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Abstract

We investigate random variables arising in occupancy problems, and show the variables to be

negatively associated, that is, negatively dependent in a strong sense. Our proofs are based

on the FKG correlation inequality, and they suggest a useful, general technique for proving

negative dependence among random variables. We also show that in the special case of two

binary random variables, the notions of negative correlation and negative association coincide.

1 Introduction

Informally speaking, random variables are said to be negatively dependent , if they have the following

property: if any one subset of the variables is \high", then other (disjoint) subsets of the variables

are \low". Such variables arise frequently in the analysis of algorithms, for which a stream of random

bits inuences either the input or the execution of the algorithm. To give a more speci�c example,

we consider occupancy problems , where m balls are randomly allocated into n bins. Typical random

variables of interest are the occupancy numbers Bi, i 2 [n], that is, the number of balls that are

contained in bin i. The Bi's are dependent, since
P

iBi = m. The intuitive argument from above|

if one of the Bi's is \large", the other variables are less likely to be \large" as well|suggests that

they are negatively dependent. Occupancy problems arise in the analysis of algorithms from areas

as diverse as dynamic load balancing [1], simulation of parallel computer models on realistic parallel

machines [3], and distributed graph coloring [11].
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Dependence among random variables makes the analysis of an algorithm more di�cult, since

independent random variables obey many simple laws that do not hold for dependent random

variables. The well-known Cherno�{Hoe�ding bounds from the theory of large deviations are an

excellent example in this respect. Much e�ort has been made to salvage these sharp bounds in

the more general situation under consideration; see, for example, [11, 13, 3, 8]. It turns out that

one can apply the Cherno�{Hoe�ding bounds to sums of \strongly" negatively dependent random

variables just as one would apply them to independent random variables; see Section 6. Hence, it

is useful to establish negative dependence among random variables. However, this can be a hard

task, and it is mostly accomplished by ad-hoc techniques. In this paper, we show that the FKG

correlation inequality from the theory of partial orders can be a useful, general tool. We give simple

proofs based on the FKG inequality, establishing negative dependence among random variables in

three di�erent settings. The results are not new, but we give new proofs that are more elegant than

those appearing in the literature.

Our results involve a strong notion of negative dependence called negative association, which,

in general, is much stronger than the better known negative correlation. In Section 5.1, we give

a short proof that for the special case of two binary random variables, the two notions coincide.

(This result can also be obtained by combining results in [5, 7].)

We further deal with two di�erent types of occupancy experiments. In the �rst one, balls

are thrown independently into bins|this gives rise to a (generalized) multinomial distribution for

(B1; : : : ; Bn). The Bi's are known to be negatively associated, [4]. In Section 5.3, we give a more

direct proof of negative association for sums of the Bi's. In the second experiment, we assume

that m < n, that bins contain at most one ball, and that each distribution of balls among the

bins is equally likely to occur. This is the so-called Fermi{Dirac model, which can be viewed as

a special case of the more general permutation distribution. We prove in Section 5.2 that random

variables with a permutation distribution satisfy the negative association condition, a result already

mentioned in [7]. In particular, it follows that the occupancy numbers in the Fermi{Dirac model

are negatively associated.

The paper is organized as follows. A detailed description of the probabilistic experiments is given

in Section 2. We review the notion of negative association and the FKG inequality in Sections 3

and 4, respectively. Our results are proved in Section 5, and we give an application of our results

to a probabilistic analysis in Section 6.

2 Experiments

For a positive integer n, let [n] := f1; : : : ; ng; for I � [n], let �I := [n]�I . We investigate probabilistic

experiments where m balls are randomly distributed among n bins. Let Bi, i 2 [n], denote the

occupancy number of bin i, that is, the number of balls that are contained in bin i at the end of

the experiment.

