
Rotations of Periodic Strings and Short Superstrings

Dany Breslauer� Tao Jiangy Zhigen Jiangz

June 12, 1996

Abstract

This paper presents two simple approximation algorithms for the shortest superstring prob-

lem, with approximation ratios 22
3
(� 2:67) and 225

42
(� 2:596), improving the best previously

published 23
4
approximation. The framework of our improved algorithms is similar to that of

previous algorithms in the sense that they construct a superstring by computing some optimal

cycle covers on the distance graph of the given strings, and then break and merge the cycles

to �nally obtain a Hamiltonian path, but we make use of new bounds on the overlap between

two strings. We prove that for each periodic semi-in�nite string � = a1a2 � � � of period q, there

exists an integer k, such that for any (�nite) string s of period p which is inequivalent to �, the

overlap between s and the rotation �[k] = akak+1 � � � is at most p+ 1

2
q. Moreover, if p � q, then

the overlap between s and �[k] is not larger than 2

3
(p+ q). In the previous shortest superstring

algorithms p + q was used as the standard bound on overlap between two strings with periods

p and q.

1 Introduction

Let S = fs1; : : : ; smg be a set of strings over some alphabet �. A common superstring, or simply

superstring, of S is a string s such that each si in S is a substring (i.e. a consecutive block)

of s. The shortest superstring problem is to �nd a superstring of the smallest possible length

for any given set of strings S. The problem has applications in a wide range of areas including

data compression [11, 19] and DNA sequencing [14, 15, 18, 23]. For example, in shotgun DNA

sequencing, a long DNA molecule1 is �rst cleaved into short overlapping fragments of roughly

500 bases. Each such short fragment is then sequenced and a string over the set of nucleotides

fA;C;G;Tg is obtained. From hundreds or thousands of these fragments, a biochemist tries to

construct a shortest superstring representing the sequence for the whole DNA molecule.

�Max-Planck-Institute f�ur Informatik, Im Stadtwald, 66123 Saarbr�ucken, Germany. Part of this work was carried
out while this author was staying at BRICS { Basic Research in Computer Science, Centre of the Danish National

Research Foundation, Department of Computer Science, University of Aarhus, 8000 Aarhus C, Denmark. Partially

supported by ESPRIT Long Term Research Program of the EU under contract #20244 (ALCOM-IT). E-mail:
breslau@mpi-sb.mpg.de

yDepartment of Computer Science, McMaster University, Hamilton, Ontario L8S 4K1, Canada. Supported

in part by NSERC Research Grant OGP0046613 and MRC/NSERC Canadian Genome Analysis and Technology
(CGAT) Grant GO-12278. Part of the work was done while on research leave at University of Washington. E-mail:

jiang@maccs.mcmaster.ca
zSupported in part by MRC/NSERC CGAT Grant GO-12278. Address: Department of Electrical and Computer

Engineering, McMaster University, Hamilton, Ont. L8S 4K1, Canada. E-mail: zjiang@maccs.mcmaster.ca
1It is about 1:8 megabases long in the Haemophilus in
uenzae Rd sequencing project [9].

1



Since the problem is NP-hard [11] a lot of e�ort has been taken to �nd good approximation

algorithms with guaranteed performance. Blum et al. [4] showed that the problem is MAX SNP-

hard and thus does not have a polynomial time approximation scheme unless P = NP. Tarhio and

Ukkonen [20] and Turner [22] gave several approximation algorithms for the shortest superstring

problem and proved that their algorithms achieve 1

2
-approximation with respect to the compression

measure, or the total overlap between adjacent strings in a superstring. This approximation ratio

has been improved to 38

63
by Kosaraju et al. [13]. Tarhio and Ukkonen conjectured that their

GREEDY approximation algorithm, which repeatedly merges pairs of strings with the maximum

overlap until only one string is left, 2-approximates also the length of the shortest superstring.

Notice that superstrings have the minimum length if and only if they induce the maximum total

overlap. Such relation, however, does not hold for approximations, and a good approximation for

the length of the shortest superstring is not necessarily a good approximation for the maximum

overlap in the superstring, and vice versa.

