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Abstract

In the logic of graded modalities it is possible to talk about sets of finite cardinality. Various
calculi exist for graded modal logics and all generate vast amounts of case distinctions. In
this paper we present an optimized translation from graded modal logic into many-sorted
predicate logic. This translation has the advantage that in contrast to known approaches
our calculus enables us to reason with cardinalities of sets symbolically. In many cases
the length of proofs for theorems of this calculus is independent of the cardinalities. The
translation is sound and complete.
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1 Introduction

From Minsky’s early frame systems, which were defined purely operationally, and
Brachman’s KL-ONE knowledge representation system (Brachman and Schmolze 1985,
Woods and Schmolze 1992) to the language ALC of Schmidt-Schaufl and Smolka’s
(1991) paper there has been a continuous trend in designing knowledge representation
systems more and more according to logical principles with clear syntax and semantics
and logical inferences as basic operations. ALC in particular is a language with
the usual logical connectives I, LI, = and the additional constructs (all R C) and
(some R C). For example, the following is an ALC definition which defines a ‘concept’
proud-father as a father all of whose children are successful persons.

proud-father = father M (all has-child successful-person),

The fragment of ALC that includes the operations N, LI, =, all, some is just a variant of
the multi-modal logic K,y (Schild 1991). The concept (all R C) corresponds to [R]C
where the relational term R (a ‘role’ in KL-ONE jargon) is the parameter of the modal
operator, and is interpreted as a binary accessibility relation. ALC is still limited in
its expressiveness. In pure ALC it is not possible to define concepts like, for example,
a city as a place with more than, say, 100000 inhabitants. There are extensions of
ALC, like ALCN , with additional operators, called ‘number restrictions’.

city = place 1 (atleast 100001 inhabited-by people) (1)

is a suitable ALCN definition. (atleast n R C) and (atmost n R C) restrict the number
of so-called ‘role fillers’, i.e. they restrict the number of elements in the range of
the relation R to at least n and at most n, respectively. The corresponding modal
logic of ALCN is the multi-modal version of the system of ‘graded modalities’, which
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was introduced by Goble (1970) and Fine (1969, 1972) and which is investigated in
Fattorosi-Barnaba and de Caro (1985, 1988), and van der Hoek (1992b, 1992a).

Graded modalities are modal operators indexed with cardinals which fix the num-
ber of worlds in which a formula is true. The formula <, ¢ is true in a world iff there
are more than n accessible worlds in which ¢ is also true. The dual formula O,¢p,
given by =<, g, is then true in a world iff there are at most n accessible worlds in
which = is true. More formally, the semantics is defined in terms of one accessibility
relation, say R, by

M,z g Qup it Hy | R(z,y) & Myylg o} > n
M,z leg Orp it [{y[B(z,y) & M,y e} <,

where M denotes a model and z, y denote possible worlds. For any set A, |A| denotes
the cardinality of A. This semantics is very natural and intuitive, but it has one
disadvantage. All inference systems based on this semantics, in particular, tableaux
systems, deal with these &, -operators by generating a corresponding number of terms
explicitly. For example, the formula <jgg000people triggers the generation of 100001
constant symbols as representatives for the individuals denoting people. Except for
counting these constant symbols and comparing the length of lists, known tableaux
systems do not provide for arithmetical computation. In particular, reasoning with
symbolic arithmetic terms is impossible. For example, in tableaux systems the formula
Opa1p — Opp which is true for all n can only be verified for concrete values of n, but
in general it cannot be verified for arbitrary values of n.

This is not the case for the Hilbert system axiomatizing the graded modalities.
It is formulated with arithmetical terms, and in principle, this allows for invoking
arithmetical computations. However, Hilbert systems have other disadvantages that
makes them unsuitable to form the basis for automated reasoning. For example they
do propositional reasoning just with modus ponens and the instantiation rule. Even
for trivial theorems one gets large proofs and the search space is very unstructured
and enormously big.

A direct translation of formulae with graded modalities into predicate logic requires
the axiomatization of finite domains. This is feasible only for small cardinalities. We
may translate sentence (1) as follows:

Va city(x) < place(x) A Jyi...y100001 Y1 F Y2 Ayt Fys A .. Ayr # Y1000t A
Y2 # Ys A ... Aya2 # Yioooor A

Y100000 # Y100001 A
inhabited-by(x,y1) A ... A inhabited-by(x, y100001) A
people(y1) A ... A people(y100001)-

The translation of &,-expressions requires (n + 1)n/2 equations. Even for small n
this is more than current theorem provers can cope with. One immediate alternative
is introducing set variables and a cardinality function. For sentence (1) an alternative
formulation is:

Va city(z) <« place(z) A Y (]Y] > 100000 A
Yy (y € Y — (inhabited-by(x,y) A people(y)))).
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This is not really a feasible alternative, for the axiomatization of the cardinality
function then requires the above (n + 1)n/2 equations, and this for every n:

VY |IY|>n & Fyi.. Yo Y EY A ... Aypp1 EY A
Y FE YAy FYsA oo Ayt F Y A
Yo FYs A oo ANYa F Yngr A

Yn 7£ Ynt1-

In this paper we present a two step translation of graded modal logics into predicate
logic. In the first step, we transform graded modal logics into another multi-modal
logic with standard interpretation. In particular, we accommodate modal logics with
graded modalities in a multi-modal logic with two kinds of modalities:

(1) (n), [n] characterized by a relational structure (over a universe U) of infinitely
but countably many different relations R, (n € Ny), and
(ii) <, O characterized by a designated relation E.

We translate formulae of the form <, ¢ into (n)0¢p and the intuitive idea underlying
this translation is this: If ¢ is true in a set Y of worlds with more than n elements
then we introduce an accessibility relation R,, that connects the actual world and a
world wy which we can think of as being a representative for the set Y. This defines
the (n)-operator. Oy and its associated accessibility relation E expresses that ¢ is
true in all the worlds of the set Y. E connects the world wy with all the worlds in
Y and can be thought of as the membership relation. Thus, (n)O¢ encodes ‘there is
a set with more than n elements (encoded by (n)) and ¢ is true for all the elements
of this set (encoded by O)’. Our first problem now is to find a sound and adequate
axiomatization of the modalities (n), [n], & and O as to capture the graded modalities
<, and O,. It turns out that this is not entirely possible. The axiomatization we
present in this paper has some non-standard models which do not reflect our intuition.
But this does no harm, as we will see. We show: A formula ¢ 1s a theorem of a graded
modal logic iff the translation of ¢ is a theorem in the new logic. This translation is
only an intermediary step in a translation to predicate logic.

In the second step, we translate the multi-modal logic into a predicate logic using
the functional translation of (Ohlbach 1988, Ohlbach 1991, Farinias del Cerro and
Herzig 1988, Herzig 1989, Auffray and Enjalbert 1992, Zamov 1989). The reason
for using the functional translation instead of the usual relation translation is this:
The multi-modal logic of graded modalities can have frame properties that are not
first-order definable in terms of R, relations. However, the frame properties can be
formulated in a weak fragment of second-order logic and it is possible to formulate
them in an alternative adapted language as first-order expressions. The alternative
language is a functional language in which binary relations are encoded as sets AF of
functions. The set AF of accessibility functions defining the accessibility relation R
is given by:

R(z,y)++3f € AP y = f(x).

This sequence of translations of a system of numerical modalities first into another
multi-modal logic and then into a many-sorted predicate logic (using the functional
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translation) yields an axiomatization, in particular, an axiomatization of properties
of finite sets. Instead of counting symbols this system uses arithmetical reasoning.

This paper is structured as follows. In Section 2 we give a short overview of modal
logics with graded modalities. In Section 3 we introduce the normal multi-modal logic
for accommodating graded modal logics. We define a translation from logics of graded
modalities into the multi-modal logic that we exhibit to be sound and complete. In
Section 5 we present the functional translation of the multi-modal logic into predicate
logic. We conclude with Section 6 in which we apply the new techniques to the
knowledge representation language ALCN .

2 Graded modalities, the system K

Normal modal logics like K, T, S4 and S5 have one modal operator, the necessity (or
boz) operator 0. The possibility (or diamond) operator < is defined as its dual. By
definition,

<>C,0 e _'D_‘S«Q-

In (1970) Goble investigates modal logics with more than one modality. His logics
have a fixed and finite number of modalities. Each modality represents a different
grade of necessity. For example, the formula

Ny A Ny

for positive integers m < n, is read to mean ¢ is more necessary than ¢. Kit Fine
(1969, 1972) generalizes this idea and introduces modal logics with numerical modal-
ities. These are now commonly referred to as modal logics with graded modalities.
In a series of papers Fattorosi-Barnaba, de Caro and Cerrato (Fattorosi-Barnaba and
de Caro 1985, de Caro 1988, Fattorosi-Barnaba and Cerrato 1988, Cerrato 1990) re-
discover and analyze various modal logics of graded modalities.

Recent investigations of graded modal logics are by van der Hoek in (1992b) and
(1992a). Together with de Rijke he applies graded modalities to linguistics and artifi-
cial intelligence. In (1991) they show that generalized quantifiers can be modelled with
graded modalities. In (1992) they also show that certain numerical quantifier opera-
tions available in KL-ONE-based knowledge representation languages can be modelled
with graded modalities.

In this paper we adopt the definition of the graded modal logic K of van der
Hoek (1992b). K is an extension of the normal modal logic K with graded modal-
ities. Formally, the vocabulary of K consists of the set of propositional symbols
DPyP1y P2y« -4, G15 G2, - - -, the constant L (falsity), the logical symbol — (implication)
and the modal operator symbols &, for n € Ny, and the usual punctuation symbols.
Formulae of K have the following forms:

p?Q?"'? J‘? (P%/;b? <>77‘S0'

As usual we define ¢ (negation), T (truth), ¢ V¢ (disjunction), ¢ A ¢ (conjunc-
tion) and ¢ <+t (double-implication) as abbreviations for ¢ — L, =1, ¢ — 1 and
- V ), respectively. Furthermore, O, ¢ abbreviates =<, = for n > 0, Olge abbre-
viates Og—p and Ol abbreviates &, _1p A =L for n > 0.
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On  1s read to mean ¢ is true in more than n accessible worlds,
O,¢ 1isread to mean -~ is true in at most n accessible worlds, and
Olup  isread to mean ¢ is true in exactly n accessible worlds.