We consider two types of experiments. In the �rst one, balls are thrown independently into

bins with Pr(ball j goes into bin i) = pi;j , i 2 [n]; j 2 [m], and for each ball j,
P

i pi;j = 1. In the

uniform case where pi;j = pi for each j 2 [m], (B1; : : : ; Bn) have the usual multinomial distribution

with

Pr(B1 = m1; : : : ; Bn = mn) =
n!

m1! � � �mn!
� pm1

1
� � �pmn

n ;

when
P

imi = m. This is sometimes called the Maxwell{Boltzmann model .

In the second experiment, the so-called Fermi{Dirac model , bins contain at most one ball, and

each distribution of balls among the bins is equally likely to occur. (This requires m < n.) The
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Bi's are indicator variables in this case, and for mi 2 f0; 1g, i 2 [n], with
P

imi = m,

Pr(B1 = m1; : : : ; Bn = mn) =

 
n

m

!�1

:

The joint distribution of (B1; : : : ; Bn) in the Fermi{Dirac model is a special case of a permutation

distribution for n random variables.

De�nition 1 Let n be a positive integer.

1. The random variables J1; : : : ; Jn have the permutation distribution on [n], if they take values

in [n] and, for every permutation � : [n]! [n],

Pr(J1 = �(1); : : : ; Jn = �(n)) =
1

n!
:

2. Let x1; : : : ; xn be arbitrary real numbers. The random variables X1; : : : ; Xn are said to have a

permutation distribution on (x1; : : : ; xn), if there is a set of random variables J1; : : : ; Jn with

the permutation distribution on [n] and Xi = xJi for each i 2 [n].

We shall refer to either situation as a permutation distribution.

Remark 2 If x1; : : : ; xn are all distinct, then this de�nition is equivalent to stating that

Pr(X1 = x�(1); : : : ; Xn = x�(n)) =
1

n!

for every permutation � : [n] ! [n]. This is apparently the de�nition of Joag-Dev and Proschan

[7].1 However, this is not equivalent if the xi's are not all distinct, which is the case needed in our

application to the Fermi{Dirac model.

3 Negative Dependence of Random Variables

We consider only discrete random variables. X = (X1; : : : ; Xn) denotes a tuple of random variables

X1; : : : ; Xn; we will assume that all expectations E[h(X)] exist.

Two random variablesX; Y are called negatively correlated , if cov(X; Y ) := E[XY ]�E[X ]E[Y ] �

0. The following de�nition from [7] is a natural generalization of negative correlation (and other

notions of negative dependence) to the case of n random variables.

De�nition 3 ({A) The random variables X = (X1; : : : ; Xn) are negatively associated if for every

index set I � [n], cov(f(Xi; i 2 I); g(Xi; i 2 �I)) � 0, that is,

E[f(Xi; i 2 I)g(Xi; i 2 �I)] � E[f(Xi; i 2 I)]E[g(Xi; i 2 �I)] ;

for all non-decreasing functions f : RjIj ! R and g : Rn�jIj ! R. (A function h : Rk ! R is said

to be non-decreasing, if h(x) � h(y) whenever x � y in the component-wise ordering on Rk.)

Note that the same inequality will hold if f and g are both non-increasing functions.

Negative association of random variables is preserved under taking subsets, forming unions of

independent sets, and forming sets of non-decreasing functions that are de�ned on disjoint subsets

of the random variables. The following proposition makes some of these very useful properties more

precise, see [7].

1They use the term \expermutation" which we were not able to locate in the literature.
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Proposition 4 1. If X = (X1; : : : ; Xn) and Y = (Y1; : : : ; Ym) both satisfy (�A) and are mu-

tually independent, then the augmented vector (X;Y) = (X1; : : : ; Xn; Y1; : : : ; Ym) satis�es

(�A).

2. Let X := (X1; : : : ; Xn) satisfy (�A). Let I1; : : : ; Ik � [n] be disjoint index sets, for some

positive integer k. For j 2 [k], let hj : RjIkj ! R be non-decreasing functions, and de�ne

Yj := hj(Xi; i 2 Ij). Then the vector Y := (Y1; : : : ; Yk) also satis�es (�A). That is, non-

decreasing functions of disjoint subsets of negatively associated variables are also negatively

associated. The same is true if each hj is a non-increasing function.

