
High-Precision Floating Point Numbers in LEDA �

Christoph Burnikel Jochen K�onemann

January 26, 1996

Contents

1. Introduction . 2

2. The Manual Page of data type bigoat . 3

3. Representation of bigoats . 7

5. The Header-File . 8
10. File bigoat.c . 12
11. General Functions . 13

17. Rounding . 15
29. Arithmetical functions . 19
48. Comparison Operators . 27
52. Conversion between the data types bigoat and double 29
74. Functions for input and output . 36

90. References . 42

�This work was supported in part by the ESPRIT Basic Research Actions Program of the EC under
contract No. 7141(ALCOM II) and the BMFT(F�orderungskennzeichen ITS 9103).

1

1. Introduction

The data type bigoat is the high-precision oating point type of LEDA. A bigoat is a

number of the form s �2e where s and e are integers. s is called the signi�cant or mantissa

and e is called the exponent. Arithmetic on bigoats is governed by two parameters : the

mantissa length and the rounding mode. Both parameters can either be set globally or for

a single operation. The arithmetic on bigoats works as follows: �rst the exact result of an

operation is computed and then the mantissa is rounded to the prescribed number of digits

as dictated by the rounding mode. The available rounding modes are TO NEAREST

(round to the nearest representable number), TO P INF (round upwards), TO N INF

(round downwards), TO ZERO (round towards zero), TO INF (round away from zero)

and EXACT . The latter mode only applies to addition, subtraction and multiplication.

In this mode the precision parameter is ignored and no rounding takes place. Since the

exponents of bigoats are arbitrary integers (type integer) arithmetic operations never

underow or overow. However, exceptions (division by zero, square root of a negative

number) may occur. They are handled according to the IEEE oating point standard, e.g.

5=0 evaluates to 1, �5=0 evaluates to �1, +1+ 5 evaluates to +1 and 0=0 evaluates

to NaN (=not a number). This report is structured as follows. Section 2 de�nes the
bigoat through its manual page and the remaining sections contain the implementation.
The implementation is split into �les bigoat.h and bigoat.c.

2

2. The Manual Page of data type bigoat

1. De�nition

In general a bigoat is given by two integers s and e where s is the signi�cant and e is

the exponent. The tuple (s; e) represents the real number

s � 2e:

In addition, a bigoat can be in a special state like NAN (= not a number), PZERO ,

NZERO (= +0;�0), and PINF , NINF (= +1;�1). bigoats in special states behave

as de�ned by the IEEE oating point standard. In particular, 5

+0
= 1, �5

+0
= �1,

1 + 1 = 1, 5

1

= +0, +1 + (�1) = NaN and 0 � 1 = NaN (NaN is a bigoat in

special state NAN). Arithmetic on bigoats uses two parameters: The precision prec of

the result (in number of binary digits) and the rounding mode mode. Possible rounding

modes are:

� TO NEAREST : round to the closest representable value

� TO ZERO: round towards zero

� TO INF : round away from zero

� TO P INF : round towards +1

� TO N INF : round towards �1

� EXACT : do not round at all for +;�; � and round to nearest otherwise

Operations +, �, � work as follows. First, the exact result z is computed. If the rounding

mode is EXACT then z is the result of the operation. Otherwise, let s be the signi�cant

of the result; s is rounded to prec binary places as dictated by mode. Operations = and
p

work accordingly except that EXACT is treated as TO NEAREST.

The parameters prec and mode are either set directly for a single operation or else they

are set globally for every operation to follow. The default values are 53 for prec and

TO NEAREST for mode.

2. Creation

A bigoat may be constructed from data types double, long, int and integer, without loss

of accuracy. In addition, an instance of type bigoat can be created as follows.

bigoat x (integer s; integer e);

introduces a variable x of type bigoat and initializes it s � 2e

bigoat x (special values sp);

creates an instance of a special value of type bigoat

3

3. Operations

The arithmetical operators +, �, �, =, sqrt , the comparison operators <, �, >, � , =, 6=
and the stream operators � and � are available.

Addition, subtraction, multiplication, division and square root are implemented by the

functions add , sub, mul , div and sqrt , respectively. For example, the call

add(x; y; prec;mode; is exact)

computes the sum of bigoats x and y with prec binary digits, in rounding mode mode,

and returns it. The optional last parameter is exact is a boolean variable that is set to

true if and only if the returned bigoat exactly equals the sum of x and y.

The parameters prec and mode are also optional and have the global de-

fault values global prec and round mode respectively, that is, the three calls

add(x ; y; glob prec; round mode), add(x ; y; glob prec), and add(x ; y) are all equivalent.

The syntax for functions sub, mul , div , and sqrt is analogous.

The operators +, �, �, and = are implemented by their counterparts among the functions

add , sub, mul and div . For example, the call x+ y is equivalent to add(x ; y).

The rounded value of a bigoat x can be obtained by

round(x ; prec;mode; is exact ; bias)

Here bias is an optional long variable taking values in f�1; 0;+1g, with default value

0. The function round rounds x + bias ��, where � is a positive in�nitesimal, with prec

binary digits in rounding mode mode. The optional boolean variable is exact is set to

true i� the rounding operation did not change the value of x and bias == 0 .

bigoats o�er a small set of mathematical functions (e.g. abs, log2 , ceil , oor, sign),

functions to test for special values, conversions to doubles and integers, functions to

access signi�cant and exponent , and functions to set the global precision, the rounding

mode and the output mode.

bool isNaN(bigoat x) returns true i� x is in special state NAN

bool isnInf(bigoat x) returns true i� x is in special state NINF

bool ispInf(bigoat x) returns true i� x is in special state PINF

bool isnZero(bigoat x)

returns true i� x is in special state NZERO

bool ispZero(bigoat x)

returns true i� x is in special state PZERO

4

bool isZero(bigoat x) returns true i� ispZero(x) or isnZero(x)

bool isInf(bigoat x) returns true i� ispInf (x) or isnInf (x)

bool isSpecial(bigoat x)

returns true i� x is in a special state

long sign(bigoat x) computes the sign of x .

long sign of special value(bigoat x)

computes the sign of special values. For example:

sign of special value (bigoat(PZERO)) == 1

bigoat abs(bigoat x) the absolute value of x

bigoat pow2(integer p) returns 2p

integer log2(bigoat x) returns the binary logarithm of x , rounded up to the next
integer. Precondition: x > 0

integer ceil(bigoat x) rounds x up to the next integer

integer oor(bigoat x) rounds x down to the next integer

double todouble(bigoat x)

returns the double value next to x (in rounding mode
TO NEAREST

integer tointeger(bigoat x ; rounding modes rmode = TO ZERO)

returns the integer value next to x (in the given rounding
mode)

ostream& ostream& os � x

writes x to output stream os

istream& istream& is � bigoat& x

reads x from input stream is

long x :get precision(void)

returns the precision, i.e. the length of the signi�cant of x .

integer x :get exponent(void)

returns the exponent of x

integer x :get signi�cant(void)

returns the signi�cant of x .

5

void bigoat :: set glob prec(long p)

sets the global precision value to p

void bigoat :: set round mode(rounding modes m = TO NEAREST)

sets the global rounding mode

void bigoat :: set output mode(output modes o mode = DEC OUT)

sets the output mode

6

3. Representation of bigoats

A bigoat is stored as four quantities: integers signi�cant and exponent , a ag special

of enumeration type special values with elements NOT , PZERO , NZERO , PINF ,NINF ,

and NAN , and a long precision . We maintain the following invariants:

1. if special � NOT then the number represented by the bigoat is

signi�cant �2exponent , and precision is the number of binary digits in the signi�cant

2. if special 6= NOT then special is the value of the bigoat

4. A bigoat number does not necessarily have a unique representation because there

may be zeros at the end of the signi�cant . However, some functions require a unique

representation. We call a bigoat normalized if its signi�cant ends in a one. To guarantee

uniqueness some functions normalize their input before working on it. To do this we

have an internal procedure normalize . Warning: The value 0 can have many di�erent

representations. After calling the function normalize a bigoat is special with value

PZERO or NZERO i� its value is 0.

h functions for internal use 4 i �
void bigoat ::normalize(void)
f
if (special 6= NOT) return;

int signum = ::sign (signi�cant);

if ((signum � 0) ^ (special � NOT)) special = PZERO ;

long z = signi�cant :zeros();
=� z is the number of �nal zeros in the signi�cant �=

if (z > 0) signi�cant = signi�cant � z;
precision = signi�cant :length ();
exponent += z;

g
See also chunks 19, 54, 57, 75, 76, 77, and 84.

This code is used in chunk 10.

