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Abstract

The nuts and bolts problem is the following : Given a collection of n nuts of distinct sizes
and n bolts of distinct sizes such that for each nut there is exactly one matching bolt, find for
each nut its corresponding bolt subject to the restriction that we can only compare nuts to bolts.
That is we can neither compare nuts to nuts, nor bolts to bolts. This humble restriction on the
comparisons appears to make this problem quite difficult to solve. In this paper, we illustrate
the existence of an algorithm for solving the nuts and bolts problem that makes O(n lg n) nut-
and-bolt comparisons. We show the existence of this algorithm by showing the existence of
certain expander-based comparator networks. Our algorithm is asymptotically optimal in terms
of the number of nut-and-bolt comparisons it does. Another view of this result is that we show
the existence of a decision tree with depth O(n lg n) that solves this problem.

1 Introduction

In [20], page 293, Rawlins posed the following interesting problem :

We wish to sort a bag of n nuts and n bolts by size in the dark. We can compare the
sizes of a nut and a bolt by attempting to screw one into the other. This operation tells
us that either the nut is bigger than the bolt; the bolt is bigger than the nut; or they are
the same size (and so fit together). Because it is dark we are not allowed to compare
nuts directly or bolts directly.

How many fitting operations do we need to sort the nuts and bolts in the worst case?

As a computer scientist (instead of a carpenter) you might prefer to see the problem stated as
follows (Alon et al. [6]) :

Given two sets B = {b1, . . . , bn} and S = {s1, . . . , sn}, where B is a set of n distinct
real numbers (representing the sizes of the bolts) and S is a permutation of B, we wish
to find efficiently the unique permutation σ ∈ Sn so that bi = sσ(i) for all i, based on
queries of the form compare bi and sj. The answer to each such query is either bi > sj
or bi = sj or bi < sj.

∗The author was supported by the ESPRIT Basic Research Actions Program, under contract No. 7141 (project
ALCOM II).
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The obvious information theoretic lower bound shows that at least Ω(n lg n) nut-and-bolt com-
parisons are needed to solve the problem, even for a randomized algorithm. In fact, there is a simple
randomized algorithm which achieves an expected running time of O(n lg n), namely Quicksort :
Pick a random nut, find its matching bolt, and then split the problem into two subproblems which
can be solved recursively, one consisting of the nuts and bolts smaller than the matched pair and
one consisting of the larger ones. The standard analysis of randomized Quicksort gives the expected
running time as stated above (see for example [8, 20]).

Unfortunately, it seems much harder to find an efficient deterministic algorithm. The first
O(n lgO(1) n)-time deterministic algorithm was by Alon et al. [6] which is also based on Quicksort
and takes Θ(n lg4 n) time. They mention in passing that they also have an O(n lg3+ϵ n) time
algorithm for any ϵ > 0. To find a good pivot element which splits the problem into two subproblems
of nearly the same size, they run lg n iterations of a procedure which eliminates half of the nuts in
each iteration while maintaining at least one good pivot; since there is only one nut left in the end,
this one must be a good pivot. This procedure uses the edges of an efficient expander of degree
Θ(lg2 n) to define its comparisons. Therefore, finding a good pivot takes Θ(n lg3 n) time, and the
entire Quicksort takes Θ(n lg4 n) time.

Bradford and Fleischer [7] give a very simple O(n lg2 n)-time algorithm by building an O(n lg n)-
time algorithm for pivot selection which uses explicitly constructed expanders. However, initially
the constants of Bradford and Fleischer’s algorithm were worse than those of Alon et al.’s algo-
rithm since Bradford and Fleischer iteratively construct an expander with suitable parameters from
simpler expanders. Later on, Alon suggested a simple way to improve the constants considerably.
While working on a draft of this paper we learned that Komlós, Ma, and Szemerédi also have an
O(n lg n)-time algorithm for solving the nuts and bolts problem [12].

In this paper, we show the existence of an asymptotically optimal algorithm (in terms of nut-
and-bolt comparisons) to find a good pivot. We do this by showing that comparator networks that
are ϵ-halvers exist for nuts and bolts. An ϵ-halver approximately splits a set of n elements with
O(n) work. This approximate splitting is enough to allow us to select good pivots while iterating
ϵ-halvers on geometrically smaller sets of nuts and bolts. The hard part in building these ϵ-halvers
is to ensure that nuts are never compared to nuts and bolts are never compared to bolts while
maintaining the ϵ-halving property. In these ϵ-halvers we must account for both the errors and the
loss of comparable elements and this takes the bulk of the paper. In some sense this is somewhat
reminiscent of Paterson’s version [16] of the famous Ajtai, Komlós, and Szemerédi [2, 3] sorting
network. Although we are not working under such time constraints in parallel.

We show that there is a “good” pivot selection algorithm using only O(n) nut-and-bolt compar-
isons which leads directly to the existence of our O(n lg n) nut-and-bolt comparison algorithm. Our
algorithm is asymptotically optimal in terms of the number of nut-and-bolt comparisons it does.
We remark that it is not uncommon for papers to show the existence of algorithms with a desirable
number of element comparisons, but where the determination of the choices of which comparisons
to make is more expensive, see for example [1, 2, 3, 5, 16, 19].

Alon et al. [6] mention two potential applications of the nuts and bolts problem: the first is
local sorting of nodes in a given graph [10], and the second is selection of read only memory with
a little read/write memory [14].

In the next section, we describe the Quicksort algorithm more formally and recall some facts
about expanders. In Section 3, we show how we can efficiently find a good pivot with O(n) nut-
and-bolt comparisons. We conclude with some remarks in Section 4.
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2 Basic Definitions

Let S = {s1, . . . , sn} be a set of nuts of different sizes and B = {b1, . . . , bn} be a set of corresponding
bolts. For a nut s ∈ S define rank(s) as |{t ∈ B | s ≥ t}| . The rank of a bolt is defined similarly.
For a constant c < 1

2 , s is called a c-approximate median if cn ≤ rank(s) ≤ (1 − c)n . Similarly,

define the relative rank of s with respect to a subset T ⊆ B as rankT (s) :=
|{t ∈ T | s ≥ t}|

|T | .

The algorithm for matching nuts and bolts works as follows.

(1) Find a c-approximate median s of the n given nuts (we will determine c later).

(2) Find the bolt b corresponding to s.

(3) Compare all nuts to b and all bolts to s. This gives two piles of nuts (and bolts
as well), one with the nuts (bolts) smaller than s and one with the nuts (bolts)
bigger than s.

(4) Run the algorithm recursively on the two piles of the smaller nuts and bolts and
the two piles of the bigger nuts and bolts.

In the next section, we will show how to find a c-approximate median with O(n) nut-and-bolt
comparisons, where c is a constant. Then our main result follows immediately.

Theorem 1 We can match n nuts with their corresponding bolts in O(n lg n) nut-and-bolt compar-
isons.

Proof: The correctness of the algorithm above follows immediately from the correctness of Quick-
sort. For the running time in terms of nut-and-bolt comparisons observe that each subproblem has
size at most (1 − c)n, hence the depth of the recursion is only O(lg n), and in each level of the
recursion the total number of nut-and-bolt comparisons to get all of the c-approximate medians is
O(n).

We now recall some facts about expanders (see for example [13] if you want to learn more
about expanders). An (n, d, c)-expander is a d-regular bipartite graph on vertices I (inputs) and
O (outputs), where |I| = |O| = n, such that every subset A ⊆ I that contains up to n/2 elements,

is joined by edges to at least |A|
(
1 + c(1− |A|

n )
)

different outputs. The constant c is called the

expansion factor of the graph. Further, we will always take the degree d to be constant, albeit
very large. A strong (n, d, c)-expander is a d-regular bipartite graph on vertices I (inputs) and
O (outputs), where |I| = |O| = n, such that every subset A ⊆ I is joined by edges to at least

|A|
(
1 + c(1− |A|

n )
)

different outputs, see Alon [4].

Lemma 1 (Alon [4], Lemma 3.2) Any (2n, d, c) expander (expanding from subsets of both the
inputs and outputs) is a (n, d, b)-strong expander, where b = 2c/ ((d+ 1)(c+ 1)).

It is not hard to show the existence of expanders, see Sarnak’s book [21] or Lubotzky’s book [13]
and their citations. On the other hand, it appears to be much more difficult to explicitly construct
expanders with provably good expansion factors. Although several researchers have given explicit
constructions of expanders with provably good expansion factors.

