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1 Introduction

Despite the fact that maximal D = 11 supergravity [1] has been known and much studied

for more than three decades it is still not clear what the most efficient formulation of the

theory is, especially in view of the appearance of exceptional duality symmetries under

dimensional reduction and the relation of this theory to the non-perturbative formulation

of string theory, also known as M-theory. Indeed, the recent discovery [2] of a new structure

in D = 11 supergravity, a new “generalised vielbein,”1 is evidence of this, a development

which was was triggered by the discovery of new SO(8) gauged supergravities in [4]. The

new generalised vielbein was found in the context of the SU(8) invariant reformulation

of D = 11 supergravity proposed a long time ago [3]. In this reformulation the non-

gravitational degrees of freedom of the theory are used to extend the local (tangent space)

symmetry by replacing the local Lorentz group SO(1,10) by SO(1,3) × SU(8), where the

second factor coincides with the denominator of the duality coset E7(7)/SU(8) that appears

upon the reduction of D = 11 supergravity to four dimensions [5]. Similar “generalised

1Here we follow the terminology, coined in ref. [3], for the term “generalised vielbein”.
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vielbeine” had been found in a reformulation of D = 11 supergravity appropriate for the

reduction to three dimensions [6, 7].

The SU(8) reformulation is based on a 4 + 7 split of eleven-dimensional space-time,

where the fields are packaged in terms of objects that transform under local SU(8) transfor-

mations in eleven dimensions by combining the gravitational and matter degrees of freedom

into single structures. Moreover, it is shown that the supersymmetry transformations of

D = 11 supergravity can be written in terms of these objects in a way that makes the

local SO(1,3) × SU(8) symmetry manifest. One particular SU(8) covariant object in this

reformulation is the generalised vielbein, which replaces the vielbein along the seven in-

ternal directions. The new generalised vielbein found in [2] encompasses the 3-form along

the 7-dimensional directions. A clear advantage of the SU(8) reformulation is that it im-

mediately yields the duality manifest Cremmer-Julia theory [5] upon toroidal reduction.

Moreover, it is also the appropriate framework in which to analyse the S7 compactification

of D = 11 supergravity to maximally gauged supergravity in four dimensions [8]. In fact,

it is only within this framework that it has been possible to prove the consistency of the

S7 reduction [9, 10], and to arrive at a workable formula for the full non-linear ansatz for

the 3-form field (4-form flux) [2, 11]. Indeed, one of the new results of the present work is

that we can now also derive the non-linear ansatz for the dual 6-form field, details of which

are given elsewhere [12].

Somewhat independently of these earlier results, more recent attempts in viewing the

fields of D = 10 and D = 11 supergravities in a unified way have centred on generalised

geometry, again pointing to the importance of duality symmetries in the unreduced theory.

Generalised geometry as originally proposed in [13, 14] is based on an extension of the

tangent space to include p-forms associated to the winding of branes sourcing (p+1)-forms,

which ultimately allows for diffeomorphisms and gauge transformations to be combined in

an enlarged symmetry group. In the most conservative applications of these ideas in the

context of D = 11 supergravity [15, 16] the tangent space is enlarged to include windings

of M2-branes, M5-branes and KK-branes. Meanwhile there are also proposals whereby the

base space is also extended so that the fields depend not only on conventional coordinates,

but also on winding coordinates [17–19] (in fact, the association of new coordinates with

central charges is an old idea).2 A characteristic feature distinguishing these attempts from

the earlier work of [3, 6, 7] is that one usually has to impose restrictions on the coordinate

dependence of the fields in order to realise the desired geometric structures, whence the

relation to the original D = 11 supergravity becomes obscured.

An early proposal for extending space-time, arising from the E11 conjecture [20], is

made in [17], where it is suggested that there exists an extension of D = 11 supergrav-

ity via a non-linear realisation of the semi-direct product of E11 and its first fundamental

representation L(Λ1). In this picture the fields are obtained from a level expansion of

the E11 algebra, while the coordinate dependence is controlled by L(Λ1) (thus in prin-

ciple extending eleven-dimensional space-time to a space of infinitely many dimensions).

2In the mathematics literature [13, 14], generalised geometry has been exclusively used to refer to the

extension of the tangent space and not the base manifold.
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Quite separately from the E11 conjecture, the non-linear realisation method [21–23] gives

a prescription for determining explicitly a given duality coset element in a particular rep-

resentation. In order to test the E11 proposal in the context of its finite-dimensional E7(7)

subgroup, and motivated by [24], this method was applied by Hillmann [18] to advocate an

“exceptional geometry”3 for D = 11 supergravity. In this picture one considers a 4 + 56-

dimensional geometry where the dynamics of the fields in the 56-dimensional part is given

by an E7(7)/SU(8) coset element. When these fields only depend on seven internal co-

ordinates, and the dependence on the space-time coordinates is dropped, this dynamics

reproduces the dynamics of the fields in D = 11 supergravity with components along the

seven-dimensional directions assuming a duality relation between the 4-form field strength

and 7-form field strength. Moreover, the supersymmetry transformation of the coset el-

ement is postulated to give rise to the fermionic degrees of freedom, in particular the

gravitino along the 7-dimensional directions, which reproduces the supersymmetry trans-

formations in the 7-dimensional part à la [3] if dependence of the fields is again restricted

to seven internal coordinates. As we will argue, however, focusing attention only on the

“internal” part of the geometry, as is also done in other approaches to generalised geometry,

may be too restrictive as this assumption is not even respected for the simplest non-trivial

compactifications, as we will illustrate in appendix C of this paper.

In the approach of [19], the D = 11 theory is viewed in a 7 + 4 split of space-time,

with the four dimensions considered as “internal”. In particular a sector of the theory is

considered that contains fields along the 4-dimensional directions, which would correspond

to internal directions in the usual way that the SL(5,R) duality symmetry appears. Fur-

thermore, the fields are taken to depend on the 4-dimensional directions and time. This

sector of the theory is then formulated in terms of an SL(5,R) “generalised metric” which

arises from the membrane duality arguments of [25]. As in [18], the formulation is based

on a group theory element, but here the extension of the tangent space is considered in

a generalised geometric language along the lines of [13–16] and it is shown that the dif-

feomorphisms and 3-form gauge transformations in this sector of the theory are unified.

However, unlike previous versions of generalised geometry, in ref. [19] the base space is

also extended so that the 4-dimensional space is enlarged to a 10-dimensional generalised

space. This is to be viewed as the M-theory analogue of double field theory [26–28] (see

also [29–31] for early related work). This analysis was extended to SO(5,5) in [32] and

to E6(6) and E7(7) in [33], where the generalised metrics are found by a truncation of the

E11 non-linear realisation outlined above. The case of E8(8) is considered in [34], where an

E8(8) matrix is found in terms of components of the vielbein, 3-form, 6-form and a new

field in the same representation as the putative dual gravity field. However, the direct link

to D = 11 supergravity is lost, owing to the presence of this new field.

A key aim of generalised geometry is to unify diffeomorphisms and gauge transforma-

tions in a single generalised diffeomorphism (as already proposed for E8(8) in [7]). Thereby,

generalised geometry extends the notions of Lie derivative and bracket in a way that incor-

porates gauge transformations of form fields. If one considers an extension of the space-time

3In fact, this term was already used in [7].
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coordinates as well, then the closure of the generalised transformations requires that the

fields satisfy a duality covariant constraint, the section condition [35–37]. This constraint

can be viewed as a duality covariant restriction that allows one to reduce from the extended

space to the usual number of dimensions. Furthermore, it has been shown [36, 38] that gen-

eralised geometric formulations of eleven-dimensions can be realised in a more geometric

setting akin to Riemannian geometry. Again considering a sector of D = 11 supergravity,

or equivalently considering space-times that are a warped product of Minkowski space and

a d-dimensional manifold, in ref. [36] it is shown that the dynamics can be written in terms

of a generalised Ricci scalar that is defined in terms of an associated generalised connec-

tion. Moreover, it is shown that this structure also extends to the fermionic sector [38].

