
MAX-PLANCK-INSTITUT

F

�

UR

INFORMATIK

 	

� �

A Davis-Putnam Based Enumeration

Algorithm for Linear Pseudo-Boolean

Optimization

Peter Barth

MPI{I{95{2-003 January 1995

���

�

��

k

I N F O R M A T I K

Im Stadtwald

D 66123 Saarbr�ucken

Germany

Author's Address

Peter Barth,

Max-Planck-Institut f�ur Informatik, Im Stadtwald, D-66123 Saarbr�ucken, Germany

barth@mpi-sb.mpg.de

Acknowledgements

The author is grateful to Alexander Bockmayr for his valuable comments and fruitful discussions. The

author is also grateful to John N. Hooker for his comments on the variable selection heuristics.

This work was supported by the ESPRIT Basic Research Project ACCLAIM (contract EP 7195) and

the ESPRIT Working Group CCL (contract EP 6028).

Abstract

The Davis-Putnam enumeration method (DP) has recently become one of the fastest known methods

for solving the clausal satis�ability problem of propositional calculus. We present a generalization of the

DP-procedure for solving the satis�ability problem of a set of linear pseudo-Boolean (or 0-1) inequalities.

We extend the method to solve linear 0-1 optimization problems, i.e. optimize a linear pseudo-Boolean

objective function w.r.t. a set of linear pseudo-Boolean inequalities. The algorithm compares well with

traditional linear programming based methods on a variety of standard 0-1 integer programming bench-

marks.

Keywords

0-1 Integer Programming; Propositional Calculus; Enumeration

Contents

1 Introduction 1

2 Preliminaries 1

3 The Classical Davis-Putnam Procedure 3

4 Davis-Putnam for Linear Pseudo-Boolean Inequalities 5

5 Optimizing with Pseudo-Boolean Davis-Putnam 7

6 Implementation 8

7 Heuristics 10

8 Computational Results 10

9 Conclusion 12

1 Introduction

The Davis-Putnam enumeration method (DP) is widely used in the theorem proving commu-

nity for solving the clausal satis�ability problem of propositional calculus (SAT) [DP60, Lov78].

In recent years, DP based algorithms have evolved to the fastest known methods for solving

SAT [JW90, HHT94, Hoo93, Zha93]. This is due to proper implementation techniques and the

development of good variable selection heuristics [JW90, HV94]. We present a generalization

of the DP-procedure for solving linear pseudo-Boolean (0-1) optimization problems and so use

results from theorem proving on typical operations research problems. The method compares

well with traditional linear programming based methods on a variety of standard 0-1 integer

programming problems found in MIPLIB [BBI92].

The generalized DP method for solving linear pseudo-Boolean optimization problems is es-

sentially an implicit enumeration method based on the logical structure of pseudo-Boolean prob-

lems. Logic-based methods have been rejected in favor of linear programming based methods,

exploiting the polyhedral structure of the problem, years ago. Recently there has been some

renewed interest in logic-based methods. Hooker [Hoo94] relates the logic and polyhedral view

of pseudo-Boolean problems. He points out that, for instance, cutting planes are a special class

of logical implications and the linear programming relaxation can be replaced by a discrete

relaxation. Choosing a discrete relaxation together with an appropriate logic-cut generation

method [Hoo92, Hoo94, Bar94] yields a logic-based branch-and-cut algorithm. In branch-and-

cut methods two tasks have to be done. First, a relaxation of the problem has to be solved and

the problem has to be split (branch). Second, a problem has to be reformulated (strengthened)

with an appropriate method if possible (cut).

In this paper we concentrate on solving a discrete relaxation of linear pseudo-Boolean prob-

lems, the basic part of any system including branching, and its application inside a pure implicit

enumeration method. We consider a weak discrete relaxation, pseudo-Boolean unit relaxation,

which can be e�ciently computed, and present a branching algorithm based on this relaxation

for determining the satis�ability of a set of linear pseudo-Boolean inequalities. The method then

is used for optimizing a linear pseudo-Boolean function w.r.t. a set of linear pseudo-Boolean

inequalities. We show that a pure branching algorithm based on a discrete relaxation compares

well with linear programming based branch-and-bound methods.

The paper is organized as follows. In Section 2 we give basic de�nitions and present a

normal form for linear pseudo-Boolean inequalities. The DP-procedure for solving SAT is recalled

in Section 3. Its generalization to pseudo-Boolean constraints and the application to linear

pseudo-Boolean optimization is presented in Section 4 and Section 5 respectively. Implementation

issues are mentioned in Section 6. We brie
y discuss variable selection heuristics in Section 7.

Computational results are given in Section 8 followed by the conclusion.

2 Preliminaries

Let B := fX

1

; X

2

; : : : ; A;B; : : :g be a �nite set of Boolean variables, that is the domain of the

variables is f0; 1g. A literal L

i

is either a Boolean variable X

j

(positive literal) or its negation

X

j

= 1�X

j

(a negative literal). Let L be the set of all literals. The negation of a negative literal

X

j

is always simpli�ed to X

j

. We denote by Var(X

j

) = Var(X

j

) = X

j

the variable of a literal.

A linear pseudo-Boolean term c

1

L

1

+ � � �+ c

n

L

n

(abbreviated by cL) is a sum of products c

i

L

i

,

1

where c

i

2 ZZ and L

i

2 L. We view cL also as a set of products. For a set of products cL we

denote by

P

c := c

1

+ � � �+ c

n

the sum of the integer coe�cients of cL. Let T be the set of all

linear pseudo-Boolean terms. An assignment is a mapping � : B ! f0; 1g. An assignment can

also be seen as a 0-1 vector of dimension jBj. Assignments are naturally extended to a mapping

� : T ! ZZ.