7

5. The Header-File

The header �le contains the prototypes of all the functions mentioned in the manual

and some additional material: the de�nition of the rounding modes, the output modes,

and the special values, the de�nition of some private functions, and the de�nition of the

functions required by any LEDA type.

h bigfloat.h 5 i �
#ifndef BIGFLOAT H

#de�ne BIGFLOAT H

#include <LEDA/integer.h>

#include <math.h>

enum rounding modes f
TO NEAREST ;TO ZERO ;TO P INF ;TO N INF ;TO INF ;EXACT g;

enum output modes f BIN OUT ;DEC OUT g;
enum special values f NOT ;PZERO ;NZERO ;PINF ;NINF ;NAN g;
class bigoat f

private:

static long global prec ;

static rounding modes round mode ;
static bool dbool ;
static output modes output mode ;

hdata members of class bigoat 9 i
hprivate functions 7 i

public :
�bigoat() f g
bigoat();

bigoat(double);
bigoat(long);
bigoat(int);
bigoat(const integer &);
bigoat(const integer &s; const integer &e);
bigoat(special values sp); =� the default copy constructor and assignment

operator are used (element-wise copy) �=
=� arithmetical functions and operators �=

friend bigoat add (const bigoat &; const bigoat &; long prec = global prec ;

rounding modes mode = round mode ;bool &is exact = dbool);
friend bigoat sub (const bigoat &; const bigoat &; long prec = global prec ;

rounding modes mode = round mode ;bool &is exact = dbool);
friend bigoat mul (const bigoat &; const bigoat &; long prec = global prec ;

rounding modes mode = round mode ;bool &is exact = dbool);

friend bigoat div (const bigoat &; const bigoat &; long prec = global prec ;

rounding modes mode = round mode ;bool &is exact = dbool);

friend bigoat sqrt (const bigoat &; long prec = global prec; rounding modes

mode = round mode ;bool &is exact = dbool);

friend bigoat operator+(const bigoat &a; const bigoat &b) f
return add (a; b); g

8

friend bigoat operator�(const bigoat &a; const bigoat &b) f
return sub (a; b); g

friend bigoat operator � (const bigoat &a; const bigoat &b) f
return mul (a; b); g

friend bigoat operator=(const bigoat &a; const bigoat &b) f
return div (a; b); g

friend bigoat operator�(const bigoat &); =� comparison operators �=
friend bool operator�(const bigoat &; const bigoat &);

friend bool operator > (const bigoat &; const bigoat &);

friend bool operator 6=(const bigoat &a; const bigoat &b)

f return :(a � b); g
friend bool operator�(const bigoat &a; const bigoat &b)

f return ((a > b) _ (a � b)); g
friend bool operator < (const bigoat &a; const bigoat &b)

f return (:(a � b)); g
friend bool operator�(const bigoat &a; const bigoat &b)

f return (:(a > b)); g =� rounding �=
friend bigoat round (bigoat x; long digits = 0; rounding modes

mode = round mode ;bool &is exact = dbool ; long bias = 0);
=� tests for special values �=

inline friend bool isNaN (const bigoat &x)
f return (x:special � NAN); g
inline friend bool isnInf (const bigoat &x)

f return (x:special � NINF); g
inline friend bool ispInf (const bigoat &x)
f return (x:special � PINF); g
inline friend bool isnZero(const bigoat &x)
f return (x:special � NZERO); g
inline friend bool ispZero(const bigoat &x)
f return (x:special � PZERO); g
inline friend bool isZero(const bigoat &x)
f return ((x:special � PZERO) _ (x:special � NZERO)); g
inline friend bool isInf (const bigoat &x)

f return ((x:special � PINF) _ (x:special � NINF)); g
inline friend bool isSpecial (const bigoat &x)

f return (x:special 6= NOT); g =� mathematical functions �=
friend long sign (const bigoat &x);

friend long sign of special value (const bigoat &x);

inline friend bigoat abs (const bigoat &x)

f return (x < bigoat(PZERO) ? �x : x); g
inline friend bigoat pow2 (const integer &p)

f return bigoat(1; p); g
inline friend integer log2 (const bigoat &x)

f return x:get precision () + x:get exponent (); g

9

inline friend integer ceil (const bigoat &x)

f return tointeger (x;TO P INF); g
inline friend integer oor (const bigoat &x)

f return tointeger (x;TO N INF); g =� conversion functions �=
double friend todouble (const bigoat &x);

integer friend tointeger (bigoat x; rounding modes rmode = TO ZERO);

=� input/output operations �=
friend ostream &operator�(ostream &os ; const bigoat &x);

friend istream &operator�(istream &is ;bigoat &x); =� access functions �=
long get precision(void) const

f return precision ; g
integer get exponent (void) const

f return exponent ; g
integer get signi�cant (void) const

f return signi�cant ; g =� functions to set global constants �=
static void set glob prec(long p)
f global prec = p; g
static void set round mode (rounding modes m = TO NEAREST)

f round mode = m; g
static void set output mode (output modes o mode = DEC OUT)
f output mode = o mode ; g
g ;
hLEDA functions 6 i

#endif

6. The following functions have to be de�ned for every LEDA type.

hLEDA functions 6 i �
inline void Print (const bigoat &x;ostream &out) f out � x; g
inline void Read (bigoat &x; istream &in) f in � x; g
inline int compare(const bigoat &x; const bigoat &y) f return sign (x� y); g
inline char �Type Name (const bigoat �) f return "bigfloat"; g

This code is used in chunk 5.

7. We need to de�ne some additional functions for internal use: normalize removes
trailing zeroes in the signi�cant, error in rounding returns the error made in rounding.

hprivate functions 7 i �
void normalize ();
bigoat error in rounding (long digits = 0; rounding modes mode = round mode ;

bool &is exact = dbool ; long bias = 0);

This code is used in chunk 5.

10

8. The static elements have to be initialized.

h Initialization of static members 8 i �
long bigoat ::global prec = 53;

rounding modes bigoat ::round mode = TO NEAREST ;

bool bigoat ::dbool = true ;

output modes bigoat ::output mode = DEC OUT ;

This code is used in chunk 10.

9. The following section contains the data members of data type bigoat.

hdata members of class bigoat 9 i �
integer signi�cant ; exponent ;

special values special ;

long precision ;

This code is used in chunk 5.

11

10. File bigoat.c

The �le bigoat.c has a simple structure. At �rst the static members of class bigoat

are initialized. Afterwards we de�ne some global identi�ers needed by some later de�ned

functions immediately followed by some auxiliary functions, e.g. the sign function for

the data types integer and long. Then the de�nition of functions for internal use like

normalize and the de�nition of public member functions are given.The member functions

come in �ve big chunks: constructors, general functions (round ; conversion ; sign , : : :),

arithmetical functions, comparison operators and input/output operators.

h bigfloat.c 10 i �
#include "bigfloat.h"

#include <iostream.h>

#include <strstream.h>

#include <stdio.h>

#include <unistd.h>

#include <string.h>

h Initialization of static members 8 i
h global identi�ers 58 i
h auxiliary functions 16 i
h functions for internal use 4 i =� member functions �=
h constructors 12 i
h general functions 14 i
h arithmetical functions 30 i
h comparison operators 48 i
h input/output operators 82 i

12

11. General Functions

12. Simple Constructors.

A bigoat can be constructed from an int, a long, a special value, a pair of integers and

a double. All but the last one are trivial and given now. The bodies of the constructors

from data types int, long and integer are all the same and hence are collected in a special

re�nement. The default constructor constructs a bigoat with value PZERO .

h constructors 12 i �
bigoat ::bigoat()

f
special = PZERO ;

exponent = signi�cant = precision = 0;

g
bigoat ::bigoat(const integer &s; const integer &e)

f
if (s 6= 0) f
signi�cant = s;

exponent = e;
special = NOT ;
precision = s:length ();

g
else f
special = PZERO ;

exponent = signi�cant = precision = 0;
g

g
bigoat ::bigoat(special values sp) f special = sp ; g
bigoat ::bigoat(const integer &a)
f h constructor body for integer data type 13 i g
bigoat ::bigoat(long a)
f h constructor body for integer data type 13 i g
bigoat ::bigoat(int a)
f h constructor body for integer data type 13 i g

See also chunk 59.

This code is used in chunk 10.

13.h constructor body for integer data type 13 i �
special = NOT ;
signi�cant = a;

exponent = 0;
precision = signi�cant :length ();

if (signi�cant � 0) special = PZERO ;
This code is used in chunk 12.

14. The function sign computes the sign of an instance of data type bigoat. It returns

a -1 if the bigoat represents an negative value, a zero if it is zero and otherwise a 1.

13

h general functions 14 i �
long sign (const bigoat &x)

f
switch (x:special) f
case NOT : return ::sign (x:signi�cant);

case PZERO : case NZERO : return 0;

case PINF : return 1;

case NINF : return �1;
case NAN : error handler (1; "sign: NaN has no sign");

g
g

See also chunks 15, 18, 28, and 67.

This code is used in chunk 10.

15. The function sign of special value returns a nonzero long value. The function en-

ables the user to determine the sign of 0 or 1. If this function is called with argument

NAN an error message will be thrown out. The call of function normalize at the begin-
ning guarantees that a bigoat with value 0 is represented by a special value. On non
special values this function performs the same actions as the sign function for data type
bigoat.

h general functions 14 i +�
long sign of special value (const bigoat &x)
f
((bigoat &) x):normalize ();

if (x:special � NAN) error handler (1;
"sign_of_special_value: want a special value but not NaN");

if (x:special � NOT) return sign (x);
if (x:special � PZERO _ x:special � PINF) return 1;
else return �1;

g

16. Before we come to the core of the bigoat implementation, we list some useful

functions to compute the maximum of two longs, the square of two integers, the binary
logarithm of a double and the sign for types long and int, respectively.

h auxiliary functions 16 i �
inline long max (long l1 ; long l2) f return (l1 > l2 ? l1 : l2); g
inline integer sq (const integer &op) f return op � op ; g
inline double log2 (double d) f return log (d)=log (2); g
inline long sign (int i) f if (i � 0) return 0; else return (i > 0 ? 1 : �1); g
inline long sign (long i) f if (i � 0) return 0; else return (i > 0 ? 1 : �1); g

See also chunk 86.

This code is used in chunk 10.

14

17. Rounding

The round function is the central tool for the implementation of bigoat arithmetic.

Recall that round (x; digits ;mode ; is exact ; bias) rounds the number

(significant+ bias � �) � 2exponent

to digits binary digits in rounding mode mode , where � is a positive in�nitesimal and bias

is out of f�1; 0; 1g. is exact is set to true if the rounded number equals to x.