The proof of the next corollary follows from the standard literature on graph expanders.

Corollary 1 Let 0 < α ≤ β < 1 be constants and γ(α,β) =
β
α
−1

α−1 . Then there exists an integer d(α,β)
such that we can construct a strong (n, d(α,β), γ(α,β))-expander in O(n) time, where any subset of the
inputs of size αn is connected to at least βn different outputs.
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Proof: We take a series of expanders and identify the outputs O1 of the first one with the inputs
I2 of the second one, the outputs O2 of the second one with the inputs I3 of the third one, and
so on. Then there is a least integer k (independent of n) such that any set of αn inputs of I1 is
connected to at least βn different outputs of Ok. Let c be the expansion factor. We can easily
calculate k by computing the series defined by a0 = α and ai+1 ← ai (1 + c(1− ai)); then k is the
smallest index i such that ai ≥ β.

Hence, to get the desired bipartite graph, we only have to connect each node v of I1 to all nodes w
of Ok which can be reached from v by traversing a path which uses exactly one edge from each of the
k expanders. The degree of any node is clearly constant. To make the graph d(α,β)-regular we can
add arbitrary dummy edges without destroying the expansion property. Furthermore, the expansion

factor γ(α,β) of our new expander is
β
α
−1

1−α which we get by solving for c in α (1 + c(1− α)) = β.

We are most interested in (strong) expanders with the parameters (n, d(α,β), γ(α,β)) where

γ(α,β) = 1−ϵ
ϵ for some constant ϵ : 1 > ϵ > 0. Such expanders are used for building compo-

nents of the O(n lg n) comparator and O(lgn) depth parallel sorting network of Ajtai, Komlós, and
Szemerédi [2, 3].

3 Finding O(n)-time c-Approximate Medians for Nuts and Bolts

In this section we give the details of our algorithm for finding the c-approximate median with O(n)
nut-and-bolt comparisons by using ϵ-halvers.

Briefly, given a list X of 2n elements an ϵ-halver [2, 3, 15] approximately splits X in half with
most of the small elements (at least (1 − ϵ)n) ending up on the right half and most of the large
elements (at least (1− ϵ)n) ending up on the left half. However, the ϵ-halvers must be modified so
that they will always compare nuts to bolts.

There are two basic difficulties with ϵ-halving nuts and bolts that we must overcome in order
to find an approximate median. We will find an approximate median from smaller and smaller
lists of nuts and bolts that we get through ϵ-halving and some other operations. The first of these
difficulties is that we must be able to deal with the ϵ-errors as we find an approximate median.
We must not allow these errors to prevent us from finding an approximate median. Hence we
must ensure that the errors diminish appropriately as our algorithm runs so that we can find an
approximate median. The second difficulty we must overcome is that we must make sure that the
diminishing sets of nuts and bolts, that we use to isolate an approximate median, always contain
enough appropriate nuts and bolts to allow us to continue to ϵ-halve.

A comparator network has wires w1, w2, · · · , wn, wn+1, · · · , w2n, see for example [2, 3, 15, 8, 11].
The wires w1, w2, · · · , wn are low wires and the wires wn+1, · · · , w2n are high wires. The low wires
are on the left side of the network and the high wires are on the right side of the network.

A comparator C between a low wire wi and a high wire wj puts the higher value in wj and
the lower value in wi. A comparator network has r levels of comparators, where r is a constant.
That is, at every level ℓ : r ≥ ℓ ≥ 1, there are n comparators among disjoint wires. Two wires are
comparable iff one contains a nut and the other contains a bolt. Likewise, we say that two elements
are comparable iff one is a nut and the other is a bolt. It is important to note that each level of
comparators forms a (bipartite) 1-factor between the high and low wires. In a bipartite graph, a
1-factor is the same as a perfect matching.

In general, let X[i, j] = X[i, i+ 1, · · · , j] and we will use set-theoretic notation freely with such
lists. Given a list X[1,m] of m elements, we say that it is halved when the ⌊m/2⌋ + 1 largest
elements are in X[⌊m/2⌋ + 1,m] and the ⌊m/2⌋ smallest elements are in X[1, ⌊m/2⌋]. Where an
ϵ-halved list is a halved list that may contain a certain number of errors for varying sized sublists.
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Definition 1 For some constant ϵ < 1, let Sk denote the k smallest numbers in X and let Lk denote
the k largest numbers in X. Then X is ϵ-halved iff for all k ≤ m

2 we have

|Sk ∩X[⌊m/2⌋+ 1,m]| ≤ ϵk and |Lk ∩X[1, ⌊m/2⌋]| ≤ ϵk

An ϵ-halver is a comparator network that ϵ-halves its input using only O(m) comparators

However, building such a comparator network in a straightforward way does not seem to give
an ϵ-halver for nuts and bolts in the worst case. In particular, after the first level of comparators a
standard ϵ-halver might only compare nuts with nuts and bolts with bolts for all subsequent levels
of comparators.

Definition 2 For some constant ϵ < 1, let SNk denote the k smallest nuts in X and let SBk denote the
k smallest bolts in X. Likewise, LNk and LBk are the k largest nuts and the k largest bolts, respectively.

Then X is ϵ-halved iff for all k ≤ m
2 we have∣∣∣(SNk ∪ SBk ) ∩X[⌊m/2⌋+ 1,m]
∣∣∣ ≤ ϵ2k and

∣∣∣(LNk ∪ LBk ) ∩X[1, ⌊m/2⌋]
∣∣∣ ≤ ϵ2k

A nut-and-bolt ϵ-halver is a comparator network using only O(m) comparators that ϵ-halves its inputs
of nuts and bolts. Nut-and-bolt ϵ-halvers are supplemented with the machinery to tell the difference
between nuts and bolts and to deal with incomparable elements.

Following Definition 2, from here on all ϵ-halvers are nut-and-bolt ϵ-halvers, unless otherwise
noted.

Since ∣∣∣(SNk ∪ SBk ) ∩X[⌊m/2⌋+ 1,m]
∣∣∣ ≤ ϵ2k

we know that in the worst case ∣∣∣SNk ∩X[⌊m/2⌋+ 1,m]
∣∣∣ ≤ ϵ′k

for some constant ϵ′ ≤ 2ϵ. Likewise for∣∣∣SBk ∩X[⌊m/2⌋+ 1,m]
∣∣∣ ≤ ϵ′′k

for some constant ϵ′′ ≤ 2ϵ. Hence, we let Sk denote the set of k smallest nuts and bolts when
convenient. Naturally, the same holds for LN and LB.

Let LN
i and LB

i denote the nuts and bolts immediately before comparator level i on low wires.
Likewise, let HN

i and HB
i denote the nuts and bolts immediately before comparator level i on high

wires.
If a nut matches a bolt, then either the nut or the bolt wins. In this case whichever one wins

is not relevant for the correctness of our c-approximate median algorithm.
We will show how to construct non-dynamic networks shortly. A non-dynamic network is a

comparator network that can have all of its comparator connections designated in advance before
the algorithm is run. However, such a network has components for counting nuts and bolts and
switching to different comparator levels depending on the numbers of high nuts or low nuts.

Given n nuts and n bolts, we want to show that comparator networks exist that ϵ-halve the
nuts and bolts. First we will describe dynamically built comparator networks that exhibit graph
expanding properties. Then we will give a non-dynamic nut-and-bolt ϵ-halving network.

Prior to level 1 of the comparators, for the inputs to the comparator network we put all of the
nuts on the low wires (w1, · · · , wn) and we put all of the bolts on the high wires (wn+1, · · · , w2n).
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On comparator level 1 we just choose a random permutation π1 on n elements. We take this per-
mutation to describe which low wires to connect to which high wires. In the second and subsequent
levels we must be careful to ensure that we only allow permutations that will describe connections
between wires containing comparable elements. As a first attempt, to do this for level i ≥ 2 we
consider two random permutations: π1i and π2i where π1i : LN

i → HB
i and π2i : LB

i → HN
i . These

permutations tell which wires to put a comparator between, at level i ≥ 2.

