
Optimal algorithms for some proximity

problems on the Gaussian sphere with

applications.

Prosenjit Gupta

�

Sanjeev Saluja

�

September 4, 1996

Abstract

We consider some geometric problems on the unit sphere which

arise in NC-machining. Optimal linear time algorithms are given

for these problems using linear and quadratic programming in three

dimensions.

Keywords: NC-machining, Gaussian sphere, computational geome-

try, linear programming.

1 Introduction

On a numerically controlled (NC) machine, the cutting tool is con-

trolled by a program, containing instructions of workpiece setups and

tool paths for the machining of a component. NC-machines are typi-

cally classi�ed as 3-, 4-, or 5-axis machines, depending on the number

of degrees of freedom enjoyed by the cutter. The ability of a cutter to

access a workpiece surface depends not only on the degrees of freedom

but also on the nature of the cutter itself. Cutters are classi�ed as


at-end, �llet-end, and ball-end cutters, depending on the maximum

angle, �, that the cutter's axis can be tilted from the normal to the

surface at a given point. In a 
at-end cutter, � = 0

�

; in a �llet-end

�

Max-Planck-Institut f�ur Informatik, Im Stadtwald, D 66123 Saarbr�ucken, Germany.

Email:fpgupta,salujag@mpi-sb.mpg.de

1



cutter, � < 90

�

; and in a ball-end cutter, � = 90

�

. Cutter selection is

often determined by the range of surface normals, the requirements of

surface texture, and the demands on dimensional accuracy [1].

In this paper, we consider some algorithmic problems on the unit

sphere that arise in NC-machining: checking if a point set on the

unit sphere can be enclosed within a hemisphere, �nding the smallest

enclosing circle for a hemispherical point set on the unit sphere and

�nding the largest empty circle lying inside a given spherical polygon

in a hemisphere on the surface of the unit sphere. For the �rst problem

an O(n logn) solution was suggested by Chen and Woo [2]. For the

next two problems, Gan et al. [4] have given O(n logn) algorithms.

We show how to improve these algorithms to O(n) using linear and

quadratic programming in three dimensions.

We brie
y review the basic ideas and results of linear and quadratic

programming that we shall use in this paper. A linear program in IR

3

consists of

1. Real variables x

1

; x

2

; x

3

.

2. Linear constraints over the variables:

a

i1

x

1

+ a

i2

x

2

+ a

i3

x

3

� �

i

; i = 1 � � �n where the a

ij

s and �

i

s are

real numbers.

3. Linear minimization function (also called the objective function

of the program:




1

x

1

+ 


2

x

2

+ 


3

x

3

where 


0

i

s are real numbers.

A feasible solution of the above linear program is an assignment

of real values to x

1

; x

2

; x

3

which satis�es all the constraints in (ii).

An optimal solution to the program is a feasible solution which gives

gives the smallest possible value to the objective function among all

possible feasible solutions. The set of all possible feasible solution is

called the feasible region of the program.

The version of quadratic programming in IR

3

that we consider

consists of:

1. Real variables x

1

; x

2

; x

3

.

2. Linear constraints over the variables:

a

i1

x

1

+ a

i2

x

2

+ a

i3

x

3

� �

i

; i = 1 � � �n where the a

ij

s and �

i

s are

real numbers.

3. Quadratic minimization function (i.e. the objective function of

the program:




1

x

2

1

+ 


2

x

2

2

+ 


3

x

2

3

+ z

2

where 


0

i

s are real numbers; 


2

3

� 4


1




2

;




1

; 


2

� 0;

The feasible and optimal solutions of the quadratic program are

de�ned analogous to those of linear program.

Megiddo [7] has shown that there algorithms which solve the linear

and quadratic program in 3 dimensions in O(n) steps where n is the

number of constraints. Henceforth, we refer to these results as the

following theorems.

2



Theorem 1.1 [7] There is an algorithm with worst case time-complexity

O(n) to compute an optimal solution to linear program in IR

3

with n

constraints. Hence there is also an O(n) algorithm to compute a fea-

sible solution of a set of n linear constraints in 3 variables.

Theorem 1.2 [7] There is an O(n) algorithm to compute an optimal

solution to a quadratic program in IR

3

with n constraints.

For more details on linear and quadratic programming, we refer

the reader to [3][5].

2 Preliminaries

Formally, we de�ne the unit sphere as SS

2

= fP 2 IR

3

j jP j = 1g.

A point P in SS

2

is a unit vector in IR

3

and is represented by the

three-tuple (P

1

; P

2

; P

3

). Two points P and Q of SS

2

are antipodal if

P = �Q. For point P 2 SS

2

, we de�ne a great circle G(P ) with pole P

as G(P ) = fx 2 SS

2

j P �x = 0g. Note that G(P ) = G(�P ). All regions

on the surface of the sphere are treated as point sets and union ([),

intersection (\) and set inclusion (2) and containment (�) have their

usual meanings. We use int(�) and bd(�) to denote the interior and

boundary of a region respectively. We de�ne the distance, d(P;Q),

between two points P and Q of SS

2

as the length of the shorter of

the two great arcs joining P and Q, i.e., d(P;Q) = cos

�1

(P � Q): A

spherical disk D(P; r) with pole P and radius r, where 0 � r � �=2

is de�ned as D(P; r) = fX 2 SS

2

j d(P;X) � rg. Throughout, we

shall refer to a spherical disk simply as a disk. Note that the circle

bd(D(P; r)) is a great circle if r = �=2; otherwise it is a small circle.

