
Modelling Mixed-Integer Optimisation

Problems in Constraint Logic Programming

Peter Barth Alexander Bockmayr

MPI{I{95{2{011 November 1995

Authors' Addresses

Peter Barth, Alexander Bockmayr

Max-Planck-Institut f�ur Informatik, Im Stadtwald, D-66123 Saarbr�ucken, Germany

fbarth,bockmayrg@mpi-sb.mpg.de

Publication Notes

The present report has been submitted for publication elsewhere and will be copyrighted if

accepted.

Acknowledgements

This work was partially supported by the ESPRIT Working Group CCL (contract EP 6028).

Abstract

Constraint logic programming (CLP) has become a promising new technology for solving complex

combinatorial problems. In this paper, we investigate how (constraint) logic programming can

support the modelling part in solving mixed-integer optimisation problems. First we show that

the basic functionality of algebraic modelling languages can be realised very easily in a pure logic

programming system like Prolog and that, even without using constraints, various additional

features are available. Then we focus on the constraint solving facilities o�ered by CLP systems.

In particular, we explain how the constraint solver of the constraint logic programming language

CLP(PB) can be used in modelling 0-1 problems.

Keywords

Modelling, Mixed-Integer Optimisation, Constraint Logic Programming

Contents

1 Introduction 2

2 Algebraic modelling in logic programming 2

2.1 Algebraic modelling : 2

2.2 Algebraic modelling in logic programming : 4

2.2.1 Modelling Data : 5

2.2.2 Modelling Constraints : 6

2.2.3 Syntactic Sugar : 7

2.2.4 Description of the Prototype : 9

2.3 Additional power through the logic programming language : : : : : : : : : : : : : : : 11

3 Modelling in constraint logic programming 12

4 Modelling in CLP(PB) 16

4.1 Simplifying pseudo-Boolean constraints : 16

4.2 Reasoning with user-de�ned constraints : 17

5 Conclusion 19

1

1 Introduction

Constraint logic programming (CLP) has become a promising new technology for solving complex

combinatorial problems. While a lot of research has been dedicated to developing more powerful and

e�cient constraint solvers, much less e�ort has been spent to study the role of CLP in modelling.

From a practical point of view, however, model building is extremely important. A practitioner does

not want to develop a new solver. He would like to use an existing solver and is looking for a tool

that allows him to formulate and to solve his problem in the most convenient way. In this paper, we

show how (constraint) logic programming can support the modelling process when solving mixed-

integer optimisation problems and what the possible bene�ts are compared to existing modelling

systems in mathematical programming.

The organisation of this paper is as follows. In Section 2, we �rst show how the basic function-

alities of algebraic modelling languages can be realised very easily in a logic programming system.

Then we discuss what additional features are available in a pure logic programming language like

Prolog, even without the use of constraints. In Section 3, we consider constraint logic program-

ming over �nite domains, CLP(FD), and describe various programming language constructs that

may allow to model a problem much more compactly than in classical mathematical programming.

In Section 4, we focus on modelling 0-1 problems in CLP(PB), a constraint logic programming

language for pseudo-Boolean constraints. In particular, we show how logical conditions between

pseudo-Boolean constraints can be eliminated automatically using the complete constraint solver

of this language.

Mathematical programming is much older than programming in the sense of today's computer

science. It is time now that the achievements in declarative programming and programming lan-

guage design are made available for formulating and solving mathematical programming problems.

Constraint logic programming is one of the most promising approaches for achieving this goal.

2 Algebraic modelling in logic programming

2.1 Algebraic modelling

Modelling languages are intended to bridge the gap between the modeler's form of a problem,

which should be natural and easy to understand by humans, and the algorithm's form, which can

be executed on a computer [Fou83]. On the one hand, a modelling language should therefore allow

the user to formulate his problem in a natural and declarative way, on the other hand it should be

possible to generate from this high-level description automatically a machine-oriented form that

can serve as input to a suitable computer package.

Algebraic modelling languages are based on the familiar algebraic notation used in traditional

mathematics. They allow the modeler to use standard mathematical notation, for example sub-

scripts and summation, to formulate the objective function and the constraints of his problem.

Typical algebraic modelling systems are, for example, Ampl [FGK93] and Gams [MB93] (see

[Sha93] for a guide to modelling software). Williams [Wil93a] lists the following features desirable

in any modelling system:

� Separating the data from the statements of the model

2

set PROD; # products

param rate {PROD} > 0; # tons produced per hour

param avail >= 0; # hours available in week

param profit {PROD}; # profit per ton

param market {PROD} >= 0; # limit on tons sold in week

var Make {p in PROD} >= 0, =< market[p]; # tons produced

maximize total_profit: sum {p in PROD} profit[p] * Make[p];

Objective: total profits from all products

subject to Time: sum {p in PROD} (1/rate[p]) * Make[p] =< avail;

Constraint: total of hours used by all

products may not exceed hours available

Figure 1: A simple production model in an algebraic modelling language

� Indexing for variables and parameters

� Summation over index sets

� Relations between indices

� Arithmetic on the coe�cients

� Interactive modelling

� Automatic formatting

We illustrate these features by a production model taken from [FGK93]. We are given a number

b of hours available, a set of products P and parameters a

j

; c

j

, and u

j

, describing for each j 2 P the

tons per hour, the pro�t per ton, and the maximum number of tons of product j. Using variables

X

j

for the number of tons of product j to be made, our goal is to maximise the objective function

X

j2P

c

j

X

j

subject to the constraints

X

j2P

(1=a

j

)X

j

� b

and

0 � X

j

� u

j

; for each j 2 P :

The corresponding formulation in an algebraic modelling language, here we use Ampl, is given

in Figure 1.

