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Abstract

System F≤, the second-order polymorphic typed λ-calculus with subtyping appeared to be
undecidable because of the undecidability of its subtyping component. The discovery of decidable
extensions of the F≤-subtyping relation put forward a challenging problem of incorporating these
extensions into an F≤-like typing in a decidable and coherent manner. In this paper we describe a
family of systems combining the standard F≤-typing rules with converging hierarchies of decidable
extensions of the F≤-subtyping and give decidable criteria for successful proof normalization and
subject reduction.
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Abstract

System F≤, the second-order polymorphic typed λ-calculus with subtyping [CW85, BL90,
BTCCS91, CG92, CMMS94], appeared to be undecidable because of the undecidability of its
subtyping component [Pie92]. The discovery of decidable extensions of the F≤-subtyping rela-
tion [Vor94a, Vor95] put forward a challenging problem of incorporating these extensions into
an F≤-like typing in a decidable and coherent manner. In this paper we describe a family of
systems combining the standard F≤-typing rules with converging hierarchies of decidable ex-
tensions of the F≤-subtyping and give decidable criteria for successful proof normalization and
subject reduction.

1 Introduction

The well-known second-order polymorphic typed λ-calculus with subtyping, system F≤ [CW85,
BL90, BTCCS91, CG92, CMMS94], extends Girard’s system F by 1) an auxiliary subtyping relation
Γ ⊢ σ ≤ τ , 2) restricting type substitutions in type quantification and abstraction to subtypes
of a given type, (Λα ≤ ρ . t) : (∀α ≤ ρ . τ), and 3) possibility to promote a type of a term to all
supertypes by using the so-called (Subsumption) rule:

Γ ⊢ t : σ Γ ⊢ σ ≤ τ

Γ ⊢ t : τ
(Sub)

The F≤ subtyping relation Γ ⊢ σ ≤ τ is generated by a simple collection of inference rules, with
the most spectacular one, allowing for subtyping two boundedly quantified universal types:

Γ ⊢ τ1 ≤ σ1 Γ , α ≤ τ1 ⊢ σ2 ≤ τ2

Γ ⊢ (∀α ≤ σ1 . σ2) ≤ (∀α ≤ τ1 . τ2)
(All)

In contrast to the simply-typed λ-calculus and system F, where the typing proofs are uniquely
determined, a term in F≤ may have (infinitely) many different proofs and types. But F≤ possesses
a nice minimal type property, guaranteeing the existence of a minimal type for every F≤-typeable
term [CG92]. This minimal type is a subtype of every other type of the same term in the same
context, and can be extracted from the uniquely determined normal typing proof of the term.
Therefore, for the F≤-typechecking, it would have been sufficient to compute a minimal type of a
term and to verify whether it subtypes to a given type.

However, the F≤ subtyping relation was proved undecidable by B.Pierce [Pie92]. As a consequence,
the typing relation is also undecidable.
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Weakening the F≤ subtyping relation, by restricting or modifying the above quantifier rule (All),
does not give completely satisfactory subsystems of F≤. For example, the system F⊤

≤ [CP94],
obtained by replacing τ1 by the largest type ⊤ in the right premise of (All), fails to possess the
minimal type property (G.Ghelli). Despite the decidability of the F⊤

≤ subtyping relation, the

decidability of typing in F⊤
≤ is still open. Replacing the same occurrence of τ1 by σ1 yields the

system with nontransitive subtyping and open decidability problem for subtyping [CP94].

A possibility to circumvent the undecidability of F≤ by reinforcement (as opposed to weakening)
was suggested in [Vor94a]. It turns out that the F≤ subtyping theory is not essentially undecidable
[TMR53], possessing infinitely many different consistent decidable extensions. Every such extension
is closed with respect to the F≤ subtyping rules and proves all F≤-provable subtypings (plus, being
decidable, necessarily something else, but not all subtyping judgments). This result was obtained
by interpreting the F≤ subtyping in M. Rabin’s [Rab69] (weak) monadic second-order theories
of successors (W)SnS [Vor94a, Vor95]. However, the direct (W)SnS-interpretations were not
satisfactory for typing. First, they subtyped differently structured types. Second, each of them
proved ⊢ ⊤ ≤ ⊤ → ⊤ and ⊢ ⊤ ≤ (∀γ ≤ ⊤ .⊤). Therefore, assuming the standard F≤ typing
rules, every term is typeable with the ⊤ type. The direct (W)SnS-interpretations were made more
subtle, to avoid the above drawbacks, by combining them with the F≤-like subtyping rules, [Vor95].
The main result of [Vor95] can be interpreted as a

Refinement Theorem. Given a (decidable) extension T ⊃ F≤ of the F≤ subtyping relation, closed
with respect to the F≤-subtyping rules, one can construct a “more tight” (decidable) extension T ′

such that F≤ ⊂ T ′ ⊂ T and T ′ is also closed with respect to the F≤-subtyping rules. ✷

As a boundary case, for T = F≤ the refinement gives T ′ = F≤ as the only fixpoint. The premise
of the Refinement Theorem is satisfied, in particular (but not only), by the original (W)SnS-
interpretations of F≤ [Vor94a, Vor95]. Iterating the Refinement Theorem one gets better and
better decidable approximations to the undecidable F≤-subtyping, and the genuine F≤-subtyping
as a limit. The properties of these hierarchies of converging decidable subtyping theories were
investigated in depth in [Vor94b]. In particular, subtyping judgments distinguishing levels k and
k + 1 were constructed. Such judgments were then used to construct counterexamples to the
substitution property (which is true for F≤):

Γ ⊢ (∀γ ≤ σ1 . σ2) ≤ (∀γ ≤ τ1 . τ2) & Γ ⊢ ρ ≤ τ1 ⇒ Γ ⊢ σ2[ρ/γ] ≤ τ2[ρ/γ]. (1)

Generally, the premises of (1) live in a higher hierarchy level than the conclusion. Sufficient
conditions guaranteeing that they all belong to the same level were studied in [Vor94b]. This
non-standard subtyping behavior has far-going consequences on the corresponding typing relation
[Vor94c] and, as we show in this paper, makes typing proof normalization and the subject reduction
property quite sophisticated.

Some results on combining the hierarchies of decidable extensions of the F≤-subtyping with the
standard F≤ typing rules are given in [Vor94c]. Notably, it is demonstrated that 1) all the resulting
systems extend F≤, typing every F≤-typeable term, 2) the normal typing relation is decidable in
all extensions, 3) proofs that do not normalize correspond to provably F≤-untypeable terms.

In this paper we address the problem of subject reduction in extensions of F≤, i.e., preservation of
types of well-typed terms by the 1st- and 2nd-order β-reduction (η-reduction poses no additional
problems and will be considered elsewhere). Successful subject reduction is a consequence of the
following three principal properties:

1. proof normalization, especially of type applications: a normal proof of Γ ⊢ t : (∀γ ≤ σ1 . σ2)
and a proof of Γ ⊢ θ ≤ σ1 should transform to a normal proof of Γ ⊢ t {θ} : σ2[θ/γ].

2. Term-in-Typing-substitution: Γ, x : σ, Γ′ ⊢ t : τ and Γ ⊢ s : σ should imply
Γ, Γ′ ⊢ t[s/x] : τ .
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3. Type-in-Typing-substitution: Γ, α ≤ σ, Γ′ ⊢ t : τ and Γ ⊢ ρ ≤ σ should imply
Γ, Γ′[ρ/α] ⊢ t[ρ/α] : τ [ρ/α].