18. Now we outline the implementation of function round . At �rst the bigoat is nor-

malized in order to avoid �nal zeros of the signi�cant. Then we distinguish cases. It might

be that the signi�cant has more places than speci�ed by parameter digits . In this case

the bias can be neglected, with the one exception of the TO NEAREST mode (details

see below). In all cases except for EXACT the signi�cant is rounded to digits places and

the exponent is adapted accordingly. On the other hand, it might be that the length of

the signi�cant is less than digits . In that case the return value depends on the bias (again

with the exception of mode TO NEAREST).

h general functions 14 i +�
bigoat round (bigoat x; long digits ; rounding modes mode ;bool &is exact ; long

bias)

f
x:normalize ();
if (isSpecial (x) _ (mode � EXACT)) f
is exact = true ;
return x;

g
int test = 0;
long shift ;

if (digits < x:precision) f
switch (mode) f
case TO NEAREST :
h round to nearest 20 i
break;

case TO ZERO :

h round to zero 22 i
break;

case TO P INF :
h round to plus in�nity 24 i
break;

case TO N INF :

h round to minus in�nity 25 i
break;

case TO INF :

h round to in�nity 23 i
break;

g

15

x:exponent += (x:precision � digits);

g
else if (bias 6= 0) fhbias rounding 26 ig
is exact = (digits � x:precision) ^ (bias � 0);

x:normalize ();

return x;

g

19. We need a function that cuts an integer to an arbitrary amount of digits.

h functions for internal use 4 i +�
void cut (integer &b; long prec) f b = (b� (b:length () � prec)); g

20. First we implement rounding in the case that the signi�cant of the normalized

bigoat has more than digits places and hence the rounded value is not equal to the exact

value.

We start with the rounding case TO NEAREST . Write the signi�cant as x1 �
2precision�digits + x2 and recall that x2 is odd since x is normalized. If x2 starts with a

zero then x1 is the rounded signi�cant .If x2 starts with a one and has more than one
digit, then x1 + sign(x1) is the rounded signi�cant. If x1 has only one digit of value one
the bias decides the rounding.

h round to nearest 20 i �
cut (x:signi�cant ; digits + 1);
test = h signi�cant is even 21 i;
cut (x:signi�cant ; digits);
if (:test) f =� x2 starts with a one �=
if ((x:precision > digits + 1) _ (::sign (bias) � ::sign (x:signi�cant)) _ ((bias �

0) ^ :h signi�cant is even 21 i)) f
=� x1 + sign(x1) is the rounded value �=

if (::sign (x:signi�cant) > 0) x:signi�cant ++; else x:signi�cant ��;
g

g
This code is used in chunk 18.

21. It is simple to test whether the signi�cant of x is even.

h signi�cant is even 21 i �
((x:signi�cant & integer(1)) � 0)

This code is used in chunk 20.

22. In the TO ZERO case we cut the signi�cant to the wanted amount of digits.

h round to zero 22 i �
cut (x:signi�cant ; digits);

This code is used in chunk 18.

16

23. In the TO INF case we always add �1 because we already know that the rounded

value is not exact.

h round to in�nity 23 i �
cut (x:signi�cant ; digits);

if (::sign (x:signi�cant) > 0) x:signi�cant ++; else x:signi�cant ��;

This code is used in chunk 18.

24. The next case is TO P INF . Here the signi�cant is rounded up. If the number is

negative this is done by cutting signi�cant to length digits . Otherwise we increment the

signi�cant of x after the cutting.

h round to plus in�nity 24 i �
cut (x:signi�cant ; digits);

if (::sign (x:signi�cant) > 0) x:signi�cant ++;

This code is used in chunk 18.

25. The TO N INF -mode is the opposite case to TO P INF .

h round to minus in�nity 25 i �
cut (x:signi�cant ; digits);
if (::sign (x:signi�cant) < 0) x:signi�cant ��;

This code is used in chunk 18.

26. Now we come to the cases where the wanted precision is less or equal to the original
precision and bias is crucial. Again we consider the rounding modes separately. For mode
TO NEAREST there is nothing to do. In the other cases, it depends on the sign of the
bias whether we have to do nothing, or else we have to add a 1 or �1 at the digits th place.
hbias rounding 26 i �
shift = digits � x:precision ;

long bf sign = ::sign (x:signi�cant);

switch (mode) f
case TO ZERO :
if (::sign (bias) 6= bf sign) f
h shift signi�cant 27 i
if (bf sign � 1) x:signi�cant ��; else x:signi�cant ++;

g
break;

case TO INF :

if (::sign (bias) � bf sign) f
h shift signi�cant 27 i
if (bf sign � 1) x:signi�cant ++; else x:signi�cant ��;

g
break;

case TO P INF :

if (::sign (bias) � 1) f
h shift signi�cant 27 i

17

x:signi�cant ++;

g
break;

case TO N INF :

if (::sign (bias) � �1) f
h shift signi�cant 27 i
x:signi�cant ��;

g
break; =� in the cases TO NEAREST and EXACT we have to do nothing �=

case TO NEAREST : case EXACT : ;

g
This code is used in chunk 18.

27. When shifting the signi�cant left by shift digits we have to lower the bigoat's

exponent by the same amount.

h shift signi�cant 27 i �
if (shift > 0) f
x:signi�cant = x:signi�cant � shift ;
x:exponent �= shift ;

g
This code is used in chunk 26.

28. A bigoat x can also be rounded to integer format by the function to integer . If x
represents a nonzero special value, we throw out an error message. Now let us assume
that x is non special. We round x to length = max (x:precision + x:exponent ; 1) places.
The choice of length guarantees that the rounding returns an integer value nearest to
the original fractional value of x. In particular, the exponent of x is nonnegative after

rounding. Due to the choice of length , x is representable with an exponent of value zero.
If the �nal normalize in function round produced an exponent � 0 the signi�cant of x
has to be shifted to the left by this amount of binary places. Afterwards x:signi�cant

might be returned as the result.

h general functions 14 i +�
integer tointeger (bigoat x; rounding modes rmode)
f
if ((isNaN (x)) _ (isInf (x))) error handler (1;

"tointeger : special values cannot be converted to integer");

if (:(x:exponent + (integer) x:signi�cant :length ()):islong ())

error handler (1; "tointeger : (exp+sig len) has to be in long range");

long length = max (1; x:precision + x:exponent :tolong ());

x = round (x; length ; rmode);

if (isZero(x)) return integer(0);
else return (x:signi�cant � x:exponent :tolong ());

g

18

29. Arithmetical functions

30. The Add-Function.

In the following sections we explain the arithmetical functions add , sub , mul , div , and

sqrt . We start right o� with the add function.

Let a and b be the operands of the addition. At �rst we make sure that the binary

logarithm of a (rounded up to the next integer) is not less than the binary logarithm of

b. Then we compute bigoats sum and error such that we have the exact equality

a+ b = sum+ error:

Here error is bounded by half the least signi�cant digit of sum and error � 0 for mode �
EXACT . Finally we give back the rounded value of sum . Procedure round only needs

to know the sign of error .

h arithmetical functions 30 i �
bigoat add (const bigoat &x; const bigoat &y; long prec ; rounding modes

mode ;bool &is exact)

f
bigoat a; b;

hhandle special cases 35 i
h�nd bigger operand 31 i =� now dlog2 ae � dlog2 be �=
bigoat sum ; error ;

h compute sum and error 32 i
return round (sum ; prec;mode ; is exact ; sign (error));

g
See also chunks 36, 37, 39, 43, and 47.

This code is used in chunk 10.

31. It is helpful to know the bigger operand. To decide which operand is bigger we
compute for x and y the sums of exponent and precision, called log x and log y . The dif-
ference di� of these quantities must not be confused with the di�erence of the exponents,
exp di� .

h�nd bigger operand 31 i �
bigoat �a ptr ; �b ptr ;

integer log x = x:exponent + (integer) x:precision ;

integer log y = y:exponent + (integer) y:precision ;

integer di� = log x � log y ;

if (di� � 0) f a ptr = (bigoat �) &x; b ptr = (bigoat �) &y; g
else f a ptr = (bigoat �) &y; b ptr = (bigoat �) &x; g
a = �a ptr ;
b = �b ptr ;

di� :absolute ();

integer exp di� = a:exponent � b:exponent ;

This code is used in chunk 30.

19

32. Often it is unnecessary to compute the exact sum. If b has no inuence on the

addition's result it su�ces to set sum to a and error to b. This is the case if b is less

than the least signi�cant digit of a and also less than the (prec+1)th digit of a. (Here we

can assume that a has at least prec + 1 digits by conceptually shifting left, if it has less

digits.) These restrictions can be formulated as di� > a:precision and di� > (prec + 1).

Furthermore the rounding mode must be di�erent from EXACT . If one of the conditions

is violated we compute the addition exactly.

h compute sum and error 32 i �
if ((mode 6= EXACT) ^ (di� > max (prec + 1; a:precision)))

f
sum = a;

error = b;

g
else f
h exact addition 34 i

g
This code is used in chunk 30.

33. The exact addition of two bigoat numbers can easily be attributed to integer addi-

tion. The precondition for the use of integer arithmetic is that the two bigoat operands
have equal exponents. In this case the result can be calculated as follows:

h calculate sum 33 i �
sum = bigoat(a:signi�cant + b:signi�cant ; a:exponent);

This code is used in chunk 34.