Lemma 2 For every level i of our comparator network, n =
∣∣∣LN

i ∪ LB
i

∣∣∣ = ∣∣∣HN
i ∪HB

i

∣∣∣ and ∣∣∣LN
i

∣∣∣ =∣∣∣HB
i

∣∣∣ and ∣∣∣LB
i

∣∣∣ = ∣∣∣HN
i

∣∣∣.
Proof: By induction on the levels of the comparator network.

Pinsker [17], Chung [9], and Pippenger [18] and others showed that expanders (and related
combinatorial objects) exist using randomized methods. Here we generalize this result to be suitable
for the nuts and bolts problem, while following closely the exposition given in Sarnak [21] and
Lubotzky [13].

In the proof of the next theorem we show the existence of dynamically built comparator networks
which are expanders that form ϵ-halvers. However, following the proof of this theorem, we show
the existence of non-dynamic networks for any number of n nuts and n bolts (where n is sufficiently
large).

Theorem 2 (Most dynamic random nut-and-bolt comparator networks are expanders)
Let w1, · · · , wn, wn+1, · · · , w2n be 2n wires in an r-level comparator network, where at each level the
neighbors of the vertices w1, · · · , wn are chosen from wn+1, · · · , w2n by a random permutation which
only allows wires containing comparable elements to have a comparator between them. Now, consider
each wire to be a node and each comparator to be an edge in an r-degree regular bipartite graph
G = (V1 ∪ V2, E) where V1 = {w1, · · · , wn} and V2 = {wn+1, · · · , w2n}. Then with high probability G
is an expander, with expansion factor c = 1

2 .

Proof: The set of inputs is I = V1 and the set of outputs is O = V2.
Take the r-tuple of permutations π = (π1, (π

1
2, π

2
2), · · · , (π1r , π2r )), where π1 is chosen at random

and each permutation (π1i , π
2
i ) for i ≥ 2 is such that each π1i and π2i are chosen at random depending

on the contents of the wires at level i of the comparator network. In particular, for i ≥ 2 we consider
pairs of permutations. Let these two permutations be π1i and π2i . Then there are two disjoint sets
X and Y such that X ⊆ {1, 2, · · · , n} and Y ⊆ {1, 2, · · · , n} where X ∪ Y = {1, 2, · · · , n} and
π1i : X → X and π2i : Y → Y .

This means there are n! different choices for π1 since LB
1 = HN

1 = ∅, while there are
∣∣∣LN

i

∣∣∣! ∣∣∣LB
i

∣∣∣!
different choices for (π1i , π

2
i ) for i : r ≥ i ≥ 2, see Lemma 2. Considering that we must choose how

large π1 and π2 are, we really have (
n∣∣LN
i

∣∣
) ∣∣∣LN

i

∣∣∣! ∣∣∣LB
i

∣∣∣!
choices for level i.

Now, we will bound the number of r-tuples π where there is a subset A ⊆ I such that |A| ≤ n/2
and at the same time πi(A) ⊆ C for all i where C ⊆ O and |C| ≤ 3

2 |A|. Any r-tuple of permutations
that allows any such A and C is a bad r-tuple. Note, that we are going to show that almost all
such graphs are expanders with expansion factor c = 1

2 .
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Let |A| = s and |C| = t, with t ≤ 3
2s. To count the number of bad r-tuples consider the sets of

wires containing comparable items at the i-th round. If A is the set of inputs that are only mapped
to C through all r rounds, where |C| ≤ 3

2 |A|, we let AN
i denote the subset of A that contains all

nuts of A in round i and AB
i denote the subset of A that contains all bolts of A in round i. Likewise,

let CN
i denote the subset of C that contains all nuts of C in round i and CB

i denote the subset of
C that contains all bolts of C in round i.

That is,

Ai ⊂ LN
i ∪ LB

i Ci ⊂ HN
i ∪HB

i

AN
i ⊆ LN

i AB
i ⊆ LB

i

CN
i ⊆ HN

i CB
i ⊆ HB

i

and of course the first time we run any expander we have A1 = AN
1 ⊆ LN

1 and C1 = CB
1 ⊆ HB

1 ,
since LB

1 = HN
1 = ∅.

Now, let h(aN , aB, cN , cB) denote the number of “bad permutations” for a random nuts-and-
bolts bipartite graph. From here on we let xY denote the cardinality of the set XY . Further, when
convenient we drop subscripts so that we denote XY

i as XY when there will be no ambiguity.
Then

h(aN , aB, cN , cB) =
r∏

i=1

(
(|LN

i | − aNi )! (|LB
i | − aBi )!

) r∏
i=1

h1(a
N , cB, i)h2(a

B, cN , i)

where aN + aB = s and cN + cB = t and

h1(a
N , cB, i) = cBi (c

B
i − 1) · · · (cBi − aNi + 1)

(
s

aNi

)

h2(a
B, cN , i) = cNi (cNi − 1) · · · (cNi − aBi + 1)

(
t

cNi

)

where h1 denotes the number of choices that the nuts in A have on compatible elements in C.
Likewise for h2. (We are assuming without loss that cBi ≥ aNi and cNi ≥ aBi since all permutations
must map from A into C.)

Let N(s, t) denote the number of bad permutations for a comparator network, so we have

N(s, t) =
∑
s≤n

2

 ∑
s≤t≤ 3

2
s

(
n

s

)(
n

t

)
h(aN , aB, cN , cB)

 .
Let D denote the number of possible different networks, so we have

D =
r∏

i=1

((
n

|LN
i |

)
|LN

i |! |LB
i |!
)
.

Note that since |LB
i | = n− |LN

i | we really have(
n

|LN
i |

)
|LN

i |! (n− |LN
i |)! = n!.

Hence, D = (n!)r.
So, a bound on the number of bad r-tuples divided by the exact number of possible r-tuples is:
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N(s, t)

D
=

∑
s≤n

2

 ∑
s≤t≤ 3

2
s

(
n

s

)(
n

t

)
h(aN , aB, bN , bB)


(n!)r

.

Following Sarnak [21] and Lubotzky [13], we consider two cases, the first where s ≤ n
3 and then

the case where n/3 < s ≤ n/2.
So, now we show that N(s, t) ≥ N(s+ 1, t) for s ≤ n

3 .
As in both cases we start with,(

n

s

)(
n

t

)
=

n! n!

s! (n− s)! t! (n− t)!
.

Now considering that

h1(a
N , cB, i) = cBi (c

B
i − 1) · · · (cBi − aNi + 1)

(
s

aNi

)
(1)

hence

r∏
i=1

h1(a
N , cB, i) =

r∏
i=1

(
cBi !

aNi !

)(
s!

aNi ! (s− aNi )!

)
. (2)

Likewise for h2 we have

r∏
i=1

h2(a
B, cN , i) =

r∏
i=1

(
cNi !

aBi !

)(
t!

cNi ! (t− cNi )!

)
(3)

and we recall that s = aNi + aBi . Therefore, with the other factors let

M(s, t) =

(
n

s

)(
n

t

)
r∏

i=1

(
h1(a

N , cB, i)h2(a
B, cN , i)

) r∏
i=1

(
(|LN

i | − aNi )! (|LB
i | − aBi )!

)
. (4)

We want to show that M(s, t) has its maximum value at M(1, t) which would mean N(s, t) ≥
N(s+ 1, t) for s ≥ 1 which gives us a sufficient upper bound. We do this by showing that M(s, t)
maximizes when both aNi and aBi are small. If both aNi and aBi are small, then s is also small,
hence N(s, t) ≥ N(s+ 1, t) will hold. Therefore, we can bound N(s, t) and complete the proof.

In order to maximizeM(s, t) we first note in Equation (3) the cNi -s cancel out just as (t−cNi ) =
cBi since t = cNi + cBi , so the (t − cNi )! term cancels with the cBi ! term too. Therefore, we have to
consider the function,

f(s, t, cBi , a
N
i , a

B
i ) =

(
t!

aBi !

)(
s

aNi

)
(|LN

i | − aNi )! (|LB
i | − aBi )!

aNi !

and via straightforward manipulation we can see that for s ≥ 1 the function f maximizes when
|LN

i | = n and aNi = s = 1. Furthermore,
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f(s, t, cBi , a
N
i , a

B
i ) ≤ (n− 1)!

for s : n
3 ≥ s ≥ 1.