The �rst constant-approximation algorithm for the length of the shortest superstring was given

by Blum et al. [4], who discovered a 3-approximation algorithm and proved that the GREEDY al-

gorithm achieves 4-approximation. Their algorithms and analysis rely on the close relation between

the shortest superstring problem, that was shown by Turner [22] to be reducible to the traveling

salesman problem, and the cycle cover problem. The same relation was exploited in subsequent

papers that continued to improve the approximation ratio, by Teng and Yao [21] (� 2:89), Czumaj

et al. [8] (� 2:83), Kosaraju et al. [13] (� 2:79) and Armen and Stein [1, 2] (� 2:75). Armen and

Stein [3] have also recently obtained a 22
3
-approximation algorithm, independently of our work2. A

connection between the approximation ratio and the number of examples needed to infer a string

(or DNA sequence) from randomly drawn examples in the PAC learning model is given in [15, 12].

This presents an additional motivation for lowering the approximation ratio.

Here we continue this line of work, and further improve the approximation ratio to 22
3
� 2:67

and to 225
42

� 2:596. The improved algorithms are similar to the previous algorithms in the sense

that they constructs a superstring by computing some optimal cycle covers on the distance graph

of the given input strings, and then break and merge the cycles to �nally obtain a Hamiltonian

path representing some superstring. The key to the improvement are new bounds on the overlap

between two strings. We prove that for each periodic semi-in�nite string � = a1a2 � � � of period q,

there exists an integer k, such that for any (�nite) string s of period p which is inequivalent to �,

the overlap between s and the rotation �[k] = akak+1 � � � is at most p + 1

2
q. Moreover, if p � q,

then the overlap between s and �[k] is not larger than 2

3
(p+ q). (The equivalence of strings will be

de�ned in Section 2.2.) These bounds are tight. Previously, the sum of the periods was taken as

the standard (tight) bound on overlap between two strings.

The algorithms and their analysis are actually very simple. We have chosen to describe both

approximation algorithms since they use the bounds on the overlap between strings in di�erent

ways that might give some insight into future improvements.

We recall some basic de�nitions and facts in Section 2. The new overlap-rotation bound is given

is Section 3. Section 4 gives the generic shortest superstring algorithm, and Sections 5-6 give the

improved approximation algorithms and their analysis.

2Our algorithms and analysis are conceptually and structurally much simpler.

2



2 Preliminaries

Let S = fs1; : : : ; smg be a set of strings. Without loss of generality, we assume that the set S is

\substring-free" in that no string si 2 S is a substring of any other sj 2 S. Most of the de�nitions

below follow [4].

For two strings s and t, let y be the longest string such that s = xy and t = yz for some

non-empty strings x and z. We call jyj the (amount of) overlap between s and t, and denote it

as ov(s; t). The notion can be easily extended to the case where t is a semi-in�nite string (but s

has to be �nite). The string x is called the pre�x of s with respect to t, and is denoted pref (s; t).

Finally, we call jpref (s; t)j = jxj the distance from s to t, and denote it as d(s; t).

Given a list of strings si1 ; : : : ; sir , we de�ne the superstring s = hsi1 ; : : : ; siri to be

pref (si1 ; si2)pref (si2 ; si3) � � �pref (sir�1 ; sir)sir :

That is, s is the shortest string such that si1 ; : : : ; sir appear in order in s. It is clear that each

shortest superstring for S must be hsi1 ; : : : ; simi for some permutation i1; : : : ; im of f1; : : : ; mg. The

length of a shortest superstring of S is denoted opt(S) and the total overlap between adjacent strings

in the shortest superstring of S is denoted maxov(S). Notice that opt(S) =
P

si2S
jsij�maxov(S).