3

2.2 Algebraic modelling in logic programming

We now show how algebraic modelling can be realised very easily in a logic programming language

like Prolog.

The general idea of logic programming is to use logic as programming language. The most pop-

ular logic programming language, Prolog, is based on the Horn fragment of �rst-order predicate

logic. A Horn clause logic program is a set of rules of the form

A :� B

1

; : : : ; B

n

with n � 0. A rule with n = 0 is also called a fact. The conclusion A, the head of the rule, and the

conditions B

i

, the body or premises of the rule, are logical atoms of the form p(t

1

; : : : ; t

m

); m � 0,

where p is a predicate symbol and the t

j

are terms, consisting of variables, constants, and function

symbols over a suitable signature. The declarative meaning of such a rule is given by the universal

formula

8X

1

; : : : ; X

k

: A(B

1

^ : : :^ B

n

;

where X

1

; : : : ; X

k

is a list of all the variables occurring in the rule. Given a logic program, one can

ask a query of the form

?� C

1

; : : : ; C

l

;

which corresponds to the existential formula

9X

1

; : : : ; X

k

: C

1

^ : : :^ C

l

:

Based on the resolution principle from automated deduction, a logic programming system will then

compute an answer substitution

X

1

= t

1

; : : : ; X

k

= t

k

such that the query is satis�ed. In general, several answer substitutions are possible, which can

be enumerated by backtracking (for a comprehensive introduction into logic programming see for

example [CM81, SS86]).

Logic programming is a natural candidate for a modelling language in mathematical program-

ming. The modeler can use logic to formulate his problem in a high-level and declarative way.

Familiar algebraic notation can be incorporated very easily by suitable Prolog predicates. The

logic programming system will then automatically generate the corresponding input for a mathe-

matical programming solver.

In Prolog, a set of rules forms a logic program. But, a set of rules can also be seen as a

description of a linear mixed-integer programming problem by exploiting the relational aspects of

logic programming. For that, we �rst show that modelling instances or data of a speci�c linear

programming model is straightforward in Prolog. Next, we illustrate that the statements or

constraints of a linear programming model can be similarly described. Just the result of a special

Prolog query has to be interpreted. Finally, some syntactic sugar is introduced that allows to

closely mimic a standard modelling language like Ampl or Gams.

4

2.2.1 Modelling Data

In algebraic modelling languages, the data of a speci�c instance of a linear programming model

consist of index sets and parameters that relate an index to a data item, which typically is either

a coe�cient or a variable.

Index Sets: Index sets represent a set of items in the real world. For example, there might be

a set of products consisting of the items a, b, and c. In other words, there is a unary relation

product containing the three items a, b, and c. Declaring such simple relations in Prolog is

straightforward and for the above example we write

product(a).

product(b).

product(c).

In Prolog, a clausal de�nition of an n-ary predicate p/n de�nes an n-ary relation. In the above

example we de�ne the unary relation product/1, which contains all possible answer substitutions

for X in the query

?� product(X) :

Hence, we de�ne the set

fX j product(X) is satis�ed g = fa; b; cg ;

which is exactly what we need in algebraic modelling. Furthermore, we are not restricted to declare

facts for index sets, but any valid set of rules can be used to declare such a relation. For example,

product(X) :- member(X,[a,b,c]).

de�nes the same relation. The predicate member is usually available in any Prolog system or can

be recursively de�ned by the two rules

member(X,[X|_]).

member(X,[_|L]) :- member(X,L).

One can use the full power of Prolog in order to declare arbitrary index sets. For example, the

union and intersection of two binary index sets p1 and p2 is de�ned by

union(X,Y) :- p1(X,Y).

union(X,Y) :- p2(X,Y).

intersection(X,Y) :- p1(X,Y),p2(X,Y).

For a full treatment of set operations and other programming guidelines for Prolog see for exam-

ple [SS86].

5

Parameters: Parameters in algebraic modelling relate an element of an n-ary index relation to

a data item. Hence, a parameter speci�cation declares a function from an n-ary index set to a

set of data items. Since we have only relations in Prolog, we represent an n-ary function by an

(n+1)-ary relation. For example, assume that we have a cost associated to one quantity of each

product. Then there is a function

cost : fa; b; cg! IR

which might be de�ned as follows:

cost(a) = 4; cost(b) = 5; cost(c) = 3

In our relational language Prolog we model such a function by a binary predicate cost as follows:

cost(a,4).

cost(b,5).

cost(c,3).

Again, any facilities o�ered by the logic programming system can be used. An equivalent formula-

tion is, for example,

cost(X,Y) :- member(X-Y,[a-4,b-5,c-3]).

Variables can be seen as a special parameter, where the relation does not specify a numerical

value (a coe�cient) for the (n+1)-th argument, but a unique variable name. In this sense, there

is no conceptual di�erence between parameters and variables. Hence, index sets, parameters, and

variables can be naturally formulated in Prolog without further support.

For checking consistency of a model description one often wants to declare the names of all the

index sets as well as the parameter and variable names together with their index sets. Again, we

can exploit the relational aspect of Prolog and require that the relation set/1 de�nes the set of

all set names and that param/2, resp. variable/2, de�nes the set of all parameter names, resp.

variable names, together with a tuple (or a list) of all its index set names, e.g.,

set(product).

param(cost,[product]).

variable(x,[product]).

While generating the model, we can then assure that only valid, i.e. speci�cation corresponding,

index sets and parameters are generated.

2.2.2 Modelling Constraints

For the speci�cation of the constraints again the relational aspect of logic programming is su�cient.

The modeler just has to implement a unary predicate subject_to such that each element of the

relation subject_to is a constraint. The complete set of constraints then is the conjunction of all

elements in the relation subject_to. For example, one rule of the predicate subject_to might be

subject_to(CostA*XA =< 100) :- cost(a,CostA),x(a,XA).