The relevant redefinitions and fermionic representations for O(d, d) and En were already

discussed in [20, 39–42].

While these approaches to generalised geometry propose a radical reinterpretation,

and, if successful, would amount to a genuine extension of D = 11 supergravity, we return

here to the viewpoint [3] that it is the theory itself that points at directions in which

progress can be made (a view supported by the fact that, in 35 years, no true field theory

extension of D = 11 supergravity has ever been found). Thus our approach remains

grounded in D = 11 supergravity such that at every stage of the construction the resulting

structures remain on-shell equivalent to the full D = 11 supergravity both in the bosonic

and the fermionic sectors and such that at no point is any truncation or constraint on the

coordinate dependence of the fields required.

In this paper, we demonstrate explicitly how a judicious analysis of the supersymme-

try variations of fields in the SU(8) reformulation of D = 11 supergravity leads to new

structures. In particular, we find two other “generalised vielbeine” and show that together

with the other two known from the literature, these generalised vielbeine are to be viewed

as components of an E7(7) matrix in eleven dimensions.4 In addition, we embark on an

understanding of these new structures and the consistency relations that they satisfy. It

is known [3] that the original generalised vielbein satisfies generalised vielbein postulates,

which constrain its derivative along the four and seven-dimensional directions. These con-

sistency requirements are a crucial ingredient in understanding the relation between the

maximal gauged supergravity in four dimensions and the D = 11 theory and in proving the

consistency of the reduction to the former [9, 10]. We present similar generalised vielbein

postulates satisfied by the other generalised vielbeine. Recall that in Riemannian geom-

etry the vielbein postulate is the requirement that the vielbein be covariantly constant,

which gives an equivalence between the affine and spin connections that are defined on

two different bundles. The fact that the generalised vielbeine satisfy analogous relations

with more general connections is strong indication of the emergence of structures beyond

Riemannian geometry. Furthermore, at a more practical level, we expect that a deeper

study of these relations will lead to the exciting possibility of understanding the higher

dimensional origins of the embedding tensor [43–45], which is the most efficient way of

understanding gauged supergravities in any dimension.

4Such structures are already evident in ref. [7], where it is shown that D = 11 supergravity contains a

36× 248 matrix that is part of a full E8(8) matrix in eleven dimensions.
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Another bonus of these results is that they give a non-linear ansatz for the dual 6-

form potential. Indeed, by considering the Englert solution [46] as a simple example and

showing that not only is the 6-form field non-zero in this case, but that it has non-vanishing

mixed components, we argue that this will generically be the case for all compactifications

with non-vanishing flux. We believe this is an important point that one must bear in

mind in any study involving dual fields in the context of D = 11 supergravity, or any

truncation thereof. The results presented here are relevant for the 4+7 split of the eleven-

dimensional theory corresponding to the E7(7) duality group. As emphasised before, our

analysis is based on the fermionic sector, in contrast to the mainly bosonic approach in the

generalised geometry literature. Furthermore, eleven dimensional dualisation of the fields

plays an important role in this story. Finally, we also outline how similar structures can

be constructed for cases relevant for other duality groups, in particular for E8(8).

In section 2, after a brief review of D = 11 supergravity and the supersymmetry trans-

formations satisfied by its fields, we motivate the importance of dualisation of fields in

eleven dimensions in any attempt to understand duality symmetries from a higher dimen-

sional point of view. In particular, we emphasise the significance of the supersymmetry

transformations of dual fields in the context of this work. We derive the supersymmetry

transformation of the six-form potential dual to the three-form potential of D = 11 super-

gravity in section 2.1. Furthermore, we highlight the problems associated with a consistent

covariant and Lorentz invariant formulation of dual gravity in general, but also in the

context of eleven dimensions in section 2.2.

Working within the context of the SU(8) invariant reformulation of ref. [3], in section 3

we construct an E7(7) matrix in eleven dimensions that encompasses the bosonic degrees

of freedom of the eleven-dimensional theory. In particular, in section 3.2, we demonstrate

the existence of another generalised vielbein in addition to the two previously known in

the literature [2, 3]. We argue in section 3.3 that these generalised vielbeine must form the

components of a single E7(7) valued object in eleven dimensions — a 56-bein, and conclude

that the missing component must be related to a dual gravity field. We construct this final

generalised vielbein by insisting that it too transform as an E7(7) object. Furthermore,

we show that the vector fields whose supersymmetry transformations give the generalised

vielbeine can themselves be combined into a 56-plet of E7(7).

Section 4 is devoted to a preliminary analysis of the generalised vielbein postulates

satisfied by the new generalised vielbeine given in ref. [2] and in section 3. The new

generalised vielbein postulates give rise to as yet unknown connections associated with p-

form gauge transformations. Finally, in section 5, we briefly discuss how one can implement

a similar construction for the 3 + 8 split of eleven dimensions, which would be relevant for

the E8(8) duality group and also for the 5 + 6 split relevant for the E6(6) duality group.
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2 D = 11 supergravity and duality

The lagrangian of eleven-dimensional supergravity [1] in the notation and conventions of [3]

and to second order in fermions is

L =− 1

2
R− 1

2
ΨM Γ̃MNPDNΨP − 1

48
FMNPQFMNPQ

− 1

(12)3
√
2
iǫMNPQRSTUVWXFMNPQFRSTUAVWX

−
√
2

192
FMNPQ

(

ΨRΓ̃
MNPQRSΨS + 12Ψ

M
Γ̃NPΨQ

)

, (2.1)

where the four-form field strength is

FMNPQ = 4! ∂[MANPQ]

and DM is the covariant derivative defined with respect to the metric

gMN = EM
AEN

BδAB. (2.2)

The eleven-dimensional Γ̃ matrices5 satisfy

{Γ̃A, Γ̃B} = 2δAB, Γ̃A1...A11 = −iǫA1...A11 , (2.3)

where on the right hand side of the second equation we have suppressed a 32-dimensional

identity matrix. In this convention, the supersymmetry transformations of D = 11 super-

gravity take the form

δEM
A =

1

2
εΓ̃AΨM , (2.4)

δAMNP = −
√
2

8
εΓ̃[MNΨP ], (2.5)

δΨM = DMε+

√
2

288

(

Γ̃M
ABCD − 8EM

AΓ̃BCD
)

εFABCD. (2.6)

The appearance of exceptional global symmetries [5] upon the toroidal reduction of

the eleven-dimensional theory to dimensions D ≤ 6 requires the Hodge dualisation of all

field strengths whose degrees are greater than or equal to 1
2D. It should be emphasised [47]

that this is a particular choice that is designed to maximise the global symmetry obtained

under reduction. Other dualisations will lead to other global symmetries in the reduced

theory. One can understand this choice by noting that the most obvious way in which the

enhanced symmetry in the reduced theory manifests itself is the observation that the scalars

in the reduced theory parametrise a coset whose numerator is the global symmetry group,

while the denominator is the local symmetry group, which, in general, corresponds to the

maximal compact subgroup of the global group. In the reduction to dimensions D ≥ 6,

the scalar sector is clear and cannot be changed by a process of dualisation. However, this

5We put a tilde in order to distinguish these Γ-matrices with lower dimensional Γ-matrices to be intro-

duced below, cf. (3.4).
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is not true for D ≤ 5, where one can increase the number of scalars by dualising higher

degree field strengths. Maximising the number of scalars in the reduced theory maximises

the global symmetry obtained under reduction [47].