2.1 Distance graph and cycle covers

The concept of a distance graph is central to all existing approximation algorithms for shortest

superstrings. Let GS = (V;E;w) be a directed graph, where the set of vertices V = fs1; : : : ; smg,

the set of edges E = f(si; sj) j 1 � i 6= j � mg, and the weight function w is the distance function

d(; ). GS is called the distance graph of S. If we denote the cost of a minimum weight Hamiltonian

cycle on GS as TSP(GS), then obviously, for any si 2 S,

TSP(GS) � opt(S) � TSP(GS) + jsij:

In other words, a minimum weight Hamiltonian cycle on GS would be a very good approximation

of a shortest superstring of S. Since TSP is NP-hard and has no good approximation algorithms,

we try to work with a relaxed version of TSP, the cycle cover problem (also called the assignment

problem) de�ned below.

Given a directed weighted graph G, a cycle cover is a set of (simple) cycles such that each vertex

is contained in exactly one cycle. The weight of the cycle cover is the total weight of its cycles. It is

well-known that a minimum weight cycle cover on any directed weighted graph G can be computed

in O(n3) time using the Hungarian algorithm [17].

Let CYC(GS) be the weight of a minimum weight cycle cover of GS . Then we have CYC(GS) �

TSP(GS) � opt(S). Unfortunately, there is no obvious upper bound on opt(S) in terms of CYC(GS)

in general. So we have to look at the particular structures and properties of strings.

2.2 Periodicity of strings and semi-in�nite strings

A string x is a factor of a string s if s = xiy for some positive integer i and pre�x y of x (y may

be empty). The factor of a non-empty string s, denoted factor(s), is the shortest factor of s and

the period of s is denoted period(s) = jfactor(s)j. A semi-in�nite string s = a1a2 � � � is said to

be periodic if s = xs for some non-empty string x. The shortest such x is called the factor of s.

3



Two (periodic semi-in�nite) strings s; t are equivalent if their factors are cyclic shifts of each other,

i.e. if there are strings x; y such that factor(s) = xy and factor(t) = yx. Otherwise, they are

inequivalent. For each string s, let si denotes the concatenation of i s's as well as the sequence of i

consecutive s's, s1 denote the semi-in�nite string ss � � �, and s1 = factor (s)1 denote the periodic

semi-in�nite string that is equivalent to s and begins with s. Note that in general s1 6= s1. The

next lemma is easy to prove.

Lemma 2.1 Suppose that string x is contained in string y and y is contained in string z. If x and

z are equivalent, then y is also equivalent to x and z.

The following facts connecting a cycle in GS and the periodicity of the strings obtained by

breaking the cycle are essentially given in [4]. We rephrase and state them here as lemmas without

a proof. Let c = si1 ; : : : ; sir ; si1 be a cycle in GS . Without loss of generality, assume that c has the

minimum weight among all cycles in GS containing si1 ; : : : ; sir . Denote the weight of c as w(c).

Let's call hsi1 ; : : : ; siri the string obtained by breaking the cycle c at sir .

Lemma 2.2 The string hsi1 ; : : : ; siri is a substring of factor (hsi1 ; : : : ; siri)si1 = hsi1 ; : : : ; sir ; si1i.

Lemma 2.3 factor(hsi1 ; : : : ; siri) = pref (si1 ; si2) � � �pref (sir�1 ; sir)pref (sir ; si1).

Three corollaries follow immediately:

Corollary 2.4 w(c) = d(si1 ; si2) + � � �+ d(sir�1 ; sir) + d(sir ; si1) = period(hsi1 ; � � � ; siri):

Corollary 2.5 The strings hsi1 ; : : : ; siri; : : : ; hsir ; si1 ; : : : ; sir�1i are all equivalent.

Corollary 2.6 factor (hsi1 ; : : : ; sir ; si1i) = factor (hsi1 ; : : : ; siri): That is, hsi1 ; : : : ; sir ; si1i is equiv-

alent to hsi1 ; : : : ; siri.

Note that, in general si1 ; : : : ; sir are not mutually equivalent, nor are si1 and hsi1 ; : : : ; siri.

Lemma 2.7 Let c0 = sj1 ; : : : ; sjl ; sj1 be another cycle. If hsi1 ; : : : ; siri is equivalent to hsj1 ; : : : ; sjli,

then there exists a third cycle ~c with weight w(c) containing all vertices in c and c0.