6

which expresses that the overall cost of making the quantity XA of product a may not exceed 100.

Due to the underlying logic inference mechanism, we get parametric statements for free. The same

upper bound for all products is modelled by

subject_to(CostP*XP =< 100) :-

cost(P,CostP),

x(P,XP).

Note that we have replaced the constant a with a variable P. The set of all instances of the above

rule together with the cost predicate is

f4 � Xa =< 100; 5 � Xb =< 100; 3 � Xc =< 100g :

Of course, we should also allow conjunctions of constraints represented as a list of primitive con-

straints:

subject_to(L) :-

findall(CostP*XP =< 100,(cost(P,CostP),x(P,XP)),L).

Here, we use the Prolog built-in findall, which computes all instances of the relation de�ned in

the second argument. For each of these instances, the �rst argument, the template, is instantiated

accordingly and the list of all these instances is collected in the third argument. If we want to

manipulate a speci�c set of instances, say for constructing a sum of arithmetic terms, we need the

functionality of findall. For the objective function we assume to have a single clause de�ning the

unary relation objective.

Note that up to now, we have not introduced any support in Prolog and are already able

to formulate a (mixed-integer) linear programming model and the corresponding data. It can be

constructed by executing the query

?- findall(Constraint,subject_to(Constraint),Constraints).

which instantiates Constraints to a list of all the constraints speci�ed by the modeler. But, using

pure Prolog in such a way for modelling is not very convenient. Hence, we provide now some

primitives that facilitate modelling and additionally integrate support for checking the model. Note,

however, that we only add syntactic sugar and that the functionality we need is already present in

vanilla Prolog.

2.2.3 Syntactic Sugar

To modelers the functionality of findall is better known as forall. Hence, we support a predicate

forall/3 of the form

forall(Goal; Template;L)

where Goal is an arbitrary Prolog goal, Template is a term, and L is a free variable. All possible

instantiations of Template obtained by executing the query Goal are collected in L. Similarly, we

provide a predicate sum/3

sum(Goal; Template; S)

which is equivalent to forall, except that the third argument S is instantiated not to the list, but

to the sum of the template instances. For example,

7

subject_to(S =< 200) :-

sum((cost(P,CostP),x(P,XP)),CostP*XP,S).

ensures that the overall cost of all products is less than or equal to 200.

In algebraic modelling one typically wants to make sure that Prod is a member of the unary

relation product. This can be done with an additional goal in the Goal part of sum.

subject_to(S =< 200) :-

sum((product(P),cost(P,CostP),x(P,XP)),CostP*XP,S).

Note that arbitrary Prolog goals, hence also conjunctions, can be used in the Goal part.

It is clumsy to write a function such as cost in its relational form. Hence, for variables and

parameters we allow to use functional notation in the Template part with help of a simple prepro-

cessor. Thus, we can also write

subject_to(S =< 200) :-

sum(product(P),cost(P)*x(P),S).

in order to express that the cost of the make is less than or equal to 200. Not only for parameters

and variables, but also for expressing sum, forall, and a conjunction of constraints, the relational

form is not very convenient. Thus, we also support a functional notation for these statements.

subject_to :-

sum(product(P),cost(P)*x(P)) =< 200.

In general, we now assume that each predicate in the body of a nullary clause subject_to/0

evaluates to a (conjunction of) constraint(s). Hence, an upper and lower bound of the cost of the

make can be given by

subject_to :-

sum(product(P),cost(P)*x(P)) =< 200,

sum(product(P),cost(P)*x(P)) >= 100.

In general, we say an expression is an n-ary term p(t

1

,: : : ,t

n

) such that the query p(t

1

,: : : ,t

n

,V)

assigns to V a unique term. Whenever an expression is allowed, the expression is replaced by the

unique term V .

Since it is convenient to also allow constraints while declaring parameters or variables we adopt

a similar notion. Hence, a parameter or variable declaration is a constraint declaration, but is unary

instead of nullary, where the argument contains the name and index sets. Convenient abbreviations

are also supported.

A Prolog formulation of the production example is given in Figure 2. The close similarity to

the formulation in Figure 1 should be obvious. Allowing for such a model formulation in Prolog

requires less than 1000 lines of Prolog code including interfaces to 3 linear programming systems,

some command interpretation, and an expression simpli�er. The data for a concrete instance can

also be given by a Prolog program as shown in Figure 3. A nicer syntax for declaring data can

be incorporated if needed.

8

set prod.

param rate:prod :- > 0.

param avail :- > 0.

param profit:prod.

param market:prod :- >= 0.

variable make:prod(J) :- >= 0,=< market(J).

objective max:total_profit :- sum(prod(P),profit(P)*make(P)).

subject_to time_res :- sum(prod(P),1/rate(P)*make(P)) =< avail.

Figure 2: The production model in Prolog

prod(bands). % set PROD := bands coils;

prod(coils).

rate(bands,200). % param: rate profit market :=

rate(coils,140). % bands 200 25 6000

profit(bands,25). % coils 140 30 4000 ;

profit(coils,30).

market(bands,6000).

market(coils,4000).

avail(40). % param avail := 40;

Figure 3: Data for the production model in Prolog

2.2.4 Description of the Prototype

We describe the syntax, features, and usage of the current prototype implementation Plam (ProLog

And Modelling), aiming to simulating a standard mathematical programming modelling language.

In general, a model consists of �ve di�erent parts: sets, parameters, variables, objectives, and

constraints. To distinguish these parts we use unary Prolog operators set, param, variable,

objective, and subject_to respectively.

A �le containing a model must start with the line

:- plam.

Set declarations are of the form

set hset-name/arityi.