Definition 2.1 The system K of graded modalities is defined by the following ax-

foms

Al the axioms of propositional logic

A2 P Oupip = Onp

A3 g Dol =) = (Cnp = Onth)

Ad Fg Do (e AY) = ((Clap AOLY) = Ol (@ V )

together with the uniform substitution rule, Modus Ponens, and the necessitation rule
for Oy

US if ¢ is a theorem so is every substitution instance of ¢
MP if Fgx ¢ and Fg ¢ = then kg ¥
N if Fg ¢ then kg Ogp.
Observe that Oy and Og coincide with the standard modal operators & and O. K is
therefore a subsystem of K.
Theorem 2.2 (van der Hoek 1992b) The following are theorems of K.
A5 Fg Bo(p— 1) = (O — Onth)
A6 Fg Onle A) = (Cnp A Ont)
AT Fr Ol Allp— L for n #m
A8 g O, (Olop VOV L. VOLp) ( V denotes exclusive or)
Ad g ~Oulp V)= =0
AL0 Fg Cugml(e Vo) = (Cup V ORY)
All b ClioAOnp— L for m>n
A12 P Oul A ) A Ol A ~6) = Orpmsrp
The semantics of K is given by a frame F = (W, R) consisting of a non-empty set
W, called the set of worlds, and a binary relation R over W, called the accessibility

relation. We define a model (based on a frame F) of K as a triple M = (W, R, V). V

denotes a valuation function mapping propositional variables to subsets of W. Truth
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in a model M for formulae of K at any world z is defined (in terms of the satisfiability
relation = ) as follows:

M,z = p it e V(p)
Moo Onp i [{y € W | R(e,5) A M.yl 0} > 2
Mz =g O iff [{y € WIR(z,y) A My g~} <n

and as usual for the other connectives. For any binary relation R, let R(x) denote the
set of images of @ under R. That is, define R(x) = {y| R(x,y)}. Then, satisfiability
of & and O, can be reformulated as follows:

M= Opp iff Y CR(x) with [Y]|>nand VyeY : M,yl=¢ ¢ 3)
M zl=z O, Hf VY C R(z) with |Y|>n, JyeY : M,yl=¢ ¢

(The proof is routine.) It is now easy to see that the usual duality for box and diamond
also hold for &, and O,,, i.e. we have O, ¢ < -0, .
A formula ¢ is a K thoerem, i.e. | ¢, iff ¢ holds in all worlds of all K frames.

Theorem 2.3 The axiomatization of K is sound and complete, i.e. for all formulae
@, we have

A

A proof can be found in Fattorosi-Barnaba and de Caro (1985).

In the remainder of this paper we assume the formulae of K to be in negation nor-
mal form which can be obtained by systematically applying the following equivalences
from left to right.

(e VYY) & mp A
(e AY) & eV
p—=Y & TeVY
por & (p=Y) A=)
—d:\n(,o PN <>n—|99
_'<>n99 <> |:|n—|99

3 From graded modalities to multi-modal logic

In this section we present a new interpretation for K and investigate its logical coun-
terpart.

A formula <, of K is interpreted as an expression in which a subset of the
accessible worlds with more than n worlds is selected. More concretely, the formula
Opp is true in a world x iff there is a set of worlds (a subset of W) accessible by R
from = containing more than n worlds in which ¢ holds. Equivalently, $,¢ 1s true
in x iff there is subset YV of the range of R from x with cardinality strictly greater
than n such that ¢ is true in every world in this subset, see (3). In our alternative
interpretation of K we introduce a new class of worlds Wy, each world representing
subsets of accessible worlds of W. That is, we represent the set ¥ by a designated
world in this new class of worlds. Furthermore, instead of having just one accessibility
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relation R, here, we have for each n € Ny a different accessibility relation R,. Their
domain is W and their range is restricted to Wy. More precisely, for any n, R,
relates worlds in W to those elements in Wy which represent sets (of worlds in W) of
cardinality greater than n. And finally, there is an additional designated accessibility
relation, denoted E for ‘element of’, which relates the new kind of worlds Wy to
the worlds in W again. The relation E represents the element-of relation (strictly
speaking the converse of the ‘element of’ relation) between a subset Y of W and its
elements. For example, consider the formula Csp. According to the definition of the
previous section Osep is true in a world x iff there are at least 4 worlds to which « is
R-related. This definition is depicted in the first picture below. The second picture
depicts our new alternative view.

Y1 Y1

/ /
%y B3 //E//”y

2 2
x R r——Y E
Eyﬁ) E&B

Ya Ya

The relation R is replaced by the relational composition of the two new relations R3
and E. In the process we have introduced a new world which we labelled Y as it is
meant to represent the set of worlds vy, y2, y3 and y,.

The alternative semantics for K sketched above characterizes a new graded modal
logic which we describe now. We call the system Kg. It is a normal multi-modal logic
system with graded modalities. In this logic the operators <, are replaced by a com-
bination of two operators. Ky is more expressive than the system K. Nevertheless,
it has similar properties as K as we will show below.

Our system Ky differs from an alternative translation into a multi-modal logic
‘Leount’, developed by Andréka, Németi and Sain (1995). In their system there are
n-place operators (n) with semantics

M,z = (n)e1,...,p, iff  there are distinct yi,...,y, such that
My E prand ... and My, E ¢,

Calculi based on this semantics, however, seem not to be much different to the calculi
based on the original semantics for graded modalities. In a corresponding tableaux
system one has to introduce witnesses for the worlds again, but this is what we want
to avoid.

3.1 The system Kz

The language of Ky is that of K with the graded modalities <, and O, replaced by
the symbols (n), [r], © and O. Formulae of Kz have the following forms:

quj"'j J‘) S‘Q_>/l/)3 <n>99'f <>g0'



As in Section 2 we define the classical connectives in the usual way. The duals of
(n) and < are abbreviated as follows: For n € Ny, [n]¢ abbreviates —(n)—¢ and Oy
abbreviates =0, The intended meaning of (n)yp is,

¢ is true in some world accessible by the binary relation R,.
The intended meaning of Oy s
¢ 1s true in some world accessible by the binary relation E.

We call (n) and [n] the numerical operators and < and O the membership operators.
The relations R, and E are defined as sketched above. Namely, W forms the domain
of the R, and the co-domain of E and the new class of worlds Wy forms the co-domain
of the R, and the domain of E. Dually, the intended meaning of [n]p is

¢ 1s true in all worlds accessible by R,.
And the intended meaning of Oy is
@ 1s true in all worlds accessible by E.

So, the syntax (n)e (respectively [n]e) is the shorthand for (R, )¢ (respectively [R,]¢),
Op (respectively Op) is the shorthand for (E)¢ (respectively [Ele).

K-formulae of the form Onp and O, can be formulated as K g-expressions of the
form

(n)8yp  and [n]Oy,

respectively. The logic K is more expressive than K. It permits arbitrary combina-
tions of modal operators, not only alternate combinations of necessity and possibility
operators. For example, [3][4]00¢ is a well-formed formula of Kg, although it may
not make much sense in our intended semantics. However, there are combinations of
modal operators which have no equivalent formulation in K, but which have interest-
ing applications. Here is an example of such a formula:

[10](footbhall-team — Ofootball-player).

It says that, if there is a set with more than 10 elements for which the proposition
football-team holds then the proposition football-player must be true for all its ele-
ments. In this way we can distinguish between notions like teams which we interpret
as sets and notions like players which we interpret as elements.

We now give a Hilbert axiomatization for Kg and investigate its characteristic
frames.

Definition 3.1 The axioms and rules of the system Kj are:
N1 the axioms of propositional logic and Modus Ponens

N2 the K-axioms for [n] and O:
Frp [Pl = ¢) = ([nlp — [n]y) Fre Ol =) = (0p —0Y)



N3 the necessitation rules for [n] and O:
If b, » then kg [n]p if bz, ¢ then kg, Ogp

N4 g, [0]00 — [n]O¢
N5 b, (n)0p = (n)Op
N6 g, [nlp—[n+ Lo
NT bg, (n+m)O(p V) > ()0 V (m)0)

N8 Fr, (())D(p Aw) A Gm)D(p A=1) = (n +m + 1)0¢

Although the box operators can be treated as abbreviations in terms of diamond
operators, or vice versa, we use both operators and allow for arbitrary conversions

back and forth with

T e %
Dgp & —|<>—|g0.

N1-N3 are the basic axioms for every normal modal logic. N4 captures that, if
something holds for every set of worlds with more than zero elements, that is, if it
holds for every non-empty set of worlds, then it holds also for all sets with more than
n elements. This means, the composition R, ; E for n arbitrary is a subrelation of the
composition Ry ; E. N5 ensures that no set with more than n elements is empty. A
contrapositive version of N6 is (n + 1)0p — (n)0¢p. It captures that sets with more
than n 4+ 1 elements are sets with more than n elements.

N7 corresponds to A10 and is a bit more complicated to explain. As an example
suppose n = 2 and m = 4. For these values N7 is

(6)0(p V)= ((2)0p v (4)0¢)

which is equivalent to

((6)3(p V) A =(2)Byp) = (4)0¢.

In words, if there are more than 6, say 7, worlds in which the formula ¢ V % is true,
but it is not the case that ¢ holds in more than two worlds (i.e. =g is true in all
but possibly two worlds) then in the remaining 5 of 7 worlds 1 is true. The axiom
says that every (n 4+ m)-element set can be decomposed into an n-element set and an
m-element set, but note, the axiom is slightly stronger.

The intuition underlying N8 is the following: Suppose there is a set Y; with at
least n + 1 elements where ¢ A ) holds and there is another set Y, with at least m +1
elements where o A =t holds. Since ¥ and =% cannot hold simultaneously in one
world, Y7 and Y3 must be disjoint. Thus, ¢ holds in Y; U Y; which is of cardinality at
least n + m + 2. Therefore, (n + m + 1)0¢p is true.

Now we turn to the semantics of Kz, The K-axioms and necessitation rules
allow us to use the standard Kripke semantics. We choose the Kripke semantics for
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the multi-modal logic K(,,) where m is the number of modal operators. Note that
K has infinitely but countably many modal operators. A Kp-frame is a relational
structure

F = (W AR }eny, E).