3 The overlap-rotation lemma

Lothaire's [16] book provides an excellent overview of combinatorial properties of periodic strings.

Given a string w, we say that w is unbordered if it has no proper pre�x that is also a su�x, i.e.

ov(w;w) = 0 and factor (w) = w. Given a non-trivial factorization w = uv, namely a partition of w

with non-empty pre�x u and su�x v, the local factor of the factorization is de�ned as the shortest

non-empty string that is consistent with both sides of the factorization. That is, the shortest string

that matches the pre�x u aligned at its end and also matches the su�x v aligned at its start. A

non-trivial factorization w = uv is called a critical factorization if its local factor is of the same

length as period(w). See Figure 1 for an example. We are now ready to state the so called Critical

Factorization Theorem.

4



a j b a a a b a

b a b a

(a)

a b j a a a b a

a a a b a a a b

(b)

a b a j a a b a

a a

(c)

Figure 1: The local factors of the �rst three non-trivial factorizations of `abaaaba'.

Note that in some cases the local factor can over
ow to either side; this happens

when the local factor is longer than the factorization pre�x or su�x. The factoriza-

tion (b) is a critical factorization.

Theorem 3.1 (Cesari and Vincent [5, 16]) Given any period(w) � 1 consecutive non-trivial

factorizations of a string w, at least one is a critical factorization.

The notion of a critical factorization and Critical Factorization Theorem applies both to �nite

and in�nite strings. The following lemma will be useful.

Lemma 3.2 Let w be an unbordered string with the critical factorization w = uv. Then,

1. the rotation w0 = vu of w is also unbordered; and

2. vu is a critical factorization of w0.

Proof: To see that w0 is unbordered, assume on the contrary that there is a string x that is a

proper pre�x and su�x of w0. But then, x is consistent with both sides of the critical factorization

uv of w, contradicting the de�nition.

To prove that w0 = vu is a critical factorization, assume on the contrary that there is a string x

that is consistent with both sides of the factorization vu and that jxj < jwj. Clearly, since w = uv

is unbordered, jxj > jvj or jxj > juj. Assume without loss of generality that jvj � juj and therefore,

jvj < jxj. Let x = bv. If jxj � juj, then letting u = xu0 = bvu0, we get contradiction since vu0 is

consistent with both sides of the critical factorization uv of w. If jxj > juj, then observing that

jbj < juj and letting u = bv0, where v0 is a pre�x of v, we get a contradiction since v0 is consistent

with both sides of the critical factorization uv of w.

We shall now prove the overlap-rotation lemma, which is the key to the improved approximation

bounds. Given a semi-in�nite string � = a1a2 � � �, we denote the rotation �[k] = akak+1 � � �.

Lemma 3.3 Let � be a periodic semi-in�nite string. There exists an integer k, such that for any

(�nite) string s that is inequivalent to �,

ov(s; �[k]) < period(s) +
1

2
period(�):

In addition, if period(s) � period(�), then

ov(s; �[k]) <
2

3
(period(s) + period(�)):

5



Proof: We �rst show that there exists a su�x �0 of �, such that the leftmost critical factorization

u� of �0 = u� has the property that juj � 1

2
period(�). We then prove that such a su�x �0 satis�es

the overlap requirement.

Let x�0 be an arbitrary critical factorization of � = x�0 and let w = factor (�0). Then it follows

that w is unbordered, similarly to the �rst part of Lemma 3.2. Let uv be a critical factorization

of w = uv. If juj � 1

2
period(�), then �0 = (uv)1 is the desired rotation, and otherwise, jvj �

1

2
period(�) and by Lemma 3.2, the rotation (vu)1 satis�es the requirements.

If period(s) = period(�), then for any integer k � 1, the overlap ov(s; �[k]) < period(s).