A linear pseudo-Boolean inequality is of the form cL � d. An assignment � satis�es a linear

pseudo-Boolean inequality cL � d if �(cL) � d. If there is no assignment satisfying cL � d,

we simplify cL � d to the contradiction ?. If every assignment satis�es cL � d then cL � d is

a tautology and we simplify it to >. An assignment satis�es a set S of linear pseudo-Boolean

inequalities if it satis�es each linear pseudo-Boolean inequality in S. The extension Ext(S) of S

is the set of assignments satisfying S. A set S of linear pseudo-Boolean inequalities (strictly)

dominates a set of linear pseudo-Boolean inequalities S

0

if Ext(S) is a (proper) subset of Ext(S

0

).

A linear pseudo-Boolean inequality cL � d, where c

i

= 1 for all 1 � i � n is called an extended

clause and abbreviated by L � d. If additionally d = 1, then we call the linear pseudo-Boolean

inequality a classical clause. Note that L

1

+ � � � + L

n

� 1 is equivalent to the disjunction of

the literals L

1

_ : : : _ L

n

. Deciding whether there is an assignment satisfying a set of classical

clauses is the propositional satis�ability problem (SAT). Next, we de�ne a normal form for linear

pseudo-Boolean inequalities.

De�nition 2.1 A linear pseudo-Boolean inequality cL � d is in (pseudo-Boolean) normal form

if

d � c

1

� : : : � c

n

� 1 and Var(L

i

) 6= Var(L

j

) for all 1 � i < j � n : (1)

We assume that d � 1 because otherwise the pseudo-Boolean inequality in normal form is a

tautology, that is it is valid for every assignment � and therefore need not be considered.

Proposition 2.2 [HR68] For each linear pseudo-Boolean inequality, which is not a tautology,

there exists an equivalent linear pseudo-Boolean inequality in normal form.

We constructively describe how to obtain the pseudo-Boolean normal form of a linear pseudo-

Boolean inequality. We begin with an arbitrary linear pseudo-Boolean inequality

e

1

L

0

1

+ � � �+ e

m

L

0

m

� d

0

: (2)

First, we apply several arithmetic equivalence transformations. We rewrite (2) such that literals

containing the same variable are grouped together and obtain

a

1

X

1

+ b

1

X

1

+ � � �+ a

n

X

n

+ b

n

X

n

� d

0

;

where the X

i

are pairwise di�erent. For each i such that a

i

= b

i

we can simplify a

i

X

i

+ b

i

X

i

to the constant a

i

and move a

i

to the right-hand side. So let us assume that a

i

6= b

i

for all

1 � i � n. Next, we replace a

i

X

i

+ b

i

X

i

by c

0

i

L

i

+ c

00

i

for all 1 � i � n, where

c

0

i

L

i

+ c

00

i

:=

(

(a

i

� b

i

)X

i

+ b

i

if a

i

> b

i

(b

i

� a

i

)X

i

+ a

i

if b

i

> a

i

:

Note that the coe�cients c

0

i

are all positive. Bringing the constants c

00

i

to the right-hand side

gives us the new right-hand side d = d

0

�

P

n

i=1

c

00

i

. After re-indexing according to the ordering

restriction we have brought the linear 0-1 inequality into the form

c

0

1

L

1

+ � � �+ c

0

n

L

n

� d ; (3)

2

where c

0

1

� � � � � c

0

n

� 1 and Var(L

i

) 6= Var(L

j

) for all 1 � i < j � n. Note that d � 1, since

otherwise (2) is a tautology. So far we have only applied arithmetic equivalence transformations,

hence an assignment � satis�es (2) if and only if � satis�es (3). When constructing the pseudo-

Boolean normal form of a linear pseudo-Boolean inequality we can detect at this point whether

it is a tautology or not.

Suppose that c

0

i

> d for some i, then every assignment � with �(L

i

) = 1, maps the left-hand

side of (3) to an integer greater than d and satis�es (3). For all assignments � with �(L

i

) = 0,

the value of the left-hand side is independent of c

0

i

. Hence, we can safely replace each c

0

i

by d if

c

0

i

> d. Formally, we de�ne

c

i

:=

(

c

0

i

if c

0

i

� d

d if c

0

i

> d

(4)

for all 1 � i � n, and thereby obtain the pseudo-Boolean normal form

c

1

L

1

+ � � �+ c

n

L

n

� d (5)

of (2) with d � c

1

� � � � � c

n

� 1. Obviously, an assignment � satis�es (2) if and only if �

satis�es (3) if and only if � satis�es (5). The last step of the normalization process as described

by (4) is also called coe�cient reduction [CJP83].

Note that a linear pseudo-Boolean inequality in normal form cL � d is satis�able if and only

if

P

c � d, because c

i

> 0 for all 1 � i � n. Hence, cL � d is unsatis�able if and only if

P

c < d, and we can easily decide whether cL � d is ?. From now on we assume that all linear

pseudo-Boolean inequalities are in pseudo-Boolean normal form.

In optimization problems we want to maximize (resp. minimize) a linear pseudo-Boolean term

cL w.r.t. a set S of linear pseudo-Boolean inequalities, i.e. we search for a satisfying assignment

� of S such that �(cL) � �

0

(cL) (resp. �(cL) � �

0

(cL)) for all satisfying assignments �

0

of S.

3 The Classical Davis-Putnam Procedure

First, we recall the Davis-Putnam enumeration method (DP) for solving the satis�ability problem

SAT for a set of classical clauses.

A classical clause L � 1 with jLj = 1, i.e. there is only one literal, is called a unit clause. The

literal L

i

of a unit clause is called a unit literal and we know that in all satisfying assignments

� of a SAT-problem containing a unit clause L

i

� 1 we have �(L

i

) = 1. Given a unit literal

L

i

, the basic step of the DP-procedure is to replace L

i

by 1 and L

i

by 0 in all classical clauses

followed by a simpli�cation step. Such a step is called a unit resolution step. Formally, we de�ne

ures(L

i

� 1; L � 1) :=

8

>

<

>

:

L n fL

i

g � 1 if L

i

2 L;

> if L

i

2 L;

L � 1 otherwise .