W is a non-empty set of worlds. The R,, are binary relations over W (each is associated
with a modality (n)) and E is a designated binary relation over W (associated with the
modality <). The relations satisfy the properties N4-N8 given below. A model of Kg
based on a frame F is a pair M = (F, V') where V is a function mapping propositional
variables to subsets of W. Truth and satisfaction for the propositional fragment of
K is defined as for the propositional fragment of K. See (2) in the previous section.
A modal formula is satisfied (is true or holds) in a world x iff depending on its form
the following holds:

M,z g, (n)p iff there is a y such that R,(z,y) and M,y =g ¢
M,z g, [n]y iff for all y such that R.(z,y), M,ylg ¢
M,z |:§E Oy iff there is a y such that E(z,y) and M,y Ex ¢
M,z |:KE O¢ iff for all y such that E(z,y), M,y=x ¢.

A formula is a tautology if for any frame F the formula is satisfied in all F-based
models.
The following are the characteristic properties of Kpg-frames that correspond to

the axioms N4-N8:
N4 Vayz (Ru(z,y) A B(y, 2)) — Ju (Ro(z,u) A Vo (E(u,v) = v = 2)))
N5 Vay (Ru(z,y)— 3z Ely, 2))
N6 Vay (Rusr(z,y) — Ra(z,y))

N7 Vay Ryim(x,y) =V fg Juv (Ry(x,u) = E(u, f(u)) A
R, (z,v) = E(v,g(v))) —
(Ro(z,u) A Ry(,0) A E(y, f(u)) A fu) = g(v))

N8 Vayz (Ru(v,y) A Rp(z,2) AVu (E(y,u) = —E(z,u)) —
v (Rpymi1(z,v) AVw (E(v,w)— E(y,w) V E(z,w))))

for any n,m € N.

We computed these properties with a tool, called SCAN!, which is an implementa-
tion of the quantifier elimination algorithm of Gabbay and Ohlbach (1992). To this
end we used the standard Kripke semantics as translation rules for translating the ax-
ioms into predicate logic. In this relational translation (this is the standard translation
ST of van Benthem (1983, 1984)), the formula variables become universally quantified

ISCAN is accessible via World Wide Web under
http://www.mpi-sb.mpg.de/guide/staff/ohlbach/scan/scan.html.

This is a WWW interface for activating the program remotely. We invite the reader to use the tool
and verify the above correspondence properties for N4-N8&.
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predicate variables. The quantifier elimination algorithm computes for these second-
order formulae equivalent formulae without predicate quantifiers. That means ST(N4)
<> N4’ etc. This procedure guarantees soundness of the semantics with respect to the
axiom system, i.e.

if bz, ¢ then g o (4)

If all these ‘frame axioms’ (N4-N8) were first-order then the Sahlqvist Theorem
(Sahlqvist 1975, van Benthem 1983, van Benthem 1984) would ensure completeness
of this frame class relative to the axioms. Unfortunately, N7’ is again second-order.
Therefore we have to prove completeness explicitly. We do this indirectly for trans-
lated K formulae by using the completeness of K and the soundness and completeness
of the translation into Kz which is proven below. General completeness for arbitrary
formulae is still open, but for the purpose of our translation, this is fortunately not
necessary.

The correspondence property N4’ states that all singleton subsets of the set of
worlds accessible by R,, are uniquely represented by a world accessible by Ry. N5’
asserts that every world accessible by R, leads via E to another world. We say E is
weakly serial. (Recall, a relation R is said to be serial (or total) iff Vo 3y R(x,y)). By
N6’ the set {R,}nex, of R, relations forms a linear order with Ry being the largest
element, since for any m > n, R, is a subrelation of R,.

The correspondence property N7’ of N7 expresses intuitively that every set y with
more than n +m elements can be decomposed into a set u with more than n elements
and a set v with more than m elements, and if y happens to have exactly n +m + 1
elements then v and v overlap in at least one element.

N8 expresses, as already mentioned, that for disjoint sets the cardinality of their
union is the sumn of the cardinalities of the sets.

For a better understanding of the frame properties it is helpful to think of the
variable y in R,(z,y) and E(y,z) as representing a set Y, R,(z,y) as representing
that the cardinality of Y is greater than n, and E(y, z) as representing that z is an
element of Y. Then N4'-N§8' represent:

N4" VYz (([Y|>nAzeY)={z} CY
N5 Yy (Y] >n—=Y #0)
N6” VY ([Y|>n+1—=|Y]|>n)
N7 VY (Y| >n+m—
Vg AUV (U >mA|V|>m)—
if f selects from U and g from V then f(U) € Y A f(U) = g(V))

N8" VYZ (Y| >nA|Z|>mAYNZ=0)—
AV (VIi>n+m+1AVCYUZ)).

We can show that the standard class of frames associated with Kz have the

expected structure, namely that all worlds accessible by R,, have more than n E-
successors. However, non-standard Kg-frames exist which do not have this intended
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structure. The problem is, we cannot enforce in a Hilbert system that Rj-accessible
worlds have more than one E-successor. This may be captured by an axiom like

[11(3p (Op A O=p)),

or a rule similar to Gabbay’s irreflexivity rule (but this gives no new theory) (Gabbay
1981). See also Prior (1968). The modal language of K and K is not expressive
enough to characterize this class of frames. On the other hand, we can show using an
inductive argument that whenever an Ri-successor has more than one E-successor,
then for any positive integer n every R,-successor has more than n E-successors.
This is to say, the induction step goes through, but unfortunately the base case of
the induction cannot be guaranteed. Because the translation of the logic K into the
logic Kg is sound and complete (we show this below), we know whenever a translated
K-formula has a model then it has a model with the expected structure.

We did not investigate the non-standard models further. It may turn out that
they are p-morphic images of standard models, in which case they are completely
irrelevant because normal modal logics cannot distinguish p-morphic images.

3.2 From K to K

Next we define a translation function mapping formulae of K into formulae of K.
We show that the translation is sound and complete.

Definition 3.2 The translation function II maps K-formulae into Kg-formulae ac-
cording to the following constraints:

II(p) = p

I(~¢) = -1y
p@y) = Ip) QlIl(y)
I(Cup) = (n)DI(p)
I(O.e) = [n]CI(e),

where p denotes any propositional variable and @ denotes any binary logical connective
A, V, — or <.

Theorem 3.3 (Soundness of IT) The translation II from K into Kg is sound. That
is, for any formula ¢ of K

if Fg ¢ then Fg_ TI(p).

Proof. Suppose ¢ is a theorem in K. We proceed by induction on the length of the
proof of ¢ and show that the proof sequence of ¢ in K determines a proof sequence
of I(¢) in Kg. We are done if we show that the II-translations of the axioms and the
rules of K are Kj-theorems.

IT leaves the propositional axioms and Modus Ponens unchanged. The translation
of the necessitation rule N is:

bz, @ implies kg [0]Ow.
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If ¢ holds then, by the necessitation rule for O and [0], [0]2p holds. Apply modus
ponens using the contrapositive instance with n = 0 of N5 and get [0]Op?.

The translation of A2 is a contrapositive version of N6. It remains to prove the
translations of A3 and A4 can be derived from the axioms of Kp using the rules of
Kg.

For A3 we prove
TI(A3) = [0]O(p =) = ((n)Op — (n)B9)

is a theorem in Kp. Suppose [0]O(p — 1) and (n)O¢p hold. Suppose further —(n)O),
i.e. [n]O=t), holds. From [0]<O(¢ — 40) we infer by N4 [n]0(p — ¢). By the K-axiom
for O, [n](O¢ — Ov) which is equivalent to [n](=0v — =0¢), Le. [n](O) — Ogp).
Using the K-axiom for [n] we infer [n]O—1p — [n]O—p. From —=(n)0, which is equiv-
alent to [n]O—), using Modus Ponens we get [n]O-gp, or equivalently =(n)Oep. This
contradicts (n)Og. Thus II(A3) is derivable in Kg.

For A4: Let

¢ =[0]O(p AP) A (n = 1)Bp A=(m)Bp A (m — 1)B¢ A =(m)0ep.
Then II(A4) is equivalent to

¢—=((n+m—1)0(p Vi) A=(n+m)B(e V1))

We prove this in two steps. First, we prove ¢ — (n +m — 1)0(¢ V ¢). Suppose ¢
holds. It suffices to show

(n =1)B(p A =¢). (3)
From (n — 1)0(p A =p), or equivalently (n — 1)O((¢ V ¢b) A =¢p), and (m — 1)0%, or
equivalently (m — 1)0((¢ V ) A ¢), using N8 we infer (n +m — 1)0(p V ).

For proving that (5) follows from ¢ we proceed by contradiction. Suppose that
=({n — 1)0O(p A =), Le. [n — 1]O(—¢ V ¢0) holds. From [0]O—(¢ A ¢) using N4 we get
[n — 1]0-(p A %) Since, in general, in any normal modal logic O (and, in particular,
[n — 1]) distributes over conjunction, we obtain

[ = (O V) A B(mp V 1)), (6)

The K-axiom for O is equivalent to (Op A Oh) — O A vp). Thus (6) is equivalent
to [n = 1](C((—e V) A (7 V =2)))). This in turn is equivalent to [n — 1]O—p. Thus
—(n — 1)0¢ which contradicts (n — 1)O¢.

Next, we prove ¢ — =(n + m)O(p V ). Suppose ¢ holds. Then, in particular,
=(n)0¢ and =(m )0 hold, and —(n + m)O(¢ V ) is derivable by (the contraposition

of) N7. Therefore, II(A4) is a theorem in Kg. 0

For proving completeness a semantic proof suffices. We prove (in the next the
theorem) that for a translated formula II(¢) which is true in all Kg-frames, ¢ is true
in all K-frames. If II(p) is provable in Kx then the soundness of the Kg-semantics
guarantees that II() is true in all Kp-frames, then ¢ is true in all K-frames and then
it is provable in K (by the completeness of K).

2Formally, instead of ¢ one has to consider TI(¢). But for the proofs this makes no difference.
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Theorem 3.4 For any formula ¢ of K,
if g, M(p) then Eg ¢

Proof. Our strategy is the following. Suppose = II(¢). (i) For an arbitrary K-
frame F we construct a Kg-frame F'. TI() is valid in this particular frame F'. Then
we show, (ii) ¢ is valid in F.