We must consider this together with the

g(n, s, t) =

(
n

s

)(
n

t

)

terms. The function g(n, s, t) is maximum when s = n
3 and t = n

2 , which using Stirling’s approxi-
mation shows that

f(s, t, cBi , a
N
i , a

B
i ) > (n/2)!

holds for each level i of the network.
From this we conclude that N(s, t) ≥ N(s+1, t) by comparing the minimal value of f with the

maximal values of the denominator of g.
Now, we finally claim,

lim
n→∞

N(1, t)

(n!)r
→ 0. (5)

Establishing this claim shows that for s ≤ n/3 most such dynamically-built and randomly chosen
graphs must be good expanders, since the ratio of the number of bad permutations over the number
of permutations goes to zero as n grows large.

The case for n
3 < s ≤ n

2 follows similarly, see also Sarnak [21]. (It is not even necessary to write it
out in full, since it is well known that expanders with |A| ≤ n

3 can be iterated into expanders with
|A| ≤ n

2 .)
We establish the above claim in Equation (5) as follows. First, we claim

N(1, t) ≤ n2
r∏

i=1

(
(|LN

i | − aNi )! (|LB
i | − aBi )!

)
Since s = 1, we know that both |LN

i | − aNi < n and |LB
i | − aBi < n because |LN

i | + |LB
i | = n.

Hence

lim
n→∞

N(1, t)

(n!)r
→ 0

for each i : r ≥ i ≥ 1 where r is a constant larger than 4. This implies Equation 5, completing the
proof.

Theorem 2 shows the existence of such dynamically built nut-and-bolt expanders with expansion
factor c = 1

2 . However, we will show that for every input of n nuts and n bolts there are fixed
networks that are nut-and-bolt ϵ-halvers.

Definition 3 A set U of nuts or bolts illicitly supports a set V of elements if the elements in V only
make comparisons with elements of U and because of these comparisons, the elements in V are placed
on the wrong side of the comparator network.

9



It is interesting to note that ϵ-halving a list of n elements, there can be at most ϵn illicitly
supported elements. Further, in another ϵ-halving of one side of this list, these ϵn illicitly supported

elements, can illicitly support at most
(

ϵ
1−ϵ

)
ϵn elements.

Theorem 3 Given n nuts and n bolts, where n is sufficiently large, there exist non-dynamic comparator
networks that are ϵ-halvers. Moreover, these nut-and-bolt ϵ-halvers are of constant depth and they use
a total of O(n) comparators.

Proof: We will show that our ϵ-halving comparator network is non-dynamic and consists of
1-factors between the low and high wires.

For each comparator level j ≥ 2 the first 1-factor of each pair of 1-factors describes compara-
tors between the nuts LN

j and bolts HB
j . The second 1-factor of each pair of 1-factors describes

comparators between the bolts LB
j and nuts HN

j . After a comparator level j, we can count the

number of nuts and bolts in LN
j and LB

j and we send nuts LN
j and bolts HB

j down opposite sides of
a suitable 1-factor. In this case, in the first 1-factor of the pair of 1-factors at level j, we send the
list of nuts in LN

j down the low wires (right side) of this 1-factor and the list of bolts in HB
j down

the high wires (left side). We choose the 1-factor for LN
j and HB

j as the 1-factor-based comparator

that the number |LN
j | is closest to but not greater than in size. By our construction the second

1-factor will be large enough to suit all of the comparisons between the bolts LB
j and the nuts HN

j .

Send LB
j to the right and HN

j to the left of the second 1-factor. The 1-factors are a little oversized,
so that we don’t have to throw any nuts or bolts away. But, we do duplicate some nuts and bolts
to “fill out” to the size of the 1-factors at each level. We dispose of these extra nuts and bolts and
their associated wires, after the last level of the comparator. Then we re-group LN

j+1, L
B
j+1,H

N
j+1

and HB
j+1 and continue.

In particular, for each i :
⌈
1
ϵ

⌉
≥ i ≥ 1 there is a pair of 1-factors among the following number

of elements: ⌈(1− iϵ)n⌉ and ⌈(i2ϵ)n⌉. That is, there are two bijections, one among ⌈(1− iϵ)n⌉
elements and the other among ⌈(i2ϵ)n⌉ elements.

Let r be the number of levels in our comparator network. Now, we will have at most r2ϵ extra
copies of nuts and bolts coming out of the last level of comparators. Furthermore, in the worst case
these extra r2ϵ nuts and bolts can “illicitly support” at most(

1

β

)
2rϵ =

2rϵ2

1− ϵ

other bolts and nuts on the incorrect side of the comparator. For appropriately chosen ϵ, this has
no effect on the correctness of our algorithm because this is just an adjustment to the value of ϵ.

Finally, we note that Theorem 2 guarantees the existence of pre-chosen graphs which are com-
parator networks with the required expansion properties.

We could find such expanders explicitly without any nut-and-bolt comparisons. We can cer-
tainly find them in exponential time by enumerating all r-level comparator networks and considering
all appropriate permutations on each level and then by checking all appropriate subsets for the ex-
pansion property, etc. Also, see the citations in the introduction, and in particular Pippenger [19].

Finally, we note that the proof of Theorem 2 does not show that strong nut-and-bolt expanders
exist, but just that expanders exist. By Lemma 1 we know that strong expanders exist too. (To
apply Lemma 1, we have to show that all subsets of both the inputs and outputs of size up to n/2
expand, but this is straightforward by symmetry from the proof above. See also [4, Lemma 4.1].)
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Following Corollary 1, using the results just discussed we can construct expanders with param-
eters (n, d(α,β), γ(α,β)) where γ(α,β) =

1−ϵ
ϵ for some constant ϵ : 1 > ϵ > 0. Furthermore, we know

that d(α,β) is some constant based only on α and β.
The next observation is a minor variation of a classical result [2, 3].

Observation 4 (See [2, 3, 15]) Let i : 1 ≤ i ≤ n and j : n + 1 ≤ j ≤ 2n. If wi and wj have
a comparator between them at level K, then Output(wi) ≤ Output(wj) on every subsequent level
K + 1, · · ·, even if in subsequent levels the contents of wi and wj are not comparable.

Proof: First, we only compare between low wires and high wires which contain comparable
elements. That is, two wires wi and wj can have a comparator between them iff 1 ≤ i ≤ n and
n+ 1 ≤ j ≤ 2n and both wires are carrying comparable elements.

Suppose wi is such that i ≤ n and wj is such that j ≥ n + 1. One round after there is a
comparator between two wires wi and wj . These wires may no longer contain comparable elements.
However, even in this case, the only way to exchange the contents of wi is to replace it with a smaller
(or matching) element, and similarly the only way to replace the contents of wj is to replace it with
a larger (or matching) element.

We begin by nut-and-bolt ϵ-halving a list X[1, 2n], then continuing on its left half X[1, n], and
then nut-and-bolt ϵ-halving X[1, n], then continuing on its right half X[n/2, n], etc. That is, first
we ϵ-halve our current elements, in even iterations we choose to continue on the right half and
during odd iterations we choose to continue on the left half. Hence, in each iteration we halve the
number of elements that we consider. We will also show how to build routines to get the extraneous
nuts and bolts, if there are any.

The nuts and bolts we are considering in the i-th iteration are in the list Xi. The position an
element is in Xi indicates which wire it is on. So X0 is the given list of n nuts and n bolts where
all of the nuts are on the low wires and all of the bolts are on the high wires. Repeatedly using
ϵ-halvers on geometrically smaller sets of the most recent set of halved elements we get the sequence
of nuts and bolts: X0, X1, · · · , Xi where i : ⌈lg n⌉ ≥ i and |Xi+1| ≤ ⌈|Xi| /k⌉, where k > 2

1+Kϵ ,
for K a small constant such that Kϵ < 1 and K will be defined later. This is because we will
continually add some nuts and bolts back to the ϵ-halved lists. For ease of exposition and without
loss of generality we will take k = 2, though it is sufficient to take it as k = 1.5.

If we ϵ-halve X[1, 2n], then for s to be in X[1, n] with no match in X[1, n], either s or its
matching element t must have been put on the wrong side of X[1, 2n] after it was ϵ-halved. Hence,
for an element to have no matching element on the same side, must be the result of one of the
bounded number of “errors” the ϵ-halving allows.