Remark 5 It is obvious from the de�nition that two negatively associated random variables are

negatively correlated. In general, the notion of negative association is much stronger than the

notion of negative correlation; however, see Theorem 9.

4 The FKG Inequality

We recall some concepts from the theory of partial orders. A (�nite) lattice (L;�L) is a (�nite) set

L, partially ordered by �L, in which every two elements x; y have a least upper bound, denoted

x _ y and called the join of x and y, and a greatest lower bound, denoted x ^ y and called the

meet of x and y. A lattice L is called distributive, if, for all x; y; z 2 L, we have the following two

distributive laws:

x ^ (y _ z) = (x ^ y) _ (x ^ z) or, equivalently, x _ (y ^ z) = (x _ y)^ (x_ z) :

A function f : L ! R on a lattice (L;�L) is said to be non-decreasing (non-increasing) with

respect to �L, if x �L y implies f(x) � f(y) (respectively, x �L y implies f(x) � f(y)). A function

� : L! R
+ is called log-supermodular , if, for all x; y 2 L,

�(x)�(y) � �(x _ y)�(x^ y) : (4.1)

We give two examples of lattices that we will use in later sections.

Example 6 For positive integers n;m, de�ne L := [n]m and �L to be the component-wise order,

that is, for a = (a1; : : : ; am);b = (b1; : : : ; bm) 2 L,

a �L b () ak � bk for each k 2 [m] :

Join and meet are given by the following equations on the components,

(a _ b)k := maxfak; bkg and (a ^ b)k := minfak; bkg ;

and it turns out that (L;�L) is a distributive lattice because of the following property of integers,

minfu;maxfv; wgg = maxfminfu; vg;minfu; wgg ;

maxfu;minfv; wgg = minfmaxfu; vg;maxfu; wgg :

Example 7 For m < n, let Lm be the set of (ordered) m-element subsets S = fs1; : : : ; smg of [n],

that is, s1 < � � � < sm. For S; S
0 2 Lm, we de�ne S � S0 if sk � s0k for all k 2 [m]. If we identify

S with (s1; : : : ; sm) 2 [n]m, we can view (Lm;�) as a sublattice of the lattice (L;�L) from the

previous example. (Note that Lm is closed under _ and ^. For m-element subsets S; S0 of [n] and
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Figure 4.1: The lattice (L2;�) of ordered 2-element subsets of f1; : : : ; 5g.

any k 2 [m�1], (S_S0)[k+1] := maxfs[k+1]; s
0
[k+1]

g > maxfs[k]; s
0
[k]
g = (S_S0)[k], since s[k+1] > s[k]

and s0
[k+1]

> s0
[k]
. Therefore, (S _ S0) 2 Lm, and (S ^ S0) 2 Lm is proved similarly.) (Lm;�) is

distributive, since it is a sublattice of the distributive lattice (L;�L). (The lattice (Lm;�) has also

been considered in [14]. Figure 4.1 shows (L2;�) for n = 5.)

There is an interesting relationship between (Lm;�) and (Ln�m;�). For m-element subsets

S; S0 of [n], S � S0 if and only if S0 � S. For i 2 [m], let S0
i =: ` + i, ` � 0. This means

`+ i� 1 � S0
` � S`, since S � S0, and, in turn, `+ i� 1 � Si�1. This implies Si � `+ i = S0

i, that

is, S0 � S.

The FKG inequality extends the correlation of monotone functions on the real line to the

situation in which functions are de�ned on a lattice.

Theorem 8 (FKG Inequality [6, 12, 2]) Let L be a �nite, distributive lattice and let � : L !

R
+ be a log-supermodular function. Then, if f; g : L ! R are both non-decreasing or both non-

increasing with respect to �L, we haveX
x2L

f(x)�(x) �
X
x2L

g(x)�(x) �
X
x2L

f(x)g(x)�(x) �
X
x2L

�(x) :

If one of the functions is non-decreasing and the other is non-increasing, then the reverse inequality

holds.