9

where hset-namei denotes a Prolog predicate of arity arity to be de�ned in the corresponding

data module. If /arity is missing, the arity defaults to 1. Optionally, arithmetic index sets are

supported. For example,

set a :- 1..u by 2.

declares an index set a containing all odd integer numbers i with 1 � i � u, where u is a parameter

over no index sets. In the expression l..u by s the terms l, u, and s can be either integer numbers

or non-indexed parameters. If by n is missing, n = 1 is assumed. Arithmetic index sets are only

supported for unary sets. In order to build a, for example, binary index set b ranging from 1

to 3 in the �rst argument and from 1 to 4 in the second argument you have to exploit the logic

programming language by writing

set b/2.

b(X,Y) :- between(1,X,3,1),between(1,Y,4,1).

The predicate between(L,X,U,S), which holds for all L � X � U and X = L + n� S, is supported

by the system.

Parameter declarations are of the form

param hparam-namei : [hset-name

1

/arity

1

i; : : : ; hset-name

n

/arity

n

i].

where hparam-namei denotes an (

P

n

i=1

arity

i

)-ary Prolog predicate to be de�ned in the data

module. If n = 1, the list parentheses can be omitted. If /arity

i

is missing, /1 is assumed. Instead

of set-name

i

/arity

i

one can also write set-name

i

(X

1

; : : : ; X

arity

i

). Optionally, a body is allowed

containing a conjunction of expressions E

i

evaluating to constraints. For example,

param p:[i(I)] :- >= q(I).

de�nes a parameter p which is indexed by a unary set i. As restriction we state that for all I we

must have p(I) >= q(I). Alternatively, we can write

param p:i :- forall(i(I),p(I) >= q(I)).

to which the �rst form is translated.

Variable declarations are similar to parameter declarations but the keyword param is replaced by

variable. Declared variables must not be de�ned in the data module. The two special expressions

integer and binary restrict variables to be integral, resp. 0-1 variables.

For the objective function, there must be a single declaration of the form

objective min:<name> :- S. or

objective max:<name> :- S.

where S evaluates to a linear term.

Constraint declarations are of the form

subject_to hnamei :� E

1

; : : : ; E

m

.

such that each expression E

i

evaluates to a constraint or a list of constraints.

A number of commands are supported in order to generate and solve a model. Among them

10

write_model(<filename>,<solver>) ,

which writes the modelled instance to the �le filename, suitable to be read by a solver <solver>.

Currently, cplex and lpsolve (see [Sha93]) and the portable format mps are supported. With

solve(<solver>).

the constructed model is generated and solved. Beside cplex and lpsolve also a built-in solver

clpr can be used, if supported by the underlying Prolog system. Several other commands are

available for inspecting data, investigating parts of the model, or making the model available as a

term.

2.3 Additional power through the logic programming language

Data for sets and parameters can be de�ned by arbitrary Prolog rules, not only by facts. Thus,

it is no problem to model problems containing complicated data items like, for example, prime

numbers. Given a Prolog predicate prime(I,P) that computes the I-th prime number and

assigns it to P , we express with

set i :- 1..100.

variable x:i :- >= 0, =< 10.

subject_to pc :- sum(between(1,I,100),prime(I)*x(I)) =< 10000.

that the sum of the variables x

I

weighted by the Ith prime number shall be less than or equal to

10000.

Furthermore, the predicates sum and forall can be called with an arbitrary Prolog goal as

�rst argument, which allows all kinds of index calculations. For example, imposing a strict ordering

on some variables like

81 � i < j � n : x

i

< x

j

is done by

param n :- >= 1.

subject_to :-

forall((n(N),between(1,I,N),SI is I+1,between(SI,J,N)),

x(I) < x(J)).

In graph theory, the fractional stable set polytope is de�ned by the inequalities

8(i; j) 2 E : x

i

+ x

j

� 1 ^ 0 � x � 1;

where E denotes the edges of the graph. Given a predicate edge(I,J) that de�nes the edges of

the graph, we can model the above condition:

variable x:1..n :- >= 0, =< 1.

subject_to :- forall(edge(I,J),x(I) + x(J) =< 1).

11

Graph manipulation packages in Prolog are available [Gro95].

The features of a modelling environment mentioned by Williams [Wil93a] are supported by logic

programming. Data and the statements of a model can be separated. The index mechanism for

accessing variables and parameters is very powerful. Beside standard index access methods all kinds

of index manipulations are available due to the underlying logic language. Providing summation

or any other kind of combination over index sets is a matter of adding a few lines of Prolog code.

Relations between index sets are naturally available in Prolog. Arithmetic on the coe�cients is

handled by a suitable expression simpli�er. Since Prolog is an interactive language, interactive

modelling, debugging, etc. is well supported. Automatic formatting is available and can also be

adapted to special needs, since the model representation can be made available as a Prolog term.

The basic functionality needed for algebraic modelling is available in Prolog without any

further support. Syntactic support can be added with a few lines of code allowing to mimic

standard algebraic modelling systems with a small e�ort. Whenever the supported built-ins are

not su�cient, the full power of the logic programming environment can be used to ful�ll the needs

and can even be made available as built-in if necessary.

3 Modelling in constraint logic programming

Constraint logic programming (CLP) combines the declarative nature of logic programming with

the e�ciency of constraint solving over speci�c domains. In addition to logical atoms of the form

p(t

1

; : : : ; t

m

), the query or the body of a rule in a constraint logic program may also contain

constraints c(x

1

; : : : ; x

k

) over some domain of computation. These constraints may guide the

computation, since a rule can be applied to the query only if the current constraint set is consistent.