We will write

Sk = SNk ∪ SBk and Lk = LNk ∪ LBk

when it is convenient and it does not introduce any ambiguity.
Suppose we ϵ-halve X[1, 2n]. Then the errors, say EL, in X[1, n] are the elements that are

too large, that is elements from Ln/2+1. We will show that |EL| is very small. The elements EL
may not have matches in X[1, n], however, they will be comparable with a lot of the elements in
X[1, n]. When X[1, n] is ϵ-halved, then “most” of the elements in EL will end up in X[n/2, n]. Of
course, after we ϵ-halve X[n/2, n], then we will continue on X[n/2, 3n/4]. This forces the elements
in EL ∩X[n/2, 3n/4] to diminish substantially more in number.

Likewise, the errors in X[n/2, n] will be small elements from Sn/2 which are “too small” for
X[n/2, n]. Call these too small elements ES . Note that |ES | is very small. Furthermore, by the
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time we ϵ-halve X[n/2, 3n/4] and consider the list X[5n/8, 3n/4], we have diminished the number
of elements in ES ∩X[5n/8, 3n/4] substantially more.

Definition 4 An extraneous element is an element that is not in the present list of expected sizes if
each ϵ-halve was an exact halving, that is ϵ = 0.

This definition holds for the case where the extraneous elements are from outside of the present
range.

When we have ∣∣∣SNn/2 ∩X∣∣∣ ≥ (1− δ)n/2

for 1
8 ≥ δ, this means “most” of the small nuts are in the list X. Considering all of the sizes of nuts

and bolts; we have the following∣∣∣SNn/2∣∣∣ = n/2 and
∣∣∣SBn/2∣∣∣ = n/2∣∣∣LNn/2+1

∣∣∣ = n/2 and
∣∣∣LBn/2+1

∣∣∣ = n/2

and the set
SNn/2 ∪ S

B
n/2 ∪ L

N
n/2+1 ∪ L

B
n/2+1

is all of the given 2n nuts and bolts in X0[1, 2n] for the nuts and bolts problem.
The next lemma, when δ = 0, is just the same as the standard ϵ-halving theorem adapted to

nuts and bolts, see [2, 3, 15].

Lemma 3 Let ϵ be some constant such that 1 > ϵ > 0 and let δ be any constant such that 1
8 ≥ δ ≥ 0.

Given a list of m nuts and m bolts in a list X such that (1 − δ)m of the nuts have matching bolts in
X, then we can build a nut-and-bolt ϵ-halver of O(m) comparators for ϵ-halving the nuts and bolts.

Proof: Let SNk denote the smallest nuts of size at most k expected to be in X. Let SNk denote
the nuts not larger than the k-th smallest nut in SNk . Since there are at most δm nuts and bolts
that are not among any of the remaining (1− δ)m nuts and bolts in SNm/2 ∪ S

B
m/2, without loss of

generality we assume that
∣∣∣SNk ∣∣∣ = k + δm/2 and likewise

∣∣∣SBk ∣∣∣ = k + δm/2. We can assume this

since the 2δm extraneous elements can’t be between Sm/2 and Lm/2+1 in size (since there are no
sizes between Sm/2 and Lm/2+1 in X).

Similarly, the definitions for LNk and LBk follow in the expected way and we assume without loss

that
∣∣∣LNk ∣∣∣ = ∣∣∣LBk ∣∣∣ = k + δm/2.

By Theorem 3, nut and bolt ϵ-halvers exist, and now we show that they can tolerate some nuts
and bolts that have no matches.

Let W ⊆ {wm+1, · · · , w2m} be the set of high wires that contains elements of SNk ∪SBk after the
last level of comparators. Let W ⊆ {w1, · · · , wm} be the set of low wires that shared a comparator
with a wire in W at some level.
Claim 1: Each wire inW carries an element of SNk ∪SBk at every level. Considering Observation 4,
a proof by contradiction is immediate.
Claim 2: Each wire in W carries an element of SBk ∪ SNk after the last level of the comparator
network. Considering Observation 4, a proof by contradiction is immediate.

Now, Claims 1 and 2 give the following bound on the number of errors left by the ϵ-halver.
Main Claim: |W | ≤ ϵ(2k + δm).

12



We can show this in the standard way as follows. For the sake of a contradiction, suppose
|W | > ϵ(2k + δm). By the expansion properties of the graph that was constructed we have:∣∣∣W ∣∣∣ ≥ β|W | > βϵ(2k + δm).

But, since W ∩W = ∅, we know that∣∣∣W ∪W ∣∣∣ > (β + 1)ϵ(2k + δm).

This means
∣∣∣SNk ∪ SBk ∣∣∣ > (β+1)ϵ(2k+δm) which can’t be since we chose β = 1−ϵ

ϵ and
∣∣∣SNk ∪ SBk ∣∣∣ =

2k + δm.
The symmetric case with LNk ∪ LBk also holds. Finally, this is all done with a nuts-and-bolts

ϵ-halver so that it costs O(m) comparisons, completing the proof.

Lemma 3 shows that the fraction of extraneous nuts and bolts don’t add substantially to the
the bounded number of errors for ϵ-halving. Naturally, we are assuming that δm is small. At first,
for all n nuts and n bolts, each nut has a matching bolt. Our algorithm will take geometrically
smaller lists of nuts and bolts and nut-and-bolt ϵ-halve them. The Main Claim in the proof of
Lemma 3 gives bounds on the numbers of “errors” among elements from a nut-and-bolt ϵ-halver.
We must take special care to ensure that enough comparable nuts and bolts remain in our list. We
will show how to do this shortly.

Let EL denote the bounded number of errors from larger elements L, where the elements EL
are erroneously in the lower half of the ϵ-halved list. Similarly, let ES denote the bounded number
of errors from smaller elements S, where the elements ES are erroneously in the higher half of the
ϵ-halved list.

The algorithm Get-c-Approximate-Median in Figure 1 uses two key functions Back-Track and
Find Misplaced Elements that will be defined shortly. They are applied in each iteration of Get-
c-Approximate-Median and basically they get back as many “useful” elements as possible that are
misplaced by the ϵ-halving. (We will discuss this in more detail shortly.) They allow us to contin-
ually ϵ-halve the main list X.

To complete the proof of the existence of the O(n lg n) nut-and-bolt comparisons algorithm we
will show that the algorithm Get-c-Approximate-Median maintains the following invariant.

Invariant 1 For all iterations i : ⌈lg n⌉ ≥ i ≥ 0, the list Xi contains at least one c-approximate
median.

Showing that this invariant holds will take the lion’s share of the rest of this paper. To do this, we
will show how to deal with the recurring ϵ-errors due to ϵ-halving and we must also show how to
keep our on-going list containing medians so that it can continually be ϵ-halved.

The algorithm Get-c-Approximate-Median never runs more than O(lg n) iterations by our choices
of ℓ and r, so each time we ϵ-halve X[ℓ, r], we expend half of the work of the previous time. We
briefly mention that we will always have comparable elements in Xi as long as |Xi| ≥ C. We may
choose the size of C depending on the trade-off between the size of C and the overhead associated
with using the expanders.

We introduce 2(Kϵ)n/2i elements in the i-th step back into Xi, where Kϵ < 1. Furthermore,
always adding these elements in does not change the asymptotic complexity of our algorithm.

The intervals of Xi that we will iterate on are denoted as X[ℓ(i), r(i)] for the i-th iteration where
ℓ(i) is the left boundary and r(i) is the right boundary. We write out a few terms of [ℓ(i), r(i)] in
the following table. (We will later see that the values for ℓ and r are off by an Kϵ factor, but this
makes no difference asymptotically.)
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Get-c-Approximate-Median(X)
n← |X0| /2
ℓ← 1; r ← 2n
i← 0
While |Xi| ≥ C do (* C is a constant *)

Yi ← nut-and-bolt-ϵ-halve(Xi)
B ← Back-Track(Yi, i, Z)
Z ← Find Misplaced Elements(Yi, i, n/2

i)
if i is odd then

r ← (ℓ+ r)/2 (* Right boundary of Y i *)
else

ℓ← (ℓ+ r)/2 (* Left boundary of Y i *)
endif
i← i+ 1
Xi ← Yi−1[ℓ, r] ∪ Z ∪B

od
Return Xi

Figure 1: Selecting a c-approximate median with O(n) work

[ℓ(0), r(0)], [ℓ(1), r(1)] [ℓ(2), r(2)] [ℓ(3), r(3)] [ℓ(4), r(4)] [ℓ(5), r(5)]

[1, 2n] [1, n] [n/2, n] [n/2, 3n/4] [5n/8, 3n/4] [5n/8, 11n/16]

Lemma 4 Let i > j and suppose i − j = 2r for some r ≥ 1 in the algorithm Get-c-Approximate-
Median, where the sets ELn/2+1

and ESn/4
were given at step j. Assuming that nut-and-bolt ϵ-halving

can be maintained throughout each iteration of Get-c-Approximate-Median then we have∣∣∣ELn/2+1
∩Xi

∣∣∣ ≤ 2ϵ(i−j)n

and ∣∣∣ESn/4
∩Xi

∣∣∣ ≤ 2ϵ(i−j+1)n.