(6)

Then ures(L

i

� 1; L � 1) is the classical clause obtained from L � 1 after replacing L

i

by 1 and

L

i

by 0 followed by the simpli�cation step. Since �(L

i

) = 1 for all solutions � of a SAT-problem

containing L

i

� 1, we know that each solution of fures(L

i

� 1; L � 1); L

i

� 1g is a solution of

L � 1. Therefore, L � 1 is dominated by fures(L

i

� 1; L � 1); L

i

� 1g and can be replaced by

ures(L

i

� 1; L � 1) in a SAT-problem containing L

i

� 1. For a set of classical clauses S we

de�ne

ures(L

i

� 1; S) := fures(L

i

� 1; L � 1) j L � 1 2 S and ures(L

i

� 1; L � 1) 6= >g : (7)

3

Note that there are no tautologies > in ures(L

i

� 1; S). When applying ures to a set of classical

clauses, we may generate further unit clauses and ures may be applicable again. Unit resolution,

or clausal chaining, for a set of classical clauses S means to apply ures as long as there is a unit

clause in S.

In this paper we describe algorithms as a transition system, i.e. a set of transition rules of

the form

State

i

State

i+1

if C ; (8)

which say that we replace a state State

i

by a state State

i+1

if the condition C holds. States

State

i

are typically tuples of the form hX;Y i. A state State

n

is a normal form of State

1

if State

n

can be obtained by applying a set of transition rules to State

1

and for State

n

no rule is applicable

(i.e. for each transition rule its condition C does not hold). In our algorithms we take care that

at most one transition rule may apply to a state. Hence, if there exists a normal form, i.e. the

algorithm is terminating, the normal form is unique.

Unit resolution for a set of classical clauses S is described by the following transition rule,

where S is a set of classical clauses and U is a set of literals.

hS; U i

hures(L

i

� 1; S); U [fL

i

gi

if L

i

� 1 2 S (9)

We denote by hur(S); ul(S)i the normal form obtained by applying the transition rule (9) as long

as possible starting with hS; ;i. The set ul(S) then contains the set of all literals that occurred

in a unit clause during the application of unit resolution. Moreover, ur(S) does not contain a

unit clause and we have

Ext(ur(S) [ful(S) � jul(S)jg) = Ext(S) : (10)

If ur(S) contains the empty clause ?, S is unsatis�able and we say that the unit relaxation of S is

unsatis�able. On the other hand, we know that S is satis�able if and only if ur(S) is satis�able,

since each solution � of S is a solution of ur(S) and �(L

i

) = 1 for all L

i

2 ul(S). Note that

Var(L

i

) 6= Var(L

j

) for all di�erent L

i

and L

j

in ul(S). It is well known that the unit relaxation

of S is unsatis�able if and only if the linear programming relaxation of S is unsatis�able [BJL86].

Given a set S of classical clauses, the DP-procedure searches a solution � of S by exploring a

search tree, where each node of the tree represents a SAT-problem. Next, we de�ne a transition

system that operates on states hP; Soli. Here, P is a set of tuples hS; U i, where S is a SAT-

problem and U is a set of literals that have been �xed so far, representing the nodes that still

need to be explored. We collect the sets of �xed literals that generate an empty SAT-problem

as a set of sets of literals Sol.

dp clash:

hhS; U i] P; Soli

hP; Soli

if ? 2 S

dp sol:

hhS; U i] P; Soli

hP; Sol [fUgi

if S = ;

dp split:

hhS; U i] P; Soli

h

(

hur(S

0

); ul(S

0

) [U i;

hur(S

00

); ul(S

00

) [U i

)

[P; Soli

if

? 62 S; S 6= ;;

L

i

= select literal(S);

S

0

= S [fL

i

� 1g and

S

00

= S [fL

i

� 1g

4

In dp split we select a branching literal L

i

occurring in some clause of the current SAT-

problem by a procedure select literal. Applying the transition system de�ned by the three

rules dp clash, dp sol and dp split as long as possible on hfhur(S); ul(S)ig; ;i, where S is

a set of classical clauses, yields the normal form h;; Soli. Note that unit resolution applies at

least once for each of the two subproblems introduced by dp split, since we add a unit clause.

Therefore, the number of literals in each of the two subproblems is smaller than the number of

literals in the selected problem. Hence, the above de�ned transition system always terminates.

We know that S is satis�able if and only if Sol 6= ;. From each element U 2 Sol we can construct

a solution � 2 Ext(S) by de�ning �(L

i

) := 1 for all L

i

2 U and arbitrary otherwise. The set of

all solutions of S is obtained by building all solutions � for each U 2 Sol.

For e�ciency reasons the search tree is typically explored depth �rst, i.e. the set of subprob-

lems is implemented as a \Last In, First Out"(LIFO) data structure. Since we are only interested

in whether the SAT-problem is satis�able or not, we stop as soon as the �rst solution is found.

We de�ne

dp(S) :=

(

(>; U) if S is satis�able and U 2 Sol

(?; ;) otherwise ;

(11)

which yields (>; U) if and only if S is satis�able and U is the �rst set of literals that has been

added to Sol.

4 Davis-Putnam for Linear Pseudo-Boolean Inequalities

We obtain a DP like procedure for solving the satis�ability problem of a set of linear pseudo-

Boolean inequalities by generalizing unit resolution to pseudo-Boolean unit resolution. The key

idea of the unit resolution procedure is to �x unit literals to their only possible value and then

to make obvious inferences, i.e. �xing other literals and detection of (un)satis�ability. Therefore,

we �rst need to determine whether a linear pseudo-Boolean inequality implies the �xing of a

literal.