34. If a:exponent > b:exponent we shift a:signi�cant leftwards by exp di� �
a:exponent � b:exponent binary places. Similarly, if b:exponent > a:exponent we shift
b:signi�cant leftwards by �exp di� places. In both cases the exponents have to be set to
the smallest exponent of a and b.

h exact addition 34 i �
if (:exp di� :islong ())
error handler (1; "bigfloat::add() : exponential differenc\

e has to be in long range");

if (exp di� > 0) f
a:signi�cant = a:signi�cant � exp di� :tolong ();
a:exponent = b:exponent ;

g
else f
b:signi�cant = b:signi�cant � (�exp di�):tolong ();

b:exponent = a:exponent ;
g
h calculate sum 33 i

This code is used in chunk 32.

20

35. The rules to handle special cases in addition are simple. The result is NaN if one of

the operands is NaN or for the sums 1+ (�1) and (�1) +1. In the other cases we

return the sum of x and y.

hhandle special cases 35 i �
((bigoat &) x):normalize ();

((bigoat &) y):normalize ();

if (isSpecial (x) _ isSpecial (y)) f
if (isNaN (x) _ isNaN (y)) return bigoat(NAN);

if (isZero(x)) return y;

if (isZero(y)) return x;

if (isInf (x) ^ isInf (y)) f
if (sign of special value (x) � sign of special value (y)) return x;

else return bigoat(NAN);

g
if (isInf (x)) return x; =� it is obvious that y has to be 1 �=
return y;

g
This code is used in chunk 30.

36. The Sub-Function.
This function is quite easy because it can be reduced to the add function.

h arithmetical functions 30 i +�
bigoat sub (const bigoat &a; const bigoat &b; long prec; rounding modes

mode ;bool &is exact)
f
return add (a;�b; prec;mode ; is exact);

g

37. The Mul-Function.

The multiplication is always done by �rst computing the exact result and rounding
afterwards, in contrast to the procedure for addition. Computing the exact result is done
by simply multiplying the signi�cants of the operands and adding their exponents.

h arithmetical functions 30 i +�
bigoat mul (const bigoat &a; const bigoat &b; long prec ; rounding modes

mode ;bool &is exact)
f
h special cases for mul 38 i
bigoat result (a:signi�cant � b:signi�cant ; a:exponent + b:exponent);

return round (result ; prec;mode ; is exact);
g

38. We come to the special case treatment of mul . The result is NaN if one of the

operands is NaN or else, if one of the operands is zero and the other one in�nity. Oth-

erwise, if one operand is zero, we return zero, and if one of the operands is in�nity, we

return in�nity. Here the sign of the return value is the product of the operand signs.

21

h special cases for mul 38 i �
long sign result ;

((bigoat &) a):normalize ();

((bigoat &) b):normalize ();

if ((isSpecial (a)) _ (isSpecial (b))) f
if ((isNaN (a)) _ (isNaN (b))) return bigoat(NAN);

if ((isZero(a) ^ isInf (b)) _ (isInf (a) ^ isZero(b))) return bigoat(NAN);

sign result = sign of special value (a) � sign of special value (b);

if (isZero(a) _ isZero(b)) f
if (sign result � 1) return bigoat(PZERO);

else return bigoat(NZERO);

g
if (isInf (a) _ isInf (b)) f
if (sign result � 1) return bigoat(PINF);

else return bigoat(NINF);

g
g

This code is used in chunk 37.

39. The Div-Function.
One important di�erence between the division and other arithmetical functions is that

the exact calculation of a division in bigoat format is impossible. Instead we use inexact
integer division of the signi�cant s to approximate the result up to (prec+1) digits 1. Here
it may be necessary to shift the signi�cant of the dividend to the left. We also compute

the sign of the division remainder in the variable bias . Then the correctly rounded division
result can be obtained by calling the round function with this bias.

h arithmetical functions 30 i +�
bigoat div (const bigoat &a; const bigoat &b; long prec ; rounding modes

mode ;bool &is exact)
f
bigoat result ;
long bias ;

h special cases for div 42 i
h shift dividend's signi�cant 40 i
h compute approximative result 41 i
return round (result ; prec;mode ; is exact ; bias);

g

40. We �rst calculate if and by how many digits the dividend a has to be shifted. Let
Sa and Sb be the signi�cant s of the operands with binary lengths la and lb. We suppose

that Sa and Sb are nonzero. Then we have 2la�1 � Sa < 2la and 2lb�1 � Sb < 2lb which

implies
2la�lb�1 < Sa=Sb < 2la�lb+1:

1we need one extra digit to guarantee exact rounding

22

Hence the precision of Sa=Sb is at least la � lb. Therefor we need la � lb � prec + 1 and

we have to shift the signi�cant of a by d digits, if d = lb � la + prec + 1 > 0.

h shift dividend's signi�cant 40 i �
bigoat aa = a;

long d = prec + b:signi�cant :length ()� a:signi�cant :length () + 1;

if (d > 0) f
aa :signi�cant = aa :signi�cant � d;

aa :exponent �= d;

g
This code is used in chunk 39.

41. Computing the approximation of the result is now easy. We simply do a Euclidean

division of Sa and Sb, that is, Sa = Sb � Sr +R where R is the division remainder. This is

equivalent to

Sa=Sb = Sr +R=Sb

and hence the bias is given by the sign of R=Sb.

h compute approximative result 41 i �
result :special = NOT ;

result :signi�cant = aa :signi�cant =b:signi�cant ;
result :exponent = aa :exponent � b:exponent ;
result :precision = result :signi�cant :length ();

integer R = aa :signi�cant � b:signi�cant � result :signi�cant ;
if (R 6= 0) is exact = false ;

if (mode � EXACT) mode = TO NEAREST ;
bias = sign (R) � sign (b:signi�cant);

This code is used in chunk 39.

42. The special case handling for division is very similar to that for multiplication. We
omit the details.

h special cases for div 42 i �
((bigoat &) a):normalize ();
((bigoat &) b):normalize ();
if ((isSpecial (a)) _ (isSpecial (b))) f
long sign result ;

if ((isNaN (a)) _ (isNaN (b))) return bigoat(NAN);

if (((isZero(a)) ^ (isZero(b))) _ ((isInf (a)) ^ (isInf (b)))) return bigoat(NAN);

sign result = sign of special value (a) � sign of special value (b);
if ((isInf (a)) _ (isZero(b))) f
if (sign result � 1) return bigoat(PINF);

else return bigoat(NINF);

g =� it is clear that isZero(a) _ (isInf (b) �=
if (sign result � 1) return bigoat(PZERO);

else return bigoat(NZERO);
g

This code is used in chunk 39.

23

43. The Sqrt-Function.

We reduce the square root operation for the data type bigoat to the one of integers.

The function is splitted into three main parts:

1. treatment of special cases

2. calculation of the square root

3. rounding

h arithmetical functions 30 i +�
bigoat sqrt (const bigoat &a; long prec; rounding modes mode ;bool

&is exact)

f
bigoat result ;

integer s;

h special cases of sqrt 46 i
h calculate sqrt 44 i
h rounding of sqrt 45 i

g

44. We rely on the fact that the LEDA data type integer o�ers a function n:sqrt() =
bpnc. Furthermore, we know that the delivered bigoat is positive and non special since
we successfully passes the special case section. We now have to ensure that resulting
bigoat has precision of prec digits.
Let now l be the signi�cant 's length, sig = (1 + �) � 2l�1 be the signi�cant of a with

0 � � < 1, exp its exponent and let k be the smallest value with such that

1. exp� k is even,

2. 2prec�1 �
q
sig � 2k < 2prec

Let s = b
q
sig � 2kc. Then

p
a =

q
sig � 2k � 2exp�k = (s + �) � 2(exp�k)=2 for some � with

0 � � < 1. With inequality (2) it follows that 2 � (prec� 1) � log2 sig � 2k < 2 � prec. Since
sig = (1 + �) � 2(l � 1) it follows that log2 sig = (l � 1) + log2(1 + �). Thus the following
applies:

2 � prec� 2 � (k + l � 1) + log2(1 + �) < 2 � prec
Notice that log2(1 + �) < 1). Hence we can simplify the expression:

2 � prec � 2 � k + l � � < 2 � prec

where 0 � � < 1.Since k; l and prec are integer values we conclude that

2 � prec� 2 < k + l < 2 � prec + 1

2 � prec � l� 2 < k < 2 � prec � l+ 1
2 � prec � l� 1 � k � 2 � prec � l

Hence we choose k = 2 � prec� l. If exp� k is odd we decrement k by one.

24

h calculate sqrt 44 i �
long k = max (0; 2 � prec � a:signi�cant :length ()); =� check if exp � k is odd �=
if (((a:exponent � k) % 2) 6= 0) k��;

integer r = a:signi�cant � k;

s = sqrt (r);

This code is used in chunk 43.

45. We come to the rounding of the result. If s2 = sig � 2k the result is s � 2(exp�k)=2.
Hence we assume that s <

q
sig � 2k. We di�er between 3 rounding cases:

1. TO ZERO ,TO N INF : the result is s � 2(exp�k)=2

2. TO INF ,TO P INF : the result is (s+ 1) � 2(exp�k)=2

3. TO NEAREST ,EXACT : We have to decide whether s or s+1 is the nearest value

to
q
sig � 2k. If s is the best approximation we have

q
sig � 2k�s < (s+1)�

q
sig � 2k

which is equivalent to 4 � sig � 2k < 4 � s2 + 4 � s+ 1:

Remember that r = sig � 2k.
h rounding of sqrt 45 i �
integer s2 = s � s;
if ((s2 � r) _ (mode � TO ZERO) _ (mode � TO N INF))

return bigoat(s; (a:exponent � k)=2);
if ((mode � TO INF) _ (mode � TO P INF))
return bigoat(s+ 1; (a:exponent � k)=2);

=� mode is either TO ZERO or EXACT �=
if (4 � r < 4 � s2 + 4 � s+ 1) return bigoat(s; (a:exponent � k)=2);

else return bigoat(s+ 1; (a:exponent � k)=2);

This code is used in chunk 43.