Proof: We only show the first case, the second case follows almost identically. As the lemma
statement says, we assume that the list is always ϵ-halvable. This is by induction on the size of the
difference i− j.

Basis: Take the case where i− j = 2. Here we have the following.
First, ϵ-halve the list X0[1, 2n] and then continue on X1[1, n]. We know∣∣∣ELn/2+1

∩X1[1, n]
∣∣∣ ≤ 2ϵn

by the ϵ-halver properties and by Lemma 3. Now, ϵ-halve X1[1, n] and then continue on X2[n/2, n].
Start by ϵ-halving X2[n/2, n] and then consider X3[n/2, 3n/4]. We know∣∣∣ELn/2+1

∩X3[n/2, 3n/4]
∣∣∣ ≤ 2ϵ2n
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by the ϵ-halver properties and by Lemma 3. This completes the base case.

Inductive Hypothesis: Take some k such that k ≥ r ≥ 1. Suppose the statement of this lemma
holds for all i > j such that i− j = 2r and r ≥ 1.

Inductive Step: Consider the case when i− j = 2r = 2k − 2 so r = k − 1 and take the interval
Xi[b, t] that we are considering at this step. By the inductive hypothesis we know that,

∣∣∣ELn/2+1
∩Xi

∣∣∣ ≤ 2ϵ(i−j)n

≤ 2ϵ(2k−2)n.

Now let t′ ← b+t
2 and then ϵ-halve Xi[b, t] and continue on Xi+1[b, t

′]. We know∣∣∣ELn/2+1
∩Xi+1[b, t

′]
∣∣∣ ≤ 2ϵ

∣∣∣ELn/2+1

∣∣∣
by the ϵ-halver properties and Lemma 3. Let b′ ← b+t′

2 and then ϵ-halve Xi+1[b
′, t] and continue

on Xi+2[b
′, t′]. Let t′′ ← b′+t′

2 and then ϵ-halve Xi+2[b
′, t′] and consider Xi+3[b

′, t′′]. We know∣∣∣ELn/2+1
∩Xi+3[b

′, t′′]
∣∣∣ ≤ 2ϵ2

∣∣∣ELn/2+1

∣∣∣
≤ 2ϵ2k−2+2n

≤ 2ϵ2kn.

This completes the proof.

One view of the significance of this last lemma is that the sets SNn/4 ∪S
B
n/4 and LNn/2+1 ∪L

B
n/2+1

have exponentially diminishing numbers of elements in the progressively smaller Xi-s.
Lemma 4 generalizes in a straightforward way. Although, it is enough to notice that the set

X0 − {Sn/4 ∪ Ln/2+1} contains only c-approximate medians.
It remains to be established that the ϵ-halving properties can be maintained throughout the

iterations so Lemma 4 can be applied. To maintain ϵ-halving, there are several things that must
be considered. First of all, there must be enough comparable elements. That is, if we are left
with a set of only nuts, then we can’t continue ϵ-halving. On the other hand, the elements in the
remaining list must have sizes that are “intermixed enough.” For example, suppose that all of the
nuts and bolts remaining are such that the nuts are all smaller than the smallest bolt. Then, in
the worst case we cannot repeatedly ϵ-halve for long as our algorithm specifies while maintaining
Invariant 1. Clearly, if “most” the nuts in the appropriate size range have matching bolts in each
set Xi, then both of these problems are overcome for an appropriate definition of “most.” We show
how to ensure this with O(n) nut-and-bolt comparisons.

Now we give a way to retrieve extraneous elements to allow ϵ-halving to continue throughout
Get-c-Approximate-Median. To this end, we always maintain the invariant that there are at least
(1− 8ϵ)n/2i nuts with matching bolts in the list Xi. This comes at a cost of having a “few” extra
elements added back into the list Xi at each step i. Most of these extra elements are too large or
too small and hence will be automatically eliminated as the algorithm continues.

Given n nuts with n matching bolts in X0[1, 2n], then after ϵ-halving them, if 2ϵn small nuts
and small bolts that belong to Sn/2 (so they should be in X1[1, n]) are in X1[n+ 1, 2n], then they
must have always been compared to smaller elements in X1[1, n] at each level of the ϵ-halving
comparator network. The proof of this observation is a direct result of ϵ-halving.
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Definition 5 If Xi[s, t] is ϵ-halved and Get-c-Approximate-Median continues on Xi+1[s, (s + t)/2],
then XF

i+1[(s+ t)/2 + 1, t] is the left fringe. (We will use the super-script F to denote fringes.) Right
fringes are defined similarly, see Figure 2.

Figure 2 shows the first left and right fringes. Later as Get-c-Approximate-Median iterates new
fringes are created in the obvious manner. The outer right and outer left fringes are where illicitly
supported elements will be found.

Figure 2: The most recent left and right fringes

We say extraneous nuts-and-bolts are active if they belong in none of the fringes so far. That
is, active nuts-and-bolts belong to the present section of X that is going to be ϵ-halved next by
Get-c-Approximate-Median. In essence, back-tracking makes the active nuts-and-bolts continually
decrease geometrically in number as Get-c-Approximate-Median iterates. We may call the list Xi

the active list since we will see that it contains most of the active elements.
The two algorithms Find Misplaced Elements and Back-Track both work on fringes.

Find Misplaced Elements starts on each “new” fringe and ϵ-halves it a constant number of times
“towards” the active part of Xi. Back-Track retrieves as many active elements that are left in the
outer (“old” and “new”) fringes as Find Misplaced Elements is run, see Figure 2.

Given a list of nuts and bolts that have been ϵ-halved we back-track in a fringe as follows.
Take the list X0[1, 2n] of n nuts and n bolts and say that X0[1, 2n] was just ϵ-halved into X1.

There were at most 2ϵn errors introduced into X1[n + 1, 2n] by the ϵ-halving of X0[1, 2n]. Since
X1[n+ 1, 2n] is now a fringe, we will write it as XF

1 [n+ 1, 2n] from now on (as well as other levels
of the fringes).

Now, we run Find Misplaced Elements and it ϵ-halves the fringeXF
1 [n+1, 2n] intoXF

2 [n+1, 3n/2]

and XF
2 [3n/2 + 1, 2n]. Altogether the 2ϵn errors in XF

1 [n+ 1, 2n] can illicitly support 2
(

ϵ2

1−ϵ

)
n or

fewer elements in X2[3n/2 + 1, 2n]. This is because(
2

β

)
ϵn = 2

(
ϵ2

1− ϵ

)
n.

If we knew the 2ϵn − 2
(

ϵ2

1−ϵ

)
n or fewer errors in XF

2 [n + 1, 3n/2], then we could find all of the

fewer than

2

(
ϵ2

1− ϵ
− ϵ3

(1− ϵ)2

)
n
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elements in XF
2 [3n/2, 2n] that were only compared to these 2ϵn−2

(
ϵ2

1−ϵ

)
n or fewer elements when

XF
1 [n+1, 2n] was ϵ-halved. These 2

(
ϵ2

1−ϵ −
ϵ3

(1−ϵ)2

)
n elements or fewer are candidates for belonging

to X1[1, n] and candidates for being illicitly supported (directly or indirectly) by the errors from
ϵ-halving X0[1, 2n]. The process of finding such candidates is called back-tracking and it requires
no nut-and-bolt comparisons.

Back-tracking still can be done after many ϵ-halving steps have occurred. (The ϵ-halving of
the fringes is done by Find Misplaced Elements.) For example, suppose we continue to ϵ-halve
XF

2 [n+1, 3n/2] and consider the two lists XF
3 [n+1, 5n/4] and XF

3 [5n/4+1, 3n/2]. Without loss of

generality we assume there were 2
(

ϵ2

1−ϵ

)
n or fewer illicitly supported elements in XF

2 [3n/2+1, 2n].