The requirement for the dualisation of certain fields in the reduced theory for the

manifestation of a larger symmetry group can be understood from an eleven-dimensional

perspective by the need to include dual fields in eleven dimensions. Thus, there seems to be

an intimate connection between dualisation of fields in the reduced theory and dualisation

in the full eleven-dimensional theory. Indeed, this relation is explicitly demonstrated in

ref. [34], where the bosonic sector of the eleven-dimensional theory is reduced to three

dimensions. In the process of writing the scalar sector of the reduced theory as a non-

linear coset sigma model with coset E8(8)/SO(16), one finds a precise relation between the

three-dimensional dual scalar fields φm and ψmn associated with the graviphoton Bµ
m and

the three-form component Aµmn, respectively, and the purported eleven-dimensional duals

hm1...m8,n and Am1...m6 , respectively. Therefore, given that our aim here is to understand

the role of the four-dimensional global symmetry group E7(7) in eleven dimensions, it is

natural that we should consider the dualisation of eleven-dimensional fields.

The dualisation of a form field can be understood on-shell as simply the Hodge du-

alisation of the field strength of the form field. However, the dualisation of gravity poses

a difficult challenge. Meanwhile, the need for the dualisation of gravity is apparent not

only from the perspective of the discussion in this paper, and other papers concerning the

higher-dimensional origins of duality symmetries, but also from the fact that D = 11 super-

gravity has solutions, such as the Kaluza-Klein monopole, that are expected to source the

dual gravity field [48]. Nevertheless, the elevation of gravitational duality to the non-linear

level encounters a no-go theorem [49], which can only be evaded by a loss of either locality

or Lorentz invariance. However, what is pertinent in this paper is the coupling of gravity to

matter, in particular the 3-form of D = 11 supergravity and its 6-form dual, and, moreover,

the supersymmetry transformation of a candidate dual gravity field. In this case, the duali-

sation of gravity becomes problematic even at the linearised level [50]. The supersymmetry

transformations can be made to close in the presence of a linearised dual gravity field if one

takes a linearised approximation where one has only global supersymmetry. However, the

supersymmetry transformation is no longer consistent with the equations of motion, or in

other words the dual graviton does not carry the same degrees of freedom as the graviton

even in a flat background [50]. Furthermore, it is argued in [50] that, under assumptions

of locality and Lorentz invariance, it is not possible to dualise a linearised graviton field

coupled to matter. Nevertheless, we find that the completion of the E7(7) matrix in eleven

dimensions requires the existence of a field with the same representation as a dual gravity

field. Moreover, we explicitly give the supersymmetry transformation of this field up to an

undetermined constant in section 3.3. We should stress that our results are not in conflict

with the no-go theorems of [49, 50] as we will become apparent later.

2.1 Dualisation of the three-form potential

The relevance of a six-form potential dual to the three-form potential within the context of

D = 11 supergravity was discussed soon after the eleven-dimensional theory was found [51,

– 7 –
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52]. Later, however, it was argued [53] that such a potential is to be thought of as being

sourced by a non-perturbative object — M5-brane — in a conjectured M-theory that goes

beyond the supergravity theory. As such, the incorporation [54, 55] of a six-form potential

in the eleven-dimensional theory, including its supersymmetry transformation [55] (see

also [51]), has been considered previously.

Our interest in the six-form potential in this work will be limited to the form of its

supersymmetry transformation. The six-form potential dual of the three-form potential

is introduced by considering its equation of motion, which can be simply derived from

lagrangian (2.1):

dF(7) =
7!
√
2

2
F(4) ∧ F(4) −

√
2

8
d ⋆ X, (2.7)

where

F(7) = ⋆F(4) (2.8)

and

XMNPQ = ΨRΓ̃
MNPQRSΨS + 12Ψ

M
Γ̃NPΨQ. (2.9)

Observing that

F(4) ∧ F(4) =
3!

7!
d(A(3) ∧ F(4)) (2.10)

gives

d

(

F(7) − 3
√
2 A(3) ∧ F(4) +

√
2

8
⋆ X

)

= 0. (2.11)

Hence, there exists locally a six-form potential A(6) such that

F(7) = dA(6) + 3
√
2 A(3) ∧ F(4) −

√
2

8
⋆ X. (2.12)

Equivalently, in terms of components

FM1...M7 = 7!D[M1
AM2...M7] + 7!

√
2

2
A[M1...M3

DM4AM5...M7]

−
√
2

192
iǫM1...M11

(

ΨRΓ̃
M8...M11RSΨS+12Ψ

M8Γ̃M9M10ΨM11

)

.

(2.13)

As should be familiar to the reader, in this process we have interchanged the equations

of motion and Bianchi identities. Thus, the Bianchi identity satisfied by F(7) is equivalent

to the equation of motion of A(3). For our applications it is best to think of the above

equation as a definition of potential A(6) in terms of the usual eleven-dimensional fields.

Therefrom, we can find the supersymmetry transformation of A(6).

Let us begin with an ansatz of the form

δAM1...M6 = α εΓ̃[M1...M5
ΨM6] + β εΓ̃[M1M2

ΨM3AM4M5M6]. (2.14)

– 8 –
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Now consider a supersymmetry variation of equation (2.13). To fix the coefficients it suffices

to consider terms of the form DM ǫ. Hence, we concentrate on such terms:

iǫM1...M7
N1...N4DN1δAN2N3N4 −

7!
√
2

2
A[M1M2M3

DM4δAM5M6M7] − 7!D[M1
δAM2...M7]

+

√
2

96
iǫM1...M11

(

δΨRΓ̃
M8...M11RSΨS+12δΨ

M8Γ̃M9M10ΨM11

)

+. . .=0,

(2.15)

where we have used the relation

ψ Γ̃A1 · · · Γ̃Anχ = (−1)n χ Γ̃An · · · Γ̃A1ψ. (2.16)

Substituting the supersymmetry transformations of the relevant fields using equa-

tions (2.5), (2.6) and (2.14) into equation (2.15) gives

7!(1/8− β)D[M1
εΓ̃M2M3ΨM4AM5M6M7]

− 7!αD[M1
εΓ̃M2...M6ΨM7] +

√
2

96
i ǫM1...M11DP εΓ̃

M8...M11PQΨQ + · · · = 0.

(2.17)

Using the fact that

Γ̃P1...P6 = −i/5! ǫP1...P6Q1...Q5Γ̃Q1...Q5 (2.18)

the above equation simplifies to

(

β − 1

8

)

D[M1
εΓ̃M2M3ΨM4AM5M6M7]+

(

α+
3

6!
√
2

)

D[M1
εΓ̃M2...M6ΨM7]+ · · · = 0. (2.19)

Hence, the supersymmetry transformation of the 6-form dual is

δAM1...M6 = − 3

6!
√
2
εΓ̃[M1...M5

ΨM6] +
1

8
εΓ̃[M1M2

ΨM3AM4M5M6]. (2.20)

A complete proof of the consistency of this relation with transformations (2.4)–(2.6) re-

quires use of the Rarita-Schwinger equation for ΨM . For this reason, and because duality

can anyway be implemented only at the level of the equations of motion, the above su-

persymmetry transformation rules are jointly valid on-shell only. Nevertheless we should

emphasise that, apart from this restriction, all formulae are valid at the full non-linear

level, that is, we can simultaneously incorporate the 3-form and the 6-form into the full

D = 11 theory.