It is helpful to view � as a measure on L. Assuming that � is not identically zero, we can de�ne,

for any f : L ! R, its expectation E[f ] := (
P

x2L f(x)�(x))=(
P

x2L �(x)). In this notation, the

FKG inequality asserts, for example, that for any log-supermodular � and functions f; g : L! R,

E[f ] �E[g]� E[f � g] ;

if one of the functions is non-decreasing and the other one is non-increasing. This should be taken

not only as a formal similarity with De�nition 3 but as an indication why the FKG inequality is at

the core of many proofs of negative association among random variables.

5 Results on Negative Dependence

5.1 Negatively Correlated Coins Satisfy (�A)

As already mentioned in Remark 5, two random variables are negatively correlated if they are

negatively associated. We now show that the converse is true if both variables are binary (that is,

are \coins"); cf. [5, Theorem 2] and [7, p. 287].
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Theorem 9 Binary random variables are negatively associated if and only if they are negatively

correlated.

Proof. In view of Remark 5, it remains to be proved that two binary random variables satisfy

the negative association condition (�A) if they are negatively correlated. Let X; Y be negatively

correlated binary random variables, that is, cov(X; Y ) = E[XY ]�E[X ]E[Y ] � 0. For i; j 2 f0; 1g,

de�ne �i;j := Pr(X = i; Y = j). We have E[X ] = Pr(X = 1) = �1;0 + �1;1, and cov(X; Y ) � 0

reads �1;1 � (�1;0 + �1;1) � (�0;1 + �1;1). Since �0;0 + �0;1 + �1;0 + �1;1 = 1, this is equivalent to

�1;1 � �0;0 = �1;1 � (1� �0;1 � �1;0 � �1;1) � �1;0 � �0;1 : (5.1)

Let L := f0; 1g2 and for x = (x1; x2); y = (y1; y2) 2 L, x �L y if and only if x1 � y1 and

x2 � y2; see Figure 5.1. It is easily seen that (L;�L) de�nes a distributive lattice.
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Figure 5.1: The lattice (L = f0; 1g2;�L) de�ned in the proof of Theorem 9.

To establish the negative association condition for (X; Y ), we have to prove that E[f(X)g(Y )] �

E[f(X)]E[g(Y )] for non-decreasing functions f; g : R! R. (All other cases are trivial.) De�ne

real-valued functions f 0; g0 on (L;�L) by setting

f 0(x1; x2) := f(x1) ; g0(x1; x2) := g(x2) :

By de�nition of (L;�L), f
0 is non-decreasing and g0 is non-increasing on the lattice. For x =

(x1; x2) 2 L, de�ne �(x) := �x1;x2 . Note thatX
x2L

f 0(x)�(x) = E[f(X)] ;
X
x2L

g0(x)�(x) = E[g(Y )] ; and

X
x2L

f 0(x)g0(x)�(x) = E[f(X)g(Y )] :

Therefore, the desired result follows from the FKG inequality as soon as we have established

log-supermodularity of �. Again, there is only one non-trivial case to check, namely, x = (1; 1)

and y = (0; 0) with x _ y = (1; 0) and x ^ y = (0; 1). However, for these elements, the log-

supermodularity condition (4.1) is nothing else but (5.1), that is, log-supermodularity of � is

implied by the assumption that X; Y are negatively correlated. 2

5.2 Permutation Distribution Satis�es (�A)

In this paragraph, we prove that the indicator variables B1; : : : ; Bn in the Fermi{Dirac model

are negatively associated. We will prove the stronger result that random variables having the

permutation distribution are negatively associated. Basically, this result already appears in [7,

Theorem 2.11]. Here we give a new short proof of this result via the FKG inequality.