This leaves at most

(
ϵ

1− ϵ

)(
2ϵn− 2

(
ϵ2

1− ϵ

)
n

)

candidates for illicitly supported elements in X[5n/4 + 1, 3n/2]. Of course, if we know which
elements make up the

2ϵn−
(
4

(
ϵ2

1− ϵ

)
− 2

(
ϵ3

(1− ϵ)2

))
n

errors remaining in XF
3 [n+ 1, 5n/4], then we can back-track in XF

3 [5n/4 + 1, 3n/2] finding the up

to 2
(

ϵ2

1−ϵ

)
n illicitly supported candidates. We do this by just seeing which subset of the outer-

fringes are supported completely by either apparently active elements or in this example supported
completely by known extraneous elements. Taking these

2

(
ϵ2

1− ϵ
− ϵ3

(1− ϵ)2

)
n

candidates and the previous

2ϵn−
(
4

(
ϵ2

1− ϵ

)
− 2

(
ϵ3

(1− ϵ)2

))
n

errors together, give a total of

2ϵn− 2

(
ϵ2

1− ϵ

)
n

candidates we know in XF
2 [n+ 1, 3n/2]. With these we can back-track again finding the 2

(
ϵ2

1−ϵn
)

or fewer error candidates in XF
2 [3n/2, 2n].

Here we point out that in the ϵ-halving of a fringe we successively have at most

2n

(
ϵ−

(
ϵ2

1− ϵ

))

errors, then in the next iteration we have at most

2n

(
ϵ−

(
2

(
ϵ2

1− ϵ

)
− 1

(
ϵ3

(1− ϵ)2

)))
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errors. In the next iteration we have at most

2n

(
ϵ− 3

(
ϵ2

(1− ϵ)

)
+ 3

(
ϵ3

(1− ϵ)2

)
−
(

ϵ4

(1− ϵ)3

))

errors. Of course, one can observe the binomial coefficients here.
Back-Track makes no nut-and-bolt comparisons, but it does depend on the particular compar-

isons that were made before by Find Misplaced Elements and Get-c-Approximate-Median.
The algorithm Back-Track only returns a “few” additional elements to the active list Xi (a

few relative to the size of Xi). The algorithm Find Misplaced Elements is applied to geometrically
smaller fringes each time and for each application to one of these fringes with n elements it does
less than cn additional nut-and-bolt comparisons, for some constant c. Hence, it does not change
the asymptotic number of nut-and-bolt comparisons of the algorithm Get-c-Approximate-Median.

In particular, suppose that we ϵ-halve on a fringe until we have the list XF
k [n + 1, (Kϵ + 1)n],

where k = ⌈− lg (Kϵ)⌉. (Note that ϵ < 1
K .) Suppose we ϵ-halve the side containing the potential

extraneous elements.

Find Misplaced Elements(X, i,m)
r ← |X|; ℓ← 1
if i is odd, then Z1 ← X[(ℓ+ r)/2, r]

else Z1 ← X[ℓ, (ℓ+ r)/2]
j ← 1
While |Zj | ≥ Kϵm do

Zj ← nut-and-bolt-ϵ-halve(Zj [ℓ, r])
if i is odd, then (* i determines the side we come from *)

r ← r − (ℓ+ r)/2 (* Shrink the right boundary *)
else

ℓ← ℓ+ (ℓ+ r)/2 (* Shrink the left boundary *)
Zj+1 ← Zj [ℓ, r] (* Sliding over *)
j ← j + 1

od
Return Zj

Figure 3: Finding Misplaced Nuts and Bolts

In the most general terms the basic idea behind the algorithm Find Misplaced Elements is that
ϵ-halving the high elements of Xi in the right fringe towards its boundary with Xi+1 will bring
most of the misplaced, if any, smaller elements toward this fringe’s boundary with the active list
Xi+1. This is because the extraneous elements from Sn/2 are smaller than all other elements in
X[n+ 1, 2n]. The symmetric case occurs for the left fringe.

Furthermore, we keep ϵ-halving in order to allow the (too high) extraneous elements from
subsequent iterations of Find Misplaced Elements to be pushed up exponentially fast and left behind
as we continue to ϵ-halve towards the left boundary of the right fringe. We only ϵ-halve the right
fringe until we have an array XF

k [n+ 1, (Kϵ+ 1)n].
If in the first run of Find Misplaced Elements from XF [n+1, 2n] down to XF

k [n+1, (Kϵ+1)n],
where, for example K ≤ 32 so Xk is of size at least 32ϵn − 1, so we must have at least 24ϵn − 1
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Back-Track(Y, i, Z)
if i ≤ 2 then Return ∅
if i is even, then

for any members of Z that are in the right half of Y
find all members of all of the left fringes that are supported exclusively
by these members of Z or other active elements. Put these candidate illicitly
supported elements in B.

else
for any members of Z that are in the left half of Y
find all members of all of the right fringes that are supported exclusively
by these members of Z or other active elements. Put these candidate illicitly
supported elements in B.

Return B

Figure 4: Back-Tracking

comparable elements since we can loose at most

2ϵn
∑
i=0

1

2i
≤ 4ϵn (6)

elements total from all of the ϵ-halving in Find Misplaced Elements. But, we know that 4ϵn is 1
8 of

the total 32ϵn elements that remain, hence by Lemma 3 we can continue ϵ-halving at least up to
this point.

Lemma 5 Provided that we can ϵ-halve in the i-th iteration, then the list X[ℓ(i), r(i)] has fewer than

φi = 2.5n

[
ϵ

2i
+

ϵ2

2i−1
+

ϵ3

2i−2
+ · · ·+ ϵi

1

]
(7)

elements without matches after the i-th iteration of Get-c-Approximate-Median.

Proof: This follows directly from Lemma 3, while here we over-estimate the number of extraneous
elements in the list X[ℓ(i), r(i)] from the previous iterations. We add the 0.5 to cover the extra
overhead due to the Kϵn/2i nuts and bolts added back in the list in the i-th iteration and it also
bounds the variable number of elements added back by Back-Track in this iteration.

As the leading coefficient for φi we just write 2 instead of 2.5 from here on for ease of exposition.

This means, φ0 = 2ϵn, φ1 = ϵn + 2ϵ2n, φ2 = ϵn/2 + ϵ2n + 2ϵ3n, etc. This represents an
over-estimate of the diminishing number of errors that can come about from the ϵ-halving, see
Lemma 4.

Notice that [
ϵ

2i
+

ϵ2

2i−1
+

ϵ3

2i−2
+ · · ·+ ϵi

1

]
≤

(
ϵ

2i−1

)
(8)

so that φi is a small fraction of n depending on i.
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We now go on to show that we can continue ϵ-halving as our algorithm iterates. To do this,
we carefully track the effect of Back-Track and Find Misplaced Elements. To this end, take the next
definition of ϕi.

ϕi = φi

⌈− lgKϵ⌉∑
j=0

ϵj

(1− ϵ)max{j−1,0}

(
⌈− lgKϵ⌉

j

)
(−1)j

 .
We keep in mind that Find Misplaced Elements does not retrieve any elements until the start of the
2-nd iteration of Get-c-Approximate-Median.

Assuming there are as many errors as possible by the ϵ-halving, then ϕi is an upper bound on
the number of active elements that are lost to a fringe and that Find Misplaced Elements gets back.

The term

⌈− lg(Kϵ)⌉∑
j=0

ϵj

(1− ϵ)max{j−1,0}

(
⌈− lgKϵ⌉

j

)
(−1)j

follows directly by induction as a consequence of Find Misplaced Elements. This comes from
the fact that we must subtract off the errors that accumulate in the successive iterations of
Find Misplaced Elements on a particular fringe. Further, the φi comes directly from Lemma 5.
But intuitively the value of φi is due to the fact that the “extreme errors,” which are from older
time steps, are pushed away faster than the less extreme errors, which are from more recent time
steps. See also Lemma 4.

Lemma 6 Let φi be as defined in Equation 7 and suppose i is odd. Given the list X[ℓ(i), r(i)]
immediately after the i-th iteration of Get-c-Approximate-Median and suppose that we just lost φi

elements to the right fringe and all of these φi elements are active in X[ℓ(i+ 2), r(i+ 2)]; then in the
one run of Find Misplaced Elements on the right fringe the list X[ℓ(i + 2), r(i + 2)] gets back more
than 3φi/4 of the elements lost to the right fringe in the i-th iteration.