All these properties hold for F≤. In extensions, as the proof normalization depends on the substi-
tution property (1), they may fail. But we are able to give the decidable criteria guaranteeing that
they hold. These criteria are tautologically true for F≤ (we thus get another proof of the subject
reduction property for F≤), and, being decidable, could be added to the notion of well-typedness.
As a result, we get decidable extensions of the F≤-typing satisfying the subject reduction property.

The paper is organized as follows. After Section 2 on preliminaries, we define in Section 3 hierarchies
of decidable extensions of the F≤-subtyping, and the corresponding typing systems in Section 4.
Proof normalization is addressed in Sections 5–7. Sections 8–13 are devoted to type and term
substitutions. Subject reduction is discussed in Sections 14–16. In Section 17 we consider the
example suggested by B. Pierce.

Mart́ın Abadi and Benjamin Pierce constantly supplied me with counterexamples and encourage-
ment.

2 Preliminaries

Definition 2.1 The set of boundedly quantified types is defined by the grammar:

T ≡df V | ⊤ | T → T | ∀V ≤ T .T

where: 1) V is a set of type variables further denoted by Greek letters α, β, γ; 2) ⊤ is the largest
type; 3) → is the functional type constructor; 4) ∀α ≤ ρ . τ is a boundedly quantified universal type:
a function assigning to each subtype σ of ρ, σ ≤ ρ, the type τ [σ/α] obtained from τ by substituting
σ instead of free occurrences of α. In ∀α ≤ ρ . τ the bound ρ does not contain α free. Further,
variable or compound types are denoted by Greek letters σ, τ , ρ, θ, φ, ψ.

Definition 2.2 The second-order polymorphic terms are defined by:

T ≡df V | λV : T . T | T T | ΛV ≤ T . T | T {T} ,

corresponding respectively to object variables, functional and type abstraction and application.

Definition 2.3 A context Γ is a finite sequence of subtyping and typing assumptions on variables.
Dom(Γ) is the set of variables appearing to the left of ≤ and : in a context Γ, FV (e) is the set
of free variables in expression e. Contexts are defined inductively: 1) ∅ is a context. 2) If Γ is a
context, x ∈ V , x 6∈ Dom(Γ), σ ∈ T, and FV (σ) ⊆ FV (Γ) then Γ, x : σ is a context. 3) If Γ is
a context, α ∈ V, α 6∈ Dom(Γ), σ ∈ T, and FV (σ) ⊆ FV (Γ) then Γ, α ≤ σ is a context. Define
Γ(α) = σ and Γ(x) = σ if Γ contains α ≤ σ or x : σ respectively. Define Γ∗(α) as Γ(α) if the latter
is not a variable, and as Γ∗(Γ(α)) otherwise1.

A subtyping judgment is a figure of the form Γ ⊢ σ ≤ τ , where FV (σ) ∪ FV (τ) ⊆ Dom(Γ).

A typing judgment is a figure of the form Γ ⊢ t : τ where FV (t) ∪ FV (τ) ⊆ Dom(Γ).

A V-∀-subtyping is a judgment of the form Γ ⊢ α ≤ (∀γ ≤ σ1 . σ2).

3 Stratified Subtyping

The following is a slightly modified (by adding upper indices) Curien-Ghelli’s algorithmic variant
of F≤ (subtyping component) [CG92].

1Note that Γ∗(α) is always either ⊤, or a universal, or an arrow type
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Definition 3.1 A stratified subtype relation Γ ⊢(k) σ ≤ τ (k ∈ N) is defined by the rules:

Γ ⊢(k) α ≤ α (Refl) Γ ⊢(k) τ ≤ ⊤ (Top)

Γ ⊢(k) τ1 ≤ σ1 Γ ⊢(k) σ2 ≤ τ2

Γ ⊢(k) σ1 → σ2 ≤ τ1 → τ2
(Arrow)

Γ ⊢(k) τ1 ≤ σ1 Γ, α ≤ τ1 ⊢(k) σ2 ≤ τ2

Γ ⊢(k) (∀α ≤ σ1 . σ2) ≤ (∀α ≤ τ1 . τ2)
(All)

Γ ⊢(k) Γ∗(α) ≤ (∀β ≤ ρ . τ)

Γ ⊢(k+1) α ≤ (∀β ≤ ρ . τ)
(AlgTrans-∀)

Γ ⊢(k) Γ(α) ≤ τ
{τ is not a ∀-type}

Γ ⊢(k) α ≤ τ
(AlgTrans)

plus a set H of additional axioms of the form Γ ⊢(0) α ≤ (∀γ ≤ σ1 . σ2), called ∀-hypotheses. ✷

Note that two principal differences, as compared to F≤, are: 1) different levels, k and k+ 1, in the
premise and the conclusion of (AlgTrans-∀), and 2) the set of additional axioms H. Respectively,
two possibilities to turn the above system into F≤ are: either 1) letting k = ω and H empty, or
2) letting H equal the set of F≤-provable judgments of the form Γ ⊢ α ≤ (∀γ ≤ σ1 . σ2). Other
choices of H may lead to converging hierarchies of decidable extensions of the F≤-subtyping:

Theorem 3.2 ([Vor94b]) If the set H of ∀-axioms is decidable, closed with respect to the scheme:
Γ ⊢(0) α ≤ σ ∈ H & Γ ⊢(0) σ ≤ τ ⇒ Γ ⊢(0) α ≤ τ ∈ H, and contains every F≤-provable
V-∀-subtyping, then:

1. for every k, the relation Γ ⊢(k) σ ≤ τ is decidable, transitive, and extends F≤;

2. every Γ ⊢(k) properly extends Γ ⊢(k+1) ; Γ ⊢
F≤

is the intersection of all Γ ⊢(k) . ✷

A trivial example is given by H = {all V-∀-subtypings}. An infinite number of different and less
obvious choices are suggested by (W)SnS-interpretations of F≤ [Vor94a, Vor95], each of them leads
to a decidable converging hierarchy extending F≤. For every k there exist judgments distinguishing
levels k and k + 1, i.e., Γ ⊢(k) σ ≤ τ , but not Γ ⊢(k+1) σ ≤ τ . One can also construct closed
types σ, τ with the spectacular properties, impossible in F≤, (see [Vor94c]:

γ ≤ σ ⊢(k) γ ≤ τ, (2)

6⊢(k) σ ≤ τ. (3)

The types σ, τ provide counterexamples to the following substitution property, true for F≤:

Γ ⊢ (∀γ ≤ σ1 . σ2) ≤ (∀γ ≤ τ1 . τ2) & Γ ⊢ ρ ≤ ρ1 ⇒ Γ ⊢ σ2[ρ/γ] ≤ τ2[ρ/γ]

Consider, e.g., ⊢(k) (∀γ ≤ ⊤ . γ) ≤ (∀γ ≤ σ . τ), which is equivalent, by (All) and (Top), to (2),
hence true. But substituting [σ/γ] in it yields (3).