Theorem 10 Random variables having the permutation distribution are negatively associated.
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Proof. We shall �rst show that for any positive integer n, the permutation distribution on [n]

is negatively associated. Let J1; : : : ; Jn have the permutation distribution on [n]. Let I � [n] be

an arbitrary index set with jI j = k � n. For a k-element subset S = fS1; : : : ; Skg � [n] and a

permutation � on S, we shall write �(S) for the vector (�(S1); : : : ; �(Sk)).

Let (Lk;�) be the lattice on the k-element subsets of [n] as de�ned in Example 7. For non-

decreasing functions f : Rk ! R, g : Rn�k ! R , we de�ne real-valued functions f 0, g0 on (Lk;�)

by setting

f 0(S) :=
1

k!

X
�

f(�(S)) ; g0(S) :=
1

(n� k)!

X
�

g(�(S)) ;

where � ranges over all permutations of S and � ranges over all permutations of S. Then f 0 is

non-decreasing and g0 is non-increasing on the lattice. To see that f 0 is non-decreasing, that is,

f(S) � f(S0) if S � S0, merely do a term-wise comparison of the two summations. To see that

g0 is non-increasing, observe in addition that S � S0 if and only if S � S0, see Example 7. Set

�(S) :=
�
n
k

��1
to get a trivially log-supermodular measure. Observe now that (with � varying over

all permutations of [n])

X
S

f 0(S)�(S) =
X
S

X
�

f(�(S))(n� k)!=n! =
X
�

f(�(i); i 2 I)=n! = E[f(Ji; i 2 I)] :

Similarly, X
S

g0(S)�(S) = E[g(Ji; i 2 �I)]

and

X
S

f 0(S)g0(S)�(S) =
X
S

X
�

f(�(S))
X
�

g(�(S))=n!

=
X
�

f(�(i); i 2 I)g(�(i); i 2 �I)=n!

= E[f(Ji; i 2 I)g(Ji; i 2 �I)] :

Applying the FKG inequality, we conclude that J1; : : : ; Jn are negatively associated.

We deduce that for any reals x1; : : : ; xn, random variables X1; : : : ; Xn having the permutation

distribution on (x1; : : : ; xn) are negatively associated. Indeed, Xi = hi(Ji) := xJi are non-decreasing

functions of distinct variables; hence, by Proposition 4(2), we conclude that any permutation

distribution is negatively associated. 2

The desired result is now an immediate corollary.

Corollary 11 The indicator variables in the Fermi{Dirac model satisfy the negative association

condition (�A).

5.3 Correlation Inequalitites for Sums of Occupancy Numbers

Correlations of the occupancy numbers B1; : : : ; Bn in our �rst experiment are extensively studied in

[4]; it turns out that (B1; : : : ; Bn) satisfy a number of negative dependence conditions, including neg-

ative association. By Proposition 4, this implies general correlation inequalities for non-decreasing

functions of disjoint subsets of the occupancy numbers. We now show that correlation inequalities

involving sums of these occupancy numbers can be obtained in a more direct way via the FKG

inequality.
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A possible con�guration of the experiment can be represented by a vector a := (a1; : : : ; am),

with ak 2 [n] for each k 2 [m]. This is the con�guration where ball k goes into bin ak for each

k 2 [m]. De�ne the lattice (L;�L) on all such con�gurations as in Example 6 and de�ne � : L! R
+

by �(a) :=
Q

k pak;k for each a 2 L. For any a;b 2 L, we have �(a)�(b) = �(a _ b)�(a ^ b), and

so � is log-supermodular.

Let I; J � [n] be two index sets such that either I \ J = ? or I [ J = [n]; without loss of

generality, we can arrange it by renumbering that J = f1; : : : ; jJ jg and I = fn � jI j + 1; : : : ; ng.