Also note that D(P; �=2) is a hemisphere with pole P .

Given any two distinct points P and Q in SS

2

, which are not antipo-

dal, there is a unique great circle passing through P and Q, de�ned

as circ(P;Q) = G((P �Q)=jP �Qj). We de�ne the shorter of the two

arcs of circ(P;Q) joining P and Q as segment PQ. A spherical polygon

P on SS

2

(or polygon, for short) is de�ned as the closed region bounded

by a path of segments P

1

P

2

, P

2

P

3

, : : :, P

n

P

1

, where P

i

, i = 1; : : : ; n,

are the vertices of P .

The Gaussian map (or GMap) of a surface is a map of normals to

the surface on the unit sphere. The visibility map (or VMap, for short)

of a surface is the set of all directions along which an unobstructed

line-of-sight can be established from the cutter (which is treated as a

point) to every point on the surface. For a ball-end cutter, the VMap

of a surface can be represented on the unit sphere SS

2

as a spherical

polygon, i.e., a closed region on SS

2

bounded by arcs of great circles.

3 The hemisphericity test

In this section, we consider the problem of detecting if a set S of

points in SS

2

can be enclosed in a hemisphere and reporting such an

3



hemisphere if it exists. Detection of hemisphericity is central to several

algorithms for problems on spheres [2]. An O(n logn) time algorithm

for this problem is given by Chen and Woo [2]. In this section we

suggest a simpler and faster algorithm for the problem. We show

how to reduce the problem to an instance of linear programming in

IR

3

which can be solved in optimal �(n) time, using the algorithm of

Megiddo [7].

Lemma 3.1 A set S of n points on SS

2

is hemispherical i� R(S) =

\

p2S

D(p; �=2) 6= ;.

Proof:

=) Let S be hemispherical. Let x be the pole of the hemisphere

containing S. For any p 2 S, p 2 D(x; �=2). Hence x 2 D(p; �=2).

Therefore x 2 \

p2S

D(p; �=2) i.e. R(S) 6= ;.

(= If R(S) = \

p2S

D(p; �=2) 6= ;, then let x be a point in

\

p2S

D(p; �=2). Hence for all p in S, p 2 D(x; �=2), i.e. S is hemi-

spherical.

Given a set S of n points in SS

2

, we construct a linear program P(S)

in variables X; Y; Z as follows: for every point p

i

= (x

i

; y

i

; z

i

) 2 S,

de�ne constraint C

i

as x

i

X+y

i

Y +z

i

Z � 0. Note that constraint C

0

i

s

express the fact that the dot-product between any given point p

i

and

a feasible solution point P = (X; Y; Z) is nonnegative i.e. d(P; p

i

) �

�=2 (i = 1; :::; n). This immediately implies the following.

Lemma 3.2 Let F (S) be the feasible region of the linear program

P(S). Then F (S) 6= ; i� R(S) = \

p2S

D(p; �=2) 6= ;.

Lemma 3.3 . S is hemispherical if and only if the linear program

P(S) has a feasible solution.

Proof: Follows from Lemmas 3.1 and 3.2.

We now give the steps of algorithm HEMI to check if a given set

S of points in SS

2

lies in a hemisphere.

HEMI

1. For each point p

i

2 S create the constraint C

i

as above.

2. Use the algorithm of Megiddo (Theorem 1.1) to �nd a feasible

solution to the set of constraints C

i

s.

Theorem 3.1 Given a set S of n points on SS

2

, algorithm HEMI

determines in �(n) time if S can be enclosed in a hemisphere.

Proof: Note that Step 1 takes O(1) time to create the constraint for

each point and hence O(n) time to create the n constraints. Further

it follows from Theorem 1.1 that Step 2 to �nd a feasible solution to

n constraints. Therefore the running time of HEMI on an input of n

points is O(n).

4



4 Computing the smallest enclosing cir-

cle for points in a hemisphere

The VMap represents a set of feasible directions for cutter orienta-

tion. Since a disk contained in the VMap represents a subset of such

directions, we can approximate a VMap by the largest empty circle

contained inside it. Gan et al. [4] have shown that if the largest

empty disk inside a VMap is D(p; r), then the smallest disk contain-

ing the corresponding GMap is D(p; �=2� r). Thus to approximate

the VMap, it is su�cient to construct the smallest disk containing the

corresponding GMap. This motivates the following problem: Given a

set S of n points in a hemisphere on SS

2

, �nd the smallest disk contain-

ing S. In [4], Gan et al. have given an O(n logn) algorithm for this

problem. In this section, we give an algorithm which has a worst case

running time of O(n), which is asymptotically optimal. The algorithm

�rst determines the hemisphere containing the points (assuming it is

not known in advance) and determines if the smallest enclosing circle

is the hemisphere itself; if not then the problem is transformed into

a minimization problem over three variables with n linear constraints

and a quadratic objective function. Next this minimization problem

is solved using the algorithm of Megiddo (Theorem 1.2) which runs in

worst case time which is linear in the number of constraints.