Lemma 4.1 A linear pseudo-Boolean inequality cL � d dominates L

i

� 1 if and only if c

i

L

i

2

cL and

P

c� c

i

< d, where

P

c denotes the sum over all coe�cients of c.

If a linear pseudo-Boolean inequality cL � d dominates L

i

� 1, we call L

i

a unit literal of cL � d.

Lemma 4.2 If a linear pseudo-Boolean inequality cL � d dominates L

i

� 1 with c

i

L

i

2 cL,

then cL � d dominates L

j

� 1 for all c

j

L

j

2 cL with c

j

� c

i

.

Using Lemma 4.2, we see that a linear pseudo-Boolean inequality cL � d dominates L

i

� 1 for

some L

i

if and only if cL � d dominates L

1

� 1, since L

1

is a literal with the largest coe�cient

in a linear pseudo-Boolean inequality cL � d in normal form. We de�ne

fixed(cL � d) :=

(

L

1

if

P

c� c

1

< d

? otherwise :

(12)

Then fixed(cL � d) = L

1

if and only if cL � d dominates L

1

� 1. Moreover, if fixed(cL �

d) = ?, then cL � d does not dominate any unit clause. Given a unit clause L

i

� 1, we can

simplify a linear pseudo-Boolean inequality cL � d by replacing L

i

by 1 and L

i

by 0. Resulting

constants on the left-hand side are brought to the right-hand side. Special cases arise when

5

the linear pseudo-Boolean inequality becomes tautologous after �xing (>) or unsatis�able (?).

Formally, we de�ne

fix(L

i

; cL � d) :=

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

> if d� c

i

� 0 and c

i

L

i

2 cL;

cL n fc

i

L

i

g � d� c

i

if d� c

i

> 0 and c

i

L

i

2 cL;

? if

P

c� c

i

< d and c

i

L

i

2 cL;

cL n fc

i

L

i

g � d if

P

c� c

i

� d and c

i

L

i

2 cL;

cL � d if neither L

i

nor L

i

in L :

(13)

Then fix(L

i

; cL � d) denotes the linear pseudo-Boolean inequality obtained by �xing a unit

literal L

i

in cL � d followed by the simpli�cation step. We have

Ext(fcL � d; L

i

� 1g) = ffix(L

i

; cL � d); L

i

� 1g :

Note that �xing a literal L

i

in a linear pseudo-Boolean inequality cL � dmay produce a tautology

only if L

i

2 L and may produce a contradiction only if L

i

2 L. Given a set S of linear pseudo-

Boolean inequalities, we denote by fix(L

i

; S) the set of all linear pseudo-Boolean inequalities

fix(L

i

; cL � d) 6= > with cL � d 2 S. Note that no tautologies are in fix(L

i

; S). Next,

we de�ne pseudo-Boolean unit resolution for a set of linear pseudo-Boolean inequalities S, the

generalization of the unit resolution procedure for classical clauses to the pseudo-Boolean case.

hS; U i

hfix(L

i

; S); U [fL

i

gi

if cL � d 2 S and L

i

= fixed(cL � d)(6= ?) (14)

We denote by hpbur(S); pbul(S)i the normal form obtained by applying the transition rule (14)

as long as possible starting with hS; ;i. The set pbul(S) then contains the set of all unit literals

detected by fixed during the application of pseudo-Boolean unit resolution. Moreover, pbur(S)

does not contain a linear pseudo-Boolean inequality cL � d with fixed(cL � d) 6= ? and we

have

Ext(pbur(S) [fpbul(S) � jpbul(S)jg) = Ext(S) : (15)

The pseudo-Boolean unit relaxation of S is the set of all assignments � such that �(L

i

) = 1

for all L

i

2 pbul(U) if ? 62 pbur(S) and ; otherwise. If ? 2 pbur(S), then we say that the

pseudo-Boolean unit relaxation of S is unsatis�able. On the other hand, S is satis�able if and

only if pbur(S) is satis�able, since each solution � of S is a solution of pbur(S) and �(L

i

) = 1

for all L

i

2 pbul(S). If S contains only classical clauses, then ur(S) = pbur(S) and therefore

? 2 pbur(S) if and only if ? 2 ur(S). If the pseudo-Boolean unit relaxation of S is unsatis�able,

then the linear programming relaxation of S is unsatis�able. The converse no longer holds. For

example, consider

S = f1 �A + 1 �B + 1 �C � 2; 1 �A+ 1 �B + 1 �C � 2g : (16)

Since fixed(1 �A+1 �B +1 �C � 2) = fixed(1 �A+1 �B+1 �C � 2) = ?, we have pbur(S) = S

and pbul(S) = ;, thus ? 62 pbur(S). On the other hand, the sum of both linear pseudo-Boolean

inequalities simpli�es to 3 � 4 and therefore the linear programming relaxation is unsatis�able.

Next, we generalize DP to the pseudo-Boolean case. Again, we de�ne a transition system

that operates on states hP; Soli, but here P is a set of tuples hS; U i, where S is a set of linear

pseudo-Boolean inequalities. For the sake of completeness we include the transition system,

which is almost identical to the one for classical clauses.

6

pbdp clash:

hhS; U i] P; Soli

hP; Soli

if ? 2 S

pbdp sol:

hhS; U i] P; Soli

hP; Sol [fUgi

if S = ;

pbdp split:

hhS; U i] P; Soli

h

(

hpbur(S

0

); pbul(S

0

) [U i;

hpbur(S

00

); pbul(S

00

) [U i

)

[P; Soli

if

? 62 S; S 6= ;;

L

i

= select literal(S);

S

0

= S [fL

i

� 1g and

S

00

= S [fL

i

� 1g

Only the unit resolution procedure is replaced by its generalization to the pseudo-Boolean

case. Applying the transition system de�ned by the three rules pbdp clash, pbdp sol and

pbdp split as long as possible on hfhpbur(S); pbul(S)ig; ;i, where S is a set of linear pseudo-

Boolean inequalities, yields the normal form h;; Soli and Sol represents the set of all solutions

of S. We de�ne

pbdp(S) :=

(

(>; U) if S is satis�able and U 2 Sol

(?; ;) otherwise ;

(17)

which yields (>; U) if and only if S is satis�able and U is the �rst set of literals that is added

to Sol when exploring the search tree depth �rst and stopping after the �rst solution has been

found.