46. The rules for the special case treatment are simple. If it is strictly negative we
return NaN . Otherwise, if it is any special value beside �1, we return the same value.

h special cases of sqrt 46 i �
((bigoat &) a):normalize ();

if (sign (a) < 0) f is exact = false ; return bigoat(NAN); g
if (isSpecial (a)) f
if (isZero(a)) is exact = true ; else is exact = false ;

return a;

g
This code is used in chunk 43.

47. We now come to the implementation of the unary minus operator.

25

h arithmetical functions 30 i +�
bigoat operator�(const bigoat &a)

f
if (isSpecial (a)) f
if (isZero(a)) return bigoat(PZERO);

if (isInf (a)) return bigoat(PINF);

return bigoat(NAN);

g
return bigoat(�a:signi�cant ; a:exponent);

g

26

48. Comparison Operators

We still have to implement the operators � and >. Remember that the other comparison

operators have been reduced to these two cases. Let us begin with operator �. We �rst

normalize 2 the operands to get a unique representation and afterwards check for special

cases. Then we only have to compare signi�cant and exponent.

h comparison operators 48 i �
bool operator�(const bigoat &a; const bigoat &b)

f
((bigoat &) a):normalize ();

((bigoat &) b):normalize ();

h special case checking for operator � 49 i
return ((a:signi�cant � b:signi�cant) ^ (a:exponent � b:exponent));

g
See also chunk 50.

This code is used in chunk 10.

49. The rules of special-case checking can be summarized as follows. Comparisons with
a NaN not allowed. If both operands are zero, true is returned. Otherwise, true is
returned if and only if the operands represent the same special value.

h special case checking for operator � 49 i �
if (isSpecial (a) _ isSpecial (b)) f
if (isZero(a) ^ isZero(b)) return true ;

if (isNaN (a) _ isNaN (b))
error handler (1; "bigfloat::operator == : NaN case occurred");

return (a:special � b:special);
g

This code is used in chunk 48.

50. We come to operator >. For non-special bigoats we �rst check the signs of the
operands. If the operand's signs are not equal the result may be easily computed. In case

of equal signs we compare the binary lengths of the arguments. Let now a = sa � 2ea and
b = sb � 2eb. Furthermore, let la and lb be the binary length of sa and sb respectively. We
know that 2la�1 � sa < 2la and 2lb�1 � sb < 2lb. Let bla = la + ea and blb = lb + eb. It

follows that a > b if 2la�1 � 2ea > 2lb � 2eb. That is a > b if bla � blb > 1. Analogously, one
can see that a � b if bla � blb � �1. So we have to watch bla � blb. If none of the latter

cases apply we �nd out the operand with the bigger exponent and shift its signi�cant by
the exponential di�erence to the left. Afterwards we return the integer comparison of the

signi�cants.

h comparison operators 48 i +�
bool operator > (const bigoat &a; const bigoat &b)
f
2Since normalize is a not a constant member function we �rst cast the operands to type bigoat &.

This is allowed since normalize does not change the value of a bigoat but only its representation. Here
we use the idea of logical constance.

27

((bigoat &) a):normalize ();

((bigoat &) b):normalize ();

h special case checking of operator > 51 i
int sign a = ::sign (a:signi�cant);

int sign b = ::sign (b:signi�cant);

if (sign a 6= sign b) return (sign a > sign b);

integer bl di� = (a:exponent + a:precision)� (b:exponent + b:precision);

if (bl di� > 1) return 1;

else if (bl di� � �1) return 0;

integer sig ; di� = a:exponent � b:exponent ;

if (::sign (di�) � 0) f
sig = a:signi�cant � (di� :tolong ());

return (sig > b:signi�cant);

g
else f
sig = b:signi�cant � ((�di�):tolong ());
return (a:signi�cant > sig);

g
g

51. Finally we come to the special case checking for operator >. As before, NaN
comparisons are not allowed. If the � operator returns true, operator > returns false.
The remaining cases are straightforward.

h special case checking of operator > 51 i �
if (isSpecial (a) _ isSpecial (b)) f
if (isNaN (a) _ isNaN (b))

error handler (1; "bigfloat::operator > : NaN case occurred!");
if (isZero(a) ^ isZero(b)) return false ;
if (ispInf (a)) return :ispInf (b);
if (isnInf (b)) return :isnInf (a);
return (sign (a) > sign (b));

g
This code is used in chunk 50.

28

52. Conversion between the data types bigoat and double

It is possible to convert a double into a bigoat and vice versa. If the signi�cant

of the bigoat has more than 53 bits or if its exponent is too large there will be a

loss of information. For a double d we will always guarantee the consistency property

bigoat(d):todouble () � d.

53. Some facts about doubles.

A double is speci�ed by a sign s 2 f0; 1g, an exponent e 2 [0; 2047] and a binary

fraction F = f1f2 : : : f52 with fi 2 0; 1 for all 1 � i � 52. For 0 < e < 2047 the triple

(s,f ,e) represents the number

(�1)s � 1:f � 2e�1023:
Such a number is called normalized. If e is zero the number is called denormalized. and

the value represented by (s,f ,e) is

(�1)s � 0:f � 2�1023:

Denormalized numbers are smaller than the smallest normalized number double min =
2�1022. Due to the limited exponent range doubles can over- and underow. To get more
security in arithmetical operations there are the values �1 signaling overow and the
value NaN signaling invalid operations like 0 � 1. �1 are represented by s 2 f0; 1g,
e = 2047 and f = 0, and NaN is represented by any triple (s; e; f) with e = 2047 and

f 6= 0.

54. The function compose parts composes the parameters (s; e; f) to a double value.
The sign s is delivered in sign 1 , and exp 11 is the exponent e. Since we use 32 bit
wide longs, the 52 bit of f are split into the lower part least sig 32 and the higher part
most sig 20 . The resulting double is made of two longs, the higher 32 bit containing

sign 1 , exp 11 and most sig 20 , and the lower 32 bit of least sig 32 .

h functions for internal use 4 i +�
double compose parts(long sign 1 ; long exp 11 ; long most sig 20 ; long least sig 32)
f
double a;

long high32 = 0;

h calculate high32 55 i
hput it all together 56 i
return a;

g

55. First we compute the higher 32 bit of the double.

h calculate high32 55 i �
if (sign 1) high32 = high32 j #80000000;
exp 11 = exp 11 � 20;
high32 = high32 j exp 11 ;

high32 = high32 j most sig 20 ;
This code is used in chunk 54.

29

56. To compose the two long parts to one double value we use pointer arithmetic. For

this we need a pointer to a long variable that initially points to the beginning of the

resulting double a. Since we would like to achieve machine independent code we have

to care for di�erent byte ordering mechanisms. Sun Sparc stations use BIG ENDIAN

byte ordering which means that always the higher part is saved before the lower part in

memory. Intel PCs use LITTLE ENDIAN byte ordering in which the lower part is saved

�rst.

hput it all together 56 i �
long �p;
p = (long �) &a;

#ifndef LITTLE ENDIAN

(�p) = high32 ; p++; (�p) = least sig 32 ;

#else

(�p) = least sig 32 ; p++; (�p) = high32 ;

#endif

This code is used in chunk 54.

57. The mathematical function pow2 for doubles that computes 2exp for a given exponent
exp can be realized e�ciently using the new function compose parts .

h functions for internal use 4 i +�
double pow2 (long exp) f return compose parts (0; exp + 1023; 0; 0); g

58. Now we are able to de�ne the special double values that we need in the following
sections.

h global identi�ers 58 i � =� since we need the pow2 and compose parts functions we

have to use prototyping �=
double compose parts (long; long; long; long);
double pow2 (long);
const double double min = pow2 (�1022);
const double NaN double = compose parts (0; 2047; 0; 1);

const double pInf double = compose parts (0; 2047; 0; 0);
const double nInf double = �pInf double ;
const double pZero double = compose parts (0; 0; 0; 0);
const double nZero double = compose parts(1; 0; 0; 0);

See also chunks 66 and 74.

This code is used in chunk 10.

59. The next constructor transforms a double d into a bigoat. First we check whether

d is denormalized. In the case that d is denormalized, we correct the exponent of d to

make it normalized (if it is nonzero) but set a ag that allows us to take back our changes
later. After that we split d into a high and a low part. From these two parts we compute

the sign, signi�cant and exponent of d.

30

h constructors 12 i +�
bigoat ::bigoat(double d)

f
int sign ;

long ag = 0;

unsigned long mh = 0; ml = 0;

long �p;
h check for denormalized number 60 i
hdetermine high and low part 61 i
h get the double's sign 62 i
h get the signi�cant's value 63 i
h get the exponent's value 64 i
h check for special values 65 inormalize ();

g

60. If d is smaller than double min then it is denormalized and we multiply d with 252

to get a normalized number.

h check for denormalized number 60 i �
if (fabs (d) < double min) f
d = d � pow2 (52);
ag = 1;

g
This code is used in chunk 59.