We discuss now the �rst step of the algorithm. Let p

1

; :::; p

n

be

the given set of points which lie in a hemisphere on SS

2

. Note that

since the points lie in a hemisphere, the smallest enclosing circle C

is de�ned by a plane H which cuts the sphere in C and H is the

farthest plane from origin which separates origin from every point in

the given point set (Figure 1). We distinguish two cases depending

on whether H contains the origin or not. If H contains the origin,

then either three of the points lie on the great circle bounding the

hemisphere (Figure 3) or two of the points lie diagonally opposite

on the great circle bounding the hemisphere (Figure 2). Either of

the two conditions can be detected easily, if we know the hemisphere

containing the points. In case, the hemisphere which contains the

given point set is not known already, we can determine it in O(n)

time by using the algorithm HEMI of Section 3.

If H does not contain the origin then we can reduce the given point

set to a minimization problem as follows. Let hx

i

; y

i

; z

i

i be the coordi-

nates of point p

i

and ax+ by+ cz = 1 be the equation of an arbitrary

plane (not containing origin) in three dimensions. The distance of

this plane from origin is given by

1

p

a

2

+b

2

+c

2

. Further, maximizing the

distance of the plane from the origin can be expressed equivalently as

minimizing the quadratic convex objective function a

2

+ b

2

+ c

2

. We

can reduce the problem to the solution of the following optimization

problem (P) in variables a; b; c:

Minimize a

2

+ b

2

+ c

2

w.r.t.

ax

i

+ by

i

+ cz

i

� 1, 1 � i � n

5



HC

O

X

Y

Z

Figure 1: Plane de�ning smallest enclosing circle

O

C

Figure 2: Two points on bounding great circle

Note that the direction of the inequalities ensures that all the given

points lie on that side of the plane ax + by + cz = 1 which does not

contain the origin. So any feasible solution to the above set of con-

straints corresponding to a plane separating origin from the given set

of points.

6



We can now summarize the algorithm SEC for the smallest enclos-

ing circle problem as follows :

SEC

1. Use the algorithmHEMI of the Section 3 to �nd the hemisphere

which contains the given point set.

2. Check if three points lie on the periphery of the hemisphere or

two points lie diametrically opposite on the periphery. This can

be done by determining (in O(n) time) which inequalities in the

solution of the linear program in HEMI are satis�ed exactly by

the optimum solution. If these points are found, then determine

the great circle de�ning the periphery of the hemisphere is the

required circle and stop. Output this great circle and Stop.

3. If the condition checked in Step 2 does not hold, then solve the

optimization problem P to obtain the coe�cients of the plane

de�ning the smallest enclosing circle. Determine and output the

corresponding circle and Stop.

Theorem 4.1 Given a set S of n hemispherical points on SS

2

, the

smallest disk containing all points in S can be constructed in O(n)

time.

Proof: Each of the three steps has a worst case time complexity of

O(n). Therefore, the worst case time complexity of the algorithm SEC

is O(n).

Corollary 4.1 Given a spherical polygon P inside a hemisphere on

SS

2

with n vertices, the largest disk contained in P can be found in

O(n) time.

Proof: In [4], it is shown that �nding the largest disk enclosed in

a spherical polygon with n vertices in a hemisphere is equivalent to

�nding the smallest enclosing circle of a set of n points which lie in a

hemisphere. Therefore the result follows from Theorem 4.1.

References

[1] L. Chen, S. Chou, and T. Woo. Separating and intersecting

spherical polygons: computing machinability on three-, four-, and

�ve-axis numerically controlled machines. ACM Transactions on

Graphics, 12:4:305{326, 1993.

[2] L.L. Chen and T. Woo. Computational geometry on the sphere

with applications to automated machining. Journal of Mechanical

Design, 114:288{295, 1992.

[3] V. Chv�atal. Linear programming. Freeman Publishers, 1983.

7



O

C

Figure 3: Three points on bounding great circle

[4] J.G. Gan, T.C. Woo, and K. Tang. Spherical maps: their con-

struction, properties, and approximation. Journal of Mechanical

Design, 116:357{363, 1994.

[5] Martin Gr�otschel, L�aszl�o Lov�asz and Alexander Schrijver. Geo-

metric algorithms and combinatorial optimization. Springer Ver-

lag Publishers, 1988.

[6] F.P. Preparata and M.I. Shamos. Computational Geometry { an

introduction. Springer{Verlag, 1988.

[7] N. Megiddo. Linear-time algorithms for linear programming

in IR

3

and related problems. SIAM Journal on Computing,

12:4:759{776, 1983.

[8] K. Tang, T. Woo, and J. Gan. Maximum intersection of spherical

polygons and workpiece orientation for 4- and 5-axis machining.

Journal of Mechanical Design, 114:477{485, 1992.

8