In general, type substitution leads to the level decreasing. In the example above we have:

⊢(k+1) (∀γ ≤ ⊤ . γ) ≤ (∀γ ≤ σ . τ) ⇒ ⊢(k) σ ≤ τ (4)

Such non-standard behavior of substitution make typing proof normalization and subject reduction
quite subtle, subject to certain preconditions, as will be discussed in the sequel.
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4 Normal Typing

Definition 4.1 For every k ∈ N the minimal normal ⊢
(k)
mn and normal ⊢

(k)
n typing relations are

defined by the following inference rules:

Γ ⊢(k)
mn x : Γ(x) (µ-V ar)

Γ, α ≤ σ ⊢(k)
mn r : τ

(µ-TAbs)
Γ ⊢(k)

mn (Λα ≤ σ . r) : (∀α ≤ σ . τ)

Γ, x : σ ⊢(k)
mn r : τ

(µ-FAbs)
Γ ⊢(k)

mn (λx : σ . r) : σ → τ

{

either Γ ⊢
(k)
mn f : σ → τ

or Γ ⊢
(k)
mn f : α, Γ∗(α) ≡ σ → τ

Γ ⊢(k)
n t : σ

(µ-FApp)
Γ ⊢(k)

mn f t : τ

{

either Γ ⊢
(k)
mn r : (∀γ ≤ σ1 . σ2)

or Γ ⊢
(k)
mn r : α, Γ∗(α) ≡ (∀γ ≤ σ1 . σ2)

Γ ⊢(k) φ ≤ σ1

(µ-TApp)
Γ ⊢(k)

mn r{φ} : σ2[φ/γ]

Γ ⊢(k)
mn r : σ

{

Γ ⊢(k+1) σ ≤ τ if it is a V-∀-subtyping

Γ ⊢(k) σ ≤ τ otherwise
(Sub)

Γ ⊢(k)
n r : τ

These rules are inspired by [CMMS94]. They incorporate the standard F≤-typing rules with the
first major difference that our rules are stratified by levels. By forgetting upper indices one gets
the rules of [CMMS94]. The second difference is the presence of two cases of (Subsumption), with
the distinguished case of V-∀-subtyping, corresponding to the subtyping rule (AlgTrans-∀). The
case of F≤ is covered by letting ⊢(k) ≡ ⊢F≤

-subtyping. Other possibilities are supplied by using
hierarchies of subtyping relations described in Section 3.

Definition 4.2 Define µ(Γ ⊢(k) t), the minimal type of t in Γ ⊢(k) , as the type σ such that

Γ ⊢
(k)
mn t : σ (if it exists). Define π(Γ ⊢(k) t), the principal type of t in Γ ⊢(k) , as:

π(Γ ⊢(k) t) ≡df











µ(Γ ⊢(k) t), if µ(Γ ⊢(k) t) is not a variable,

Γ∗(µ(Γ ⊢(k) t)), if µ(Γ ⊢(k) t) is a variable,

undefined, if µ(Γ ⊢(k) t) is undefined.

Theorem 4.3 ([Vor94c]) Relations Γ ⊢
(k)
mn t : θ, Γ ⊢

(k)
n t : θ are decidable, minimal and

principal types are computable iff the subtyping relation Γ ⊢(k) σ ≤ τ is decidable.

If τ is minimal for Γ ⊢ t in F≤, then also for every k ∈ N one has µ(Γ ⊢(k) t) = τ . ✷

5 Normalization

Typing proof normalization is the transformation of non-normal typing proofs into normal ones.
Normalization can be described by the schemes like:
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Γ ⊢(k)
n f : σ → τ Γ ⊢(k)

n t : σ
(N -FApp)

Γ ⊢(k)
n f t : τ

which means that given two normal proofs Γ ⊢
(k)
n f : σ → τ and Γ ⊢

(k)
n t : σ one can always

transform them into a normal proof of Γ ⊢
(k)
n f t : τ . Note that the above scheme is absent

from the set of rules for normal typing (stronger left premise Γ ⊢
(k)
mn f : σ → τ is stipulated

in (µ-FApp)). The schemes as (N -FApp), provided admissible, can be seen as meta-theorems
extending the set of rules for normal typing, or as derivable rules for normal typing.

Given a non-normal proof, one can normalize it, using the normalization schemes. At each step
it suffices to choose maximal subproofs that are already normal, and to apply a corresponding
normalization scheme, if available. A very useful by-product of typing proof normalization in F≤

is that it automatically yields the minimal types for terms. Given a normal typing proof, it suffices
to retrieve the type cut by the last subsumption applied in this proof. This type is a subtype of
every other type of the same term in the same context, see [CG92].

In the extensions of F≤, the normalization of all constructs, except type application, is easy, see
Lemma 5.1. Normalization of type applications is quite subtle and may fail, in general, see Section 6.
A criterion for the successful normalization of type applications is given by Lemma 7.1

Lemma 5.1 (Normalization) The following are valid normalization schemes: (N -FApp),

Γ, x : σ ⊢(k)
n t : τ

(N -FAbs)
Γ ⊢(k)

n (λx : σ . t) : σ → τ

Γ, α ≤ σ ⊢(k)
n t : τ

(N -TAbs)
Γ ⊢(k)

n (Λα ≤ σ . t) : (∀α ≤ σ . τ)

Proof. (N -FApp): The normal proof of Γ ⊢
(k)
n f : σ → τ is either

Γ ⊢(k)
mn f : α Γ ⊢(k) α ≤ σ → τ

Γ ⊢(k)
n f : σ → τ

or
Γ ⊢(k)

mn f : σ′ → τ ′ Γ ⊢(k) σ′ → τ ′ ≤ σ → τ

Γ ⊢(k)
n f : σ → τ

In the first case, let σ′ → τ ′ ≡ Γ∗(α). From Γ ⊢(k) α ≤ σ → τ by (AlgT rans) we have: Γ ⊢(k) σ′ → τ ′ ≤
σ → τ (the same as in the second case). Hence, in both cases, by (Arrow):

Γ ⊢(k) σ ≤ σ′, (5)

Γ ⊢(k) τ ′ ≤ τ. (6)

Consequently, the normal proof of Γ ⊢
(k)
n f t : τ may be constructed as follows:

{

either Γ ⊢
(k)
mn f : σ′ → τ ′,

or Γ ⊢
(k)
mn f : α, Γ∗(α) ≡ σ′ → τ ′

Γ ⊢(k)
n t : σ

See (5)

Γ ⊢(k) σ ≤ σ′

Γ ⊢(k)
n t : σ′

Γ ⊢(k)
mn f t : τ ′

See (6)

Γ ⊢(k) τ ′ ≤ τ

Γ ⊢(k)
n f t : τ

(N -TAbs): The normal proof of Γ, α ≤ σ ⊢
(k)
n t : τ is:

Γ, α ≤ σ ⊢(k)
mn t : τ ′

(∗J1∗)
{

either Γ, α ≤ σ ⊢(k+1) τ ′ ≤ τ, if it is a V-∀-subtyping
or Γ, α ≤ σ ⊢(k) τ ′ ≤ τ, if it is not a V-∀-subtyping

Γ, α ≤ σ ⊢(k)
n t : τ
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Since (∗J1∗) always implies, by (All), Γ ⊢(k) (∀α ≤ σ . τ ′) ≤ (∀α ≤ σ . τ), the normal proof of Γ ⊢
(k)
n

(Λα ≤ σ . t) : (∀α ≤ σ . τ) is as follows:

Γ, α ≤ σ ⊢(k)
mn t : τ ′

Γ, α ≤ σ ⊢(k)
mn (Λα ≤ σ . t) : (∀α ≤ σ . τ ′) Γ ⊢(k) (∀α ≤ σ . τ ′) ≤ (∀α ≤ σ . τ)

Γ, α ≤ σ ⊢(k)
n (Λα ≤ σ . t) : (∀α ≤ σ . τ)

(N -FAbs): The proof is completely analogous to the preceding one. ✷

6 Failure of the Type Application Normalization

One of the normal typing rules for the type application is:

Γ ⊢(k)
mn r : (∀γ ≤ σ1 . σ2) Γ ⊢(k) θ ≤ σ1

(µ-TApp)
Γ ⊢(k)

mn r {θ} : σ2[θ/γ]