61. We split the 64 bit wide double representation in two 32 bit wide longs. To do this

we use a pointer to a long value and assign the casted address of the double value to
it. The long pointer works like an array. If the BIG ENDIAN byte ordering is active,
the �rst component holds the higher 32 bit part mh and if the LITTLE ENDIAN byte
ordering is active, the �rst component holds the lower 32 bit part ml .

hdetermine high and low part 61 i �
p = (long �) &d;

#ifndef LITTLE ENDIAN

mh = �p; p++; ml = �p;
#else
ml = �p; p++; mh = �p;

#endif

This code is used in chunk 59.

62. The sign of a double is denoted by its highest bit.

h get the double's sign 62 i �
if (mh & #80000000) sign = �1;
else sign = 1;

This code is used in chunk 59.

31

63. The signi�cant of the double is composed out of ml and the least 20 bits of mh .

As we have ensured normalized representation in the beginning of this function we have

to keep in mind that the signi�cant represents the binary fraction and that there is an

implicit one bit that leads this fraction.

h get the signi�cant's value 63 i �
long sig = 0; =� get the signi�cant bits out of the highword �=
sig = mh & #000fffff;

=� we have ensured that d is normalized) add the leading one bit �=
sig = sig j #00100000; =� compose signi�cant �=
signi�cant = integer(sig);

signi�cant = signi�cant � 32;

signi�cant = signi�cant + integer(ml);

if (sign � �1) signi�cant = �signi�cant ;
This code is used in chunk 59.

64. The double exponent takes the bits 2 to 12 of mh . We use bit manipulation to

extract this value out of mh . To transform the double exponent into the exponent of the
resulting bigoat, we have to correct its value by

1. the bias �1023,

2. �(signi�cant :length () � 1) � �52, due to the bigoat's representation

3. -52, if d was denormalized

h get the exponent's value 64 i �
long e = 0; =� get the 11 bits of the exponent �=
e = mh & #7ff00000; =� shift the result to get the right value �=
e = e� 20; =� subtract bias and 52 �=
e �= 1075; =� subtract 52 if d was denormalized �=
if (ag) e �= 52;

exponent = e;

This code is used in chunk 59.

65. Finally, we have to check whether d was in a special state.

h check for special values 65 i �
special = NOT ;

if (e � 972) =� Inf or NaN-Case �=
f
if (signi�cant � 0) special = (sign > 0) ? PINF : NINF ;

else special = NAN ;
g
if (d � 0) special = (sign > 0) ? PZERO : NZERO ;

This code is used in chunk 59.

32

66. In several functions we use integer values which have - in their binary representation

- one single bit set.

h global identi�ers 58 i +�
const integer integer 1 = integer(1);

const integer integer 52 = (integer 1 � 52)� integer 1 ;

const integer integer 32 = (integer 1 � 32)� integer 1 ;

const integer integer 20 = (integer 1 � 20)� integer 1 ;

67. The todouble function.

This function takes the given bigoat and converts it into double format. If the bigoat

is in a special state (NAN ;PINF ; : : :), we return the corresponding special double value.

A bigoat x is called approximable if

2�1074 �j x j< 21024:

For approximable values of x, we return the double nearest to x, otherwise bigoats in

special states PINF ;NINF ;PZERO or NZERO are returned.
In the main part of the function we distinguish the cases that the returned double

is normalized or denormalized. At the end the signi�cant s, the exponent t exp and the
signi�cant t sig of the double are put together.

h general functions 14 i +�
double todouble (const bigoat &x)
f
long s = ::sign (x:signi�cant);
long t exp = 0;

integer t sig = 0;
bigoat rounded value = abs (x);

h special case checking of todouble 68 i
h rounding step of todouble 69 i
h check for normal or denormal return value 70 i
if (normal)
hnormal case 72 i
else hdenormal case 71 i
double a;

h set the bits of a 73 i
return a;

g

68. The special cases are �rst.

h special case checking of todouble 68 i �
((bigoat &) x):normalize ();

if (isSpecial (x)) f
if (ispZero(x)) return pZero double ;

if (isnZero(x)) return nZero double ;

if (isNaN (x)) return NaN double ;

33

if (ispInf (x)) return pInf double ;

if (isnInf (x)) return nInf double ;

g
This code is used in chunk 67.

69. We round the bigoat such that all bits of the signi�cant just �t into double format.

We distinguish cases according to the quantity log 2 = exponent + precision .

� If log 2 is between �1021 and 1024, we have to round to 53 places.

� If log 2 is between �1073 and �1022, we have to round to 1074 + log2 places.

If log 2 is outside of [�1073; 1023] the conversion overows or underows. Note that log 2
might change through the rounding.

h rounding step of todouble 69 i �
integer log 2 = x:exponent + x:precision ;

if (log 2 > 1024) return sign (x) � pInf double ;
if (log 2 < �1073) return sign (x) � pZero double ;
if (log 2 > �1021) rounded value = round (rounded value ; 53;TO NEAREST);
else rounded value = round (rounded value ; 1074 + log 2 :tolong ();TO NEAREST);

This code is used in chunk 67.

70. Now we decide whether the bigoat is approximable by a normalized double or not.
This is the case if and only if

2�1022 �j rounded value j< 21024:

Note that log 2 can be 1025 because of rounding, in which case we return in�nity.

h check for normal or denormal return value 70 i �
long normal = 1;

log 2 = rounded value :exponent + rounded value :precision ;
if (log 2 � 1025) return sign (x) � pInf double ;
if (log 2 < �1021) normal = 0;

This code is used in chunk 67.

71. First we assume that we have a denormalized value to store. Remember that a

denormalized double has an implicitly leading 0 bit and that its unbiased exponent is

�1022. Let us consider the number k of zeros such that rounded value = sig � 2e equals
0: 00 : : : 0| {z }

k

sig � 2�1022. This is equivalent to k = �1022� e� l where l is the length of the

signi�cant sig of rounded value . We have to ensure that the bigoat signi�cant has length
52� k, that is, we shift the signi�cant by l shift = 52� k� l places to the left. (If l shift

is negative rightshifts have to be performed). Simplifying we see that l shift = e+ 1074.

hdenormal case 71 i �
f
long l shift = rounded value :exponent :tolong () + 1074;

34

if (l shift > 0) t sig = rounded value :signi�cant � l shift ;

else t sig = rounded value :signi�cant � (�l shift);
g

This code is used in chunk 67.

72. Now we assume that our bigoat rounded value = sig � 2e is in normalized double

range. As normalized doubles have an implicit leading one, the biased exponent of the

returned double is

t exp = e+ (l � 1) + 1023

where again l is the length of sig. Finally we cut o� the �rst bit of sig (which is necessarily

one) and obtain the double signi�cant t sig .

hnormal case 72 i �
f
t exp = rounded value :exponent :tolong () + (rounded value :precision � 1) + 1023;

=� if the length of the rounded signi�cant is lower than 53 we have to shift it to

the left �=
t sig = rounded value :signi�cant � (53 � rounded value :signi�cant :length ());
t sig = t sig & integer 52 ;

g
This code is used in chunk 67.

73. Finally we set the bits of the returned double. That means that we have to lay
down our speci�ed values for sign, signi�cant For this we use the function compose parts

and so we just need to calculate the arguments for this function.

h set the bits of a 73 i �
unsigned long sign ; h sig ; l sig ;

sign = (s � (�1));
h sig = ((t sig � 32) & integer 20):tolong ();
l sig = (t sig & integer 32):tolong ();
a = compose parts(sign ; t exp ; h sig ; l sig);

This code is used in chunk 67.

35

74. Functions for input and output

There are two operators which perform input/output.

� The �rst one is the operator�. It outputs a bigoat in either binary or decimal

representation. The global variable output mode determines the output form. The

two di�erent modes are

{ binary (BIN OUT)

{ decimal (DEC OUT)

This operator uses the binout function for binary output and function

decimal output for decimal output.

� The second one is the operator �. It performs decimal input of a bigoat using

function outofchar . Binary input is not yet implemented.

We de�ne the maximal size of a string �eld that is allocated during input and output.

h global identi�ers 58 i +�
const long bin maxlen = 10000;

75. Procedure binout takes an output stream and an integer b as input. It produces an
unsigned, binary output of b.

h functions for internal use 4 i +�
void binout (ostream &os ; integer b)

f
char temp [bin maxlen];
long ag = 0; count = 0;

if (b < 0) b �= �1;
do f
temp [count ++] = (char) (b% 2):tolong () + '0';

if (b � 1) ag = 1;
else b == 2;

g while (:ag);
for (long i = count � 1; i � 0; i��) os � temp [i];

g

76. The following function computes the nth power of a bigoat in precision prec and
rounding mode mode . 3. We use it with n = 10 for our decimal output.

h functions for internal use 4 i +�
bigoat powl (const bigoat &x; long n; long prec = 1; rounding modes

mode = EXACT)

f
bigoat z = 1; y = x;
long n pre�x = n;

3This does not mean that the result is correct up to prec digits. Only every operation within the
procedure is carried out in that precision.

36

while (n pre�x > 0) f
if (n pre�x % 2) z = mul (z; y; prec;mode);

n pre�x = n pre�x =2;

y = mul (y; y; prec ;mode);

g
return z;

g

77. Procedure decimal output displays a bigoat b in decimal oating point notation,

with prec decimal places in the signi�cant. It �rst treats the sign of the given bigoat

b. The further procedure works with j b j instead of b. Then we compute the decimal

exponent of b which allows us to get the wanted prec decimal places of the output. Finally

we write the output to ostream os .

h functions for internal use 4 i +�
void decimal output (ostream &os ;bigoat b; long prec)

f
if (:b:get exponent ():islong ())
error handler (1; "decimal_output: not implemented for large exponents");

if (prec � 0)

error handler (1; "decimal_output: prec has to be bigger than 0!");

ostrstream oss ; =� string stream needed for output �=
long dd = 10;

h calculate the sign 78 i
h compute decimal logarithm of b 79 i
h compute decimal signi�cant of b 80 i
h output of the result 81 i

g

78. First we calculate the sign of b and take the modulus of b.

h calculate the sign 78 i �
if (sign (b) < 0) f b = �b; os � "-"; g

This code is used in chunk 77.