5 Optimizing with Pseudo-Boolean Davis-Putnam

Optimizing a linear pseudo-Boolean term cL subject to a set of linear pseudo-Boolean inequalities

S can be done by solving a sequence of pseudo-Boolean satis�ability problems. We consider the

problem of maximizing cL subject to S. Minimization works in a similar way.

The goal is to �nd a solution � of S such that �(cL) � �

0

(cL) for all solutions �

0

of S.

We will �nd such an assignment by solving a sequence of satis�ability problems of the form

S

i

:= S [fcL � max

i

g, where only max

i

di�ers from problem to problem. We call cL � max

i

the objective function inequality. Suppose that max

0

is such that cL � max

0

is a tautology.

Solving S

0

yields a solution �

0

of S

0

and therefore of S. A lower bound of the optimum then

is �

0

(cL). We de�ne max

i+1

:= max

i

+1 and so exclude assignments yielding no better lower

bounds than the current one. Obviously, we have �

i+1

(cL) > �

i

(cL) for all satisfying assignments

�

i

of S

i

and �

i+1

of S

i+1

. If S

i

is satis�able and S

i+1

is unsatis�able, then �

i

(cL) is the desired

maximum.

We can incorporate this idea into pbdp just by replacing the rule pbdp sol. Instead of adding

a computed solution that �xes the literals U , we construct a solution � such that �(L

i

) = 1 for

all L

i

2 U [(L nU), where U := fL

i

j L

i

2 Ug is the set of all negated literals in U . Then �(cL)

is the maximal value of max: cL subject to fU � jU jg. We add to the remaining satis�ability

problems the linear pseudo-Boolean inequality cL � �(cL) + 1. Thus, we ensure that for each

further solution the value of the objective function is larger. If there are no remaining nodes,

then the last computed �(cL) was optimal.

Suppose that cL is a linear pseudo-Boolean term with c

i

> 0 for all c

i

2 c. We de�ne a

transition system that operates on states hP;maxi, where P is a set of tuples hS; U i, S is a set

7

of linear pseudo-Boolean inequalities, and U is a set of literals that are �xed so far. The current

lower bound of the maximization problem is max.

opbdp clash:

hhS; U i] P;maxi

hP;maxi

if ? 2 S

opbdp climb:

hhS; U i] P;maxi

hpropagate(P;max

0

+ 1);max

0

i

if

S = ;;

8L

i

2 U [(L n U) : �

0

(L

i

) = 1 and

max

0

= �

0

(cL)

opbdp split:

hhS; U i] P;maxi

h

(

hpbur(S

0

); pbul(S

0

) [U i;

hpbur(S

00

); pbul(S

00

) [U i

)

[P;maxi

if

? 62 S; S 6= ;;

L

i

= select literal(S);

S

0

= S [fL

i

� 1g and

S

00

= S [fL

i

� 1g

It remains to de�ne propagate, which updates the remaining satis�ability problems such that

only better lower bounds are generated.

propagate(hS; U i] P;max) := fhpbur(S [fcL � maxg); pbul(S [fcL � maxg) [U ig

[propagate(P;max)

propagate(;;max) := ;

Applying the transition system de�ned by the three rules opbdp clash, opbdp climb, and

opbdp split as long as possible starting with hfhpbur(S); pbul(S)ig;�1i yields the normal form

h;;maxi, where max � �(cL) for all � 2 Ext(S) and max = �1 if and only if S is unsatis�able.

We de�ne the optimization procedure opbdp(S; cL) := max, where max is the value computed

by the above given transition system.

It is no restriction to require that cL contains only positive coe�cients. Each term c

i

L

i

with

c

i

< 0 is equivalent to c

i

+ jc

i

jL

i

, since

c

i

L

i

= c

i

� c

i

+ c

i

L

i

= c

i

� c

i

� (1� L

i

)

= c

i

� c

i

L

i

:

Optimizing a linear pseudo-Boolean term

P

n

i=1

c

i

L

i

containing also negative coe�cients is done

by optimizing

P

n

i=1

jc

i

jL

0

i

, where L

0

i

is L

i

if c

i

> 0 and L

i

otherwise, and adding the sum over

the negative coe�cients c

i

to the positive result of opbdp.

6 Implementation

Proper implementation and the use of appropriate data structures are important factors for the

e�ciency of the DP-procedure [Hoo93, HHT94, Zha93]. In a naive implementation of dp, a

satis�ability problem has to be copied at each node which may require excessive storage. We use

the following data structure for implementing dp. Given a set S of classical clauses and the set

V of variables occurring in S, we compute in advance the following index data structures. Each

classical clause can be referenced by a unique identi�er cid. The set of literals in a classical clause

with identi�er cid can be referenced by lids(cid). We can obtain a list of clause identi�ers where

a literal L

i

occurs by cids(L

i

). We represent a sub-problem of S by a list of active variables av,

8

i.e. variables that are not yet �xed, and a list of clause states, where a clause state is a clause

identi�er and the number of literals nl currently active in that classical clause. Applying unit

resolution for the literal L

i

is done by

� deleting each element in the clause state list, where the identi�er in the clause state is in

cids(L

i

)

� and decreasing nl by one if the identi�er in the clause state is in cids(L

i

).