Otherwise, recalling that �0 = u� is a critical factorization and juj � 1

2
period(�), we claim that

ov(s; �0) < period(s) + juj � period(s) +
1

2
period(�):

To see this, assume on the contrary that ov(s; �0) � period(s) + juj. But then, there is a

string x of length period(s) that is consistent with both sides of the critical factorization u�. If

period(s) < period(�), then this immediately contradicts the fact that u� is a critical factorization.

If period(s) > period(�), then x has also a factor of length period(�), and therefore, x = yhz, for

some y such that jyj = period(�) and z proper pre�x of y. If jzj � 1, then we obtain a contradiction

since z is consistent with both sides of the critical factorization u�, and otherwise, if jzj = 0, then

we contradict the fact the s and � were inequivalent.

If period(s) � period(�), then since factor (�0) is unbordered, we have that ov(s; �0) < period(�).

Putting the two inequalities together, we have

ov(s; �0) < minfperiod(s) +
1

2
period(�); period(�)g �

2

3
(period(s) + period(�)):

The proof above is constructive and requires two computations of critical factorizations, which

can be done in time that is linear in period(�) as shown by Crochemore and Perrin [6, 7]. From

now on, let
�!
� denote a rotation of � satisfying Lemma 3.3, for any periodic semi-in�nite string �.

The bound in the last lemma is roughly tight because for any rotation of the semi-in�nite string

(0n10n+11)1, there exists a string with period at most n+ 2 which overlaps with (0n10n+11)1 by

at least 2n+ 2.

4 The generic approximation algorithm

Our algorithms are only slightly di�erent from the ones in [1, 2, 3, 4, 8, 13, 21]. We �rst outline

the general approach and then �ll in the details of our new constructions and analysis.

The main steps of the generic shortest superstring algorithm are shown in Figure 2. (A close

variant of the generic algorithm has appeared in [1, 2].) A key di�erence between the above

algorithm and all the previous algorithms is Step 3. The previous algorithms all choose one of the

strings contained in the cycle c, whereas here we look for a superstring of the strings in c that is

not too long. The string chosen does not even have to be one of the strings obtained by breaking c.

As a warm-up, let's show that this generic algorithm has approximation ratio 3. The following

lemma is straightforward and is given in [4, 21]. Again, note that

hsij ; : : : ; sir ; si1 ; : : : ; sij�1 ; siji = factor (hsij ; : : : ; sir ; si1 ; : : : ; sij�1i)sij :

6



1. Construct the distance graph GS for set S.

2. Find a minimum weight cycle cover C on the graph GS .

3. For each cycle c = si1 ; : : : ; sir ; si1 2 C, choose a string tc such that for some j

(i) tc contains hsij+1 ; : : : ; sir ; si1 ; : : : ; siji, and

(ii) tc is contained in hsij ; : : : ; sir ; si1 ; : : : ; sij�1 ; siji.

4. Let T be the set of all strings chosen above and construct the distance graph GT for T .

5. Find a minimum weight cycle cover CC on GT .

6. Break each cycle of CC arbitrarily to obtain a superstring of the elements in the cycle.

7. Concatenate the strings found at Step 6 arbitrarily to produce a superstring ~s of S.

Figure 2: The generic shortest superstring approximation algorithm.

Lemma 4.1 opt(T ) � opt(S) + CYC(GS) � 2opt(S):

Hence, we have CYC(GT ) � opt(T ) � 2opt(S). We now need a lemma which gives an upper

bound on the possible overlap between two inequivalent strings. Di�erent versions of the lemma in

terms of discrete periodic functions or strings from distinct cycles in a minimum weight cycle cover

can be found in [4, 10].

Lemma 4.2 For any inequivalent strings s and t, ov(s; t) � period(s) + period(t):

The strings hsij+1 ; : : : ; sir ; si1; : : : ; siji and hsij ; : : : ; sir ; si1 ; : : : ; sij�1 ; siji are equivalent by Corol-

lary 2.6, and thus, it follows from Lemma 2.1 and Corollary 2.5 that tc is equivalent to hsi1 ; : : : ; siri.