2.2 Dualisation of gravity

Unlike the dualisation of the 3-form potential of D = 11 supergravity, the dualisation

of gravity is only possible at the linearised level, where the eleven-dimensional metric is

expanded according to

gMN = ηMN + hMN +O(h2). (2.21)

– 9 –
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In linearised general relativity, the dual graviton can either be formulated from Hodge

dualising the Riemann two-form [48, 56] or by Hodge dualising an index of the Einstein

tensor [20]. The generalisation of either approach at the non-linear level is obstructed by a

no-go theorem [49, 57], which can only be evaded (if it can be evaded at all) by abandoning

either locality or Lorentz invariance or both. As shown in previous work [20, 48, 56, 58, 59]

(see also [60, 61]), the field formally dual to the linearised metric hMN is a mixed symmetry

tensor hM1...M8|N that belongs to the (8,1) representation of GL(11,R) (with Dynkin label

[1000000100]) and obeys the constraint

h[M1...M8|N ] = 0. (2.22)

The dual graviton field thus belongs to a non-trivial Young tableau representation, and

this feature is one main source of difficulty. At the linear level the gravitational analog of

equation (2.13) is

YM1...M9|N = 9! ∂[M1
hM2...M9]|N , (2.23)

where

YM1...M9|N =
1

2
ǫM1...M9

PQωN PQ (2.24)

with the associated linearised spin connection ωM NP = 2κ∂[NhP ]M . Note that we do not

need to distinguish between curved and flat indices since we are working to linear order.

The irreducibility constraint (2.22) is equivalent to ωM
M

N = 0.6 It is now straightforward

to show that the fields hMN and hM1...M8|N form a dual pair in the sense that the Bianchi

identity for one implies the (linearised) equation of motion for the other.

As shown in [49] it is not possible to elevate the duality relation (2.24) to the interacting

theory if one insists on locality and Lorentz invariance of the dual formulation. These

difficulties are also reflected in the impossibility of extending the duality between hMN and

hM1...M8|N to the incorporation of matter, even if gravity is kept linear [50]. The question

of extending the gravitational duality to supergravity was studied in [50], though in terms

of a simpler example, as well as in unpublished work of the same authors.7 The most

general ansatz for the supersymmetry variation of the dual graviton compatible with the

constraint (2.22) reads

δhM1...M8|N ∝ εΓ̃M1...M8ΨN − εΓ̃N [M1...M7
ΨM8] − C0ηN [M1

εΓ̃M2...M7ΨM8] (2.25)

with an undetermined constant C0. The second term in the expression above is required

so that it cancels the first term upon antisymmetrisation over all indices, as required by

constraint (2.22). For C0 6= 0, the last term on the right hand side leads to a breaking

of GL(11,R) covariance to SO(1,10). It is clear that further restrictions must be imposed

6The constraint (2.22) appears naturally in all approaches based on E10 [62] and E11 [20], but one can

also perform the dualisation without imposing it. In this case (2.24) must be replaced by

YM1...M9|N =
1

2
ǫM1...M9

PQ(
ωN PQ − 2ηNPωR

R
Q

)

.

7We would like to thank A. Kleinschmidt for discussions.
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at this point. In particular, we must restrict to global supersymmetry (∂Mε = 0) from

the outset, otherwise the supersymmetry algebra cannot close on hM1...M8|N even at the

linearised level. This is easily seen by noting that the putative parameter

ΛM1...M8 = ε1Γ̃M1...M8ε2, (2.26)

which would be one of the gauge transformation parameters associated with the field

hM1...M8|N [49] is symmetric under interchange of ε1 and ε2, hence it cannot appear in

the commutator of two local supersymmetries; instead, the commutator would lead to new

transformations that cannot be interpreted as gauge transformations in the sense of [49].

As a consequence it does not appear possible even at the linearised level in this “dual

supergravity” to consistently incorporate the gauge transformations necessary to remove

unphysical helicity degrees of freedom.8

Regardless of these problems, we will find that the form of supersymmetry transfor-

mation (2.25) does not coincide with the supersymmetry transformation (3.37) that we

find for the putative dual gravity field, even though it too satisfies constraint (2.22). The

presence or otherwise of form fields do not affect these conclusions.

The difficulties outlined in this section, in our view, point to the core problem of prop-

erly understanding the duality symmetries beyond their explicit realisation in dimensionally

reduced maximal supergravity: that is, the problem of dualising Einstein’s theory at the

non-linear level. We note that there does exist a covariant non-linear formulation [63] of

gravity containing the metric field and its dual, where the metric appears via a topolog-

ical term following [64, 65], but the putative supersymmetric extension of this proposal

is expected to encounter the same problems as described above. We interpret these dif-

ficulties as another indication that a proper understanding of M-theory and the role of

D = 11 supergravity in this context will require the abandonment of conventional notions

of covariance and space-time.

3 Generalised geometry from eleven dimensions

In this section we demonstrate by explicit construction how the bosonic degrees of freedom

of D = 11 supergravity can be assembled into E7(7)-valued objects. In particular the

vector degrees of freedom can be combined into a 56-plet of E7(7), and the scalar fields

into an E7(7)-valued 56-bein V in eleven dimensions, thus completing the construction

of [3]. These results finally establish the relation between the old work of [3] with more

recent constructions, where the existence of a generalised vielbein is usually postulated ad

hoc (usually with further constraints). They also link up with the original construction

performed in [5] for the T 7 truncation ofD = 11 supergravity, but with the crucial difference

that the present results are valid in eleven dimensions.

8One can nevertheless investigate the closure of the global supersymmetry algebra, which yields a non-

zero value for C0 (A. Kleinschmidt, private communication).
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3.1 SU(8) reformulation of D = 11 supergravity

In ref. [3], the eleven-dimensional theory is formulated in a manifestly SU(8) invariant

manner. The eleven-dimensional space-time is split into a four-dimensional space-time

and a seven-dimensional space. Hence the eleven-dimensional space-time coordinates and

tangent coordinates are split as

zM = (xµ, ym), zA = (xα, ya), (3.1)

respectively. Furthermore, in an upper triangular gauge the elfbein takes the form

EM
A =

(

∆−1/2e′µ
α Bµ

mem
a

0 em
a

)

, (3.2)

where

∆ = det(em
a). (3.3)

Correspondingly, the eleven-dimensional gamma-matrices are decomposed in the follow-

ing way

Γ̃α = γα ⊗ 1, Γ̃a = γ5 ⊗ Γa, (3.4)

where γα and Γa satisfy the four and seven-dimensional Clifford algebras, respectively, and

γ5 = γ1γ2γ3γ4.

In particular,

Γa1...a7 = −iǫa1...a71. (3.5)

The essence of the SU(8) invariant reformulation of the theory is in defining new fields

with chiral SU(8) indices [3, 5]9

ϕµ
A =

1

2
(1 + γ5)ϕ

′
µĀ, ϕµA =

1

2
(1− γ5)ϕ

′
µĀ, (3.6)

χABC = (1 + γ5)χ
′
ĀB̄C̄ , χABC = (1− γ5)χ

′
ĀB̄C̄ , (3.7)

where the indices on the right hand side are denoted with a bar to emphasise the fact

that they are not chiral SU(8) indices, but SO(7) spinor indices. We shall not make this

distinction where the index type is clear from the context. Fields ϕ′ and χ′ are related to

the original fields in the following manner10

ϕ′
µ = ∆−1/4(iγ5)

−1/2e′µ
α

(

Ψα − 1

2
γ5γαΓ

aΨa

)

, (3.8)

χ′
ABC =

3

4

√
2i∆−1/4(iγ5)

−1/2Ψa[AΓ
a
BC]. (3.9)

9For these we will use capital Roman letters A,B, . . ., the same as for flat indices in eleven dimensions.