The corresponding rule for functional application (µ-FApp) gives rise to the normalization scheme (N -FApp)

from Section 5, which differs from the rule just by replacement of Γ ⊢
(k)
mn with Γ ⊢

(k)
n in the left premise

and conclusion of (µ-FApp). The similarly obtained normalization scheme for (µ-TApp):

Γ ⊢(k)
n r : (∀γ ≤ σ1 . σ2) Γ ⊢(k) θ ≤ σ1

(N -TApp)
Γ ⊢(k)

n r {θ} : σ2[θ/γ]
(7)

is not valid, in general, in extensions of F≤ (but is valid for the F≤ itself!). Consider a simple counterexample.
Let σ, τ be the closed types with properties (2), (3) from Section 3. Then

r : (∀γ ≤ ⊤ . γ) ⊢
(k)
n r : (∀γ ≤ σ . τ) (8)

is provable, since the necessary subtyping ⊢(k) (∀γ ≤ ⊤ . γ) ≤ (∀γ ≤ σ . τ) (9)

is equivalent, by (All), to (2). But applying the scheme (7) to (8) and (Refl):

r : (∀γ ≤ ⊤ . γ) ⊢(k)
n r : (∀γ ≤ σ . τ) r : (∀γ ≤ ⊤ . γ) ⊢(k) σ ≤ σ

r : (∀γ ≤ ⊤ . γ) ⊢(k)
n r {σ} : τ

yields the unprovable judgment, since, by (µ-TApp), r : (∀γ ≤ ⊤ . γ) ⊢
(k)
mn r {σ} : σ, and the necessary

subtyping r : (∀γ ≤ ⊤ . γ) ⊢(k) σ ≤ τ is unprovable by (3).

The existence of pairs of types with the properties (2), (3) is immanent for hierarchical extensions of the
F≤-subtyping [Vor94b, Vor94c]. Therefore, the general failure of (N -TApp) is common for all hierarchical
extensions of F≤.

7 Successful Normalization of Type Applications

The following lemma establishes the criterion for the successful normalization of type applications
in the hierarchical extensions of F≤. Note that the condition (10) is tautologically true for F≤. Thus
type applications normalize unconditionally in F≤, which together with Lemma 5.1 gives the proof
of the proof normalization theorem for F≤ [CG92]. Note also that the condition (10) is effectively
decidable in all decidable extensions of Section 3. Finally, if a term is F≤-typeable, its typing proof
is normalizable in every extension. Conversely, if it is non-normalizable in some extension, the term
is guaranteed to be F≤-untypeable.
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Lemma 7.1 (Type Application Normalization Criterion)

(∗J1∗)

Γ ⊢(k)
n r : (∀γ ≤ σ1 . σ2)

(∗J2∗)

Γ ⊢(k) θ ≤ σ1
(N -TApp)

(∗J3∗)

Γ ⊢(k)
n r {θ} : σ2[θ/γ]

if and only if the principal type (∀γ ≤ ρ1 . ρ2) ≡ π(Γ ⊢(k) r) satisfies the condition:

{

Γ ⊢(k+1) ρ2[θ/γ] ≤ σ2[θ/γ], if it is a V-∀-subtyping,

Γ ⊢(k) ρ2[θ/γ] ≤ σ2[θ/γ], if it is not a V-∀-subtyping.
(10)

Proof. (∗J1∗) by (µ-TApp) and (Sub) implies Γ ⊢(k) (∀γ ≤ ρ1 . ρ2) ≤ (∀γ ≤ σ1 . σ2), hence, by (All),
Γ ⊢(k) σ1 ≤ ρ1, which together with (∗J2∗) gives Γ ⊢(k) θ ≤ ρ1. (11)

Therefore, the normal proof of (∗J3∗) looks like:

π(Γ ⊢(k) r) ≡ (∀γ ≤ ρ1 . ρ2)
See (11)

Γ ⊢(k) θ ≤ ρ1

Γ ⊢(k)
mn r {θ} : ρ2[θ/γ] { (10) }

(Sub)
Γ ⊢(k)

n r {θ} : σ2[θ/γ]

Returning to the counterexample of Section 6, it is interesting to see where it violates the conditions
of the Lemma. The principal type of r in the counterexample is: ∀γ ≤ ρ1 . ρ2 ≡ (∀γ ≤ ⊤ . γ), the
type (∀γ ≤ σ1 . σ2) ≡ (∀γ ≤ σ . τ), and θ ≡ σ. The Lemma stipulates, see (10), that Γ ⊢(k)

ρ2[θ/γ] ≡ σ ≤ τ ≡ σ2[θ/γ]. But this is false, see (3), by the choice of σ and τ .

8 Term-in-Typing and Type-in-Typing Substitutions

Term-in-Typing-substitution property, i.e., possibility to derive

Γ, x : σ, Γ′ ⊢ t : τ Γ ⊢ s : σ

Γ, Γ′ ⊢ t[s/x] : τ
(12)

and Type-in-Typing-substitution property, i.e., possibility to derive

Γ, α ≤ σ, Γ′ ⊢ t : τ Γ ⊢ ρ ≤ σ

Γ, Γ′[ρ/α] ⊢ t [ρ/α] : τ [ρ/α]
(13)

are fundamental for typed λ-calculi and indispensable for proving the subject reduction property.

Term-in-Typing- and Type-in-Typing-substitution properties are non-obvious when typing proofs
are not uniquely determined, e.g., in the presence of subtyping. Directly substituting one normal
proof into another may yield non-normal proofs. Therefore, substitution should be accompanied
by a proof normalization. As we saw in Sections 6, 7, successful normalization in extensions
of F≤ should be subject to certain preconditions. Consequently, some preconditions have to be
stipulated to guarantee the correctness of the Term-in-Typing- and Type-in-Typing-substitutions.
The problem becomes more sophisticated when the explicit analysis of typing levels is involved.
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9 Substitution Properties May Fail in Extensions of F≤

Let σ, τ , be types defined in Section 3 and used to construct the counterexample of Section 6 with the
properties (2), (3). Consider the valid judgments:

g : (∀γ ≤ ⊤ . γ), f : (∀γ ≤ σ . τ) ⊢
(k)
mn f {σ} : τ (14)

g : (∀γ ≤ ⊤ . γ) ⊢
(k)
mn g : (∀γ ≤ ⊤ . γ) (15)

From (15) and (9) we get, by (Sub), g : (∀γ ≤ ⊤ . γ) ⊢
(k)
n g : (∀γ ≤ σ . τ).

Therefore, g is “good” for substituting instead of f in (14). But the resulting judgment

g : (∀γ ≤ ⊤ . γ) ⊢
(k)
n (f {σ}) [g/f ] ≡ g {σ} : τ

is not valid, since g : (∀γ ≤ ⊤ . γ) ⊢
(k)
mn g {σ} : σ, but, by (3), 6⊢(k) σ ≤ τ . This counterexample shows

that the Term-in-Typing-substitution (12) fails, in general in extensions of F≤.

Similarly, for the Type-in-Typing-substitution, always with the same types σ and τ , the next particular case
of the scheme (13) has its premises true and the conclusion false:

γ ≤ σ, f : (∀γ ≤ ⊤ . γ) ⊢(k)
n f {γ} : τ ⊢(k) σ ≤ σ

f : (∀γ ≤ ⊤ . γ) ⊢(k)
n f {σ} : τ

since f : (∀γ ≤ ⊤ . γ) ⊢
(k)
mn f {σ} : σ, and for the conclusion of the last figure to be true one needs

⊢(k) σ ≤ τ , which is false by (3). This gives the counterexample to Type-in-Typing-substitution (13).