The output of a constraint logic program is in general no longer an answer substitution, but a set of

answer constraints. The heart of a constraint logic programming system is the underlying constraint

solver. It has to perform the following tasks:

� Decide whether a constraint set is satis�able.

� Simplify a constraint set and compute a solved form.

� Eliminate a set of variables from a constraint set.

The theory of constraint logic programming provides a general programming language scheme

CLP(X) that can be instantiated in various di�erent ways, depending on the computational domain

that is chosen. Among the most important domains that have been considered so far are [Col87,

JL87, DvHS

+

88, ASS

+

88, Boc93]

� Linear arithmetic over the real or rational numbers, CLP(R) or CLP(Q),

� Boolean algebra, CLP(B),

� Finite domains, CLP(FD), and

� Pseudo-Boolean or 0-1 constraints, CLP(PB).

12

To solve discrete optimisation problems, the computational domain X is usually instantiated

to �nite domains FD. This means that the constraints are de�ned over variables that take their

values in �nite sets of natural numbers. Since solving such constraints is in general, an NP-

complete problem, the most important operation on constraints, a test for consistency, has been

relaxed in most systems to local consistency, e.g. [DvHS

+

88, ACD

+

94, HSS

+

92, OB93, DC93,

BMvH94, Pug94]. Local consistency procedures remove some inconsistent values from the domains

of the variables by a constraint propagation mechanism, but in general they cannot achieve global

consistency. This has to be ensured by the programmer, using an extra enumeration predicate.

Therefore, a typical �nite domain program has the form

problem(<Vars>) :- <state constraints over Vars>,

<enumerate domain of Vars>.

The search for a feasible solution of the collected constraints is performed by the Prolog back-

tracking mechanism, which can be guided in a high-level way by suitable heuristics, while the �nite

domain solver is responsible for pruning the search tree. Bounded integer linear programs

maxfc

T

x j Ax

�

=

�

b; 0 � x � ug

can be expressed directly in this framework.

Example 1 The linear 0-1 program

maxf-100x

1

+ 72x

2

+ 36x

3

j -2x

1

+ x

2

� 0; -4x

1

+ x

3

� 0; x

1

+ x

2

+ x

3

� 1; x 2 f0; 1g

3

g

can be formulated in CLP(FD) as follows:

example(L,Z) :-

L = [X1,X2,X3],

domain(L,0,1),

-2*X1 + X2 #<= 0,

-4*X1 + X3 #<= 0,

X1 + X2 + X3 #>= 1,

Z #= -100*X1 + 72*X2 + 36*X3,

maxof(labeling(L),Z).

The system predicate domain(L,0,1) constrains each variable in the list L to the domain 0..1. The

predicate labeling(L) enumerates the possible values of the variables in L and maxof computes the

maximum of Z.

Asking the query

?- example(L,Z).

yields the answer

L = [1,1,1], Z = 8

13

corresponding to the optimal solution.

From the modelling point of view, one of the most important di�erences of CLP(FD) compared

to classical integer programming is that in addition to the standard arithmetical constraints, i.e.,

linear equations and linear inequalities, various other types of constraints are available, which are

supported by special constraint solving algorithms.

Roughly, we can distinguish the following classes of constraints:

� Basic numerical constraints: #=, #>=, #<=, #>, #<.

� Symbolic constraints, e.g. #\= (disequality), alldifferent, atmost, atleast, element.

� Domain-speci�c \global" constraints, e.g. cumulative, diffn, cycle, among.

� Meta constraints, e.g. Big-M, disjunction, cardinality (cf. Section 4).

The constraint alldifferent(L) states that all values in a list of �nite domain variables L

= [X1,...,Xn] have to be pairwise di�erent. In traditional integer programming, n(n � 1)=2

constraints would be needed to express this condition. But, the alldifferent constraint can

also be handled algorithmically. Such an algorithmic treatment avoids the creation of a quadratic

number of constraints while the same pruning e�ect is achieved. Furthermore, even better pruning

can be obtained by using special information on the alldifferent relation. For example, the

property that for every subset of k variables the cardinality of the union of the associated domains

must be greater than or equal to k can be exploited.

The constraints atleast(N,L,V) and atmost(N,L,V), with a list L of domain variables and

integers N,V state that at least or atmost N elements of L have the value V. The constraint

element(X,L,Y), with domain variables X and Y and a list of integers L, states that Y is equal

to the X-th element of L.

The \global" constraints cumulative, diffn, cycle and among were �rst introduced in the

constraint logic programming language Chip [AB93, BC94]. Similar constraints are also available in

the Ilog system [Pug94, Ber95]. The cumulative constraint [AB93] is used to express cumulative

resource limits over a period. The diffn constraint [BC94] is an n-dimensional generalisation of

alldifferent and expresses non-overlapping constraints on n-dimensional rectangles. The among

constraint [BC94] extends both atmost and atleast and enforces constraints on sequences of

numbers. The cycle constraint [BC94] �nds cycles in directed graphs.

Example 2 We illustrate by the cycle constraint, how a classical mathematical programming

problem like the traveling salesman problem can be modelled with these new constraint abstractions.

The cycle constraint �nds one or several cycles in a directed graph G = (V;E). Suppose the graph

consists of n nodes numbered from 1 to n. For each node i 2 V we introduce a �nite domain

variable X

i

for the successor node of i with domain D

i

= fj j (i; j) 2 Eg. The constraint

cycle(N,[X1,...,Xn])

states that there are exactly N non-overlapping cycles covering the graph G. In the special case N =

1, the X

i

describe a Hamiltonian circuit. Note that this modelling with �nite domain variables for

the nodes of the graph is completely di�erent from the standard approach for Hamiltonian circuits

based on 0-1 variables for the edges. In order to associate weights w

ij

to the edges (i; j) 2 E we

introduce for each node i 2 V a constraint

14

element(Xi,[Wi1,...,Win],Wi).

which states that Wi is the weight of the edge leading from node i to its successor Xi.