We obtain a unit clause if nl is set to 1. The new unit literal then is determined by lids(cid) \

(av[av) and its variable is deleted from av. The empty clause is derived if nl is set to 0. Copying

a sub-problem is now done by just copying the active clause list and the clause state list. The

advantage of this data structure is that the index data structure does not change while exploring

the search tree. The representation of the sub-problem in a node is very compact and detection

of unit literals is straightforward.

For pbdp each linear pseudo-Boolean inequality can be referenced by a unique inequality

identi�er iid. Given a literal L

i

, we can obtain a list of inequality identi�ers where L

i

occurs by

iids(L

i

). We need an additional index data structure to access the coe�cient c

i

= coe�(L

i

; iid)

of a given literal L

i

and an inequality identi�er iid. A sub-problem is represented by a list of

active variables av and a list of inequality states. An inequality state consists of an inequality

identi�er iid, a current right-hand side d of the linear pseudo-Boolean inequality and a current

sum

P

c over all coe�cients of the active literals of the linear pseudo-Boolean inequality. For

applying pseudo-Boolean unit resolution for the literal L

i

we do the following for all inequality

states where the inequality identi�er iid is in iids(L

i

):

� Delete the inequality state if coe�(L

i

; iid) � d (eliminate tautologies).

� Otherwise decrease the current right-hand side d and the current sum over all coe�cients

P

c by coe�(L

i

; iid).

For all inequality states, where the inequality identi�er iid is in iids(L

i

) we do the following:

� Decrease the sum over all coe�cients

P

c by coe�(L

i

; iid). If

P

c is smaller than the

current right-hand side, then the sub-problem is unsatis�able.

� Compute the active literal L

j

2 av for which coe�(L

j

; iid) is maximal. L

j

is a new unit

literal, i.e. it can be �xed, if

P

c� coe�(L

j

; iid) < d.

For large linear pseudo-Boolean inequalities, computing the active literal L

j

2 av [av for which

coe�(L

j

; iid) is maximal will often yield the same literal. One improvement is to store the

maximal coe�cient with its literal in the inequality state and to update it only if this literal is

�xed.

We implement opbdp as a slight variation of pbdp. When a satis�able solution is found (i.e

an empty inequality state list) we do not return >, but calculate the maximal value max of the

objective function under the current assignment. We then change destructively all copied right-

hand sides d of the objective function inequality states to the new value d � (max+1 �max

0

)

where max

0

is the previous calculated maximal value. The current node then is unsatis�able and

we backtrack until the objective function constraint is no longer violated. Then standard pbdp

depth �rst search is continued. We follow roughly the ideas presented by Hooker [Hoo93] for

incrementally solving SAT.

9

7 Heuristics

The selection of the branching literal [JW90, HHT94, HV94] is the other important factor for

the e�ciency of the DP-procedure. Good literal selection heuristics can reduce the number of

explored nodes by an order of magnitude. Hooker et. al [HV94] investigate several branching

heuristics for the clausal case. The \Two-Sided Jeroslow-Wang" rule has been justi�ed by a

Markov chain analysis of a simpli�cationmodel that selects the literal L

i

when pbur(S[fL

i

� 1g)

is the mostly simpli�ed problem [HV94]. The rule says that we should branch on the variable

X

i

which maximizes J(X

i

) + J(X

i

), with

J(L

i

) :=

X

L2S:L

i

2L

2

�jLj

: (18)

If J(X

i

) � J(X

i

), then X

i

should be selected, otherwise X

i

. The intention of the rule is that we

branch on a variable that occurs often in short clauses and so get a small sub-problem with an

increasing probability that unit literals occur.

For linear pseudo-Boolean inequalities we adapt the two-sided Jeroslow-Wang rule and branch

on a variable X

i

that maximizes PBJ(X

i

) + PBJ(X

i

), with

PBJ(L

i

) =

X

cL�d2S:c

i

L

i

2cL

c

i

P

c� d

� 2

�(

P

c=d)

: (19)

If PBJ(X

i

) � PBJ(X

i

), then X

i

is selected, otherwise X

i

. We replace jLj, which is a measure

of the length of a clause, by

P

c=d, which reduces to the length if we have classical clauses and so

is a straightforward generalization. The idea is that we prefer linear pseudo-Boolean inequalities,

where many of the coe�cients are needed in order to satisfy the linear pseudo-Boolean inequality.

We weight this preference by multiplying 2

�(

P

c=d)

by c

i

=(

P

c � d) and so take into account

the relative improvement of reaching the right-hand side when �xing the literal to 1. Further

analysis is required in order to obtain a more e�cient branching heuristics. For opbdp we use as

alternative a greedy-like heuristics depending only on the objective function. We simply select

the literal L

i

with the maximal coe�cient in the objective function. The idea is that a better

approximation of the optimal value is obtained earlier. A better literal selection heuristics that

takes into account the goal of maximizing an objective function and reducing the search space

needs to be found.

8 Computational Results

A prototype of opbdp has been implemented in C++.

System available:

ftp.mpi-sb.mpg.de:/pub/guide/staff/barth/opbdp/opbdp.tar.Z or

http://www.mpi-sb.mpg.de:/guide/staff/barth/barth.html.