Proof: Using the algorithm Find Misplaced Elements we will gain back at least ϕi of these original
φi lost elements. For very small, but constant, ϵ we can show ϕi ≥ 3φi/4 completing the proof.

In the (i + 2)-nd iteration, at least 3φi/4 ≥ φi+2 elements will be returned to the list X[ℓ(i +
2), r(i + 2)] for subsequent ϵ-halving. Since 3φi/4 ≥ φi+2 more active elements can be returned
than can be lost in iteration i+ 2 in Get-c-Approximate-Median.

We may loose many elements once they become in-active, but this does not effect our algorithm
in an adverse way. That is, once some elements become in-active, then they cannot be illicitly
supported any more, hence back-tracking will not find them.

Lemma 7 If a set U of elements in the first fringe are all active for i iterations, then at each iteration
each element of this set must be illicitly supported (directly in iteration 1, and indirectly there after)
only by active elements.

Proof: The proof follows directly by induction.

Furthermore, we also back-track and find all elements we can, which have illicit supports in the
present list under consideration. By Lemma 7, we know that as we decrease the size of the list Xi

under consideration, we also decrease the size of the errors.
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Lemma 8 Suppose that we loose at most

ψi = 2ϵn/2i − ϕi

elements to the outer left fringe in step i of Get-c-Approximate-Median, then in j + ⌈− lg ϵ⌉ more
iterations we will gain back via Back-Track at least

ψi

j∑
k=1

1

2k

still active elements from this outer fringe.

Proof: By Lemma 7, we consider only active elements which are directly or indirectly supported.
From here, we discard the binomial coefficients (of ⌈− lgKϵ⌉) since they are due to the ⌈− lgKϵ⌉
levels in the outer fringe. Any illicitly supported elements in each level have the same amount of
bounded support.

Now it is important to note that each illicitly supported element in the outer fringes is illicitly
supported by only a constant number of comparisons that were defined by a nut and bolt ϵ-halving
network.

Note that the leading coefficient of the term φi is not greater than 2ϵn/2i. Now, consider ψi-s
higher order term ϵ2n/2i−1 (which is divided by the leading binomial coefficient of ⌈− lgKϵ⌉) and
we know that in i+ ⌈− lg ϵ⌉ iterations the leading error term of Xi+⌈− lg ϵ⌉ is at most

φi+⌈− lg ϵ⌉ ≤ ϵn/2i+⌈− lg ϵ⌉

≤ ϵ2n/2i

hence since each illicitly supported active element q, if q is not returned by Back-Track, then q must
have at least one illicit support that is in error (that is, an element not in the active list Xi+⌈− lg ϵ⌉,
but this element “belongs” in Xi+⌈− lg ϵ⌉). Recall that each element has only a constant number of
supports in any ϵ-halver. However, by the (i+ ⌈− lg ϵ⌉+ j)-th iteration we know that

φi+⌈− lg ϵ⌉+j ≤ ϵ2n/2i+j

≤ ϵ2n/2i−1.

Now, since the leading term of ψi (that is, the number of elements that are potentially illicitly
supported in the i-th left outer fringe) divided by ⌈− lgKϵ⌉ is ϵ2n/2i−1 we know that at most
ϵ2n/2i−1 elements can still be illicitly supported in the i-th left outer fringe. This is because, for each
illicitly supported element q to remain illicitly supported it must have at least one active element q′

that (incorrectly) remains in some fringe. Otherwise, it will be found by Back-Track. Furthermore,
each subsequent iteration of Get-c-Approximate-Median reduces the error term geometrically giving
the statement of the lemma, see also Equation 8.

The proof of Lemma 8 indicates that Back-Track may return variable sized sets. However, over
many iterations of Get-c-Approximate-Median (subsequences of ⌈− lg ϵ⌉ iterations) the cardinality of
these sets diminishes geometrically.

The following theorem shows that as our algorithm iterates it maintains a steady-state in the
proportion of matching nuts and bolts in the active list.
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Theorem 5 Let i : ⌈lg n⌉ ≥ i ≥ 2 and let c′ be a constant. After each iteration i Get-c-Approximate-
Median maintains at least

n/2i − c′φi−2 >

(
1− 1

8

)
n/2i

nuts with matching bolts in Xi.

Proof: This is by the number of active elements that remain misplaced from ϵ-halving and the
number of elements gained back by running Find Misplaced Elements and Back-Track. Also, note
that φi = ϕi + ψi and 2ϕi + 2ψi = 2φi ≤ 4ϵn/2i holds by definition.

Now we must also consider the number of elements that already have been lost by the time we
get to iteration i of Get-c-Approximate-Median. By Lemma 8, within a constant number (⌈− lg ϵ⌉+1)
of iterations we will have gained back at least (ψi+⌈− lg ϵ⌉)/2 of potential active elements lost to the
outer left fringe. Furthermore, we will gain back a geometrically larger proportion of elements lost
to older outer fringes. Also, by Lemma 6, we gain ϕi elements back from the right (left) fringes
by Find Misplaced Elements in the i-th iteration. Finally, for some constant c′, the next inequality
holds since ⌈− lg ϵ⌉ is a constant,

i−⌈− lg ϵ⌉∑
k=i−3

φk ≤ c′φi−2.

For sufficiently small ϵ we have c′ϵ < 1
8 .

By Lemma 8, at least (ψi−⌈− lg ϵ⌉−1)/2 active elements lost to the (i − ⌈− lg ϵ⌉ − 1)-th outer
fringe are returned by Back-Track by iteration i. Also, we know that,

(ψi−⌈− lg ϵ⌉−1)/2 ≥

 i−3∑
k=i−⌈− lg ϵ⌉

ψk


4

.

In the next iteration, at least (ψi−⌈− lg ϵ⌉−1)/4 more active elements are returned from
the (i − ⌈− lg ϵ⌉ − 1)-th outer fringe by Back-Track. Considering the values ϕi returned by
Find Misplaced Elements, we see that we will always have less than c′φi active elements missing
from the i-th iteration.

In other words, as Get-c-Approximate-Median runs up through iteration i it has lost at most a
bounded number of active elements while within a constant number of iterations the number of
active elements recovered by Find Misplaced Elements from the most recent fringes and recovered
by Back-Track from all of the outer fringes is an appreciable fraction of the number of elements lost
to the outer fringe.

Furthermore, for an appropriate choice of ϵ, we know that c′ϵ ≤ 1
8 , hence we can always continue

ϵ-halving by Lemma 3. Also, for suitable choices for our constants if we can ϵ-halve Xi, then we
can always ϵ-halve Xi’s fringes.

Theorem 5 shows that Lemma 3 can be applied. This allows us to continually ϵ-halve the
present lists under consideration.

The next theorem follows from the results of this section. In particular, it follows from Lemma 4
and Theorem 5.
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Theorem 6 The algorithm Get-c-Approximate-Median maintains Invariant 1 through iteration t ≤
⌈lg n⌉ where |Xt| ≥ C, for C a suitably large constant, and further this algorithm takes O(n) compar-
isons of nuts and bolts.

The constant C depends on the size of ϵ and the constraints given in the results in this section.
Just the same, the constant K depends on c′ and ϵ. We can choose K large enough so that the
term c′φi will allow ⌈− lgKϵ⌉ ϵ-halvings of the fringes.

Suppose |Xi| is of constant cardinality, for some i; then we know that Invariant 1 holds, hence
we can check all of the elements of Xi to find which are a c-approximate medians.

Theorem 6 shows that Get-c-Approximate-Median produces a c-approximate median. Using this
c-approximate median we can split the list into two halves with all matching elements. Hence, we
can continue the same procedure. This leads directly to the existence of the O(n lg n) nut-and-bolt
matching algorithm as discussed in the beginning of this paper.

4 Conclusions

This paper shows the existence of an algorithm for solving the nuts and bolts problem in O(n lg n)
nut-and-bolt matching operations. There are huge constants hidden in the asymptotic notation
here, though we don’t give them explicitly. Reducing these constants (perhaps by removing the
expanders) would be interesting.

Also, it would be interesting to try out the nuts-bolts and washers matching problem and other
obvious generalizations of the nuts and bolts problem.
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