the different maximal o-frequent sets that had been found so far.
The number of different maximal o-frequent sets found is shown in the column
MFSs found. The next column shows the total number of maximal o-frequent sets,
as reported by the level-wise algorithm. In the second table we tabulate the results
of the level-wise algorithm runs on the same datasets.

The implementation of our algorithm is in C++, and the running times for both
algorithms were measured on a SPARCstation 5.

The experiments show that the randomized algorithm finds a big fraction of all
the maximal frequent sets while the number of iterations is only about 5 times the
total number of maximal frequent sets. In addition the randomized algorithm clearly
outperforms the level-wise algorithm as long as the size of the maximal o-frequent
sets is relatively large. In our datasets this happens for a threshold value of 100.

However, as the number of iterations increase the number of discovered maximal
frequent sets does not increase in proportion, but “levels off”. By observing the
datasets, we also noticed that the level-wise algorithm performs equivalently or
slightly better when the size of maximal frequent sets are small.

Our observations suggest that by increasing the number of runs to a very large
number, the advantage of finding more MF'S is lost in the increase of the running
time. So a better alternative can be to run the randomized algorithm a fixed num-
ber of times and then use the transversal computation to focus the search. We
have implemented the algorithm for transversal computation and included it in an
implementation of the algorithm Al MFS. We are currently testing it with more
examples to see how much the computation of transversals help in speeding up the
computation of all maximal frequent sets.
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6 Finding Minimal Keys in Databases

In this section we discuss the computational problem of finding all minimal keys of a
database and propose an algorithm for the problem based on the general algorithm
of Section 3. We begin by defining what we mean by keys and describe an application
in which it is useful to find all minimal keys. We view a relational database r as
a matrix whose columns correspond to fields and rows correspond to records. Let
R denote the set of all fields (i.e. columns of the matrix). Then a set X C R is a
key of r, if no two rows of r agree on every attribute in X. A minimal key is a key
such that no proper subset of it is a key. Note that every key must contain some
minimal key and conversely every superset of a minimal key is a key. Therefore the
collection of all minimal keys of a database is a succinct representation of the set
of all keys of the database. Note the distinction between our definition of key and
the more standard definition of (primary) key of a database [18]. A (primary) key
is a key (w.r.t. our definition) of the database throughout the life of the database
and is maintained so by the database manager. However an arbitrary key by our
definition, may be so at current state of the database and may not exist to be so
after an update of the database. The computational problem that we consider here
1s the following:

Problem 7 Given a database, compute all minimal keys that exist currently. O

As has been discussed in [4], the knowledge of all minimal keys existing currently
in the database can help in semantic query optimization i.e. in the process by which
a database manager substitutes a computationally expensive query by a semantically
equivalent query which can be processed much faster.

Before we discuss our algorithms for this problem, we give two results which
show its computational hardness. '

Theorem 8 The problem of finding the number of all keys of a given database is
#P-hard.

Proof: We prove the result in two steps. First we show a polynomial time reduction
from the problem of computing the number of satisfying assignments of a monotone-
2CNF formula to the problem of computing the number of set-covers of a family of
sets. Then we show a polynomial time reduction from the problem of computing the
number of set covers of family of sets to the problem of computing the number of keys
of a database. Since the problem of computing the number of satisfying assignments
of a monotone-2CNF formula is #P-hard [19], this will imply the #P-hardness of
the problem of computing the number of keys of a database.

Recall that given a family of sets each of which is subset of a finite universe set,
a set cover is a collection of sets from the family such that every element of the
universe is in at least one of the sets in the collection. Given a monotone-2CNF
formula with m clauses and n variables, construct a family of n sets 5. ..., S, each
of which is a subset of the set {1,2,....m}, as follows. The set S; contains j iff 7tk
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variable is present in j** clause. It is easily seen that a satisfying assignment of
the monotone-2CNF formula corresponds to a unique set cover of the family of sets
and vice versa, by picking S; in the set cover iff the i** variable has value 1 in the
assignment. Therefore the number of satisfying assignments of the monotone-2CNF
formula is exactly the number of set covers of the family of sets. This completes the
first reduction.