There should nevertheless arise no confusion as it should be clear from the context which kind of index is

meant.
10Note that (iγ5)

1/2 = 1√
2
(1 + iγ5), while (iγ5)

−1/2 = 1√
2
(1− iγ5).
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Similarly, the supersymmetry transformation parameter is redefined as follows

ǫA =
1

2
(1 + γ5)∆

1/4(iγ5)
−1/2ǫĀ, ǫA =

1

2
(1− γ5)∆

1/4(iγ5)
−1/2ǫĀ. (3.10)

For the spin two degrees of freedom it then follows directly that

δe′µ
α =

1

2
ǫAγαϕµA + h.c.. (3.11)

3.2 New generalised vielbeine

In the formulation of [3], the local SU(8) symmetry is an enlargement of the local SO(7)

symmetry of the tangent space of the seven-dimensional space. As such all fields with SO(7)

tangent space indices are replaced in the reformulated theory with new fields carrying SU(8)

indices. An important example of this is the generalised vielbein11

emAB = i∆−1/2Γm
AB ≡ i∆−1/2emaΓ

a
AB, (3.12)

which replaces the siebenbein in the reformulated theory. This generalised vielbein is

found [3] by considering the supersymmetry transformation:

δBµ
m =

√
2

8
emAB

[

2
√
2εAϕB

µ + εCγ
′
µχ

ABC
]

+ h.c. (3.13)

with γ′µ ≡ e′µ
αγα. Recently, it was found [2] that the supersymmetry transformation of a

component of the 3-form A,

Bµmn = Aµmn −Bµ
pApmn

leads to another generalised vielbein:

δBµmn =

√
2

8
emnAB

[

2
√
2εAϕB

µ + εCγ
′
µχ

ABC
]

+ h.c., (3.14)

where

emnAB = −
√
2

12
i∆−1/2

(

ΓmnAB + 6
√
2AmnpΓ

p
AB

)

(3.15)

with Γmn ≡ em
aen

bΓab. Importantly, both generalised vielbeine transform in the same way

under a supersymmetry transformation,

δemAB = −
√
2ΣABCDe

mCD − 2ΛC
[Ae

m
B]C , (3.16)

δemnAB = −
√
2ΣABCDemn

CD − 2ΛC
[AemnB]C (3.17)

with the complex self-dual SU(8) tensor

ΣABCD = ε̄[AχBCD] +
1

4!
ǫABCDEFGH ε̄

EχFGH , (3.18)

11In fact, the generalised vielbein should be dressed with a general SU(8) matrix, Φ. However, here and

in what follows we fix Φ, which corresponds to a partial gauge-fixing of the local SU(8) symmetry (see

ref. [3]).
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and where

ΛB
A =

1

8
ε̄γ5ΓabΨ

a Γb
AB +

1

8
ε̄γ5ΓaΨb Γ

ab
AB +

1

16
ε̄ΓabΨc Γ

abc
AB (3.19)

parametrises a field dependent local SU(8) rotation in eleven dimensions.

The generalised vielbeine emAB and emnAB give rise to non-linear ansätze for the in-

ternal metric [66] and flux [2], which pass some very non-trivial tests [11]. The ansätze

are obtained by comparing the supersymmetry transformations that lead to these viel-

beine, (3.13) and (3.14), with the four-dimensional ungauged supergravity supersymmetry

transformations [2, 67]12

δAµ
IJ = −1

2
(uij

IJ + vijIJ)
[

2
√
2εiϕj

µ + εkγ
′
µχ

ijk
]

+ h.c., (3.20)

δAµIJ = −1

2
i(uij

IJ − vijIJ)
[

2
√
2εiϕj

µ + εkγ
′
µχ

ijk
]

+ h.c., (3.21)

for the 28 electric vectors Aµ
IJ and the 28 magnetic vectors AµIJ , respectively. Here

i, j, k, . . . are SU(8) indices, while I, J,K, . . . are SL(8,R) indices (which are to be considered

as SO(8) indices after gauging). Moreover, since the linear Kaluza-Klein ansatz for vector

fields is exact, Bµ
m and Bµmn are related to Aµ

IJ and AµIJ , respectively via the 28 S7

Killing vectors KmIJ(y) and 28 two-forms KmnIJ =
◦
ea

m ◦
eb

n ηIΓabηJ , where ηI are the S7

Killing spinors, and
◦
ea

m is the inverse siebenbein on S7. This gives a relation between

the generalised vielbeine and the scalars of the four-dimensional gauged supergravity. The

non-linear ansätze obtained in this way are highly non-trivial and there is no purely bosonic

argument available to derive them otherwise. Indeed the non-linear metric ansatz is part

of the consistency proof of the S7 reduction [9]. Meanwhile, the recently discovered non-

linear flux ansatz is shown [11] to be an efficient way to analytically find the internal flux

associated to not only a four-dimensional maximally gauged supergravity critical point,

but even a whole family.

The generalised vielbeine, (3.12) and (3.15), were found by considering the supersym-

metry transformation of fields that under reduction would correspond to vector fields, viz.

Bµ
m and Bµmn. In the maximally gauged theory these vector fields each give rise to 28

vector fields, accounting for the 56 vector fields of which 28 appear in the gauged theory

lagrangian. However, in the ungauged theory these vector fields only account for 28 of the

56 vector fields. The other 28 vector fields are the duals of these fields in 4-dimensions. We

can view these dual fields as coming from the reduction of fields that are the dualisations of

the eleven-dimensional fields. Therefore, we next turn to the supersymmetry transforma-

tion of the 6-form potential in eleven dimensions that is dual to the 3-form gauge potential,

with the aim of extracting from it another set of vector components with an associated

generalised vielbein. Consider the following components of the 6-form:

Bµm1...m5 = Aµm1...m5 −Bµ
pApm1...m5 .

12See also equation (7.10) in [5].
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The supersymmetry transformation of the 6-form, equation (2.20), can now be used to

show that

δ

(

Bµm1...m5 −
√
2

4
Bµ[m1m2

Am3m4m5]

)

=

√
2

8
em1...m5AB

[

2
√
2εAϕB

µ + εCγ
′
µχ

ABC
]

+ h.c.

(3.22)

with the associated new generalised vielbein

em1...m5AB =
1

6!
√
2
i∆−1/2

[

Γm1...m5AB + 60
√
2A[m1m2m3

Γm4m5]AB

− 6!
√
2
(

Apm1...m5 −
√
2

4
Ap[m1m2

Am3m4m5]

)

Γp
AB

]

.

(3.23)

This new vielbein depends not only on the metric and 3-form along the seven internal

directions, but also on the 6-form potential Am1...m6 .

Using the identities listed in appendix B, one can show that the supersymmetry trans-

formation of this generalised vielbein takes the same form as for the other generalised

vielbeine, i.e.

δem1...m5AB = −
√
2ΣABCDem1...m5

CD − 2ΛC
[Aem1...m5B]C . (3.24)

Remarkably all generalised vielbein components transform in exactly the same way

under local supersymmetry, and with the same compensating SU(8) rotation. We empha-

sise again that all formulae are valid in eleven dimensions, and at the full non-linear level.

Furthermore at no point was it necessary to truncate or impose any restriction on the coor-

dinate dependence. It is now straightforward to derive the non-linear ansatz for the 6-form

field Am1...m6 by substituting the relevant expressions in terms of S7 Killing vectors and

the four-dimensional fields on the left hand side of (3.23), and then projecting out the last

component on the right hand side. A detailed discussion will, however, be given elsewhere.