Now we consider an asymmetric traveling salesman problem with distance matrix [Wil93b]:

From/To A B C D E F

A 0 42 62 53 96 105

B 52 0 49 29 54 84

C 70 42 0 77 65 129

D 42 35 56 0 57 56

E 105 63 81 41 0 80

F 101 93 111 72 75 0

The following CHIP program solves this problem

tsp(L) :-

L = [X1,X2,X3,X4,X5,X6],

L :: 1..6,

cycle(1,L),

element(X1, [0, 42, 62, 53, 96, 105], C1),

element(X2, [52, 0, 49, 29, 54, 84], C2),

element(X3, [70, 42, 0, 77, 65, 129], C3),

element(X4, [42, 35, 56, 0, 57, 56], C4),

element(X5, [105, 63, 81, 41, 0, 80], C5),

element(X6, [101, 93, 111, 72, 75, 0], C6),

Cost :: 1..1000,

Cost #= C1 + C2 + C3 + C4 + C5 + C6,

min_max(labeling(L),Cost).

Asking the query ?- tsp(L) yields the optimal solution L = [3, 6, 2, 1, 4, 5] with cost 346.

Due to the underlying domain propagation, �nite domain constraints can be combined freely. Note

that this would not be possible when using a special purpose algorithm. For example, if we want to

express the condition that node 5 should be among the �rst three nodes, we simply add the constraint

atleast(1,[X1,X2,X3],5).

Now our program computes the optimal solution L = [2, 3, 5, 1, 6, 4] of cost 350. The general

cycle(N,L) constraint has been used in various contexts. Typical application areas include vehicle

routing [BC94] or airline crew management [BKC94].

Using the logic programming language, a user may de�ne his own new constraint abstractions

on top of the existing constraints in the system. If a constraint turns out to be useful in many

areas the language designers may decide to build it into their CLP system and to support it by

special algorithms.

15

4 Modelling in CLP(PB)

Pseudo-Boolean constraints are equations or inequalities between multilinear integer polynomials

in 0-1 variables. On the one hand, they generalise Boolean constraints, on the other hand they are

a restricted form of �nite domain constraints, where all domains are equal to the two-element set

f0; 1g. In operations research, pseudo-Boolean constraints correspond to non-linear 0-1 program-

ming problems.

A constraint logic programming language CLP(PB) for pseudo-Boolean constraints has been

introduced in [Boc93]. A prototype implementation of CLP(PB) has been developed in [Bar94].

The prototype solver of CLP(PB) is not intended to be used for solving large 0-1-problems. This

should be better done with the 0-1 optimisation software Opbdp [Bar95]. However, the prototype

solver can be very useful in modelling 0-1 problems. Given a set of possibly non-linear pseudo-

Boolean constraints it computes an equivalent set of extended clauses of the form

L

1

+ � � �+ L

k

� d ;

saying that at least d out of k literals have to be true, where a literal is either a 0-1 variable X

or its negation 1 � X (for an in-depth treatment of the underlying constraint solving techniques

see [Bar96]).

4.1 Simplifying pseudo-Boolean constraints

First, we show how a constraint set can be simpli�ed by the solver of CLP(PB). The main steps

of the simpli�cation procedure are the following:

� Linearisation of non-linear pseudo-Boolean constraints.

� Transformation of linear pseudo-Boolean constraints to equivalent sets of extended clauses.

� Derivation of stronger extended clauses including a check of consistency.

Example 3 Given the non-linear constraint

?- A*B + A*C + B*C #>= 1.

the solver computes the solved form

A + B + C #>= 2.

saying that at least two of the three 0-1 variables A,B,C have to be true. If we ask

?- A*B + A*C + B*C #>= 2.

we get the answer

A = 1, B = 1, C = 1.

Example 4 Given the linear pseudo-Boolean inequality [Wil93a, p. 216]

?- 3*X1 + 3*X2 -2*X3 + 2*X4 +2*X5 #<= 4.

16

the solver computes the solved form

~X1 + ~X2 + ~X4 + ~X5 #>= 2,

~X1 + ~X2 + X3 + ~X5 #>= 2,

~X1 + ~X2 + X3 + ~X4 #>= 2

which, in this case, corresponds to three facets of the convex hull of the set of feasible 0-1 solutions

of the original inequality (for a general discussion of the polyhedral properties of the solved form

see [Bar96, Section 7.7])

4.2 Reasoning with user-de�ned constraints

Additional power is gained once again by combining constraint solving with the possibilities of-

fered by the surrounding logic programming system. We can use logic programming for meta-

programming with constraints.

In a �rst step, we associate with a linear pseudo-Boolean inequality L #>= R a Boolean variable

B such that B logically implies L #>= R:

pb_switch_constraint(L #>= R, B) :-

pb_lowerbound(L - R, M),

L - M * ~BVar #>= R.

Here, pb_lowerbound computes a lower bound M for L - R, for example by summing up the negative

coe�cients. Similarly, we can impose the condition that B should be logically equivalent to L #>= R:

pb_equiv_constraint(L #>= R, B) :-

pb_switch_constraint(L #>= R, B),

pb_switch_constraint(L #< R, ~B).

After having de�ned indicator variables we can now express logical conditions on the con-

straints [MLM94]. For example, we can de�ne for pseudo-Boolean constraints C1, C2 the disjunc-

tion

pb_disj(C1,C2) :-

pb_switch_constraint(C1,B1),

pb_switch_constraint(C2,B2),

B1 + B2 #>= 1.

or the implication

pb_impl(C1,C2) :-

pb_equiv_constraint(C1,B1),

pb_switch_constraint(C2,B2),

B2 #>= B1.