(i): Take any K-frame F = (W, R). We construct a Kg-frame F' as an extension
of the frame F as follows. For any world @ € W let R(x) be the R-image of x. For
any finite subset Y of R(x) with |Y| = n + 1 for n a non-negative integer, we add Y’
as a new world to F. We call Y a ‘set-world’. Note, every Y is non-empty. We define
every relation R, for m < n to contain the pair (2,Y), and, we define the relation
E to contain all pairs (Y, z) for 2 € Y. Furthermore, we assume the relations R,
and E are the smallest relations satisfying these conditions. Now, define F’ to be the
relational structure

(le {Rn}n€N07 E)

with W' being the set of worlds of F' that includes the set of worlds W of F and all
set-worlds Y. Note, the set-worlds have no R,-successors and the worlds in W have
no E-successors. We show that F’ is a frame for Ky by showing that F” satisfies the
properties N4'-N§'.

N4’: If R,(x,y) A E(y, z) holds then y must be a set-world with |y| > n and z € y.
For u = {z} we obtain Ro(z,u) A Vv (E(u,v)—v = z).

N5": If R, (x,y) then y is a non-empty set-world, i.e. 3z E(y, z) is true.

N6": If R,+1(x,y) then y is a set-world with |y| > n 4+ 1 > n, i.e. R,(z,y) holds
as well.

Recall N7’:

Vay Ryym(x,y) = Vg Juv (Ry(x,u) — E(u, f(u)) A
Ry, 0) = E(v,9(v))) =
(Bo(z,u) A R (2,0) A E(y, f(u)) A f(u) = g(v))

Ryt (x,y) means that y is a set-world with |y| > n + m. We distinguish two cases.

Case 1: |yl = n+m+ 1. Let f and g be any functions mapping worlds to worlds.
If there is at least one R,-accessible set-world u with |u| > n and f does not map u
to one of its elements (= E(u, f(u))) or there is at least one R,,-accessible set-world v
with |v| > n and ¢ does not map v to one of its elements (- E(v, g(v))) then we can
choose this u or v, respectively. Then the implication

(B2, u) = E(u, f(u)) A Ry (2, 0) = E(v, g(v))) = (1)
(Bn(w,u) A Ry (x,0) A E(y, f(u)) A fu) = g(v))

is true because the premiss is false.

Now assume, f chooses for every set-world v with |u| > n some element f(u) € u
and g chooses for every set-world v with |v| > m some element g(v) € v. The
key observation for the proof is that for every set with n + m + 1 elements every
decomposition into a set u with n + 1 elements and a set v with m + 1 elements
overlaps in at least one element. Thus, the situation is as depicted in the following

figure.
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For finding the right v and v we follow this procedure: we start by choosing a subset
uy C y with n 4+ 1 elements. Suppose f(uy) = 1. If there is a subset v C y with
|v| > m and g(v) = 21 we are done. Suppose for no such subset we have g(v) = ;.
x1 1s marked as ‘not an image of ¢g’. Now we choose another n 4+ 1-element subset u,
of y which does not contain x;. Suppose f(us) = x2. Again, if for some subset v with
|v| > m we find g(v) = 2, we are done. If not, we mark 5 as ‘not an image of g’. We
continue until we have found a suitable u and v, or until exactly n + 1 worlds remain
which are not marked ‘not an image of ¢’. In the latter case we choose this set for u.
Suppose f(u) = x. Take v = y\ vU {z}. [v|]=m+ 1 and g(v) # z for all z € y \ u.
Since g must select some element in v, g(v) = x is the only choice. Thus, suitable u
and v exist that satisfy (7).

Case 2: |y| > n+m + 1. Take any subset y’ C y with |¢/| = n + m + 1. By Case
1, we can find for any f and ¢ subsets u C y’ and v C y' with the property (7). But
these are also subsets of y and therefore the property holds as well.

N8&': This property expresses that the union of two disjoint sets of cardinality > n
and > m is a set with cardinality > n 4+ m + 1, and this is true in F'.

We have proved F' is a frame for Kg.

(ii): Let M = (F,V) be any model based on F with V an arbitrary valuation.
Define M’ to be the model (F',V). (Observe that V(p) does not, and need not

contain set-worlds.) (ii) follows from
Mz g, (p) iff Mz g @ (8)

where x is any world in W. We prove (8) by induction on the structure of ¢. The
base case in which ¢ is any propositional variable is trivial. The inductive step for
the propositional connectives goes through easily. We consider the case ¢ is of the
form <, 9. (The case for ¢ of the form O, is dual.) The inductive hypothesis is:

MI,J} |:EE H(@b) lﬂ M,:L‘ |:E 77/)

Suppose M,z g, II(Ont), ie. (n)0e is true at @ in M. Then, R,(z,Y) in F’
for some set Y C R(x) with n + 1 elements and for all z € ¥ we have M', z |=¢_ %
and by the inductive hypothesis M,z |=5 . There are at least n such z, therefore,
M7 X |:E <>n1/)

Conversely, suppose M,z g O, This means the world « has more than n
successors by R in all of which 1 is true. Consequently, a set Y with cardinality n 41
exists that contains R-successors y of x and in all y, 1 is true. This implies, in F',
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and Y are connected by R, and Y is connected to all its elements by E. Thus, (n)0
is true in x.
This completes the proof. a

As corollaries we get the following two theorems.

Theorem 3.5 (Completeness of II) The translation IT from K into Kp is com-
plete. That is, for any formula ¢ of K,

if b, H(p) then kg .

Proof. Suppose II(ip) is a theorem in K, i.e. Fg, I(p). Then, since Ky is sound (4),
Fr, H(v). By the previous theorem =g ¢. K is sound and complete (Theorem 2.3).
Therefore, it follows that i . a

Now, we can show the completeness of the semantics of Ky with respect to its
axiomatization for translated formulae.

Theorem 3.6 (Relative completeness of K) For any K formula
if =g, (p) then kg II(p).

Proof. If II(;p) holds in all Kp-frames then o holds in all K-frames (by Theorem 3.4),
then ¢ is provable in K (by the completeness of K, Theorem 2.3), and then II(y) is
provable in Kz (by the soundness of the translation, Theorem 3.3). O

4 From multi-modal logic to predicate logic

We aim at making available first-order theorem proving methods for reasoning with
graded modal expressions. In the previous section we have embedded the logic K
in the multi-modal logic Kz. Unfortunately, one of the axioms, namely N7, is not
first-order definable in the standard Kripke semantics. Its relational translation N7’
is a second-order formula. So, instead of using the standard relational translation
we use the functional translation as proposed in Ohlbach and Schmidt (1995) for
non-first-order axioms like McKinsey’s axiom.

The functional translation method was proposed by various authors, for example
Ohlbach (1988, 1991), Farinias del Cerro and Herzig (1988), Herzig (1989), Auffray
and Enjalbert (1992) and Zamov (1989). It exploits the fact that every binary relation
can be decomposed into a set AFg of functions, called accessibility functions. Any
(non-empty) relation R is defined by:

R(z,y) >3y € AFr y = y(x).

In the functional translation we quantify over the accessibility functions instead of
worlds. For modalities determined by serial (i.e. total) accessibility relations, that
is, for modalities satisfying the D-axiom the functional translation rules for modal

T([Bli,x) = Vy:AFR mp(3), (v, 2))
Ti((R)Y,x) = Fv:AFR mp(, L7, 2)).

formulae are:
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The target logic is a many-sorted predicate logic, in which AFp is the sort for ac-
cessibility functions defining R and the symbol | is a function symbol for the ‘apply’
function (this means, the application of a function f to x, i.e. f(x), is encoded by
L(f,x)). For modalities determined by accessibility relations that are not serial the
set of accessibility functions AFgr contains partial functions. Accordingly, the func-
tional translation 7y of modal formulae must compensate for partiality by an extra
condition involving a predicate der. For non-serial modalities 7y is defined by:

~dep(a) > Vy:AFg mp(, (v, 2)) and  —der(x) A 3y:AFR ms(¥, L7y, 2)).

The term —dep(x) is meant to capture that = is not a dead-end in the relation R.

We now give the formal definition of the functional translation II; for multi-modal
logics of which K, is the weakest. II; is a function mapping formulae of K,
to formulae of a many-sorted predicate logic PLy; (with predicate variables) with a
signature specified by:

(i) sort symbols L (for the bottom sort), W (for the world sort) and W+.

) sort declarations W C Wt and L T W
ii) sort symbols AFp for every modality (R)

) a binary function symbol | declared by |: AFr x W+ — W+ for all AFg.

) predicate symbols deg for every modality (R) (de is short for dead-end, or in
our application, de,(x) means the set-world @ does not represent more than n
elements) and
(vi) for each propositional variable p there is a unary predicate symbol p (we pur-

posely use the same symbols).

This signature defines a many-sorted predicate logic we refer to as PLyy.
Definition 4.1 (The functional translation) Let 7; be a function that takes two

arguments: a modal formula and a ‘world term’ which are mapped to a formula in
PLy;. 7y is defined inductively by

T4(p, w) = p(w) for p a propositional variable
mi([R]Y,x) = ~der(x) = Vy:AFp 744, Ly, 2))
mi((R), @) = —~der(x) A Fy:AFR m5(, L7, ©))

and for the propositional connectives 7y is a homomorphism.
The functional translation for a multi-modal formula ¢ with propositional variables
Piy- .., P is defined by

Hf(tp) = vpl', e 7anUJ3W Trf(@? w)

For a Hilbert rule of the form ‘from ¢; and ... and ¢, infer ¢’

My(e) Ao ALp(pn) = s ()

is the functional translation. II; maps a set ® of Hilbert axioms and rules to the
conjunction of the functional translation of the members:

I;(2) = A Hy(e)

ped

I1; is called the functional translation function.
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For serial modalities the ~deg(x)... part of the definition in 7; can be omitted.

As with the relational translation, the functional translation of the Hilbert axioms
yields second-order formulae with universally quantified predicate variables. This
translation is sound, i.e. whatever can be proved from the axioms, holds in the
models of these second-order formulae. If these second-order formulae are equivalent
to a first-order formula then the Sahlqvist theorem together with the completeness
of the transition from the relational to the functional representation (which is easy)
guarantees completeness. If the second-order formulae are not equivalent to first-order
formulae then completeness is still an open problem. Unfortunately this is the case
for Kg.