3.3 Generalised vielbeine and E7(7)

The similarity of the transformations for the generalised vielbeine emAB , emnAB and

em1...m5AB suggests that these are components of a single object in eleven dimensions,

namely a 56-bein

V(z) ≡
(

VMN
AB(z),VMNAB(z)

)

(3.25)

and its complex conjugate
(

VMN
AB(z),VMNAB(z)

)∗ ≡
(

VMNAB(z),VMN
AB(z)

)

, where in-

dices M, N = 1, . . . , 8 are associated with the SL(8,R) subgroup of E7(7). As we discuss

elsewhere [12] the normalization of the matrix elements in V can be chosen such that

V(z) ∈ E7(7)/SU(8), but here we will stick with the normalization adopted in previous

work. Accordingly, we proceed from the following identification of this new object with

– 15 –



J
H
E
P
0
2
(
2
0
1
4
)
0
7
5

the generalised vielbeine obtained so far13

Vm8
AB ≡ emAB, VmnAB ≡ emnAB

Vmn
AB ≡ 1

5!
∆ǫmnp1...p5ep1...p5AB (3.26)

in accordance with the decomposition

56 → 28⊕ 28 → 7⊕ 21⊕ 21⊕ 7 (3.27)

of the 56 representation of E7(7) under its SL(8,R) and GL(7,R) subgroups. Dropping

the compensating SU(8) rotation the supersymmetry variations obtained in the foregoing

section are then all consistent with the formula

δVMN
AB = −

√
2ΣABCDVMNCD , δVMNAB = −

√
2ΣABCDVMN

CD (3.28)

which upon reduction to four dimensions precisely coincides with the variation of the 56-

bein in N = 8 supergravity. Because the theory by construction is invariant under local

SU(8) in eleven dimensions, this confirms that the vielbein components identified up to

here are indeed part of an E7(7)/SU(8) coset element V(zM ) in eleven dimensions.

The 56 vectors can likewise be assembled into a single object of the form (Bµ
MN,Bµ MN).

With the identifications obtained so far, we define

Bµ
m8 ≡ Bµ

m , Bµmn ≡ Bµmn , Bµ
mn ≡ 1

5!
∆ǫmnp1...p5

(

Bµp1...p5 −
√
2

4
Bµ[p1p2Ap3p4p5]

)

.

(3.29)

The remaining ‘missing’ component

Bµm8 ≡
1

7!
∆ǫn1...n7Bµn1...n7,m (3.30)

will be given in equation (3.36) below. Now, the results for the supersymmetry variations

of the vectors introduced above can be summarised by the following simple transformation

formulae

δBµ
MN =

√
2

8
VMN

AB

[

2
√
2εAϕB

µ + εCγ
′
µχ

ABC
]

+ h.c.,

δBµ MN =

√
2

8
VMNAB

[

2
√
2εAϕB

µ + εCγ
′
µχ

ABC
]

+ h.c. (3.31)

complementing the supersymmetry transformations (3.28) of V . These transformations

now have exactly the same form as the ones for the corresponding variations of the D = 4

fields, but they are here valid in eleven dimensions. Note also that the distribution of

the 28 physical spin-one degrees of freedom between these 56 vectors depends on the given

compactification. By comparing these with the variations (3.20) and (3.21) and substituting

13The extra factor of ∆ in the second line, and in (3.32) below, is necessary in order to maintain the form

of the supersymmetry variation given in (3.28).
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the identifications (3.26) we can now in principle derive non-linear ansätze for all D = 11

fields and their duals !

The last missing seven components (3.30) corresponding to the 7 in the decomposi-

tion (3.27), whose existence we had already anticipated above, turn out to be related, not

unexpectedly, to dual gravity. In order to identify them and to complete the E7(7) matrix,

we note that these components of the matrix V(z) must be of the form

Vm8AB =
1

7!
∆ǫn1...n7en1...n7,mAB. (3.32)

This component is found by insisting that em1...m7,nAB transform as

δem1...m7,nAB = −
√
2ΣABCDem1...m7,n

CD − 2ΛC
[Aem1...m7,nB]C , (3.33)

just as the other components of V . A calculation now shows that the correct expression is

given by

em1...m7,nAB = − 2

9!
i∆−1/2

[

(Γm1...m7Γn)AB + 126
√
2 An[m1m2

Γm3...m7]AB

+ 3
√
2× 7!

(

An[m1...m5
+

√
2

4
An[m1m2

Am3m4m5

)

Γm6m7]AB

+
9!

2

(

An[m1...m5
+

√
2

12
An[m1m2

Am3m4m5

)

Am6m7]pΓ
p
AB

]

.

(3.34)

The coefficients must take the specific values that appear in the definition (3.34).14 In

other words, the form of the supersymmetry variation and the compensating SU(8) rotation

uniquely fixes all coefficients.

In accordance with our previous findings we would expect this generalised vielbein to

come from the supersymmetry variation of a vector

δBµm1...m7,n =

√
2

8
em1...m7,nAB

[

2
√
2εAϕB

µ + εCγ
′
µχ

ABC
]

+ h.c.. (3.35)

The form of this vector suggests a relation with dual gravity. Ignoring difficulties

related to the non-linear extension of dual gravity in eleven dimensions, we find that indeed

the above generalised vielbein comes from the supersymmetry transformation of

Bµm1...m7,n ≡ Bµm1...m7,n −Bµ[m1...m5
Am6m7]n + c 5!(2

√
2)B[µm1...m5

Bm6m7]n

+

√
2

12
Bµ[m1m2

Am3...m5Am6m7]n,

(3.36)

14Of course, an overall rescaling by a real constant is allowed.
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if and only if the supersymmetry transformation of the new field Bµm1...m7,n (not

Bµm1...m7,n!) is

δBµm1...m7,n = − 1

9!

(

εΓ̃µm1...m7Ψn − 8εΓ̃nΓ̃[µm1...m6
Ψm7]

)

+ cεΓ̃[µm1...m4
Ψm5Am6m7]n

+

√
2

3
εΓ̃[µm1

Ψm2

(

Am3...m7]n +

√
2

12
Am3...m5Am6m7]n

)

− c 5!εΓ̃[µm1
Ψm2

(

Am3...m7]n +

√
2

4
Am3...m5Am6m7]n

)

, (3.37)

where c is an undetermined constant.

The indeterminacy encoded in the constant c can be viewed as a consequence of the

fact that there is no contribution ∝ Bµ
phpm1...m7,n in the definition of the field Bµm1...m7,n,

unlike for the other components of the vector fields. In fact, the structure of the first two

terms on the right hand side of (3.37) is partly determined by requiring the absence of

terms involving Bµ
n in its variation under local supersymmetry.

We see that the first two terms on the right hand side of equation (3.37) disagree with

the eleven-dimensional ansatz (2.25), even though the representation constraint (2.22) is

trivially satisfied for all terms on the right hand side by virtue of Schouten’s identity as

applied to seven dimensions. Nevertheless, the above result is valid at the full non-linear

level. Equally important, the supersymmetry algebra is expected to close properly on-shell

on all components of the 56-bein V , because our theory is physically equivalent on-shell to

the original D = 11 supergravity (although with a suitable re-interpretation of the symme-

tries). There appears to be no immediate contradiction with the no-go theorems of [49, 50]

because we have abandoned general covariance and Lorentz invariance in eleven dimen-

sions in the course of our construction. However, the disagreement does seem to suggest

that the supersymmetry transformation (3.37) is only valid for the particular components

given and is not to be regarded as part of a covariant expression for the supersymmetry

transformation of a dual gravity field, at least not in a simple way.