10 Safety for Term-in-Typing Substitution

Definition 10.1 (Safety I) Let Γ ⊢
(k)
n s : σ. A provable typing judgment

Γ, x : σ ⊢(k)
n t : τ (16)

is called [s/x]-safe iff for every context term Γ, x : σ, Γ′ ⊢(k) r {θ} that occurs in the proof of (16)
and for the principal types

(∀γ ≤ σ1 . σ2) ≡df π(Γ, x : σ, Γ′ ⊢(k) r),

(∀γ ≤ ρ1 . ρ2) ≡df π(Γ, Γ′ ⊢(k) r[s/x])

the following condition is satisfied:

{

Γ, Γ′ ⊢(k+1) ρ2[θ/γ] ≤ σ2[θ/γ], if it is a V-∀-subtyping,

Γ, Γ′ ⊢(k) ρ2[θ/γ] ≤ σ2[θ/γ], if it is not a V-∀-subtyping.
(17)

11 Term-in-Typing Substitution Lemma

Lemma 11.1 (Term-in-Typing Substitution) Suppose that Γ ⊢
(k)
n s : σ.

Then
(∗JX∗)

Γ, Γ′ ⊢(k)
n t[s/x] : τ iff

(∗JY ∗)

Γ, x : σ, Γ′ ⊢(k)
n t : τ is [s/x]-safe.

9



Proof. By induction on complexity of the term t. If t is a variable, then the conclusion is immediate. Proofs
of necessity and of all inductive cases, except type application, are straightforward and omitted here.

Inductive Hypothesis. Suppose that the conclusion of the Lemma holds for all proper subterms of t.

Type Application. Let t ≡ r {θ}. We have to construct the proof of (∗JX∗). The proof of (∗JY ∗) is:

(∗J1∗)

Γ, x : σ, Γ′ ⊢(k)
mn r {θ} : σ2[θ/γ]

(∗J2∗)
{

Γ, x : σ, Γ′ ⊢(k+1) σ2[θ/γ] ≤ τ, for V-∀-subtyping
Γ, x : σ, Γ′ ⊢(k) σ2[θ/γ] ≤ τ, otherwise

Γ, x : σ, Γ′ ⊢(k)
n r {θ} : τ

where (∀γ ≤ σ1 . σ2) is the principal type of r in Γ, x : σ, Γ′ ⊢(k) . The proof of (∗J1∗) is:

(∗J3∗)
{

either Γ, x : σ, Γ′ ⊢
(k)
mn r : α and (Γ, Γ′)∗(α) ≡ (∀γ ≤ σ1 . σ2)

or Γ, x : σ, Γ′ ⊢
(k)
mn r : (∀γ ≤ σ1 . σ2)

(∗J4∗)

Γ, x : σ, Γ′ ⊢(k) θ ≤ σ1

(∗J1∗)

Γ, x : σ, Γ′ ⊢(k)
mn r {θ} : σ2[θ/γ]

Anyway, both cases in (∗J3∗) imply Γ, x : σ, Γ′ ⊢
(k)
n r : (∀γ ≤ σ1 . σ2). (18)

Applying the inductive hypothesis to (18) we get: Γ, Γ′ ⊢
(k)
n r[s/x] : (∀γ ≤ σ1 . σ2). (19)

The assumption x : σ in the context of (∗J4∗) can be omitted: Γ, Γ′ ⊢(k) θ ≤ σ1. (20)

From (19) and (20), by Lemma 7.1, since (∗JY ∗) is [s/x]-safe, we derive:

Γ, Γ′ ⊢
(k)
n (r[s/x]){θ} ≡ (r{θ})[s/x] : σ2[θ/γ]. (21)

(21) and (∗J2∗) (with x : σ omitted, subtyping does not depend on typing) yield (∗JX∗). ✷

12 Safety for Type-in-Typing Substitution

Definition 12.1 (Safety II) Let Γ ⊢(k) ρ ≤ σ. A provable typing judgment

Γ, α ≤ σ ⊢(k)
n t : τ (22)

is called [ρ/α]-safe iff for every context term Γ, α ≤ σ, Γ′ ⊢(k) r {θ} that occurs in the proof of
(22) and for the principal types

(∀γ ≤ σ1 . σ2) ≡df π(Γ, α ≤ σ, Γ′ ⊢(k) r),

(∀γ ≤ ρ1 . ρ2) ≡df π(Γ, Γ′ ⊢(k) r[ρ/α])

the following condition is satisfied:

{

Γ, Γ′[ρ/α] ⊢(k+1) ρ2[θ/γ] ≤ σ2[θ/γ], if it is a V-∀-subtyping,
Γ, Γ′[ρ/α] ⊢(k) ρ2[θ/γ] ≤ σ2[θ/γ], if it is not a V-∀-subtyping.

(23)

and all subtyping judgments in the proof of (22) are [ρ/α]-stable, i.e.,

Γ, ρ ≤ α, Γ′[ρ/α] ⊢(l) φ ≤ ψ ⇒ Γ, Γ′[ρ/α] ⊢(l) φ[ρ/α] ≤ ψ[ρ/α] (24)

Counterexample (4) of Section 3 shows that stability is important.
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13 Type-in-Typing Substitution Lemma

Lemma 13.1 (Type-in-Typing Substitution) Suppose that Γ ⊢(k) ρ ≤ σ.

Then
(∗JU∗)

Γ, Γ′[ρ/α] ⊢(k)
n t[ρ/α] : τ [ρ/α] iff

(∗JV ∗)

Γ, α ≤ σ, Γ′ ⊢(k)
n t : τ is [ρ/α]-safe.

Proof. By induction on complexity of the term t. If t is a variable, the conclusion is immediate. Proofs of
necessity and all inductive cases, except type application, are straightforward and skipped.

Inductive Hypothesis. Suppose that the conclusion of the Lemma holds for all proper subterms of t.

Type Application. Let t ≡ r {θ}. We have to construct the proof of (∗JU∗). The proof of (∗JV ∗) is:

(∗J1∗)

Γ, α ≤ σ, Γ′ ⊢(k)
mn r {θ} : σ2[θ/γ]

(∗J2∗)
{

Γ, α ≤ σ, Γ′ ⊢(k+1) σ2[θ/γ] ≤ τ, for V-∀-subtyping
Γ, α ≤ σ, Γ′ ⊢(k) σ2[θ/γ] ≤ τ, otherwise

Γ, α ≤ σ, Γ′ ⊢(k)
n r {θ} : τ

where (∀γ ≤ σ1 . σ2) is the principal type of r in Γ, α ≤ σ, Γ′ ⊢(k) . The proof of (∗J1∗) is:

(∗J3∗)

π(Γ, α ≤ σ, Γ′ ⊢(k) r) ≡ (∀γ ≤ σ1 . σ2)
(∗J4∗)

Γ, α ≤ σ, Γ′ ⊢(k) θ ≤ σ1

(∗J1∗)

Γ, α ≤ σ, Γ′ ⊢(k)
mn r {θ} : σ2[θ/γ]

(∗J3∗) implies: Γ, α ≤ σ, Γ′ ⊢
(k)
n r : (∀γ ≤ σ1 . σ2).