Because C has the minimum weight, Lemma 2.7 further implies that the strings in set T are mu-

tually inequivalent. Hence Lemma 4.2 applies to the strings in T . Let OV denote the total overlap

represented by the edges broken in Step 6. Then OV is at most the sum of the periods of the

strings in T . By Corollary 2.4,

OV �
X

c2C

w(c) = CYC(GS):

Putting everything together, we can bound the length of the superstring ~s as

j~sj = CYC(GT ) +OV � CYC(GT ) + CYC(GS) � 2opt(S) + opt(S) � 3opt(S):

5 The 2
2
3
-approximation algorithm

Many researchers have tried to improve the performance of the generic algorithm or its variants by

polishing Steps 5 - 7. Teng and Yao [21], Czumaj et al. [8], and Armen and Stein [1, 2] treat the

small cycles (i.e. cycles with two or three vertices) in CC with special care. Teng and Yao [21] and

Czumaj et al. [8] do so by �nding a short path across the small cycles and Armen and Stein [1, 2]

by identifying strings that are not much longer than their factors (called short periodic strings in

their paper) as the bottleneck, and trying to avoid them in Step 3. Kosaraju et al. [13] �nd a

Hamiltonian path with large overlap instead of CC in Steps 5-7.

7



1. Construct the distance graph GS for set S.

2. Find a minimum weight cycle cover C on the graph GS .

3. For each cycle c 2 C, choose a string tc as in Lemma 5.1.

4. Let T be the set of all strings chosen above and construct the distanc graph GT .

5. Find a minimum weight cycle cover CC on GT .

6. For each cycle of CC, break the cycle by deleting an edge that goes from a string

to a string of equal or larger period, to obtain a superstring of the elements in the cycle.

7. Concatenate the strings arbitrarily to produce a superstring ~s of S.

Figure 3: The 22
3
� 2:67-approximation algorithm.

Our algorithm is more similar to Armen and Stein's in the sense that we also choose the strings

in Step 3 very carefully before going into the next round of cycle cover computation. (But we do not

pay special attention to the small cycles.) The new idea is to choose strings which are guaranteed

not to overlap with each other by too much. This will imply a reduced OV .

We now show how to choose the string tc in Step 3 of the generic algorithm so that it satis�es

the conditions (i) and (ii) and it has the correct rotation as prescribed by Lemma 3.3.

Lemma 5.1 For any cycle c = si1 ; : : : ; sir ; si1 2 C, there exists a string t such that for some j,

1. t contains the string hsij+1 ; : : : ; sir ; si1 ; : : : ; siji.

2. t is contained in the string hsij ; : : : ; sir ; si1 ; : : : ; sij�1 ; siji.

3. t1 =
����������!
hsi1 ; : : : ; siri1.

Proof: Order the strings hsi1 ; : : : ; siri; : : : ; hsir ; si1 ; : : : ; sir�1i according to their �rst appearances in
����������!
hsi1 ; : : : ; siri1. The ordering is unique. Suppose that hsij+1 ; : : : ; sir ; si1 ; : : : ; siji comes �rst in this

ordering and let t be the pre�x of
����������!
hsi1 ; : : : ; siri1 that ends at hsij+1 ; : : : ; sir ; si1 ; : : : ; siji (inclusive).

Then t is contained in hsij ; : : : ; sir ; si1 ; : : : ; sij�1 ; siji. Otherwise, hsij ; : : : ; sir ; si1 ; : : : ; sij�1i must

appear before hsij+1 ; : : : ; sir ; si1 ; : : : ; siji in
����������!
hsi1 ; : : : ; siri1, which is a contradiction to the choice of

hsij+1 ; : : : ; sir ; si1; : : : ; siji.

The string t chosen above will be denoted as tc. We have shown how each tc can be found in

polynomial time (in fact, in linear time). We now polish the generic algorithm in Figure 3.

Note that we do not treat the small cycles of CC specially like the other algorithms do. Instead,

we cut the cycles with a bit of care. Clearly, in every cycle there must be an edge that goes from

a string to a string of equal or larger period.