Example 5 We consider a non-trivial example from [MW89]. The problem is to model by a

conjunction of linear pseudo-Boolean inequalities the condition:

17

If 3 or more of products (1 to 5) are made, or less than 4 of products (3 to 6, 8, 9) are

made then at least 2 of products (7 to 9) must be made unless none of products (5 to 7)

are made.

If we represent the decision to make product i by a 0-1 variable Pi this condition can be expressed

as follows:

pb_condition(P1,P2,P3,P4,P5,P6,P7,P8,P9) :-

pb_equiv_constraint(P1+P2+P3+P4+P5 #>= 3, A),

pb_equiv_constraint(P3+P4+P5+P6+P8+P9 #< 4, B),

pb_equiv_constraint(P5+P6+P7 #>= 1, C),

pb_equiv_constraint(P7+P8+P9 #>= 2, D),

(A + B) * C #<= 2*D.

Note that (A + B) � C � 2 �D is the pseudo-Boolean equivalent of (A _ B) ^ C ! D. Given the

query

?- pb_condition(P1,P2,P3,P4,P5,P6,P7,P8,P9).

the solver of CLP(PB) computes the answer

P7 + P9 + ~P3 + ~P4 + ~P5 #>= 1,

P7 + P8 + ~P2 + ~P3 + ~P5 #>= 1,

P7 + P9 + ~P2 + ~P3 + ~P5 #>= 1,

P3 + P4 + P7 + P9 + ~P5 #>= 1,

P3 + P4 + P7 + P8 + ~P5 #>= 1,

P4 + P6 + P7 + P9 + ~P5 #>= 1,

P3 + P6 + P7 + P9 + ~P5 #>= 1,

P4 + P6 + P7 + P8 + ~P5 #>= 1,

P3 + P6 + P7 + P8 + ~P5 #>= 1,

P8 + P9 + ~P5 #>= 1,

P7 + P8 + ~P1 + ~P4 + ~P5 #>= 1,

P7 + P9 + ~P1 + ~P4 + ~P5 #>= 1,

P7 + P8 + ~P1 + ~P3 + ~P5 #>= 1,

P7 + P9 + ~P1 + ~P3 + ~P5 #>= 1,

P7 + P8 + ~P3 + ~P4 + ~P5 #>= 1,

P8 + P9 + ~P7 #>= 1,

P7 + P8 + ~P1 + ~P2 + ~P4 + ~P6 #>= 1,

P7 + P9 + ~P1 + ~P2 + ~P4 + ~P6 #>= 1,

P7 + P8 + ~P1 + ~P3 + ~P4 + ~P6 #>= 1,

P7 + P8 + ~P1 + ~P2 + ~P5 #>= 1,

P7 + P9 + ~P1 + ~P3 + ~P4 + ~P6 #>= 1,

P7 + P8 + ~P2 + ~P3 + ~P4 + ~P6 #>= 1,

P7 + P9 + ~P2 + ~P3 + ~P4 + ~P6 #>= 1,

P7 + P8 + ~P1 + ~P2 + ~P3 + ~P6 #>= 1,

P7 + P9 + ~P1 + ~P2 + ~P5 #>= 1,

18

P7 + P9 + ~P1 + ~P2 + ~P3 + ~P6 #>= 1,

P4 + P5 + P7 + P9 + ~P6 #>= 1,

P3 + P5 + P7 + P9 + ~P6 #>= 1,

P3 + P4 + P7 + P9 + ~P6 #>= 1,

P4 + P5 + P7 + P8 + ~P6 #>= 1,

P3 + P5 + P7 + P8 + ~P6 #>= 1,

P3 + P4 + P7 + P8 + ~P6 #>= 1,

P7 + P8 + ~P2 + ~P4 + ~P5 #>= 1,

P7 + P9 + ~P2 + ~P4 + ~P5 #>= 1,

P8 + P9 + ~P6 #>= 1

A tighter representation is possible using compact extended clauses [Bar96]. But, the main point

here is that a complex Boolean relationship between constraints can be easily expressed in the logic

programming environment.

Another convenient modelling operator is cardinality, which states an upper and lower bound for

the number of constraints in a list that must hold.

pb_card(Lower,L,Upper) :-

pb_switch_sum(L,S),S #>= Lower,S #<= Upper.

pb_switch_sum([],0).

pb_switch_sum([C|Cs],S+BV) :-

pb_switch_constraint(C,BV),pb_switch_sum(Cs,S).

Hence, a disjunction of constraints can be expressed by

pb_card(1,[C1,...,CN],N).

and a conjunction by

pb_card(N,[C1,...,CN],N).

Parts of a problem can be semantically investigated using the interactivity of the logic programming

environment together with the powerful constraint solving capabilities o�ered by constraint logic

programming. For example, we can investigate what a disjunction or conjunction of constraints is

equivalent to. The query

?- pb_card(1,[4*A + 3*B + 2*C #>= 3,4*A + 2*B + 3*C #>= 3],2).

gives the answer

C + B + A #>= 1

Note that in this example already many features of the constraint solver are used, i.e., transforma-

tion, simpli�cation, and projecting out the Boolean variables introduced by pb switch constraint.

19

5 Conclusion

Due to the progress in programming language design, implementing a modelling language must no

longer be considered a di�cult task [Fou83]. Moreover, implementing a special algebraic modelling

language is not necessary, since existing declarative programming languages, like Prolog, can be

easily extended to suit the modeler's needs. All necessary extensions can be provided in Prolog

itself. Compared to existing modelling languages the full power of a complete programming lan-

guage is available whenever needed, which o�ers extensibility and
exibility with respect to the

problem to be modelled. By the introduction of constraints into logic programming, not only mod-

elling is possible, but also constraint solving within the system. Beside just solving a completely

speci�ed problem, the available constraint operators can also be used to implement domain speci�c

constraint solvers with small e�ort. For complex applications, parts of the problem that do not

admit a natural encoding as constraints can be handled by exploiting the programming language

power.