Therefore, by inductive hypothesis, Γ, Γ′[ρ/α] ⊢
(k)
n r[ρ/α] : (∀γ ≤ σ1[ρ/α] . σ2[ρ/α]). (25)

From (∗J4∗) by stability condition (24), Γ, Γ′[ρ/α] ⊢(k) θ[ρ/α] ≤ σ1[ρ/α]. (26)

From (25) and (26), by Lemma 7.1, since (∗JV ∗) is [ρ/α]-safe, we derive:

Γ, Γ′[ρ/α] ⊢
(k)
n (r {θ})[ρ/α] : (σ2[θ/γ])[ρ/α]. (27)

It remains to apply the stability condition (24) to (∗J2∗) to get:

Γ, Γ′ ⊢(k+1) (σ2[θ/γ])[ρ/α] ≤ τ [ρ/α] or Γ, Γ′ ⊢(k) (σ2[θ/γ])[ρ/α] ≤ τ [ρ/α] (28)

The desired (∗JU∗) is now derivable from (27) and (28) by (Sub). ✷
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14 Subject Reduction Lemmas

are easy corollaries to Substitution Lemmas 11.1 and 13.1.

Lemma 14.1 ((β1)-redex/reduct type preservation) For arbitrary k ∈ N consider the uniquely

determined normal typing proof of a (β1)-redex Γ ⊢
(k)
n (λx : σ . t) s : θ:

(∗JA∗)

Γ, x : σ ⊢(k)
mn t : τ

Γ ⊢(k)
mn (λx : σ . t) : σ → τ Γ ⊢(k)

n s : σ

Γ ⊢(k)
mn (λx : σ . t) s : τ

{

Γ ⊢(k+1) τ ≤ θ for V-∀-subtyping
Γ ⊢(k) τ ≤ θ otherwise

Γ ⊢(k)
n (λx : σ . t) s : θ

One has the type preservation property for the (β1)-reduction:

Γ ⊢(k)
n (λx : σ . t) s : θ ⇒ Γ ⊢(k)

n t[s/x] : θ

if and only if the typing judgment (∗JA∗) is [s/x]-safe. ✷

Definition 14.2 ((β1) Redex Safety) In notations of Lemma 14.1, call a (β1) redex

Γ ⊢
(k)
n (λx : σ . t) s : θ safe iff the corresponding typing judgment (∗JA∗) is [s/x]-safe. ✷

Lemma 14.3 ((β2)-redex/reduct type preservation) For arbitrary k ∈ N consider the uniquely

determined normal typing proof of a (β2)-redex Γ ⊢
(k)
n (Λα ≤ σ . t) {ρ} : θ:

(∗JB∗)

Γ, α ≤ σ ⊢(k)
mn t : τ

Γ ⊢mn (Λα ≤ σ . t) : (∀α ≤ σ . τ) Γ ⊢(k) ρ ≤ σ

Γ ⊢(k)
mn (Λα ≤ σ . t) {ρ} : τ [ρ/α]

{

Γ ⊢(k+1) τ [ρ/α] ≤ θ for V-∀-subtyping

Γ ⊢(k) τ [ρ/α] ≤ θ otherwise

Γ ⊢(k)
n (Λα ≤ σ . t) {ρ} : θ

One has the type preservation property for the (β2)-reduction:

Γ ⊢(k)
n (Λα ≤ σ . t) {ρ} : θ ⇒ Γ ⊢(k)

n t[ρ/α] : θ

if and only if the typing judgment (∗JB∗) is [ρ/α]-safe. ✷

Definition 14.4 ((β2) Redex Safety) In notations of Lemma 14.3, call a (β2) redex

Γ ⊢
(k)
n (Λα ≤ σ . t) {ρ} : θ safe iff the corresponding typing judgment (∗JB∗) is [ρ/α]-safe. ✷

The following is immediate.

Proposition 14.5 If the underlying subtyping theory is decidable, then the safety of (β1) and (β2)
redices is decidable. ✷
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15 Reduction Relation

We now combine the Reduction Lemmas 14.1 and 14.3 to obtain the Subject Reduction property
in its conventional form (as was asked by Mart́ın Abadi), i.e.,

Γ ⊢ t : τ and t reduces to t′ imply Γ ⊢ t′ : τ

First, some effort is needed to define the reduction relation, which is generated by the usual 1st- and
2nd-order beta-reductions and is additionally closed with respect to usual congruences (subterm
reduction) and transitivity (many-step reduction).

Definition 15.1 (Reduction Relation) For every k ∈ N the reduction relation
Γ ⊢(k) t ❀ t′ : θ is defined by the following rules (2 axioms: (β1), (β2) and 6 rules: (Trans),
(λ-Cong), (FApp-Cong-L), (FApp-Cong-R), (Λ-Cong), (TApp-Cong)):

Γ ⊢(k)
n (λx : σ . t) s : θ is safe

Γ ⊢(k) (λx : σ . t) s ❀ t[s/x] : θ
(β1)

Γ ⊢(k)
n (Λα ≤ σ . t) {ρ} : θ is safe

Γ ⊢(k) (Λα ≤ σ . t) {ρ} ❀ t[ρ/α] : θ
(β2)

Γ ⊢(k) r ❀ s : τ Γ ⊢(k) s ❀ t : τ

Γ ⊢(k) r ❀ t : τ
(Trans)

Γ, x : σ ⊢(k) t ❀ t′ : τ

Γ ⊢(k) (λx : σ . t) ❀ (λx : σ . t′) : σ → τ
(λ-Cong)

Γ ⊢(k) t ❀ t′ : σ → τ Γ ⊢(k)
n s : σ

Γ ⊢(k) t s ❀ t′ s : τ
(FApp-Cong-L)

Γ ⊢(k)
n t : σ → τ Γ ⊢(k) s ❀ s′ : σ

Γ ⊢(k) t s ❀ t s′ : τ
(FApp-Cong-R)

Γ, α ≤ σ ⊢(k) t ❀ t′ : τ

Γ ⊢(k) (Λα ≤ σ . t) ❀ (Λα ≤ σ . t′) : (∀α ≤ σ . τ)
(Λ-Cong)

Γ ⊢(k) r1 ❀ r2 : (∀α ≤ σ . τ) Γ ⊢(k) ρ ≤ σ

Γ ⊢(k) r1 {ρ} ❀ r2 {ρ} : τ [ρ/α]
(TApp-Cong)







provided that for i = 1, 2, (∀α ≤ ρi1 . ρ
i
2) ≡ π(Γ ⊢(k) ri) one has:

{

Γ ⊢(k+1) ρi2[ρ/α] ≤ τ [ρ/α], if it is a V-∀-subtyping,

Γ ⊢(k) ρi2[ρ/α] ≤ τ [ρ/α], if it is not a V-∀-subtyping.






(29)

A judgment of the form Γ ⊢(k) t ❀ t′ : θ is called a reduction judgment. ✷
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The only premises of the rules (β1) and (β2) are typing judgments with additional safety conditions
(decidable if the underlying subtyping theory Γ ⊢(k) σ ≤ τ is decidable). The right premise
of (FApp-Cong-L) and the left premise of (FApp-Cong-R) are also typing judgments. The right
premise of (TApp-Cong) is a subtyping judgment. All other premises and conclusions are reduction
judgments. The congruence rule (TApp-Cong) is subject to the precondition (29) (also decidable
if the underlying subtyping theory Γ ⊢(k) σ ≤ τ is decidable). As we mentioned above, the safety
preconditions in (β1), (β2), and the precondition (29) of (TApp-Cong) are tautologically true for
F≤. Therefore, the above reduction system generates the usual (β1)-(β2)-reduction relation of F≤

if the underlying subtyping theory is one of F≤
2.

We will extensively use the following auxiliary

Lemma 15.2 If Γ ⊢(k) t ❀ t′ : θ then Γ ⊢
(k)
n t : θ.