Theorem 5.2 j~sj � 22
3
opt(S) � 2:67opt(S):

8



Proof: Again, let OV denote the total overlap lost by cutting the edges in Step 6. Since the strings

in T are mutually inequivalent, by Lemma 3.3 and Corollary 2.4,

OV �
2

3

X

c2C

period(tc) =
2

3

X

c2C

w(c) =
2

3
CYC(GS) �

2

3
opt(S):

Hence, j~sj = CYC(GT ) + OV � 22
3
opt(S).

6 The 2
25
42
-approximation algorithm

The approach followed by the 225
42
-approximation algorithm described in this section is very similar

to that in [4, 13]. The main steps of the algorithm resemble the generic algorithm and are outlined

in Figure 4. The cycle representatives tc are chosen as in the previous section.

1. Construct the distance graph GS for set S.

2. Find a minimum weight cycle cover C on the graph GS .

3. For each cycle c = si1 ; : : : ; sir ; si1 2 C, choose a string tc such that for some j

(i) tc contains hsij+1 ; : : : ; sir ; si1 ; : : : ; siji, and

(ii) tc is contained in hsij ; : : : ; sir ; si1 ; : : : ; sij�1 ; siji.

4. Let T be the set of all strings chosen above.

Construct a superstring of T using a good overlap approximation algorithm.

Figure 4: The 225
42
� 2:596-approximation algorithm.

The following lemma is a close variant of a lemma proved in [4] and used in [13].

Lemma 6.1 Let apx(T ) be the length of the superstring of T produced by a � overlap approximation

algorithm. Then,

apx(T ) � opt(T ) + (1� �)maxov(T ):

Proof: Recall that opt(T ) =
P

ti2T
jtij �maxov(T ). Since the overlap achieved by the � overlap

approximation algorithm is at least � maxov(T ), we get that

apx(T ) �
X

ti2T

jtij � � maxov(T ) = opt(T ) + (1� �)maxov(T ):

We now need an upper bound on the possible overlap maxov(T ). The standard bound used in

all previous papers was maxov(T ) � 2CYC(GS), which follows from Lemma 4.2. We show next

that with our special choice of the cycle representatives tc in Step 3, we can improve on this bound.

Lemma 6.2 maxov(T ) � 3

2
CYC(GS):

9



Proof: Consider the shortest superstring for T , and assume that it contains t1; t2; : : :, in this order.

Recall that the strings in T are mutually inequivalent. Therefore, by Lemma 3.3,

ov(ti; ti+1) � period(ti) +
1

2
period(ti+1):

Summing over all strings ti 2 T , we get by Corollary 2.4 that,

maxov(T ) =

jT j�1X

i=1

ov(ti; ti+1) �
3

2

X

ti2T

period(ti) =
3

2
CYC(GS):

Putting everything together, and using the 38

63
overlap approximation algorithm of Kosaraju et

al. [13] in Step 4, we establish the following theorem.

Theorem 6.3 The algorithm in Figure 4 is a 225
42

� 2:596-approximation for the shortest super-

string problem.

Proof: By Lemmas 4.1, 6.1 and 6.2, the superstring produced by the algorithm has length

apx(T ) � opt(T ) + (1�
38

63
)maxov(T ) � 2opt(S) +

25

63

3

2
CYC(GS) � 2

25

42
opt(S):

7 Concluding Remarks

We are still a long way from reaching the conjectured ratio 2 for approximating shortest superstrings.

Acknowledgement. We thank Maxime Crochemore and Bill Smyth for many helpful discus-

sions on string combinatorics and for providing useful references.

Maxime Crochemore suggested an alternative simple proof of Lemma 3.3 without using the

Critical Factorization Theorem. His proof uses properties of Lyndon words directly, in the spirit of

the recent proofs of the Critical Factorization Theorem in [6, 7], and exploiting the fact that the

string in question � is in�nite (or long relatively to its period). In particular, �xing an arbitrary

total order on the di�erent symbols of �, if (xy)1 and (yx)1 are the lexicographically minimal and

maximal rotations of �, then it easily follows that x�(yx)1 and y�(xy)1 are critical factorizations

and that both rotations begin with an unbordered factor.