We now discuss the second reduction. Given a family of sets Sy, ..., S, each of
which is a subset of the universe set {1,2,...,m}, construct a relational database as
follows. The database has m fields fi, ..., f,, and n+1 records Ry, ..., R,,. The record
Ry will have value 0 in every field. For 1 <: < n and 1 < j < m, the field f; of
record R; will have value i if element ¢ is present in the set S; otherwise it will have
value 0. Note that a collection 5;,, Si,, ..., S;. (for some c) of sets from the family will
be a set cover iff the collection of fields f; ,...f;. is a key of the database. Therefore
the number of set covers of the given family of sets is same as the number of keys
of the database. This completes the second reduction and the proof of the theorem.

The following theorem shows that counting the number of minimal keys is not
easier than counting the number of all keys.

Theorem 9 The problem of finding the number of all minimal keys of a given
database is #P-hard. 3

Proof: Once again we show two polynomial time reductions. The first reduction
1s from the problem of computing the number of minimal vertex covers of a graph
to the problem of computing the number of minimal set covers of a family of sets.
The second reduction is from the problem of computing the number of minimal set
covers of a family of sets to the problem of computing the number of minimal keys of
the database. Since the problem of computing the number of minimal vertex covers
of a graph is known to be #P hard [19], this will imply the result.

Recall that a vertex cover of a graph G is a set of vertices of G such that every
edge of G is incident on at least one vertex in the set. Given a graph G with n
vertices and m edges, define a family of sets 51, ..., S, each of which is a subset of
the set {1,2,...,m}, as follows. The set S; has element j iff the j** edge of the graph
is incident on the i** vertex. Note that a collection of sets S; ,...,S;, (for some c)
from the family is a minimal set cover iff the set of vertices {7y, ...,7.} is a minimal
vertex cover of G. Therefore the number of minimal vertex covers of G is same as
the number of minimal set covers of the family. This completes the first reduction.

For the second reduction, we use the same reduction which was used as second
reduction in the proof of Theorem 8. With respect to the reduction, note that a

°In another paper [9], we discuss the related problem of finding the smallest key in a database.
We give a simple and efficient (polynomial time) approximation algorithm which finds a key whose
size is provably at most Oflog(n)) times the size of the smallest key. Further we show that, it
is NP-hard to obtain a polynomial time approximation to the problem within a factor which is
asymptotically better than O(log(n)).
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collection S;,, ..., S;, is a minimal set cover of the family iff the set of fields {f; , ..., fi.
is a minimal key of the database. Therefore the number of minimal set covers of the
family is same as the number of minimal keys of the database. |

We now discuss our algorithm for discovering all minimal keys of a database.
To keep an analogy with the problem of discovering maximal frequent sets, we will
use the notion of an anti-key. An anti-key in a database is a set of fields which is
complement of some key of the database. A maximal anti-key is an anti-key such
that no proper superset of it is an anti-key. Note that a set of fields is a maximal
anti-key iff its complement is a minimal key. Therefore the problem of finding all
minimal keys of a database is equivalent to the problem of finding all maximal anti-
keys of the database. To keep presentation analogous to maximal frequent sets, we
will henceforth in this section talk only of the problem of finding all maximal anti-
keys of a database. Note that the collection of all maximal anti-keys of a database
forms an ideal of the boolean lattice over the fields of the database.

We first present an algorithm for finding a random maximal anti-key containing
a given set of fields.

Algorithm A_Random MAK(S) Given a database in the form of an n x m
matrix M and aset S = {f;,, ..., fi,} of fields of the database, find a random maximal
anti-key which contains all the fields in the set, provided there exists one.

1. Pick a random permutation of the set {1,2,...,m}. Set m pointers to the
columns (i.e. fields) of the matrix according to the permutation so that we
can assume without loss of generality that the columns of the matrix are in
the order defined by the permutation.

2. Compute right_toleft profile matrix RL,xm, as follows:

(a) Consider the m** column of M. Relabel the values in this column with
consecutive positive integers starting from 1 so that identical values are
labeled with the same integer and differernt values are labeled with distinct
integers. For all 7, define RL;,, to be the integer labeling the value in
M,',m. A

(b) For j=m —1to 1:

Consider the n pairs defined by the values in j** column of M and (5 +
1)** column of RL. Relabel the pairs with consecutive positive integers
starting from 1 so that identical value pairs are labeled with the same

integer and different value pairs are labeled with distinct integers. For
all ¢, define RL;; to be the integer labeling the pair in (M, ;, RL; (;41))-

3. Initialize the left_to_right profile array LR,x; to be all 0’s. Initialize A to be
empty set.

4. For y = 2 to m:
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(a) Consider the n pairs defined by values in LR and the j** column of RL.
Label all the pairs with consecutive positive integers starting from 1 so
that identical pairs are labeled with the same integer and different pairs
are labeled with distinct integers.