In Figure 1 we present computational results for using opbdp on a variety of pure 0-1 integer

programming problems found in MIPLIB [BBI92]. In column \Name" we give the name of the

problem. In \# V" we mention the number of variables and in \# I" the number of inequalities

of the problem. \Nodes" is the number of nodes explored for solving the problem and \Time" is

10

DS-JW (opt) DS-JW (ver) OF (opt) OF (ver)

Name #I #V Nodes Time Nodes Time Nodes Time Nodes Time

air01 46 771 43553 184.90 70070 279.73 1549 51.26 19128 72.33

air02 100 6774 ? & ? & 2721179 35496.44 5961252 75622.30

bm23 20 27 5002 2.71 6184 3.41 4510 0.33 7772 0.60

enigma 42 100 2401 1.06 2401 1.06 659 0.31 659 0.31

lseu 28 89 3035527 1076.04 3515755 1261.22 650193 69.16 10063415 997.28

misc01 69 82 345 0.34 1740 1.15 19740 2.79 49010 7.61

misc02 51 58 104 0.06 289 0.13 141 0.04 395 0.08

misc03 121 159 19578 21.16 32172 34.76 425 0.15 357611 112.01

misc07 245 259 1252433 1887.23 2312017 4098.65 164544 84.94 53120546 26127.40

p0033 15 33 336 0.06 916 0.15 1047 0.06 17344 1.10

p0040 23 40 346905 33.16 490410 46.83 61 0.03 542998 28.11

p0201 133 201 ? & ? & 499 0.53 ? &

p0282 221 282 379895 281.43 385142 289.70 62573 20.80 63746 21.23

p0291 205 291 4654 3.63 5199 4.05 487 1.60 686 1.68

sentoy 30 60 223504 275.68 301374 424.40 778 0.21 58366 10.45

stein15 36 15 9 0.00 436 0.05 6 0.03 686 0.05

stein27 118 27 2587 0.31 29216 4.10 17 0.01 38324 3.28

stein45 331 45 157389 56.23 1446536 534.98 9170 1.73 3543186 774.16

& : aborted after 30000 seconds

Figure 1: 0-1 Integer Optimization Problems from MIPLIB with opbdp

the user cpu time used for solving the problem with opbdp on a SPARC-10/31. In the \DS-JW"

columns we use opbdp with the adapted two-sided Jeroslow-Wang heuristics and in the columns

\OF" we select the literal with the largest coe�cient in the objective function. The columns

\: : : (opt)" describe when the optimal value is found and the columns \: : : (ver)" describe when

the optimal result is veri�ed and opbdp terminates. In Figure 2 we solve the same 0-1 integer

optimization problems with CPLEX 3.0. CPLEX is a commercial mixed integer solver based on

the simplex algorithm. Integer problems are solved by branch-and-bound. CPLEX o�ers the

possibility to additionally generate cutting planes (e.g. clique inequalities and lifted knapsack

covers) at each node if possible, yielding a branch-and-cut algorithm. CPLEX does not report

the time when the optimal solution was found. The other columns in Figure 2 are similar to

Figure 1. We solve all problems �rst by branch-and-bound (B&B) and then with branch-and-

cut (B&C)

1

. On some problems, e.g. \p0201", the cutting plane generation gives a signi�cant

speedup.

The presented opbdp procedure compares well w.r.t. the linear programming based solver

CPLEX. Especially \enigma" and the \stein"-problems are solved much faster by opbdp. On

other problems, i.e. \lseu" and the \air"-problems, the linear programming based method is

faster. Problems where the optimal value of the linear programming relaxation is already near

the integer optimal value, but the number of variables is very high (the \air"-problems), are

better attacked by linear programming based methods. It is interesting to note that exploiting

the logical structure of a problem, i.e. using opbdp, yields good performance on problems where

exploiting the polyhedral structure seems to be ine�cient and vice versa. Hence, there is no

\better" approach, but problem speci�c characteristics that can be explored. An integration of

both approaches and systems that exploit either structure need to be investigated and may lead

1

For B&B we disallowed clique and cover generation (option -1). For B&C we forced clique and cover generation

(option 1).

11

B&B(opt) B&B(ver) B&C(opt) B&C(ver)

Name # I # V Nodes Nodes Time Nodes Nodes Time

air01 23 771 3 3 0.35 3 3 0.35

air02 50 6774 19 20 13.78 19 20 13.52

bm23 20 27 452 452 1.88 521 590 5.80

enigma 21 100 22086 22086 214.68 22086 22086 213.85

lseu 28 89 10811 15889 82.05 1576 1932 14.95

misc01 54 83 76 721 6.97 104 439 5.95

misc02 39 59 29 60 0.60 20 44 0.55

misc03 96 160 24 527 16.77 24 428 15.40

misc07 212 260 2601 22832 1450.48 1613 11854 858.70

p0033 16 33 662 964 2.23 7 82 0.47

p0040 23 40 51 54 0.17 0 0 0.07

p0201 133 201 760 1023 25.83 478 986 45.25

p0282 241 282 ? ? & 582 749 39.65

p0291 252 291 86 97 0.58 28 39 0.80

sentoy 30 60 595 723 4.92 1129 1129 19.97

stein15 36 15 7 85 0.38 7 85 0.38

stein27 118 27 8 4061 32.87 8 4061 32.83

stein45 331 45 29373 71595 2910.18 29373 71595 2924.38

& : aborted after 30000 seconds

Figure 2: 0-1 Integer Optimization Problems from MIPLIB with CPLEX

to more powerful optimization algorithms.

Note that in all but one of the problems the optimal solution was found relatively early when

using the greedy like heuristics. Unfortunately, the number of evaluated nodes does not decrease

signi�cantly when using the adapted Two-Sided Jeroslow-Wang heuristics, which indicates that

better heuristics need to be developed. Special handling of equality constraints are further

possibilities to improve the presented algorithm. Note that all occurring linear pseudo-Boolean

equalities cL = d have been replaced by the two linear pseudo-Boolean inequalities cL � d and

cL � d. Therefore, the column \# I" may di�er from the column \ROWS" found in MIPLIB.

Direct use of the equality constraints would reduce the problem size and might help to decrease

the number of explored nodes.

We currently require that all the coe�cients are integer. The results still hold when rational

coe�cients are allowed in the constraint inequalities and adapting the presented method is easy.

This has not yet been done and therefore some problems (\mod008", \mod010", \pipex") have

not been considered. Furthermore, we have not considered some problems with a very large

number of variables. We believe that a version of opbdp using preprocessing techniques and

logic-cut generation techniques [Bar94] could also be applied on larger problems.