Let tI ; tJ be arbitrary non-negative integers and de�ne f; g : L ! f0; 1g to be the indicator

functions of the events (
P

i2I Bi � tI) and (
P

j2J Bj � tJ ), respectively, where Bi, i 2 [n], are

the (random) occupancy numbers. (The occupancy number of bin i on con�guration a is given by

Bi(a) := jfj j aj = igj.) The de�nition of the lattice order �L ensures that f is non-decreasing,

while g is non-increasing on L for any �xed integers tI ; tJ . Applying the FKG inequality, we get

the following correlation inequality on the random variables Bi, i 2 [n].

Theorem 12 Let I; J � [n] be index sets such that either I \ J = ? or I [ J = [n], and let tI ; tJ
be arbitrary non-negative integers. Then

Pr
�P

i2I Bi � tI ;
P

j2J Bj � tJ

�
� Pr (

P
i2I Bi � tI ) � Pr

�P
j2J Bj � tJ

�
: (5.2)

Remark 13 (5.2) is referred to as the negative quadrant dependence condition for X :=
P

i2I Bi

and Y :=
P

j2J Bj . It is known to be equivalent to the negative association condition (�A) for

X; Y , [7]. This can also be easily seen by replacing f; g in the proof of Theorem 12 by arbitrary

non-decreasing functions. In fact, even more general correlation inequalities follow along the same

lines. For example, if we de�ne a partial order on tuples of occupancy numbers (for a �xed number

of balls) by

(B1; : : : ; Bn) � (B0
1; : : : ; B

0
n) ()

X
k�i�n

Bi �
X

k�i�n

B0
i for all k 2 [n� 1] ;

then a �L b implies (B1(a); : : : ; Bn(a)) � (B1(b); : : : ; Bn(b)) and, hence, the FKG inequality on L

can be applied to functions on (B1; : : : ; Bn) that are non-decreasing or non-increasing with respect

to �.

6 Applications

Cherno�{Hoe�ding bounds are large deviation estimates for sums S =
Pn

i=1Xi of independent,

identically distributed random variables Xi, that is, they provide bounds of the form

Pr(S > an) � inf
t>0

e�ant(E[exp(tX1)])
n for a > E[X1] = E[S]=n ; (6.1)

see, for example, [15, 10]. The independence assumption can be replaced by the requirement that

E[exp(t
X
i

Xi)] �
Y
i

E[exp(tXi)] :

Because of Proposition 4, this is easily seen to be ful�lled if the Xi's are negatively associated.

Theorem 14 Let X1; : : : ; Xn be identically distributed random variables whose joint distribution

satis�es the negative association condition (�A). Then the Cherno�{Hoe�ding bounds (6.1) apply

for S :=
P

iXi.
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Analogues of this result are true for other notions of \strong" negative dependence among random

variables, but the argument gets slightly more involved; see [4] for a more detailed account.

Theorem 14 allows, for example, a simple analysis of the following probabilistic experiment from

[9]. Consider a k� n matrix A that is de�ned as follows. Row entries Ai�, i 2 [k], are independent

random variables, and for each row i, the entries Aij , j 2 [n], are indicator variables distributed

according to the Fermi{Dirac model, that is, each row of A is a random 0-1 vector of length n with

exactly m ones.

Let f(A) be the number of all-zero columns in A. By Corollary 11 and Proposition 4(1), the

random variables Aij , i 2 [k]; j 2 [n], are negatively associated and so are the random variables

Cj := 1� sgn
P

i2[k]Aij , j 2 [n], by Proposition 4(2) (sgn 0 := 0; sgnx := 1 for x > 0). Note that

f(A) =
P

j2[n]Cj , and Theorem 14 allows to apply Cherno�{Hoe�ding bounds on f(A).

In [9], Mehlhorn and Priebe consider shortest path problems on complete digraphs (with loops)

with respect to simple weight functions. On a graph with n vertices, for every vertex v and every

integer j 2 [n], there is exactly one edge of length j leaving v. Among other facts, Mehlhorn and

Priebe use large deviation estimates for f(A) to deduce that on random simple weight functions,

any algorithm for the single source shortest path problem has complexity 
(n logn) with high

probability.
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