(b) If the labeling uses all integers from {1,2,...,n} then A= AU {;} else

i. Consider the n pairs defined by the entries in LR and the (j — 1)
column of M. Label the pairs with consecutive positive integers so
that identical pairs are labeled with the same integer and different
pairs are labeled with distinct integers. For all : Update the value of

LR;; to be the integer labeling the i** pair.

ii. If the labeling uses all integers from {1,...,n} then A = AU {j,j +
1,...,m} and go to Step 5.

5. For k =1 to |S|: If fx &€ A then Stop.

6. Output A.

We now claim that the above algorithm outputs the lexicographically first max-
imal anti-key with respect to the random permutation containing the fields in the
input set. First we point out some properties of the algorithm.

Observation: Let j be an integer from {1,2,...,m}. Consider the n tuples formed
by taking the projection of the database with respect to the columns {j,j+1,...,m}.
Then the j** column of RL represents the distinctness of these n tuples i.e. RL;, ;
and RL;, ; are different iff the :!* and %" tuples are distinct. This follows by a simple
induction on j. \

Observation: At the end of any iteration of the for loop (i.e. just before Step 3),
the array LR represents the distinctness of the n tuples formed by columns in A.
This follows by a simple induction on the loop variable j.

Theorem 10 For a given set S of fields, suppose there is an anti-key which contains
all the fields in S. Then the algorithm A_Random MAK outputs the lex-smallest
maximal anti-key with respect to the random permutation and which contains all
the fields in S. Further, assuming that the time to access any field of any record is
constant, the running time of the algorithm is O(nm).

Proof: Recall that with respect to a given permutation, an antikey A is lexico-
graphically smaller than another antikey K>, if the smallest field (w.r.t. the order of
fields defined using permutation) in the symmetric difference of K; and K3 isin Kj.
Note that Step 4 of the algorithm maintains the invariant that the set of fields which
are not in A, form a key of the database (note that the invariant is true before the
beginning of the loop because A is empty and the set of all fields is certainly a key
of the database). Further while scanning the fields in the order of the permutation,
it “greedily” puts the fields in the set A i.e. if the set{1,2,....m} — A — {j} is a
key then j is also put in A. Therefore at the end of the for loop, the set A is the
lex-smallest maximal anti-key.
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For analyzing the time complexity, note that the Step 2 makes one pass of the
whole database and hence need O(nm) time. Similarly Step 4 makes one pass of the
database. Other steps take O(m)or O(n) time. Therefore the total time complexity
of the algorithm is O(nm). ' |

We now give the complete algorithm for finding all maximal antikeys, which is
analogous to the algorithm for finding all maximal frequent sets. First we point out
that an analogue of the Lemma 5 holds also for the case of maximal anti-keys.

Lemma 11 Given a collection C of maximal anti-keys of a database, let K be
a maximal anti-key not in C. Then there exists a minimal transversal 7' of the
hypergraph defined by the complements of the sets in C such that T C K.

Proof: The proof follows the proof of Lemma 5, and is omitted here. |

In the algorithm All.MAK, once again, we ignore the details of how to find all
minimal transversals of a hypergraph and postpone them to next section.

Algorithm All MAK Given a relational database in the form of n X m matrix
M and find all maximal anti-keys. Parameters k;, k2, which are positive integers.

1. Run algorithm A_Random MAK(¢) k; times and let C be the set of ‘maximal
anti-keys discovered in these runs.

2. While new antikeys are being found:

(a) Compute the set X of all minimal transversals of the hypergraph defined
by complements of subsets in C.

(b) For each z € X: Run algorithm A _Random MAK(X) k, times and add

any new maximal anti-key found to C.
3. Output C.

We can now claim the followiﬁg theorem.

Theorem 12 The algorithm-All MAK finds all maximal anti-keys (and hence min-
imal keys) of the input database.