79. We need to know the decimal logarithm of b, rounded up to the next integer. For this

we use the function log10 from the standard math library that takes a double input. To

avoid the problem of overow in the double calculation we �rst determine k = dlog2(b)e,
write b = 2kbrem and �nally compute log10(b) = log10(2

kbrem) = k � log10(2) + log10(brem):

h compute decimal logarithm of b 79 i �
long log2 b = b:get precision() + b:get exponent ():tolong ();

bigoat b rem(b:get signi�cant ();�b:get precision ());
long log10 b = (long) ceil (log10 (2) � log2 b + log10 (todouble (b rem)));

This code is used in chunk 77.

37

80. Now that we know that b has decimal length log10 b we proceed with the further

preparation of the output. We have to ensure that the signi�cant of the exponential

output has exactly prec decimal digits. Therefor let di� = prec � log10 b and if di� is

positive we multiply b with 10diff and if it is negative we divide it by 10�diff . We use

log2 b + log210
diff as precision for these operations. Afterwards the function tointeger is

used to get a rounding to the next integer value.

h compute decimal signi�cant of b 80 i �
long di� = prec � log10 b ;

long digits = (long) ceil (log2 ((double) dd) � di�) + log2 b ;

bigoat b shift ;

integer signi�cant ;

if (di� � 0)

b shift = mul (b; powl (dd ; di� ; digits ;TO NEAREST); digits ;TO NEAREST);

else b shift = div (b; powl (dd ;�di� ; digits ;TO NEAREST); digits ;TO NEAREST);

signi�cant = tointeger (b shift ;TO NEAREST);

oss � signi�cant ;

This code is used in chunk 77.

81. At last, we have to output the computed value. We take a oating point format

with one digit in front of the decimal point. We cut o� �nal zeros to get a clear output.

h output of the result 81 i �
char �str = oss :str ();
char �help = str + strlen (str)� 1;

while (�help � '0') help ��;
�(help + 1) = 0;
if (prec > 1) os � (�(str ++))� "." � str ;

else os � (�str);
if (log10 b 6= 1) os � "E" � log10 b � 1;

This code is used in chunk 77.

82. Now we are ready to implement the stream operators. We start with the output. In

the case of decimal output we have to determine the decimal precision for the signi�cant
of the exponential output. Therefor we pass the decimal logarithm of the signi�cant of b

as prec to the function decimal output .

h input/output operators 82 i �
ostream &operator�(ostream &os ; const bigoat &b)
f
if (isSpecial (b)) f
if (isNaN (b)) return os � "NaN";

if (ispInf (b)) return os � "+Inf";

if (isnInf (b)) return os � "-Inf";
if (ispZero(b)) return os � "+0";

if (isnZero(b)) return os � "-0";

g
int sign b = sign (b:signi�cant);

38

if (bigoat ::output mode � BIN OUT) f
if (sign b < 0) os � "-";

os � "0.";

if (sign b � 0) binout (os ; b:signi�cant);

else binout (os ;�b:signi�cant);
os � "E";

if (b:exponent < 0) os � "-";

else os � "+";

binout (os ; b:exponent);

g
if (bigoat ::output mode � DEC OUT)

decimal output (os ; b;max (1; (long) oor (log10 (2) � b:signi�cant :length ())));
return os ;

g
See also chunk 83.

This code is used in chunk 10.

83. We turn to the input operator. The hard work is done by function outofchar .

h input/output operators 82 i +�
istream &operator�(istream &is ;bigoat &b)
f
char temp [bin maxlen];

is � temp ;
b = outofchar (temp);
return is ;

g

84. Function outofchar provides the conversion of string to bigoat. Currently, only
decimal input is possible. The expected format is:

�dd � � � d[:dd � � � d[E � dd � � � d]]

where d is out of [0; 9] and � � � stands for arbitrarily many d's. The procedure works

as follows. We read the sign, the integer part, the decimal fraction and the exponent
of the decimal oating point representation in turn. Then we concatenate the integer

part and the decimal fraction into one decimal signi�cant sig such that the input bigoat

is sig � 10exp�fl where is the length of the decimal fraction and exp is the scanned
exponent. In order to get a binary representation we either multiply or divide sig by
10exp�fl according to the sign of exp diff = exp � fl. This operations are performed

by the bigoat operations mul and div respectively. It remains to specify an appropriate
value for parameter prec. We know that the binary length of sig is l. In both cases the

integer part of the result should be not larger than 10l+exp diff . The fraction should be
smaller than 10fl. Thus a precision of dlog2 10(l+ exp diff + fl)e should be su�cient for

both computations.

39

h functions for internal use 4 i +�
bigoat outofchar (char �rep ; long prec = 0)

f
integer sig = 0; exp = 0;

bigoat result ; pow ;

long dd = 10;

double log2dd = log2 (dd);

long int length = 0; frac length = 0;

int s;

h scan sign s 85 i
int sign = s;

h scan integer part 87 i
h scan fraction 88 i
h scan exponent 89 i
long l = int length + frac length ;

long exp di� = exp :tolong ()� frac length ;

if (prec � 0) prec = (long) ceil (log2dd � (l + exp di� + frac length));

pow = powl (dd ; abs (exp di�); 1;EXACT);
if (exp di� > 0) result = mul (sig ; pow ; prec ;TO NEAREST);
else result = div (sig ; pow ; prec;TO NEAREST);
if (sign � 1) return result ; else return �result ;

g

85. First, we scan the optional sign at the beginning of the input.

h scan sign s 85 i �
s = 1;
if (rep [0] � '-') f s = �1; rep++; g
else if (rep [0] � '+') rep++;

This code is used in chunks 84 and 89.

86. We need a function isnum to test if a scanned character is a digit.

h auxiliary functions 16 i +�
bool isnum (char ch)

f
if ((ch � '0') ^ (ch � '9')) return true ;

else return false ;
g

87. Now we scan the input up to the decimal point if there is one. We pass every
character and convert it to int. Each number is added to the temporary variable sig that

is decimally shifted by one to the left.

40

h scan integer part 87 i �
while (isnum (�rep)) f
int length ++;

sig = sig � dd + (�(rep++)� '0');

g
This code is cited in chunk 88.

This code is used in chunk 84.

88. The fraction scan works quite similar as h scan integer part 87 i. We step over the

input up to the character 'E' or until the input's end is reached.

h scan fraction 88 i �
if (�rep � '.') f
rep++;

while (isnum (�rep)) f
sig = sig � dd + (�(rep++)� '0');

frac length ++;

g
g

This code is used in chunk 84.

89. To scan the exponent we �rst read the optional sign and otherwise proceed as before.

h scan exponent 89 i �
if (�rep � 'E') f
rep++;

h scan sign s 85 i
while (isnum (�rep)) exp = exp � dd + (�(rep++)� '0');
if (s � �1) exp = �exp ;

g
This code is used in chunk 84.

41

90. References

References

[IEE87] IEEE standard 754-1985 for binary oating-point arithmetic, IEEE.reprinted in

SIGPLAN 22,2:9-25,1987

[IE Go] David Goldberg. What every computer scientist should know about oating-point

arithmetic

[CACM95] K.Mehlhorn and S.N�aher.LEDA: A library of e�cient data types and algo-

rithms.

[N�ah95] S.N�aher.LEDA manual.Technical report MPI-I-95-102, Max-Planck-Institut f�ur

Informatik, 1995

42

Index

a: 5, 12, 30, 36, 37, 39, 43, 47, 48,

50, 54, 67.

a ptr : 31.

aa : 40, 41.

abs : 5, 67, 84.

absolute : 31.

add : 5, 30, 36.

b: 5, 19, 30, 36, 37, 39, 48, 50, 75,

77, 82, 83.

b ptr : 31.

b rem : 79.

b shift : 80.

bf sign : 26.

bias : 5, 7, 17, 18, 20, 26, 39, 41.

bigoat: 5, 12, 59.

BIGFLOAT H : 5.

bin maxlen : 74, 75, 83.
BIN OUT : 5, 74, 82.
binout : 74, 75, 82.
bl di� : 50.
ceil : 5, 79, 80, 84.

ch : 86.
compare : 6.
compose parts : 54, 57, 58, 73.
conversion : 10.
count : 75.

cut : 19, 20, 22, 23, 24, 25.
d: 16, 40, 59.
dbool : 5, 7, 8.
dd : 77, 80, 84, 87, 88, 89.
DEC OUT : 5, 8, 74, 82.
decimal output : 74, 77, 82.

di� : 31, 32, 50, 80.

digits : 5, 7, 17, 18, 20, 22, 23, 24,
25, 26, 80.

div : 5, 30, 39, 80, 84.
double min : 53, 58, 60.

e: 5, 12, 64.

error : 30, 32.
error handler : 14, 15, 28, 34, 49, 51, 77.

error in rounding : 7.
EXACT : 1, 5, 18, 26, 30, 32, 41,

45, 76, 84.

exp : 44, 57, 84, 89.
exp di� : 31, 34, 84.

exp 11 : 54, 55.

exponent : 3, 4, 5, 9, 12, 13, 18, 27, 28,

31, 33, 34, 37, 40, 41, 44, 45, 47, 48,

50, 64, 69, 70, 71, 72, 82.

fabs : 60.

false : 41, 46, 51, 86.