Ohlbach and Schmidt (1995) prove the following relativized soundness and com-
pleteness result for the functional translation II;.

Theorem 4.2 (Relative soundness and completeness of the functional trans-
lation) Let ¢ be additional Hilbert axioms in a propositional modal logic K(,,) and
@ any modal formula. If the relational second-order translation of ® is complete then

¢ is a O-theorem iff II;(®)—II;(¢) is a predicate logic theorem in PLy;.

The result of the translation by II; is in general not a first-order expression. The
translation is useful only if the axioms in II;(®) can be described by a set ®' of
first-order formulae. If II;(®) is equivalent to such a set @' the implication

I1;(2) = II(p)
can be proved by refuting the formula
AT (p).

II4(¢) is a monadic second-order formula with only second-order universal quanti-
fiers of propositional variables. In the negation normal form of its negation —II;(y)
only existentially quantified second-order propositional variables occur and these are
treated as ordinary first-order predicates. Therefore, ' —II(¢) can be proved with
the standard first-order procedures.

Not every axiomatization ® has an equivalent first-order formulation. The above
theorem can be strengthened for certain axioms without first-order relational charac-
terizations when we use the following quantifier exchange rule.

Definition 4.3 (Quantifier exchange rule) Let ¢ be any modal formula in K.
Define an operation Y on PLj; which transforms the functional translation II;(¢) into
its prenex normal form according to the rule

Iv:AFR V6:AFR ¢ ~ V6:AFp 3v:AFR 1. (9)

The operation T moves existential functional quantifiers inwards thus weakening the
original formula. Y(II;(¢)) implies IT;(¢), but not conversely. The quantifier ex-
change rule exploits that one relational frame in general corresponds to many ‘func-
tional frames’, and there is always one which is rich enough to allow for moving
existential quantifiers over universal quantifiers. This is investigated in Ohlbach and
Schmidt (1995) where a stronger theorem than Theorem 4.2 is proved, namely:
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Theorem 4.4 (Relative soundness and completeness of the functional trans-
lation with the quantifier exchange rule) Let ® be additional Hilbert axioms in
a propositional modal logic K(,,) and ¢ any modal formula. If the relational second-
order translation of ® is complete then

@ is a O-theorem iff T(II;(P)) — Y(II(¢)) is a theorem in PLay,

provided in Y (II;(¢)) all existential functional quantifiers are moved inward as far as
possible.

This theorem says that the original formula ¢ can be proved to be a theorem in the
system ® by proving its weakened translation Y(II;(y)) using the weakened forms
Y(II;(®)) of the translations of the axioms in ®. In YT(IIf(¢)) the existential func-
tional quantifiers are pushed inward as far as possible. Negating Y(II;(¢)) we si-
multaneously replace universal quantifiers by existential quantifiers and existential
quantifiers by universal quantifiers. The quantifier prefix of the prenex normal form
of = T(Il(p)) consists of a sequence of existentially quantified predicate variables p;
(ended with an existentially quantified world variable) followed by a sequence of ex-
istentially quantified functional variables, followed by a sequence of universally quan-
tified functional variables. In the Skolemized clause form of =T (II;(¢)) no Skolem
functions occur, only Skolem constants. This simplifies the translation considerably.
More importantly, T allows us to move existential quantifiers inward as far as we
like. This weakens an axiom like the McKinsey axiom just enough so that we get a
first-order translation for the axiom. This operation works for axiom N7 as well, as
we will see in the next section.

The functional translation generates nested |-terms as arguments to predicates.
We can avoid these by using the world path notation of Ohlbach (1988). To this end
we add a new sort symbol AF" to PLy; and we let o be a new binary function symbol.
Furthermore, we include the following axioms and sort declarations:

AFR C AF
o: AF* x AF* — AF*
Va:W Vv, 8:AF (v o06,2) = L(4,4(7,))

o 1s associative.

o denotes composition operation of accessibility functions and AF" denotes the set of
all possible compositions of all accessibility functions in the union of AFg. Instead of
nested |-terms, like (4, (v, x)), we use a more economic notation and write [((y o
), x) or [([vd], z) (omitting o), instead. The latter uses the world path syntax which
we prefer from here on.

Notice that the conditions in the two theorems requiring that the relational trans-
lation of the axioms into second-order logic is complete means that all formulae which
are valid in the frames characterized by these second-order formulae are provable from
the axioms. For Ky we showed this for the translated K formulae only. Since this is
sufficient for our purpose, we can assume completeness of these transformations.
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5 From Ky to predicate logic

In this section we apply the functional translation method explained in the previous
section to the modal logic Kz which we introduced in Section 3.

Recall, Kg is a multi-modal logic with infinitely but countably many numerical
modal operators ((n) and [n]) and two special membership operators & and O. In
the relational semantics the numerical operators are interpreted by the set {R, },.ex,
of binary relations and the membership operators by the special relation E. The
functional translation for serial modalities is considerably simpler than for non-serial
modalities. The accessibility relations R, (n € Ng) and E are not serial. Axiom N3,
(n)0Op — (n)Op, specifies a weak form of seriality for E. Every world accessible by
some R, (i.e. every set-world) has a successor by E.

We do not need the full expressiveness of the language of K. A subset of formulae
with characteristic patterns of modal operators (n), [n], & and O will do. For example,
in the axiomatization defining K the operators & and O do not occur in the scope
of & and O operators, they always occur in the scope of (n) and [n] operators. This is
intentional. Only these patterns make sense in our application of Kg. We think of the
numeric modalities picking only sets and the & and O operators picking only elements
of these sets. For this we need a special class of formulae in which the E-successors
of worlds accessible by E are irrelevant, only E-successors of worlds accessible by the
relations R, count. We are therefore permitted to assume E is serial (which we prove
in Theorem 5.1).

The language of K that we will use is restricted to the set of admissible formulae.
We say a formula ¢ of Kg is admissible iff all & and O operators appear in the scope
of a (n) or [n] operator (for some n). Examples of admissible formulae are:

(n)Op,  [n]Op, (n)(p AOq) and [n](=Op— Oq).

The formulae

Op,  and  (n)0Oq

on the other hand, are not admissible. We note that the translations of K (presented
in Section 3.2) are admissible formulae, since the corresponding modalities for modal
operators of K are (n)0 and [n]O. The axioms N4-N8 are also admissible, whenever
¢, 1 and ¢; are admissible.

For admissible formulae we may assume the relation E is serial.

Theorem 5.1 Let ¢ be an admissible formula of Kg. If ¢ is valid in a model then
¢ is valid in a model in which the relation E (associated with the modalities <& and
0) is serial.

Proof. Let ¢ be valid in a model M = (F,V) based on the frame
F = (W AR }nery, E).

Define F~ to be the structure (W, { R, }.ex,, £*) obtained from F by replacing E with
E*. E* includes E and all pairs (2, z) of @ € W for which no y € W exists such that
E(z,y). Then, E* is serial.
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We show that ¢ is valid in M* = (F*, V). The only critical case is where ¢ has a
formula equivalent to » = O¢ A O—¢ as subformula. For ¢ is true at any world x in
M iff © has no E-successor in M. In M*, however, v is false at @ whenever ¢ is true
at = in M(otherwise there is an inconsistency). ¢ occurs in the scope of either (n)
or [n] for some n. First, we consider the case that ¢ occurs in the scope of (n). Let
¢ be the (n) subformula of ¢ with ¢ in its scope. We may assume ¢’ is of the form
(n)((¢ V a) A ). Now, suppose ¢’ is true in a world = of M. Then thereisay € W
such that R,(z,y). Since E is weakly serial there is a z € W such that E(y, z), which
implies 9 is false in y of M. Hence, ¢’ is true in @ of M iff it is also true in x of
M. Next, we consider the case that ¢ occurs in the scope of [n]. Assume ¢’ is of the
form [n]((¢ V a) A B) and suppose ¢’ is true in © € W of M. Then either there are
or there are no y’s in W such that R,(z,y). If there are y’s then we argue as above.
If there are no y’s then ¢’ is trivially true in @ of M™. We conclude, ¢ is indeed valid
in M™. 0

This theorem licenses the translation of the & and O operators without the dead-
end predicate dep. For admissible formulae in Kp the translation function my is
modified as follows:

my([n], x) = ~dey(a) =V AF, mp(, L(7,2))
mr((n)Y, &) = nden(x) A3y AF, mi(, Ly, 7))
T (OY,x) = Vy:AFg (¢, (7, 2))

(O, ) = 3v:AFg me(, (v, 2)).

We are now set to compute the functional translation of the Kp-axioms N4-N8. This
is a mechanical and tedious task, which we left to an implementation of the general
translation procedure and our tool for eliminating second-order quantifiers.

In our listing of the result we use the following notation. +:n is the abbreviation
for v:AF, and v:E for v:AFg. Variables without sort declarations are assumed to be
of sort W. In the respective clause forms variables and Skolem functions are indexed
by their sort. The value in the subscript of a Skolem function, say f, associates
the function with the m-th modality (m). AF,, is the sort of the terms formed with
. The superscript is part of the name of the Skolem function. It is only used to
distinguish the different Skolem functions for the different instances of the clauses.
(In an actual implementation, these numbers are the objects of symbolic arithmetical
manipulations.) v, indicates v is a variable of sort AF,,.

In the following we list for each axiom N4-N8, (i) the functional translation, (ii)
the first-order equivalent formulation and (iii) its clause form.

N4: b [0]Op — [n]De.
The functional translation II;(N4) is

VoVa [(—deg(x) = V"0 36" FE o(L([7'd],x))) —
(mdey(z) = Vyin V&:E o(L([v6], 2)))].

This has a first-order equivalent formulation, namely

Va deg(x) — de,(x) A

Va [nde,(x) = (Vymn VO:E Iv:0 V§"E [([vd], z) = L([¥'d'], z))]. (10)

21



The clause form is:
—deg(x) V de, ().
den () V W[ mosl, v) = L[5 (2, vn, 61)0'], 7).
N5: This axiom becomes a tautology because we assume E is a serial relation.