Proof The proof of the theorem follows the proof of Theorem 6 and is omitted here.
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7 Some experimental results on finding keys

In this section we present some experimental results obtained from an earlier imple-
mentation of a somewhat different algorithm to compute all keys. This algorithm
uses the same general scheme, but attempts to compute minimal keys directly, in-
stead of computing maximal antikeys first.

We implemented this algorithm, A Random K in C++. To test the algorithm,
we used two different relations which have a lot of keys. We are interested in finding
how many keys the randomized algorithm Find-Key can discover before we have to
perform the expensive traversal computation. The first table shows the results of
these experiments.

Matrix | Runs | MK MK | Time
Size found | present | (sec)
83 x 12 | 500 57 58 7.2
83 x 12 | 1000 | 58 58 14.1
128 x 22 | 1000 | 417 1252 30
129 x 22 | 2000 | 588 1252 | 60.5

We also implemented the algorithm All K and tested it on the above data sets.
The following table summarizes the experimental results.

Matrix | Number of | Number of | Time
size keys found | keys present | (sec)

58 x 12 58 58 142.9

128 x 22 1252 1252 21591.2

We remark that the second test case is an exceptionally complex one in terms
of the size and structure of minimal keys of the input relation. We are planning
more experiments to see the performance for large inputs and with respect to the
level-wise algorithm.

8 Computing all minimal transversals of a hyper-
graph

The general problem of finding all minimal transversals of a hypergraph in output
polynomial time is still an open problem. It corresponds to computing all maximal
independent sets of a hypergraph because every minimal transversal is complement
of a maximal independent set and vice versa. While it is known how to compute all
maximal independent sets of a graph in output polynomial time, the corresponding
problem for hypergraphs seems notoriously difficult [10].

In this section, we propose a heuristic for computing all minima transversals of
a hypergraph. We have used this heuristic to algorithm in the implementation of
the algorithms All_ MFS and All MAK.
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In the algorithm below, we assume that the hypergraph with m hyperedges and
n vertices (i.e. m subsets of {1,...,n}) is given in the form of an n x m {0,1} matrix,
where the (¢, 7)** entry is 1 iff vertex i is present in the edge j.

Algorithm All_Minimal_Transversals Given a hypergraph in the form of an
n x m {0,1} matrix M, compute all minimal transversals of it.

1. Compute the lookahead matrix LM, «,, as follows:

(a) Fori=1tomandj=ntol:
Set value of LM;; to be the column number of the leftmost 1 among
{Mixis Mix(ie1)ys oos Mixn }-

2. Forj =1 to n:

(a) Initialize boolean array covered_edgesnx; to all 0’s. Initialize boolean
array transversal;xn to all 0’s.

(b) Call Compute_Transversals(j, 0, covered_edges, transversal).

The procedure Compute_Transversals extends the current partial transversal
stored in the input boolean array transversal by picking element j and those bigger
than j. A variable count gives the number of edges already covered by the current
partial transversal in the array transversal. If the value of count is equal to m
then all edges are covered, and the array transversal stores a transversal of the
hypergraph. We output this transversal if it is also minimal.

Procedure Compute_Transversals(j, count, covered_edges, transversal)

1. If count = m then: check if the transversal represented by array transversal is
minimal and if yes, then output it and return else simply return.

2. Let list L contain every value ¢ such that covered_edge;; is 0.

3. For every value z in L:

(a) Define new_element to be the value in LM, ;.

(b) Include new_element in the transversal and update the value of the array
covered_edges.

(c) Call Compute_Transversals(new_element,  count,  covered_edge,
transversal)

The Step 2 picks out all those elements to the right of ; (elements whose index
is larger than j) which cover some uncovered edge. Each of these elements is used
to extend the current transversal and then the same process is repeated recursively
until all edges are covered. Once all the edges are covered 1.e. the count is m, then
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the transversal in the array transversal is printed provided it is a minimal transver-
sal. The check for minimality is done by checking that no subset of it with one
fewer element, is also a transversal. We remark that this can be done efficiently by
computing the left_to_right profile matrix and then making a right_to_left pass of the
columns, similar to the algorithm A_Random _MAK. We now claim the correctness
of the above algorithm.

Theorem 13 The algorithm All Transversals computes all minimal transversals of
the hypergraph given by matrix M.