Let us now return to the question of how these results relate to more recent studies

of generalised geometry. The central object there is an element of the duality coset under

consideration and is usually also referred to as the “generalised vielbein.” This generalised

vielbein, which a priori could be different from the one identified here is constructed using

a non-linear realisation [21–23], which is a group theoretic method for computing a coset

element in a particular representation of the numerator group. For the E7(7)/SU(8) duality

coset, the non-linear realisation gives a coset element in the fundamental 56 representa-

tion of E7(7), that is uniquely decomposed under its GL(7,R) subgroup as described in

equation (3.27) [18]. In order to compare this construction with the 56-bein derived here,
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rewrite the 56-bein components as follows

Vm8AB = Vm8
aΓaAB + Vm8 abΓ

ab
AB + iVm8

abΓabAB + iVm8 aΓ
a
AB,

Vmn
AB = Vmn

abΓ
ab
AB + iVmnabΓabAB + iVmn

aΓ
a
AB,

VmnAB = iVmn
abΓabAB + iVmnaΓ

a
AB,

Vm8
AB = iVm8

aΓ
a
AB, (3.38)

where the precise coefficients of the Γ-matrices on the right hand side can be computed

from the definition of V , equations (3.26) and (3.32), and the definitions of the generalised

vielbeine, equations (3.12), (3.15), (3.23) and (3.34). Forming a 4 × 4 block matrix with

the coefficients on the right hand side as is suggested by the structure of the equations

above one finds that the form of this matrix is precisely the same as that found in ref. [18]

(see the matrix labelled R(V) on the top of page 21 in ref. [18]). Of course, the precise

numerical factors are different, but this is due to differing conventions. What is important

is the form of each element and the precise factors of ∆, which agree. Furthermore, this

matrix agrees with the E7(7)/SU(8) coset element also calculated by non-linear realisation

in [33], up to an overall ∆ (equation (127) of ref. [33]), which is due to the fact that in [33]

the E7(7) algebra is taken to be embedded in E11.

While the triangular structure evident in (3.38) has been known for a long time to

emerge in the reduction to four dimensions [5], the new feature here is that all relations

displayed are now valid in eleven dimensions. In particular, and as with the first two gen-

eralised vielbeine, by comparing transformations (3.22) and (3.35) to (3.20) and (3.21) one

can now construct a non-linear ansatz also for the dual field Am1...m6 . As is demonstrated

in appendix C for the Englert solution [46], the six-form potential is expected to be gener-

ically non-zero for any compactification other than the torus reduction of [5]. The new

non-linear flux ansatz would, in principle, give Am1...m6 from the expectation values of the

four-dimensional scalars. In particular, it would reproduce Am1...m6 of the Englert solution

given in appendix C.

4 Generalised Vielbein postulate

In the SU(8) invariant reformulation of D = 11 supergravity the generalised vielbein emAB

satisfies a number of consistency relations, collectively referred to as the generalised vielbein

postulate. These are differential relations for the action of the D = 11 derivatives on the

vielbeine. For the seven internal directions, they read

∂me
n
AB +QC

m[Ae
n
B]C + PmABCDe

nCD = 0. (4.1)

The E7(7) connection coefficients QA
mB and PmABCD,

15 are of the form

QA
mB =

1

2
(epa∂mep b)Γ

ab
AB +

√
2

14
ifemaΓ

a
AB −

√
2

48
eamFabcdΓ

bcd
AB, (4.2)

PmABCD = −3

4
(epa∂mep b)Γ

a
[ABΓ

b
CD]+

√
2

56
ifem

aΓab[ABΓ
b
CD]+

√
2

32
eamFabcdΓ

b
[ABΓ

cd
CD], (4.3)

15These coefficients are denoted by BA
mB and AmABCD in [3].
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where

f = − 1

24
iηαβγδFαβγδ. (4.4)

Note that the partial derivative ∂m can be traded for a background covariant derivative
◦
Dm appropriate for the S7 compactification as explained in [3]. Let us now take a look at

how (4.1) generalises to the new vielbein components identified in this paper. In doing so,

we will not aim for completeness, as much further work is obviously required to penetrate

the structures exhibited here.

It takes a bit of algebra to check that, in fact, the new generalised vielbeine do satisfy

analogous relations. More precisely, we find

∂pemnAB + Ξp|mn|qe
q
AB +QC

p [AemnB]C + PpABCDemn
CD = 0, (4.5)

∂pem1...m5AB+Ξp|m1...m5|qe
q
AB+Ξp|m1...m5

qreqrAB

+QC
p [Aem1...m5B]C+PpABCDem1...m5

CD = 0, (4.6)

∂pem1...m7,nAB + Ξp|m1...m7,n
qreqrAB + Ξp|m1...m7,n

q1...q5eq1...q5AB

+QC
p [Aem1...m7,nB]C + PpABCDem1...m7,n

CD = 0, (4.7)

where

Ξp|mn|q ≡ ∂pAmnq −
1

4!
Fpmnq, (4.8)

Ξp|m1...m5|q ≡ ∂pAqm1...m5 +

√
2

48
Fp[qm1m2

Am3...m5]

−
√
2

2

(

∂pA[qm1m2
− 1

4!
Fp[qm1m2

)

Am3...m5] −
1

7!
Fpqm1...m5 , (4.9)

Ξp|m1...m5

qr ≡ 1√
2
Ξp|[m1m2|m3

δ q rm4m5]
, (4.10)

Ξp|m1...m7,n
qr ≡ −Ξp|[m1...m5||n|δ

q r
m6m7]

, (4.11)

Ξp|m1...m7,n
q1...q5 ≡ Ξp|[m1m2||n|δ

q1...q5
m3...m7]

. (4.12)

As was to be expected from the explicit dependence of the new vielbein components on the

3-form and 6-form potentials, there appear terms which are not gauge invariant. However,

closer inspection of these expressions now reveals a truly remarkable feature, not at all

obvious nor to be expected from (3.15), (3.23) and (3.34): they all vanish upon antisym-

metrisation, and therefore precisely correspond to the Young tableaux that are eliminated

by projecting onto the gauge invariant field strengths upon acting with a derivative on the

3-form or 6-form potential! More specifically, we have

∂mAnpq =
1

4!
Fmnpq + Ξm|np|q (4.13)

corresponding to the Young tableau decomposition

⊗

=
⊕

(4.14)

– 20 –



J
H
E
P
0
2
(
2
0
1
4
)
0
7
5

and similarly for the 7-form field strength

∂m1Am2...m7 =
1

7!
Fm1...m7 + Ξm1|m2...m6|m7

(4.15)

corresponding to

⊗

=
⊕

. (4.16)

In ref. [24], a version of the vielbein postulate was given with Christoffel symbols along

the internal directions included, so the above findings motivate a similar interpretation

of the Ξ symbols as generalised connections along the remaining directions of the E7(7)

vielbein (3.25), in accordance with the decomposition (3.27). More precisely, this symbol

would be of the form ΞMN
PQ RS, where the SL(8,R) index pairs can appear either in the upper

or the lower position. Because the gauge invariant field strengths are part of the connection

coefficients QA
mB and PmABCD the above decompositions should thus be regarded on a par

with the corresponding decomposition of the usual vielbein derivative, viz.

∂MEN
A = ωMN

A + ΓMN
A (4.17)

into a piece covariant with respect to general coordinate transformations, and a non-gauge

invariant piece, thus extending ordinary geometry so as to comprise the p-form fields of

D = 11 supergravity. This interpretation is further supported by the fact that, like the

standard connections, the above objects are not gauge invariant under the respective 2-form

and 5-form gauge transformations, in line with the interpretation of the latter as new coor-

dinate transformations, while the non-gauge covariant part of the variation drops out in the

difference of two such connections, again in complete analogy with usual affine connections.