N6: Fg, [n]e— [0+ 1.
I1;(N6) is given by

Ve [(~den(x) =¥ p(1(8,2))) = (~densa (@) = Vrm+L o(b7, 2))),
the first-order equivalent by:

Va de,(x) — deapr(x) A (11)
Va [—depr () = (Vyind1 Fom (v, ) = L(6,2))],

and the clause form by:

—de,(2) V depi ().
denir(2) V L (Y1, @) = Hgp (@, Vo), @)

N7: Fg, (n+m)B(e V)= ((n)Be V (m)0y)
is translated to II;(NT):

Yoy [(- d6n+m(fc)/\37rn+m VOB (p(U[vd],2)) V & (U([vd], 2))))
= [(mden(z) A Fyin Vi B p(l([yal, z))) vV
(mden(z) A Jy:m VB:E O (U[v0], x)))]]-

This is equivalent to the formula

Vo [deppm(x) V [ndey(2) A ndey, (x) A
Vym4m Vo, B:E 36:E Fyin Iym (L{[Ya4m0), ) = L[vna(yn)], @) A
Hnm], 2) = Ly B(ym )]s 2)))1]-

(Note, here we have used the sorts as indices to distinguish three different vari-
ables: ¥, Vmn and ¥,4m.) This formula is still second-order (note the a(+, ) and
B(vm) terms). We get a first-order equivalent formula if we apply the quantifier
exchange rule T to IT;(N7). T(II;(N7)) is

VgV [(~denym(z) A Fy:ntm VE:E (o(L([yd], 2)) V & (U[v4],2)))) =
[(den(x) A Fyin Vo E p(L([yal, 2))) V
(mden(2) AVBE Fy:m (L([v5],2)))]]

which is equivalent to the first-order formula

Va [depym(x) V [~de,(x) A —dey(x) A
Vym4m Vo:E 36:E Fy:m VB:E Fyin (L{[vasmd], ) = L[yma], 2) V
Hvnamdl, 2) = L], )]
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The clause form is:
denym () V de, ().
depym () V ndey, ().

() V
d6n+m($) \% \L(hn-i-mhlE (:L‘, Tndm, OzE)], :L') = i([hQZm (.1}, Yntm, OF, 6E)C(E], l‘)
d6n+m($) \ i(['yn-l-mhlE (xv Vntm, aE)]v x) = i([h3zm (xa Ynt+m, OKE)BEL x)

N8: b, ((m)Ble A) A{m)Ble A=) = (n+m+1)Be
is translated to II;(N8):

Veua [[(—de.(x) A Fyin Ya:E (o(b[50],2)) A (Hval, 2))) A
(~den(z) A 3yan VEE (U113 2)) A 002D
(~dewimss(@) A Fyintm+1 V&:E o(4([73],2)))]

This is equivalent to

Va [de,(x)V de,(x) V
Vyin Vyim dyin+m+1 V&:E
(_'den-l-m-l-l (x) \ ElOévﬁ:E \L(hna]v 1}) = \L([vmﬁ]v x)) A
B0, B:E Lal,e) = W), )V
Ja:E ([veal, 2) = H[Yagmt16],2) V
AB:E UvmbBl,2) = Untm416], 2)]]-

The clause form is

de,(z)V dey,(x)V ndegpmir(x) V

[k 15" (2575 9 )]s ) = L k25" (2, 3 )] )
[V k35"™ (25905 Y )], @) = MY RAE" (2,705 Y )], @

{ kS5 (€3, 0m)], @) = V(R 41 (25 Yo Ym ) O8], ) V

V
: )
mkGE" (2, Ym, 0w)], w) = LF3 g1 (2,90, Ym )0, @)

i
de,(z) V de,, () V }(
I
f

The Kp-axioms and their translations are schemas. They represent the conjunc-
tion of all instances with the n and m taking on concrete non-negative integer val-
ues. This can be exploited in certain generalizations. For example, the subformula

Vo de,(x) — de,y1(x) of (11) can be generalized to
Va de,(x) — dey, () for all m > n.

This formula subsumes the subformula Vz dey(x) — de, () of the translation (10)
of N4. The remaining part of (11) can also be generalized to:

Va [ndey(2) = (Vyim 36:in [y, 2) = 1(4, 2))] for all m > n.
The clause form is

deq (2) V L (Ym, ) = Lgy " (2, 9m),2)  for all m > n. (12)

Recall the relational translation of N6. We noted N6’ generalizes to

R, CR, for all m > n.
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This ordering of the relations { R, },.en, induces a linear ordering on the set {AF, },.ex,
of sets of accessibility functions. We capture this ordering by the subsort declaration

AF,  C AF, for all m > n. (13)

In a resolution calculus this declaration has the same effect as clause (12). We therefore
replace (12) in PLys by the subsort declaration (13).

The final translation for Ky in PLy; is still to come. We add still more syntactic
sugar and hope this makes the translations more easily readable. Every translated
Kp-formula ¢ in negated form, which we aim to refute, contains only terms which
have the form [([s;...s,],20) (in world-path notation). ¢ is the Skolem constant
originating from the Vz quantifier in II;(¢). Such terms can be replaced by just
[$1...8,] or just the empty list [] for formulae not containing modal operators.

In the clause form of the translations of the Kg-azioms the equations contain
terms of the form [([t1...t,,], ) with = a universally quantified variable. We may
instantiate = with, say [([s1...s,],%0), and get L([t1...tm],d([S1-..Su],20)) Which
is the same as [([s1...8pt1...0], 20)). We get the same result if we introduce a
new variable w. of sort AF" and replace [([t1...t,], ) with [w.t;...t,]. We further
require that w, can be unified with arbitrary strings [s; ... s,].

In this notation the axiomatization of Ky reduces to the following set of PLy,
formulae which defines our predicate logic theory for K.

Pl de,(w.), [wer,z] = [wefi(we, 2., 2)y]
P2  AF, C AF, forall m >n
P3  —dey(w.), dey(w.) for all m > n

P4 den-l-m (U)*), [w*xn-l'mhlnm(w*v Lrtm;s y)] = [w*hzzm (w*v Lrntms Y, Z)y]
P5  depgm(wy), [Winpmhl™ (W, Xpgm, y)] = [W0eh3E" (Wi, T ¥) 2]

P6 demax(n,m)(w*)v _'den—l—m-l—l(w*)a

[0, K1 (W, Ty Y )] = [0 Y k2™ (Way Ty Y )]
p7 de max n,m ( )7

[w*xnkB”m(w Ty Ym)] = (WY kA (Wi, Ty Y )]

(Wi k5™ (W, @, 2)] = Wik T 4 (W Ty Y ) 2],

[ *ymk6nm(w*>ym7 )] = [w kz:—nm+1(w*7xmym) ]

(The variables y and z and the functions A1™" and k1""—k6"" without index are

variables and functions of sort AFg.)

Theorem 5.2 For any K-formula ¢,

¢ is a K-theorem iff (P1-P7)— T(Il;(p)) is a theorem in PLyy,

By way of examples we illustrate how P1-P7 can be used during inference with a
resolution-based theorem prover. Bernhard Nebel provided the following examples.
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Example 5.3 The set A = {OgO3T,<Op03L, 0,1} is an inconsistent set of K-
formulae. With theory resolution we can show the inconsistency in a single step.
The Ky and the PLy; formulations of Ogl3T, OgOs L and Oy L are respectively

(0)0(3)0T  and  —deo([]) A ~des([aoz]),
(0)3[B3]CL  and  —deo([]) A des([boy]),
1L and  deqy([]).

The set A is represented by the following set of clauses:

Cy _'deo([]) Cs deS([bOy])
Cy _‘des([aM]) Cy del([])v

where = and y are variables and ay and by are Skolem constants. Letting n = 0 and
m = 0 in P6 and using the substitution {x¢ — ag,yo — bo, z — k1°°([], a0, bo),y >
k2%°([], ag, bo) } P6 simultaneously resolves with C;-Cy yielding the empty clause.

The next example is more complicated.

Example 5.4 The set B = {Op0q03T, OO0 L, Og0, L, 0,1} of K-formulae is
inconsistent. B contains the formulae of A (from Example 5.3) prefixed with a <
and the formula O; 1. The set of expressions in B is represented by the following
clauses (derived as in the previous example via Kg and II; translations, which we

omit):
Cy —dey(]] Cs  des([cor'doy'])
02 ﬁdeo([aox]) C6 d@l([eoil/'"])
Cs ﬂdes({aoxboy]) Cr dey([])

Cy —deg([cor’])

For the refutation we use P1 with n = 0 and P6 with n = 0 and m = 0. P1 can
immediately be simplified with clause C;. The instances are:

P [fg([])107z)y] = [(E()Z]
PG deo(u), —der(ie.), [wazok 10, 20, yo)] = [0.gok 2 (e, 20, o))
The result of simultaneously resolving P6', Ci, and C7 with unifier {w. — [J} is

Cs  [wok1%([], w0, y0)] = [yok2"([], o, yo)].

Paramodulating with Cy and with unifier {z¢ — ag,z — k1°°([], a0, y0)}, C3 becomes
(this means we do equality replacement with unification in C; using the equation Cs)

Co  —des([yok2°°([], a0, yo)boy])-

This becomes
Cio —des([zozboy])

when paramodulating with P1’ using the unifier

{yo = foll. 0. 2),y = k2%([], a0, 0)}-

We resolve P6’ and C, using unifier {w, — [coz], 2’ +— x} to get
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Cii ~dei([eoz]), [corapk1®([co], 2h, yo)] = [coryohk2®([coz], 25, yo)]-
Now, use the unifier
{zo = co, @’ = z 0>z, 2 = do, Y = bo, y' — k1%°([cox], do, o),y — k2°°([cox], do, bo)}
and apply E-resolution to Cs, Cio and Cyy and get

Cia —dei([cox]).

(This means we resolve between Cs and Cjp using an equation in Ci;.) Resolving this
with Cg using E-resolution with Cy yields the empty clause. The unifier is

{zg = €p, 2" — kloo([], €0Co), Yo F> Co, T kQOO([], €0Co) }-
Example 5.5 In this example we show

(Cnp A Ot ABo=(p Ap)) = Cngmpa (@ V ) (14)

is a theorem in K by showing that the following set of clauses is refutable. The set
represents the negation of the theorem.