References

[AB93] A. Aggoun and N. Beldiceanu. Extending CHIP in order to solve complex scheduling

and placement problems. Mathl. Comput. Modelling, 17(7):57 { 73, 1993.

[ACD

+

94] A. Aggoun, D. Chan, P. Dufresne, E. Falvey, H. Grant, A. Herold, G. Macartney,

M. Meier, D. Miller, B. Perez, E. van Rossum, J. Schimpf, P. A. Tsahageas, and D. H.

de Villeneuve. ECLIPSE 3.4, ECRC Common Logic Programming System. Technical

report, ECRC, Munich, July 1994.

[ASS

+

88] A. Aiba, K. Sakai, Y. Sato, D.J. Hawley, and R. Hasegawa. Constraint logic program-

ming language CAL. In Fifth Generation Computer Systems, Tokyo, 1988. Springer,

1988.

[Bar94] P. Barth. Short Guide to CLP(PB). Max-Planck-Institut f�ur Informatik, 1994. System

available: ftp://www.mpi-sb.mpg.de/pub/tools/CLPPB/clppb.html.

[Bar95] P. Barth. A Davis-Putnam based enumeration algorithm for linear pseudo-

Boolean optimization. Technical Report MPI-I-95-2-003, Max-Planck-Institut f�ur

Informatik, Saarbr�ucken, January 1995. System available: http://www.mpi-

sb.mpg.de/

�

barth/opbdp/opbdp.html.

[Bar96] P. Barth. Logic-based 0-1 constraint programming. Operations Research/Computer

Science Interfaces Series. Kluwer, 1996.

[BC94] N. Beldiceanu and E. Contejean. Introducing global constraints in CHIP. Mathl.

Comput. Modelling, 20(12):97 { 123, 1994.

[Ber95] H. Beringer. Global constraints for real-life problems. In PACT'95, Paris, 1995.

[BKC94] G. Baues, P. Kay, and P. Charlier. Constraint based resource allocation for airline crew

scheduling. ATTIS'94, Paris, 1994.

20

[BMvH94] F. Benhamou, D. McAllester, and P. van Hentenryck. CLP(Intervals) revisited. In

Logic Programming. Proceedings of the 1994 International Symposium, ILPS'94, 1994.

[Boc93] A. Bockmayr. Logic programming with pseudo-Boolean constraints. In F. Benhamou

and A. Colmerauer, editors, Constraint Logic Programming. Selected Research, chap-

ter 18, pages 327 { 350. MIT Press, 1993.

[CM81] W. F. Clocksin and C. S. Mellish. Programming in Prolog. Springer, 1981.

[Col87] A. Colmerauer. Introduction to PROLOG III. In 4th Annual ESPRIT Conference,

Bruxelles. North Holland, 1987.

[DC93] D. Diaz and P. Codognet. A minimal extension of the WAM for clp(FD). In Proc. 10th

Intern. Conf. Logic Programming, Budapest, 1993.

[DvHS

+

88] M. Dincbas, P. van Hentenryck, H. Simonis, A. Aggoun, and T. Graf. The constraint

logic programming language CHIP. In Fifth Generation Computer Systems, Tokyo,

1988. Springer, 1988.

[FGK93] R. Fourer, D. Gay, and B. W. Kernighan. AMPL: a modeling language for mathematical

programming. The Scienti�c Press, San Francisco, 1993.

[Fou83] R. Fourer. Modeling languages versus matrix generators for linear programming. ACM

Trans. Math. Software, 9(2):143 { 183, 1983.

[Gro95] Programming Systems Group. SICStus v3 User's Manual. Swedish Institute of Com-

puter Science, 1995.

[HSS

+

92] W. S. Havens, S. Sidebottom, G. Sidebottom, J. Jones, and R. Ovans. Echidna: a

constraint logic programming shell. In Paci�c Rim Int. Conf. Arti�cial Intelligence,

Seoul, Korea, pages 165 { 171, 1992.

[JL87] J. Ja�ar and J.-L. Lassez. Constraint logic programming. In Proc. 14th ACM Symp.

Principles of Programming Languages, Munich, 1987.

[JM94] J. Ja�ar and M. J. Maher. Constraint logic programming: A survey. Journal of Logic

Programming, 1994.

[MB93] Alexander Meeraus and Anthony Brooke. GAMS: A User's Guide. Boyd and Fraser

publishing, 1993.

[MLM94] G. Mitra, C. Lucas, and S. Moody. Tools for reformulating logical forms into zero-one

mixed integer programs. Europ. J. Oper. Res., 72:262 { 276, 1994.

[MW89] K. I. M. McKinnon and H. P. Williams. Constructing integer programming models by

the predicate calculus. Annals of Operations Research, 21:227{246, 1989.

[OB93] W. Older and F. Benhamou. Programming in CLP(BNR). In Principles and Practice

of Constraint Programming PPCP'93, Newport, RI, 1993.

21

[Pug94] J.-F. Puget. A C++ implementation of CLP. In Proceedings Second Singapore Inter-

national Conference on Intelligent Systems, Singapore, 1994.

[Sha93] R. Sharda. Linear & discrete optimization and modeling software. UNICOM, 1993.

[SS86] L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 1986.

[Wil93a] H. P. Williams. Model building in mathematical programming. John Wiley, third revised

edition, 1993.

[Wil93b] H. P. Williams. Model solving in mathematical programming. John Wiley, 1993.

22