References

[1] C. Armen and C. Stein. Improved Length Bounds for the Shortest Superstring problem. In

Proc. 4th Workshop on Algorithms and Data Structures, number 955 in Lecture Notes in

Computer Science, pages 494{505. Springer-Verlag, Berlin, Germany, 1995.

[2] C. Armen and C. Stein. Short superstrings and the structure of overlapping strings.

Manuscript, 1995.

10



[3] C. Armen and C. Stein. A 22
3
-Approximation Algorithm for the Shortest Superstring Problem.

In Proc. 7th Symp. on Combinatorial Pattern Matching, Lecture Notes in Computer Science,

page to appear. Springer-Verlag, Berlin, Germany, 1996.

[4] A. Blum, T. Jiang, M. Li, J. Tromp, and M. Yanakakis. Linear Approximation of Shortest

Superstrings. J. Assoc. Comput. Mach., 41(4):630{647, 1994.

[5] Y. C�esari and M. Vincent. Une caract�erisation des mots p�eriodiques. C.R. Acad. Sci. Paris,

286(A):1175{1177, 1978.

[6] M. Crochemore and D. Perrin. Two-way string-matching. J. Assoc. Comput. Mach., 38(3):651{

675, 1991.

[7] M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, 1994.

[8] A. Czumaj, L. G�asieniec, M. Piotrow, and W. Rytter. Parallel and Sequential Approximations

of Shortest Superstrings. In Proc. 4th Scandinavian Workshop on Algorithm Theory, number

824 in Lecture Notes in Computer Science, pages 95{106. Springer-Verlag, Berlin, Germany,

1995.

[9] R. Fleischmann et al. Whole-genome random sequencing and assembly of Haemophilus in-


uenzae Rd. Science 269, 496-512, July 1995.

[10] N.J. Fine and H.S. Wilf. Uniqueness theorems for periodic functions. Proc. Amer. Math. Soc.,

16:109{114, 1965.

[11] J. Gallant, D. Maier, and J. Storer. On Finding Minimal Length Superstrings. J. Comput.

System Sci., 20:50{58, 1980.

[12] T. Jiang and M. Li. DNA sequencing and string learning. Math. Systems Theory, 1993. To

appear.

[13] S.R. Kosaraju, J. Park, and C. Stein. Long Tours and Short Superstrings. In Proc. 35th IEEE

Symp. on Foundations of Computer Science, 1994.

[14] A. Lesk, editor. Computational Molecular Biology, Sources and Methods for Sequence Analysis.

Oxford University Press, 1988.

[15] M. Li. Toward a DNA sequencing theory. In Proc. 31th IEEE Symp. on Foundations of

Computer Science, pages 125{134, 1990.

[16] M. Lothaire. Combinatorics on Words. Addison-Wesley, Reading, MA, U.S.A., 1983.

[17] C Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Complexity.

Prentice-Hall, Englewood Cli�s, New Jersey, 1982.

[18] H. Peltola, H. Soderlund, J. Tarhio, and E. Ukkonen. Algorithms for some string matching

problems arising in molecular genetics. In Information Processing 83 (Proc. IFIP Congress),

pages 53{64, 1973.

[19] J. Storer. Data Compression: Methods and Theory. Addison-Wesley, 1988.

11



[20] J. Tarhio and E. Ukkonen. A greedy approximation algorithm for constructing shortest com-

mon superstrings. Theoret. Comput. Sci., 57:131{145, 1988.

[21] S.H. Teng and F. Yao. Approximating Shortest Superstrings. In Proc. 34th IEEE Symp. on

Foundations of Computer Science, pages 158{165, 1993.

[22] J. Turner. Approximation Algorithms for the Shortest Common Superstring Problem. Infor-

mation and Computation, 83:1{20, 1989.

[23] M.S. Waterman. Introduction to Computational Biology: Maps, Sequences, and Genoms (In-

terdisciplinary Statistics). Chapman and Hall, 1995.

12