Cy ~dey(]) Cs deo([]), ~o([yoc]); —¢([yoc])
02 @([anl’]) CG d6ﬂ+m+1([])7 ([xn—l—m-l—ld])
Cs _'dem([ ) Cr d€n+m+1(“) ([*Ln+m+1d])
Cs ¢([bma'])

C'5 can be resolved with P3, letting n = 0 and m = n, and C; yielding

C¢ —e(lyoc))s ~¥([yoc])-

This can be paramodulated using the equation in P1 and using the unifier {w. —
[, v0 = f3 ([}, ®ns 2), y — c}. The result is:

Cy p(lenz]), ~0([2nz]).

Resolve this with C5 and get

Cs ﬁl/)([anz])'

Now, take Cs and paramodulate with P7 using the second equation and the unifier
{we = [l wngmir = K0 (1 2, ym), 2 = d} and obtain

Co denymp([l); ~@([2k5"" ([}, 20, d)]),
demax(nm)([]);
[2n k3" ([} @, ym )] = [y k4™ ([, @0, ym )],
[ym k6™ ([], ym> )] = (k31 ([ s ym )]

The demax(n,m)([]) literal can be eliminated from Cy with either Cy or Cs in one reso-
lution step. The clause
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Cy  denpmir([]), =p([z k5" ([], 20, d)]),
(2 k3" ([]; 2y Ym)] = [Ym k4" ([], €0y Yo )],
[ym k6™ ([], Y )] = (k31 ([, s Y )]

remains. Take C7 and paramodulate with C§ and unifier {z, 141 = ELT ([ 20, ym) }
We obtain

Cro denpmir([]), =p([2akd™ ([J; 20, )]); =([ymk6™™ ([], ym, d)])
[2n k3" (] @0, ym )] = [ym kA" ([], @0, ym )]

Use Cy and C} to get rid of the —¢ and the =4 literals. The unifier is {z, — a,,, Ym —
by, x — ES"([], an,d), z" +— k6" ([],bp,d)}. Cio becomes

i denmsa(): [ank3 ([ s )] = k™ (1], 0n, b))

This we can use to paramodulate with Cs. The unifier is {z — k3""([], a,,, b,,)} with
the result:

Ciz denpmyr([]), = ([bmk4™ ([], an, bm)])-
Resolve this with C; which yields

013 d6n+m+1 ( H )

Now we use P6 and get

Cra demax(nm) (1), [2o k1" ([}, 20, ym )] = [ymk 2" ([, @0, ym )]

Get 1id of the demax(n,m)([]) literal by resolving with either Cy or Cs. The equation

Cia [kl ([], 2ns ym)] = [y k2" ([} 20, Yy )]

remains. We use Cs again and paramodulate with Cj, substituting with {z, —
any 2+ k1" ([], @n, Ym )} which leaves

Cis Y ([ymk2" ([], @ns ym)])-

In the last step we resolve Cy5 and Cy with unifier {y,, — by, x — E2""([], u, Ym )}
to get the empty clause.

In the functional translation we can prove instances of formulae with concrete
values assigned to the n and m in the modal operators. There are examples of formulae
for which the proofs with symbolic arithmetic terms instead of concrete values work as
well. However, this approach may not always work. The formula (15) below provides
an example of a theorem which is true for all n and m (that satisfy the required
restriction), but which can be proved in our system only for concrete instances of n
and m. The situation may be worse. It may be the case that the proof of a formula
for a particular concrete instance n depends on the instance of the formula for n — 1,
and the proof of this instance depends on the formula for n — 2, and so on, to the
formula for 0. Call this ‘induction on foot’. We now demonstrate a process of how a
schema like (15) can be proved in our system by (ordinary) induction for all values
followed by a translation step which yields a lemma we add to our theory.
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Suppose there are at least twenty objects in p and at least twenty objects in ¢ and
in all thirty objects exist. Then we expect the intersection of p and ¢ to contain at
least 10 objects. Our intuition is captured by the following formula

Cnp AR A Dj_'(%‘o A ¢) _><>n+m+1—j(99 \% ¢) forn+m+1-7520, (15)

if welet p=¢p, g=¢, n =m =19 and 7 = 9. In Example 5.5 we showed (15) for
the case that 7 = 0. Unfortunately there is no resolution-based proof for the general
case. In the next theorem we use induction to prove (15).

Theorem 5.6 (15) is a theorem in K.

Proof. The proof is by induction on j. We proved the base case in Example 5.5. Let
7 > 0. As induction hypothesis assume

Crp At AD_i=(p A ) = Cppmpi— -1y (@ V )

holds. Assume further &,¢, $ntb, and O;7(¢ A ) hold. That O;=(¢ A 2) holds
implies (=0;_1= (e AY)AO;~ (e A)) V O,;_1=(¢ A ) holds.

Suppose O;_1-(¢ A t) holds. Then we apply the induction hypothesis. We get
Orgmti—(i-1) (¢ V ) which implies, by A2, &,y pp1-i( V ¢) holds.

For the second case assume =0,;_;=(¢ A ) <> <1 (¢ A ) holds. Let & =n 4+ m,
e=pApand p =p A in Al0. Then Cro A O (@ A YY) = pn(@ A 710). From
Onp, respectively O tp, and O;-(p A ) we infer that <O, (@ A =9)), respectively
O j(m A 1p), holds. Hence, by A12, &, i1 ((@ A =90) V (= A 4p)) holds. Us-
ing A12 again, this time applied to the formulae <. pnpi—j—1 (@ A 7)) V (7 A )
and <1 (¢ A ), we conclude Opypp1—;(p V ¢0) holds. This proves the theorem. O

The next result shows we can replace the axiom N8 in Kp by the corresponding
Kg-formulation of the formula (15).

Theorem 5.7 Axiom N8 of Ky can be replaced by
(n)Op A (m)BP A [fIO~(p A ) = (n+m+1 - j)0(¢ V) (16)

forn+m+1—352>0.

Proof. In Theorem 5.6 we proved (15), its K-formulation, is a theorem in K. Thus, by
Theorem 3.3, (16) holds in K. It remains to show (16) implies N8. This is immediate
if we let 7 = 0 and substitute ¢ A ¢ for ¢ and ¢ A =) for ¢ exploiting [0]OT «» T
(N4). O

Although replacing N8 with (16) does not increase the number of provable formulae,
we avoid the induction argument necessary for proving (16) which we would have to
provide by hand as we don’t have an induction theorem prover at our disposal. Also,
we avoid proving instances of (16).
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The functional translation of (16) into predicate logic is somewhat more compli-
cated than that of N8. It is given by

ViV [[(~den(x) A Fyin VO:E o(I([vd], 2)))
Eﬁge()/\ﬂvmWE#ﬂ( ([vd], 2)))
[

—

A
A

() = V7 3GE =(e(L([yd], ) A (U[vé], 2))))] =
(mdenymia—;j (@) A Fymtm+1-g V&:E (o(U([vo], 2)) V L (L([yd], 2)))]]-

Like II;(N7) this formula cannot be reduced to a first-order formula. We swap the
quantifiers dy:n+m+1-7 and V§:E. The quantification elimination algorithm SCAN
produces then for this input the following clauses:

P8 demax(n,m)(w*)7 _'den+m+1—j(w*)7 4
[w, fT57 (W, Ty T )] = [wi f5™ (W, 2, 1]

P9 demax(n,m)(w*)v _'den-l—m-l—l—j(w*)? )
[w*f’?;m” (w*'/ L, xm)u] = [w*xmf6nm] (U)*, Loy u)]

P10 demax(n, m)(w*) —de;(wy),
[w*flzj—lrjn-l-l -7 (w*7 v, xn)v] = [w*xannm](w*v v, xn)]v

[w*f327rfn+1 —j (w*7 U, xm)v] = [w*xmf4nmj (w*7 U, xm)]

P11 demax(n m)(w*)

[w*flzilgn+l —j (W, v, 2,)0] = [w*xannMj<w*a v, @),
[w*fgzil}yn+l -7 (w*v v, xM) ] = [w*xmf4nm] (w*v v, l’m)],
[w*f7'nmj(w*, Ty T U] = (Wi, O (Wi, Ty, 1]

P12 dcmax(n,m)(w*)7

[w*flzfm-l-l j(w*v v, xn)v] = [w*xannmj<w*7 U, xn)]v
[w*f32$5n+1 —J (w*v v, xm) ] = [w*xmf4nmj (w*v v, xm)]v
(Wi fT57 (Wi, Ty T )] = [0 f6™ (Wi, T, )]

together with the clause

den(w)v dGM(w)v _'dej(w)v _'d6n+m+1—j(w)v (17)

which is implicit in P1-P7. We can show that, for any positive integers n, m and j,
dk 1 (k1) e {n,m} x {j,n+m+1-5} such that &k >1.

For, suppose not. Suppose n, m and j exist such that for any k and [ with (k,[) €
{n,m} x {j,n+m+1-7} we have k <. Then,n < j,m<jandn<n+m+1—j.
Hence, j < m+1, and thus, m < 7 < m+ 1, which cannot be for j a positive integer.

If the values n, m and j are such that we can choose k and [ with & strictly larger
than [ then (17) is subsumed by P3. Otherwise, if the values are such that we can
choose identical k and [, then (17) is a tautology. In either case (17) is redundant.

We conclude this section with an example (supplied to us by Werner Nutt) in
which we exhibit the computational effect of using the clauses P8-P12.
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Example 5.8 Suppose the universe consists of at most thirty objects. If there are
at least twenty objects in p and there are at least twenty objects in ¢, then there are
at least ten objects in p A ¢q. A standard tableaux system for the number operators
would generate twenty witnesses for p, twenty witnesses for ¢ and then it would need
to identify ten of them in order not to exceed the limit of thirty. But there are
combinatorically many ways for identifying ten of them.