9 Conclusion

Branching methods based on a discrete relaxation compare well in e�ciency with branching meth-

ods based on the linear programming relaxation for solving linear pseudo-Boolean optimization

problems. By choosing a straightforward generalization of unit relaxation in propositional calcu-

lus to the pseudo-Boolean case, implementation techniques of clausal satis�ability provers can be

used. The next step towards an e�cient logic-based branch-and-cut method is the incorporation

of logic-cut generation methods [Hoo92, Bar94].

12

References

[Bar94] P. Barth. Logic-based 0-1 constraint solving in constraint logic programming. PhD the-

sis, Fachbereich Informatik, Universit�at des Saarlandes, December 1994. forthcoming.

[BBI92] R. E. Bixby, E. A. Boyd, and R. Indovina. MIPLIB: A Test Set of Mixed-Integer

Programming Problems. SIAM News, 25(16), 1992.

[BJL86] C. E. Blair, R. G. Jeroslow, and J. K. Lowe. Some results and experiments in pro-

gramming techniques for propositional logic. Computers and Operations Research,

13(5):633{645, 1986.

[CJP83] H. Crowder, E. L. Johnson, and M. Padberg. Solving large-scale zero-one linear pro-

gramming problems. Operations Research, 31(5):803{834, September 1983.

[DP60] M. Davis and H. Putnam. A computing procedure for quanti�cation theory. Journal

of the ACM, 7:201{205, 1960.

[HHT94] F. Harche, J. N. Hooker, and G. L. Thompson. A computational study of satis�ability

algorithms for propositional logic. ORSA Journal on Computing, 6(4):423{435, 1994.

[Hoo92] J. N. Hooker. Generalized resolution for 0-1 linear inequalities. Annals of Mathematics

and Arti�cial Intelligence, 6:271{286, 1992.

[Hoo93] J. N. Hooker. Solving the incremental satis�ability problem. Journal of Logic Pro-

gramming, 15:177{186, 1993.

[Hoo94] J. N. Hooker. Logic-based methods for optimization. ORSA CSTS Newsletter, 15(2):4{

11, 1994.

[HR68] P. L. Hammer and S. Rudeanu. Boolean Methods in Operations Research and Related

Areas. Springer-Verlag, 1968.

[HV94] J. N. Hooker and V. Vinay. Branching rules for satis�ability. presented on \Third In-

ternational Symposium on Arti�cial Intelligence and Mathematics": Fort Lauderdale;

Florida (to appear in Journal of Automated Reasoning), January 1994.

[JW90] R. G. Jeroslow and J. Wang. Solving propositional satis�ability problems. Annals of

Mathematics and AI, 1:167{187, 1990.

[Lov78] D. W. Loveland. Automated theorem proving : a logical basis, volume 6 of Fundamental

studies in computer science. North-Holland, Amsterdam, 1978.

[Zha93] H. Zhang. Sato: A decision procedure for propositional logic. Association of Automated

Reasoning Newsletters, 22:1{3, March 1993.

���

�

��

k

I N F O R M A T I K

Below you �nd a list of the most recent technical reports of the research group Logic of Programming

at the Max-Planck-Institut f�ur Informatik. They are available by anonymous ftp from our ftp server

ftp.mpi-sb.mpg.de under the directory pub/papers/reports. Most of the reports are also accessible via

WWW using the URL http://www.mpi-sb.mpg.de. If you have any questions concerning ftp or WWW

access, please contact reports@mpi-sb.mpg.de. Paper copies (which are not necessarily free of charge)

can be ordered either by regular mail or by e-mail at the address below.

Max-Planck-Institut f�ur Informatik

Library

attn. Regina Kraemer

Im Stadtwald

D-66123 Saarbr�ucken

GERMANY

e-mail: kraemer@mpi-sb.mpg.de

MPI-I-95-2-005 F. Baader, H.-J. Ohlbach A Multi{Dimensional Terminological Knowledge

Representation Language

MPI-I-95-2-002 H. J. Ohlbach, R. A. Schmidt Functional Translation and Second{Order Frame

Properties

MPI-I-95-2-001 S. Vorobyov Proof normalization and subject reduction in

extensions of Fsub

MPI-I-94-261 P. Barth, A. Bockmayr Finite Domain and Cutting Plane Techniques in

CLP(PB)

MPI-I-94-257 S. Vorobyov Structural Decidable Extensions of Bounded

Quanti�cation

MPI-I-94-254 Report and abstract not published

MPI-I-94-252 P. Madden A Survey of Program Transformation With Special

Reference to Unfold/Fold Style Program

Development

MPI-I-94-251 P. Graf Substitution Tree Indexing

MPI-I-94-246 M. Hanus On Extra Variables in (Equational) Logic

Programming

MPI-I-94-241 J. Hopf Genetic Algorithms within the Framework of

Evolutionary Computation: Proceedings of the

KI-94 Workshop

MPI-I-94-240 P. Madden Recursive Program Optimization Through

Inductive Synthesis Proof Transformation

MPI-I-94-239 P. Madden, I. Green A General Technique for Automatically Optimizing

Programs Through the Use of Proof Plans

MPI-I-94-238 P. Madden Formal Methods for Automated Program

Improvement

MPI-I-94-235 D. A. Plaisted Ordered Semantic Hyper-Linking

MPI-I-94-234 S. Matthews, A. K. Simpson Re
ection using the derivability conditions

MPI-I-94-233 D. A. Plaisted The Search E�ciency of Theorem Proving

Strategies: An Analytical Comparison

MPI-I-94-232 D. A. Plaisted An Abstract Program Generation Logic

MPI-I-94-230 H. J. Ohlbach Temporal Logic: Proceedings of the ICTL

Workshop

MPI-I-94-229 Y. Dimopoulos Classical Methods in Nonmonotonic Reasoning