Proof. By induction on the structure of the inference of the reduction judgment
Γ ⊢(k) t ❀ t′ : θ in the system from Definition 15.1. Every proof of a reduction judgment starts
from axioms (β1), (β2) and consists of applications of the rules (Trans), (λ-Cong), (FApp-Cong-L),
(FApp-Cong-R), (Λ-Cong), (TApp-Cong).

Basis. If Γ ⊢(k) t ❀ t′ : θ by (β1) or (β2), then the needed Γ ⊢
(k)
n t : θ is guaranteed by the

premise of (β1) or (β2) respectively.

Inductive Hypothesis. Suppose the claim of the Lemma holds for all reduction judgments
appearing in the proof of Γ ⊢(k) t ❀ t′ : θ (except itself!) in the system of Definition 15.1.

To prove that the claim holds also for Γ ⊢(k) t ❀ t′ : θ itself, we make the case analysis on a
last rule from Definition 15.1 applied in the proof of Γ ⊢(k) t ❀ t′ : θ.

Case of (Trans): Let the judgment Γ ⊢(k) t ❀ t′ : θ be obtained from Γ ⊢(k) t ❀ t′′ : θ

(A) and Γ ⊢(k) t′′ ❀ t′ : θ by (Trans). From (A), by inductive hypothesis, Γ ⊢
(k)
n t : θ,

which is needed.

Case of (λ-Cong): Let the reduction judgment

Γ ⊢(k) t ≡ (λx : σ . r) ❀ (λx : σ . r′) ≡ t′ : σ → τ ≡ θ

be obtained from Γ, x : σ ⊢(k) r ❀ r′ : τ (A) by (λ-Cong). From (A), by inductive hypothesis,

Γ, x : σ ⊢
(k)
n r : τ (B). Therefore, from (B), by Normalization Lemma 5.1,

Γ ⊢
(k)
n t ≡ (λx : σ . r) : σ → τ ≡ θ, which is needed.

Case of (FApp-Cong-L): Let Γ ⊢(k) t ≡ r s ❀ r′ s ≡ t′ : τ be derived from

Γ ⊢(k) r ❀ r′ : σ → τ (A) and Γ ⊢
(k)
n s : σ (B) by (FApp-Cong-L). From (A), by inductive

hypothesis, Γ ⊢
(k)
n r : σ → τ (C). Therefore, (C) and (B), by Normalization Lemma 5.1, yield

the desired Γ ⊢
(k)
n t ≡ r s : τ .

Case of (FApp-Cong-R): Let Γ ⊢(k) t ≡ r s ❀ r s′ ≡ t′ : τ be derived from

Γ ⊢
(k)
n r : σ → τ (A) and Γ ⊢(k) s ❀ s′ : σ (B) by (FApp-Cong-R). From (B), by inductive

hypothesis, Γ ⊢
(k)
n s : σ (C). Therefore, (A) and (C), by Normalization Lemma 5.1, yield the

needed Γ ⊢
(k)
n t ≡ r s : τ .

Case of (Λ-Cong): Let the reduction judgment

Γ ⊢(k) t ≡ (Λα ≤ σ . r) ❀ (Λα ≤ σ . r′) ≡ t′ : (∀α ≤ σ . τ) ≡ θ

be obtained from Γ, α ≤ σ ⊢(k) r ❀ r′ : τ (A) by (Λ-Cong). From (A), by inductive hypothesis,

Γ, α ≤ σ ⊢
(k)
n r : τ (B). Therefore, from (B), by Normalization Lemma 5.1,

Γ ⊢
(k)
n t ≡ (Λα ≤ σ . r) : (∀α ≤ σ . τ) ≡ θ, which is needed.

2Cf., Paul Dirac’s correspondence principle.
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Case of (TApp-Cong): Let Γ ⊢(k) t ≡ r {ρ} ❀ r′ {ρ} ≡ t′ : τ [ρ/α] be derived from
Γ ⊢(k) r ❀ r′ : (∀α ≤ σ . τ) (A) and Γ ⊢(k) ρ ≤ σ (B) by (TApp-Cong). From (A), by

inductive hypothesis, Γ ⊢
(k)
n r : (∀α ≤ σ . τ) (C). Therefore, (C) and (B), by Normalization

Lemma 7.1 (because of (29)) yield the desired Γ ⊢
(k)
n t ≡ r {ρ} : τ [ρ/α]. ✷

16 Subject Reduction Theorem

Theorem 16.1 (Subject Reduction) Suppose Γ ⊢
(k)
n t : θ and Γ ⊢(k) t ❀ t′ : θ. Then

Γ ⊢
(k)
n t′ : θ. ✷

Remark. By Lemma 15.2, the first assumption of the Theorem may be skipped, but we keep it
for the sake of standardness. ✷

Proof. By induction on the structure of the inference of the reduction judgment
Γ ⊢(k) t ❀ t′ : θ in the system from Definition 15.1. Every proof of a reduction judgment starts
from axioms (β1), (β2) and consists of applications of the rules (Trans), (λ-Cong), (FApp-Cong-L),
(FApp-Cong-R), (Λ-Cong), (TApp-Cong).

Basis is immediate: the cases of (β1), (β2) are guaranteed by Lemmas 14.1 and 14.3.

Inductive Hypothesis. Suppose the claim of the Theorem is true for all reduction judgments
appearing in the proof of the reduction judgment Γ ⊢(k) t ❀ t′ : θ, except itself. We have to
prove that the claim holds for Γ ⊢(k) t ❀ t′ : θ itself. It suffices to make the case analysis on a
last rule from Definition 15.1 applied in the proof of Γ ⊢(k) t ❀ t′ : θ.

Case of (Trans): Let Γ ⊢
(k)
n t : θ (A) and the reduction judgment Γ ⊢(k) t ❀ t′ : θ be

obtained from Γ ⊢(k) t ❀ t′′ : θ (B) and Γ ⊢(k) t′′ ❀ t′ : θ (C) by (Trans). Then, from

(A) and (B), by inductive hypothesis, Γ ⊢
(k)
n t′′ : θ (D). Therefore, from (D) and (C), again by

inductive hypothesis, Γ ⊢
(k)
n t′ : θ, which is needed.

Case of (λ-Cong): Let Γ ⊢
(k)
n t ≡ (λx : σ . r) : σ → τ ≡ θ and the reduction judgment

Γ ⊢(k) (λx : σ . r) ❀ (λx : σ . r′) ≡ t′ : θ be obtained from Γ, x : σ ⊢(k) r ❀ r′ : τ

(A) by (λ-Cong). From (A), by Auxiliary Lemma 15.2, Γ, x : σ ⊢
(k)
n r : τ (B). From (B) and

(A), by inductive hypothesis, Γ, x : σ ⊢
(k)
n r′ : τ (C). From (C), by Normalization Lemma 5.1,

Γ ⊢
(k)
n t′ ≡ (λx : σ . r′) : σ → τ ≡ θ, which is needed.

Case of (FApp-Cong-L): Let Γ ⊢
(k)
n t ≡ r s : τ and Γ ⊢(k) r s ❀ r′ s ≡ t′ : τ (A) be

derived from Γ ⊢(k) r ❀ r′ : σ → τ (B) and Γ ⊢
(k)
n s : σ (C) by (FApp-Cong-L). From (B),

by Auxiliary Lemma 15.2, Γ ⊢
(k)
n r : σ → τ (D). By inductive hypothesis, (D) and (B) imply

Γ ⊢
(k)
n r′ : σ → τ (E). From (E) and (C), by Normalization Lemma 5.1, Γ ⊢

(k)
n t′ ≡ r′ s : τ ,

which is needed.