In our system we prove the conjecture by showing the following set of K-formulae
1s inconsistent:

{C19p,Cr9q, O30, Og(p A q)}-

We could choose any other suitable combination of numbers. This would not change
the structure of the proof at all. The translation into PLy; is:

{=ders([])) A p([argz]), ~ders([]) A q([broz]), deso([]), deo([]) V =p(lyoc]) V 2q([ysc])}-

The corresponding set of clauses consists of:

Cy ﬁdt’w([]) Cy deBO(H)
Cy p(larsz]) Cs des([]), —p([yoc]), —q([yec])
Cs q([bioy])

Resolve C5 with P3 and C; and eliminate the deg([]) literal from Cj; leaving:
Ci =p(lyecl), ~q([yec])
We resolve the instance of P9 with n =m =19, j =9, namely
Py deo([]), ~deso([]), [£75° 1 (1], w10, 2)u] = [210£6" 12 °([], 210, u))],
with C; and C4 and obtain
Co [f75777([], w19, 29 )u] = [ f61 179 ([], g, u)].

Applying the unifier {yo — f78° " ?([], x19, ¥}g), u +> ¢}, we can use this in a paramod-
ulation step with Cf resulting in

Cr =p([io 6717 2([, 29, )]), =q([f757 7 ([], 19, 219)c])

Unify in Cy and Cr with {2}y — aj9,x — f6'7129([],2],,¢)}. Resolving Cy and C;
yields

Cs —q([£75° 1 °([], 219, ar9)c]).
Now we use the following instance of PS:
P8 deg(w.), —deso(w.), [wef757192(w., 219, @) u] = [Wex19f5? 1?9 (wy, 219, u)]
This can be reduced with €y and Cy to the equation
Co [£75" ([, @19, wi0)u] = [219 57 2([], 219, )]
which we can now use in a paramodulation step with Cs. We get

Cio q([19f5" 17 2([], 219, €)]).-

The empty clause is obtained if we resolve Cjo with C3 using the appropriate unifier.
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6 From concept description languages to graded
modalities

A knowledge representation system in the KL-ONE-style (Brachman and Schmolze
1985) usually consists of a so called T-Box and an A-Box (Brachman, Fikes and
Levesque 1983). The T-Box axiomatizes the part of the world that is to be mod-
elled in the system whereas the A-Box is more or less a classical database containing
information, in general ground facts, about the actual situation.

Most T-Box (or terminological) languages have as syntactic primitives concept
names and rule names. Concept names denote sets of objects and role names denote
binary relations between these objects. Using concept forming connectives, like —,
M, U, some and all, compound concept terms can be built which also denote sets of
objects.

A prototypical concept description language is the ALC language (short for ‘at-
tributive concept description language with complement’). It has a well-defined
model-theoretic semantics and its computational behaviour is completely understood.
The terminological language of ALC uses only the concept-forming operators —, 1,
L with the usual meaning (complement, union, intersection) as well as role quan-
tifications (all R C) and (some R C). (all R C) denotes the set of all objects whose
R-successors (R-fillers in the KL-ONE terminology) are all in C. (some R C) denotes
the set of all objects with some R-successor in C. Typical examples for concept defi-
nitions in ALC are:

man = person 1 (some sex male)
parent = person 1 (some child T) T denotes the set of all objects
father = parent M man
grandfather = father M (some child parent)
woman = person 1 —man

Given a set T of concept equations, a concept C is coherent if there is a model
for T in which C denotes a nonempty set. Furthermore, a concept description C
subsumes a concept description D in T', if C denotes in every model of T a superset
of D. Deciding coherence and subsumption is the basic reasoning service of the
knowledge representation systems based on ALC. According to the above definitions,
for example, it is possible to infer that grandfathers are fathers and persons and men
as well, i.e. man subsumes father and grandfather.

In (1991), Schmidt-Schaufl and Smolka show that deciding coherence and sub-
sumption of concept descriptions is P-SPACE-complete and can be decided with linear
space. Many variants and extensions of ALC have now been investigated (Levesque
and Brachman 1987, Nebel and Smolka 1990, Nebel 1990, Schild 1991, Donini, Lenz-
erini, Nardi and Nutt 1991b, Donini, Lenzerini, Nardi and Nutt 1991a, Woods and
Schmolze 1992) and are used in implementations of knowledge representation lan-
guages (Baader and Hollunder 1991). We focus on a language very much like ALCN
which includes numerical quantification operators atleast and atmost. The concept
term (atleast 3 has-child blond), for example, represents the set of individuals who
have at least three children who are blond. The term (atmost 2 has-parent T) repre-
sents the set of individuals who have at most two parents. The language we consider
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is slightly more expressive than ALCN. Our version, referred to as ALCN'T, allows
for arbitrary concepts to be included in other concepts, whereas in ALCN only atomic
concepts can be included in other concepts.

Now, we define the syntax of ALCN™. The signature of the terminological lan-
guage of ALCNt consists of a set X of role names and a disjoint set X of concept
names. From role names Q € X and concept names A € Y compound concept
terms C are formed according to the following rules:

C,D — A|-C|CND|CuD]|(someRC)|(all R C)]|
(atleast n R C) |(atmost n R C)|CC D|C=D.

n is a non-negative integer. Most authors define the symbols C and = to be sentential
symbols. We define them to be connectives just as I and U are. Note, we consider
terminological sentences of the form C £ D and C = D to be concept terms. In
ALCN terminological sentences are constrained to be of the form A C C and A =
C, where A are concept names. A T-Boz is defined as a set of concept terms.

The semantics of ALCN™T is specified by an interpretation Z = (U, V) with U a
non-empty set U (the domain of interpretation) and a signature assignment V. The
signature assignment maps role names to binary relations on U and it maps concept
names to subsets of U. The interpretation of concept terms C and D specified by:

cf =v(Q) if C is a concept name

(-C)T = U\t
(CnD)Y =c'nD?
(CuD)?f =ctub?
(ccbD)yf =w\cHub?
(C=

)
)
)
)
D)T = (U\(C*uD))u(Cf nDY)
Y ={reU|IyelUR (z,y)AyeC'}
@l RC) = {z e U|Vy e U R (z,y) =y e CT}
)! = {e e Ul{y € C"[R (x,y)}| = n}
! = {zeU|l{y e C" R (z,y)}| <n}
Atomic concept names in a T-Box T are interpreted as the entire domain and are all
equivalent to the top concept T. T is the largest element in the subsumption ordering.
The complement of T is | and represents the empty set.
An interpretation Z = (U, V') with CT = U for all concept terms C in the T-Box
T is a model of T. A concept term C is universal iff C* = U for all interpretations 7.
C is empty iff C* = 0 for all interpretations Z.
The entailment relation | between concept terms is defined by:

CE=D iff DT =U for every interpretation Z of C.

Then C |= D iff C C D is universal iff C M =D is empty.

We treat sets {Cy,...,C,} of concept terms in the same way as the conjunction
Cin...nC,. Thus, a given T-Box T will be treated as the conjunction of its
elements.
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In contrast to other terminological languages the language ALCN™ includes no
role-forming operators. Roles that occur are all atomic. To simplify our presentation,
without loss of generality we assume there is one atomic role R.

Now we show that we can embed ALCN' in K. Define a mapping II from the
language of ALCN™ to the language of K by:

I1(C) C if Cis a concept name or T or L
II(-C) = -II(C)
I(Cnb) = IIC)AIL(D)
II(Cub) = IC)VvVIID)
I(CCED) = II(C)—1II(D)
II(C=D) = II(C)« II(D)
[I(some R C)) = <OpII(C)
IM(all RC) = OII(C)
II(atleast n RC) = <, 41I(C)
II(atmost n R C) = 0O,-II(C)

It is easy to verify that II is well-defined. The following is the main statement of this
section.

Theorem 6.1 (Soundness and completeness of II)

A concept term C is universal iff II(C) is a tautology.

Proof. Let Z = (U, V) be any interpretation of a T-Box of ALCNT. Let M be the
modal model (U, R%, V). By induction on the structure of C prove, for every = € U:

zeCh if M,z = TI(C).

We omit the details. O

7 Conclusion

In the logic of graded modalities it is possible to express properties of finite sets. The
usual inference calculi for this logic generate for all sets used in the proof at least as
many constants (witnesses) as the cardinality of each set. Even for moderate values
a vast number of witnesses are generated which are processed by case distinctions in
the proof.

In this paper we present an alternative method which avoids case distinctions,
instead our method uses limited arithmetical reasoning. It arises in a series of trans-
formation steps. First, we translate the logic of graded modalities K into a new normal
multi-modal logic, called Kg. Unfortunately, Kz does not reduce by the standard
relational translation to first-order logic. One of the axioms of Kg is second-order.
We solved this irreducibility problem by, instead of using the relational translation,
using a functional translation with a particular optimization which exploits the richer
structure of the functional models.

Our method can also be applied in the field of knowledge representation. The ter-
minological logic ALCN is closely related to the graded modal logic K. In fact, there
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is an exact correspondence between terminological operators and modal operators.
Our approach provides a viable alternative inference mechanism to the constraint
algorithms commonly used, which also suffer from the overhead of evaluating case
distinctions.

Our approach must be viewed as a first step toward efficient reasoning with finite
sets. There are a number of open problems which need to be addressed.

(i) A general completeness result for K would allow us to use the full expressivity
of this system. As long as this is not proved, we can guarantee completeness
only for the original K formulae. This is what we wanted from the beginning,
but a stronger result would be preferable.

(ii) Our first-order theory is represented by a set of axiom schemas which are un-
derstood to be conjunctions of all its instances with the numerical variables
instantiated with concrete values. The implementation of the calculus will rely
on theory resolution. The axiom schemas will be encoded as inference rules.
Since the axiom schemas contain equations the realization will not be easy, but
it is certainly solvable.

(iii) The original logic of graded modalities is decidable. Accordingly, there should
be a resolution strategy for the translated formulae that is complete and termi-
nates. This strategy has yet to be developed.

(iv) Our calculus is still limited in reasoning with arithmetical terms. It remains to
be investigated whether and how this capability can be enhanced.

(v) We have applied our methods to KL-ONE-type reasoning but only for reasoning
within the T-Box. This corresponds directly to that in modal logic. We haven’t
accounted for A-Box reasoning about concrete instantiations of concepts/sets
and roles/relations. The functional translation applied to A-Box terms gener-
ates many equations. It is not immediate how these can be treated efficiently.

(vi) The correspondence properties for the axioms of Ky except one are first-order.
This does not rule out that Kg is complete with respect to a first-order model
theory. If this were the case we can get a translation into predicate logic that
avoids some equational reasoning.
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