 : 84.

ag : 59, 60, 64, 75.

oor : 5, 82.

frac length : 84, 88.

get exponent : 5, 77, 79.

get precision : 5, 79.

get signi�cant : 5, 79.

global prec : 5, 8.

h sig : 73.

help : 81.

high32 : 54, 55, 56.

i: 16, 75.
in : 6.
int length : 84, 87.
integer 1 : 66.
integer 20 : 66, 73.

integer 32 : 66, 73.
integer 52 : 66, 72.
is : 5, 83.
is exact : 5, 7, 17, 18, 30, 36, 37, 39,

41, 43, 46.

isInf : 5, 28, 35, 38, 42, 47.
islong : 28, 34, 77.
isNaN : 5, 28, 35, 38, 42, 49, 51, 68, 82.
isnInf : 5, 51, 68, 82.
isnum : 86, 87, 88, 89.
isnZero : 5, 68, 82.

ispInf : 5, 51, 68, 82.

ispZero : 5, 68, 82.
isSpecial : 5, 18, 35, 38, 42, 46, 47,

49, 51, 68, 82.

isZero : 5, 28, 35, 38, 42, 46, 47, 49, 51.

k: 44.

l: 84.
l shift : 71.

l sig : 73.
least sig 32 : 54, 56.

length : 4, 12, 13, 19, 28, 40, 41, 44,

64, 72, 82.

LITTLE ENDIAN : 56, 61.

log : 16.

43

log x : 31.

log y : 31.

log 2 : 69, 70.

log10 : 79, 82.

log10 b : 79, 80, 81.

log2 : 5, 16, 80, 84.

log2 b : 79, 80.

log2dd : 84.

l1 : 16.

l2 : 16.

m: 5.

max : 16, 28, 32, 44, 82.

mh : 59, 61, 62, 63, 64.

ml : 59, 61, 63.

mode : 5, 7, 17, 18, 26, 30, 32, 36, 37,

39, 41, 43, 45, 76.

most sig 20 : 54, 55.

mul : 5, 30, 37, 38, 76, 80, 84.
n: 76.

n pre�x : 76.
NAN : 3, 5, 14, 15, 35, 38, 42, 46,

47, 65, 67.
NaN : 1, 38, 46, 49, 51.
NaN double : 58, 68.

NINF : 3, 5, 14, 38, 42, 65, 67.
nInf double : 58, 68.
normal : 67, 70.
normalize : 4, 7, 10, 15, 18, 28, 35, 38,

42, 46, 48, 50, 59, 68.

NOT : 3, 4, 5, 12, 13, 14, 15, 41, 65.
NZERO : 3, 4, 5, 14, 38, 42, 65, 67.
nZero double : 58, 68.
o mode : 5.
op : 16.

operator: 5, 47, 48, 50, 82, 83.
os : 5, 75, 77, 78, 81, 82.

oss : 77, 80, 81.
out : 6.

outofchar : 74, 83, 84.

output mode : 5, 8, 74, 82.

output modes: 5.

p: 5, 56, 59.
PINF : 3, 5, 14, 15, 38, 42, 47, 65, 67.

pInf double : 58, 68, 69, 70.

pow : 84.

powl : 76, 80, 84.
pow2 : 5, 57, 58, 60.

prec : 5, 19, 30, 32, 36, 37, 39, 40, 43,

44, 76, 77, 80, 81, 82, 84.

precision : 1, 3, 4, 5, 9, 12, 13, 18, 20,

26, 28, 31, 32, 41, 50, 69, 70, 72.

Print : 6.

PZERO : 3, 4, 5, 12, 13, 14, 15, 38,

42, 47, 65, 67.

pZero double : 58, 68, 69.

R: 41.

r: 44.

Read : 6.

rep : 84, 85, 87, 88, 89.

result : 37, 39, 41, 43, 84.

rmode : 5, 28.

round : 5, 10, 17, 18, 28, 30, 37, 39, 69.

round mode : 5, 7, 8.

rounded value : 67, 69, 70, 71, 72.

rounding modes: 5.
s: 5, 12, 43, 67, 84.

set glob prec: 5.
set output mode : 5.
set round mode : 5.
shift : 18, 26, 27.
sig : 50, 63, 84, 87, 88.

sign : 4, 5, 6, 10, 14, 15, 16, 20, 23, 24,
25, 26, 30, 41, 46, 50, 51, 59, 62, 63,
65, 67, 69, 70, 73, 78, 82, 84.

sign a : 50.
sign b : 50, 82.

sign of special value : 5, 15, 35, 38, 42.
sign result : 38, 42.
sign 1 : 54, 55.
signi�cant : 3, 4, 5, 9, 12, 13, 14, 18,

20, 21, 22, 23, 24, 25, 26, 27, 28, 33,

34, 37, 39, 40, 41, 44, 47, 48, 50, 63,
64, 65, 67, 71, 72, 80, 82.

signum : 4.
sp : 5, 12.

special : 3, 4, 5, 9, 12, 13, 14, 15,

41, 49, 65.

special values: 5.

sq : 16.
sqrt : 5, 30, 43, 44.

str : 81.

strlen : 81.

sub : 5, 30, 36.
sum : 30, 32, 33.

44

s2 : 45.

t exp : 67, 72, 73.

t sig : 67, 71, 72, 73.

temp : 75, 83.

test : 18, 20.

TO INF : 1, 5, 18, 23, 26, 45.

to integer : 28.

TO N INF : 1, 5, 18, 25, 26, 45.

TO NEAREST : 1, 5, 8, 18, 20, 26,

41, 45, 69, 80, 84.

TO P INF : 1, 5, 18, 24, 25, 26, 45.

TO ZERO : 1, 5, 18, 22, 26, 45.

todouble : 5, 52, 67, 79.

tointeger : 5, 28, 80.

tolong : 28, 34, 50, 69, 71, 72, 73,

75, 79, 84.

true : 8, 17, 18, 46, 49, 86.

Type Name : 6.
values : 3.

void: 4.
x: 5, 6, 14, 15, 18, 28, 30, 67, 76.
y: 6, 30, 76.
z: 4, 76.
zeros : 4.

45

List of Re�nements

h Initialization of static members 8 i Used in chunk 10.

hLEDA functions 6 i Used in chunk 5.

h arithmetical functions 30, 36, 37, 39, 43, 47 i Used in chunk 10.

h auxiliary functions 16, 86 i Used in chunk 10.

hbias rounding 26 i Used in chunk 18.

h bigfloat.c 10 i
h bigfloat.h 5 i
h calculate high32 55 i Used in chunk 54.

h calculate sqrt 44 i Used in chunk 43.

h calculate sum 33 i Used in chunk 34.

h calculate the sign 78 i Used in chunk 77.

h check for denormalized number 60 i Used in chunk 59.

h check for normal or denormal return value 70 i Used in chunk 67.

h check for special values 65 i Used in chunk 59.

h comparison operators 48, 50 i Used in chunk 10.

h compute approximative result 41 i Used in chunk 39.

h compute decimal logarithm of b 79 i Used in chunk 77.

h compute decimal signi�cant of b 80 i Used in chunk 77.

h compute sum and error 32 i Used in chunk 30.

h constructor body for integer data type 13 i Used in chunk 12.

h constructors 12, 59 i Used in chunk 10.

hdata members of class bigoat 9 i Used in chunk 5.

hdenormal case 71 i Used in chunk 67.

hdetermine high and low part 61 i Used in chunk 59.

h exact addition 34 i Used in chunk 32.

h�nd bigger operand 31 i Used in chunk 30.

h functions for internal use 4, 19, 54, 57, 75, 76, 77, 84 i Used in chunk 10.

h general functions 14, 15, 18, 28, 67 i Used in chunk 10.

h get the double's sign 62 i Used in chunk 59.

h get the exponent's value 64 i Used in chunk 59.

h get the signi�cant's value 63 i Used in chunk 59.

h global identi�ers 58, 66, 74 i Used in chunk 10.

hhandle special cases 35 i Used in chunk 30.

h input/output operators 82, 83 i Used in chunk 10.

hnormal case 72 i Used in chunk 67.

h output of the result 81 i Used in chunk 77.

hprivate functions 7 i Used in chunk 5.

hput it all together 56 i Used in chunk 54.

h round to in�nity 23 i Used in chunk 18.

h round to minus in�nity 25 i Used in chunk 18.

h round to nearest 20 i Used in chunk 18.

h round to plus in�nity 24 i Used in chunk 18.

h round to zero 22 i Used in chunk 18.

h rounding of sqrt 45 i Used in chunk 43.

h rounding step of todouble 69 i Used in chunk 67.

46

h scan exponent 89 i Used in chunk 84.

h scan fraction 88 i Used in chunk 84.

h scan integer part 87 i Cited in chunk 88. Used in chunk 84.

h scan sign s 85 i Used in chunks 84 and 89.

h set the bits of a 73 i Used in chunk 67.

h shift dividend's signi�cant 40 i Used in chunk 39.

h shift signi�cant 27 i Used in chunk 26.

h signi�cant is even 21 i Used in chunk 20.

h special case checking for operator � 49 i Used in chunk 48.

h special case checking of operator > 51 i Used in chunk 50.

h special case checking of todouble 68 i Used in chunk 67.

h special cases for div 42 i Used in chunk 39.

h special cases for mul 38 i Used in chunk 37.

h special cases of sqrt 46 i Used in chunk 43.

47