Case of (FApp-Cong-R): Let Γ ⊢
(k)
n t ≡ r s : τ and Γ ⊢(k) r s ❀ r s′ ≡ t′ : τ (A) be

derived from Γ ⊢
(k)
n r : σ → τ (B) and Γ ⊢(k) s ❀ s′ : σ (C) by (FApp-Cong-R). From

(C), by Auxiliary Lemma 15.2, Γ ⊢
(k)
n s : σ (D). By inductive hypothesis, (D) and (C) imply

Γ ⊢
(k)
n s′ : σ (E). From (B) and (E), by Normalization Lemma 5.1, Γ ⊢

(k)
n t′ ≡ r s′ : τ , which

is needed.

Case of (Λ-Cong): Let Γ ⊢
(k)
n t ≡ (Λα ≤ σ . r) : (∀α ≤ σ . τ) ≡ θ and the judgment

Γ ⊢(k) (Λα ≤ σ . r) ❀ (Λα ≤ σ . r′) ≡ t′ : θ be obtained from Γ, α ≤ σ ⊢(k) r ❀ r′ : τ

(A) by (Λ-Cong). From (A), by Auxiliary Lemma 15.2, Γ, α ≤ σ ⊢
(k)
n r : τ (B). From (B) and

(A), by inductive hypothesis, Γ, α ≤ σ ⊢
(k)
n r′ : τ (C). From (C), by Normalization Lemma 5.1,

Γ ⊢
(k)
n t′ ≡ (Λα ≤ σ . r′) : (∀α ≤ σ . τ) ≡ θ, which is needed.
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Case of (TApp-Cong): Let Γ ⊢
(k)
n t ≡ r {ρ} : τ [ρ/α] ≡ θ and the refuction judgment

Γ ⊢(k) r {ρ} ❀ r′ {ρ} ≡ t′ : τ [ρ/α] be derived from Γ ⊢(k) r ❀ r′ : (∀α ≤ σ . τ) (A) and
Γ ⊢(k) ρ ≤ σ (B) by (TApp-Cong). From (A), by Auxiliary Lemma 15.2,

Γ ⊢
(k)
n r : (∀α ≤ σ . τ) (C). By inductive hypothesis, (C) and (A) imply

Γ ⊢
(k)
n r′ : (∀α ≤ σ . τ) (D). From (D) and (B), by Normalization Lemma 7.1 (and because of

(29)) we get Γ ⊢
(k)
n t′ ≡ r′ s : τ , which is needed. ✷

17 B. Pierce’s Counterexample

Benjamin Pierce suggested the following elegant “counterexample”, well illustrating the above
notions and problems. It also shows that the safety preconditions in Subject Reduction Lemmas
are essential and could not be relaxed.

Consider the following types and judgments defined in Section 15 of [Vor94b]:

τ ≡ ∀γ ≤ ⊤ . ((⊤ → ⊤) → ⊤)

ρ ≡ ∀γ ≤ ⊤ . (⊤ → ⊤)

Γ, α ≤ τ ⊢(0) α ≤ ρ (30)

Γ ⊢(0) τ ≤ ρ (31)

Proposition 17.1 For every SnS-based [Vor95] set of ∀-hypotheses H the judgment (30) is true
and the judgment (31) is false. ✷

This is established by direct calculations. (Similarly, as shown in Section 16 of [Vor94b], one can
find judgments with the same properties at every level ⊢(k), k ∈ N).

Let Γ be the context i : ⊤. Define the following terms:

u ≡df λg : ρ . g {⊤} i : ρ→ ⊤
v ≡df Λα ≤ τ λh : α . u h : ∀α ≤ τ . (α → ⊤)
f ≡df Λγ ≤ ⊤ λg : ⊤ → ⊤ . g i : ∀γ ≤ ⊤ . ((⊤ → ⊤) → ⊤) ≡ τ
w ≡df (v {τ}) f : ⊤

(the right column contains their minimal types in context Γ computed immediately by the rules of
Section 4, see also the typing proofs below).

Consider the β-reduction chain for the term w:

(v {τ}) f → (λh : τ . u h) f → (λg : ρ . g {⊤} i) f → f {⊤} i → i i (32)

The last term i i in this sequence is ill-typed. What is the problem?

Let us consider the typing proof of the first (β2)-redex in (32):

v {τ} ≡ (Λα ≤ τ . λh : α . ((λg : ρ . g⊤ i)h)) {τ} (33)

For typographical reasons we have to cut the proof into pieces.
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Subproof 1:

Γ, α ≤ τ, h : α, g : ρ ⊢(0)
mn g : ρ . . . ⊢(0) ⊤ ≤ ⊤

(µ-TApp)
Γ, α ≤ τ, h : α, g : ρ ⊢(0)

mn g⊤ : ⊤ → ⊤ . . . ⊢(0)
n i : ⊤

(µ-FApp)
Γ, α ≤ τ, h : α, g : ρ ⊢(0)

mn g⊤ i : ⊤
(µ-FAbs)

Γ, α ≤ τ, h : α ⊢(0)
mn (λg : ρ . g⊤ i) : ρ→ ⊤

where . . . ⊢
(0)
n i : ⊤ is proved from the axioms . . . ⊢

(0)
mn i : ⊤ (recall that Γ ≡ i : ⊤) and

. . . ⊢(0) ⊤ ≤ ⊤ by (Sub).

Subproof 2:

Γ, α ≤ τ, h : α ⊢(0)
mn h : α Γ, α ≤ τ, h : α ⊢(0) α ≤ ρ

(Sub)
Γ, α ≤ τ, h : α ⊢(0)

n h : ρ

The right subtyping premise in this proof is equivalent to (30).

Subproof 3:

(*See Subproof 1*)

Γ, α ≤ τ, h : α ⊢(0)
mn (λg : ρ . g⊤ i) : ρ→ ⊤

(*See Subproof 2*)

Γ, α ≤ τ, h : α ⊢(0)
n h : ρ

(µ-FApp)
Γ, α ≤ τ, h : α ⊢(0)

mn (λg : ρ . g⊤ i)h : ⊤
(µ-FAbs)

Γ, α ≤ τ ⊢(0)
mn (λh : α . ((λg : ρ . g⊤ i)h)) : α→ ⊤

The typing proof for the (β2)-redex (33) finishes by:

(*See Subproof 3*)

Γ, α ≤ τ ⊢(0)
mn (λh : α . ((λg : ρ . g⊤ i)h)) : α→ ⊤

(µ-TAbs)
Γ ⊢(0)

mn Λα ≤ τ . λh : α . ((λg : ρ . g⊤ i)h) : (∀α ≤ τ . (α → ⊤)) Γ ⊢(0) τ ≤ τ
(µ-TApp)

Γ ⊢(0)
mn (Λα ≤ τ . λh : α . ((λg : ρ . g⊤ i)h)) {τ} : τ → ⊤

The explanation to the above “paradox” is therefore simple: the topmost judgment

Γ ⊢
(0)
mn Λα ≤ τ . λh : α . ((λg : ρ . g⊤ i)h) : (∀α ≤ τ . (α → ⊤))

in this last proof is not [τ/α]-safe, because the subtyping judgment

Γ, α ≤ τ, h : α ⊢(0) α ≤ ρ,

occurring in its proof (see the right premise in Subproof 2) is not [τ/α]-stable. In fact, substituting
[τ/α] into this judgment yields:

Γ, h : τ ⊢(0) τ ≤ ρ

and this last subtyping judgment, equivalent to (31), is false by the choice of types τ and ρ.

Thus, the failure of the well-typedness preservation for the chain (32) is explained by the violation
of the safety precondition of Lemma 14.3.
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