Proof: Consider any arbitrary minimal transversal T of the hypergraph. Let the in-
dex set of columns corresponding to it be {cy, ..., ¢;} such that ¢; < ... < ¢;. We claim
that the transversal will be output in the call to procedure Compute_Transversal
with 7 = ¢;. Note that after picking ¢; in the partial transversal, c; will be in the
list picked at Step 2. This is because by minimality of T, there will be some edge
covered by c; which is not covered by ¢;. So one of the iteration of For loop (Step 3)
will have (¢;,c2) as partial transversal. By a similar argument c; will be in the list
of elements picked at Step 2 in the recursive call to procedure Compute_Transversal
with (e1,¢2) as the partial transversal. Continuing above argument, it follows that
there will be a recursive call to Compute_Transversals in which the partial transver-
sal will be exactly (c1, ..., ¢t). Since the value of count in this call will be m, this call
will output 7. - |

9 Discussion

We have given a randomized algorithm for computing the representation of a theory
in terms of its most specific sentences. We have also proposed an approach based on
transversal computation to focus the search of the randomized algorithm on undis-
covered sentences. This can be combined with the randomized algorithm to give
an algorithm which can (provably) find all the most specific sentences. We have
illustrated the application of the algorithm in two important data mining scenar-
1os: computing all maximal o-frequent sets of a {0,1}relation with threshold ¢ and
computing all minimal keys of a database.

We have shown that algorithms Al MFS and All MAK compute all of MFS and
MAK respectively, although they are randomized algorithms. We now show that
this happens because the collection of all o-frequent sets for a given matrix and o,
(and similarly all maximal anti-keys of a database) forms an ideal in the boolean
lattice of all attributes (resp. fields). It turns out that whenever the collection
to be computed is the set of maximal sets of an ideal in the boolean lattice and
the membership in the ideal can be checked efficiently, an analogous randomized
algorithm will find all maximal sets.

Theorem 14 Let Z be an ideal in boolean lattice over universe {1,....n}. Assume
that for an arbitrary set S C {1,...,n}, we can check efficiently if S € Z. Then there
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is a randomized algorithm analo'gous to ALMFS (or Al MAK) which will find all
maximal sets of Z.

Proof: Define an analogous of A_Random _MFS(S), which given aset S C {1,...,n},
gets a random permutation of the elements {1,...,n} — S and then uses it to find a
random maximal element of the ideal containing S. The algorithm will start with S
and try to grow greedily the set to a superset by using the remaining elements in
the order of permutation and maintaining the invariant that the current S is always
in Z. Note that if there exists one such maximal set containing S, then S € 7 and
so the algorithm will start off by including all of S which will satisfy the invariant
to begin with and eventually come up with some maximal set containing S.

Now also define another algorithm which is analogous to Al MFS which starts
by running the previous algorithm a few times to compute a nonempty collection of
maximal sets of Z and then alternates between computing the minimal transversals
of the complements of the known maximal elements and using the previous algorithm
to compute for every minimal transversal a random maximal set containing the
transversal. Since an analogue of Lemma 5 holds for the maximal sets of any ideal,
it follows similar to the proofs of Theorems 6 and 12, that when the while loop of
the algorithm is exited, the collection of maximal sets found includes all maximal
elements of Z. |

We have conducted some experiments with our algorithms which indicate the
benefits of using randomization over the earlier known level-wise approach. Though
the preliminary results of the experiments show our algorithms to be promising,
a lot more remains to be done to substantiate these promises. These include the
scalability analysis and the tradeoff of transversal computation for focusing search
against the level wise approach.

An issue we have not explored yet is to find a more efficient way to use transver-
sals to guide the search. Currently we compute all the minimal transversals from
scratch every time some new sentences is discovered. Some alternative strategies
may result in faster algorithms. One possibility is to compute only one transversal
at a time instead of all of them. Another possibility is to avoid computing the min-
imal transversals from scratch every time. Since the hypergraph (whose minimal
transversals are computed) in a given iteration contains the hypergraphs for all pre-
vious iterations, it may be possible to compute the new set of minimal transversals
by scanning the old set and dropping those which are no longer transversals and
then computing only the newly formed transversals.

Another interesting possibility we plan to explore is to use the randomized algo-
rithm in combination with the level-wise algorithm. The randomized algorithm for
maximal o-frequent sets can be used to select the right range for o, as a preprocess-
ing step to the level-wise algorithm of Agrawal et. al. [2].
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