Moreover, note that the generalised vielbein emAB is absent from the generalised vielbein

postulate for em1...m7,nAB, equation (4.7), or equivalently

Ξp|m1...m7,n|q ≡ 0. (4.18)

For this term to be non-zero, it would be required for it to contain undifferentiated 3-form

or 6-form potentials, which would introduce non-gauge invariances beyond what would

be expected from connection components. Therefore, the vanishing of the above term is

desirable from this perspective.

The appearance of non-gauge invariant expressions for the 3-form and 6-form gauge

fields may appear strange at first sight, because all investigations of their role in supergrav-

ity and superstring theory have so far focused exclusively on the gauge invariant (p+1)-form

field strengths. In this regard it is noteworthy that the level expansion of the E10 alge-

bra gives rise to an infinite tower of so-called ‘gradient representations’, which have been

tentatively associated with the (time derivative of the) spatial gradients of the 3-from and
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6-form fields [62], and where there is likewise no antisymmetrisation in the spatial indices.

In string theory, the gauge invariant field strengths are associated to D(p − 1)-branes,

widely considered a key ingredient towards a better understanding of non-perturbative

string theory. Our partial results above again underline the necessity of coming to grips

with non-trivial Young tableau representations, which in the level expansion of E10 consti-

tute the vast majority of representations [68].

For the derivatives along the space-time directions, we have similar relations which

now also involve the vector fields Bµ
m , Bµmn and Bµm1...m5 . The components emAB are

already known to satisfy the following equation [3]

Dµe
m
AB +

1

2
∂nBµ

nemAB + ∂nBµ
menAB +QC

µ [Ae
m
B]C + PµABCDe

mCD = 0, (4.19)

where Dµ ≡ ∂µ −Bµ
n∂n and the E7(7) connection coefficients

QA
µB = −1

2
[ema∂mBµ

nenb−(epaDµep b)] Γ
ab
AB−

√
2

12
∆−1/2e′µ

α
(

FαabcΓ
abc
AB−ηαβγδF βγδaΓaAB

)

,

(4.20)

PµABCD =
3

4
[ema∂mBµ

nenb − (epaDµep b)] Γ
a
[ABΓ

b
CD] −

√
2

8
∆−1/2e′µ

αFabcαΓ
a
[ABΓ

bc
CD]

−
√
2

48
∆−1/2e′µαη

αβγδFaβγδΓb[ABΓ
ab
CD].

(4.21)

In analogy with this, the derivative of the new generalised vielbeine along the space-time
directions satisfy

DµemnAB +
1

2
∂pBµ

pemnAB + 2∂[mB|µ|
pen]pAB + 3∂[mB|µ|np]e

p
AB

+QC
µ [AemnB]C + PµABCDemn

CD = 0,

(4.22)

Dµem1...m5AB +
1

2
∂pBµ

pem1...m5AB − 5∂[m1
B|µ|

pem2...m5]pAB +
3√
2
∂[m1

B|µ|m2m3
em4m5]AB

− 6∂[m1

(

B|µ|m2...m5p]−
√
2

4
B|µ|m2m3

Am4m5p]

)

epAB+QC
µ [Aem1...m5B]C+PµABCDem1...m5

CD = 0,

(4.23)
{

Dµem1...m7,nAB +
1

2
∂pBµ

pem1...m7,nAB − 7∂m1
Bµ

pepm2...m7,nAB − ∂nBµ
pem1...m7,pAB

+ 3∂[nB|µ|m1m2]em3...m7AB − 6∂[n

(

B|µ|m1...m5] −
√
2

4
B|µ|m1m2

Am3m4m5]

)

em6m7AB

+QC
µ [Aem1...m7,nB]C + PµABCDem1...m7,n

CD

}

[m1...m7]

= 0. (4.24)

Note in particular that the vector fields that enter the 4-dimensional generalised viel-

bein postulate are precisely the E7(7) covariant vector fields (3.29) that give rise to the

generalised vielbeine.

In refs [12] and [72] we come back to relations (4.22)–(4.24) and further investigate

their role with regard to the embedding tensor formalism [43, 44] and the D = 4 gaugings
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studied in [45, 67]. As in the above relations, where we are dealing with a 56 of vector

fields, there as well the gauged theory is formulated in terms of a doubled set of 56 vector

fields, such that the 28 physical components are selected, together with the non-abelian

gauge group, by the embedding tensor, whose D = 11 origins are expected to be hidden in

the above relations. This is of particular interest in view of the recent work on the vacuum

structure of maximal gauged supergravities in four dimensions, which has turned out to be

far richer than originally expected [69, 70] (see [71] and references therein for more recent

work on this).

5 Outlook: generalisation to E8(8) and E6(6)

The results of this paper clearly point to an underlying structure of which we have so

far only seen a small part. In fact, similar results exist for other reductions of D = 11

supergravity, most notably the one corresponding to the 3+8 decomposition of the theory,

where the relevant group is E8(8) and where, finally, the dual gravity field enters with full

force, giving rise to eight physical scalar degrees of freedom. For this case partial results

have been known for a long time [6, 7].

In this section we briefly sketch how our construction generalises to E8(8) and also

the simpler case of E6(6). In the former case, some of the relevant vielbeine have already

been identified in [6, 7], and the existence of a corresponding E8(8)-valued 248-bein in

eleven dimensions is proved in [7], although in a more indirect manner. So let us consider

this case first. To this aim, we perform a 3 + 8 split of D = 11. More specifically, the

fields of the theory that give rise to scalar and vector degrees of freedom in a conventional

reduction to three dimensions are, respectively, gmn and Amnp, and Bµ
m and Bµmn, where

now µ = 0, 1, 2 is a 3-dimensional space-time index and m,n, p = 3, . . . , 10 are the 8-

dimensional spatial indices. As before, the field Bµ
m is the off-diagonal component of the

elfbein in the 3+8 split, while gmn is the metric in 8-dimensional directions. Bµmn is related

to the eleven-dimensional 3-form by the field redefinition Bµmn = Aµmn − Bµ
pAmnp, as

before. As is well known, in three dimensions vector fields are dual to scalars, so these

fields account for the 248 − 120 = 128 scalars that parametrise the E8(8)/SU(8) coset. It

is shown in [7] that the supersymmetry transformations of Bµ
m and Bµmn in the SO(16)

reformulation of D = 11 supergravity [6] lead to two generalised vielbeine

emA and emnA,

where A = 1, . . . , 248 is an E8(8) index. In analogy with (3.26) these generalised vielbeine

can be combined into a 36 × 248 matrix, which can be thought of as being part of a

248× 248 E8(8) matrix. In fact, the existence of such an E8(8) matrix in eleven dimensions

was inferred in [7] by indirect group theoretic arguments. The results of this paper can

now be used to give a more explicit description of this matrix.

We will describe this construction elsewhere, but let us nevertheless outline the calcu-

lation that needs to be done. In order to enlarge the 36× 248 matrix we must consider a

component of the eleven-dimensional 6-form Bµm1...m5 ∼ Bnpq
µ . The supersymmetry varia-

tion of this field leads to 56 further components, which add another 56× 248 chunk to the
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generalised vielbein. Finally, the dual gravity field will give 64 further components from

Bµm1...m7,n ∼ Bµ
m

n, which in total give a 156×248 matrix containing scalars coming from

the reduction of the metric, 3-form, 6-form and dual gravity. Since these account for all

of the scalar degrees of freedom, the completion of this matrix to an E8(8) matrix will not

introduce any new degrees of freedom.16 In other words, the full E8(8) matrix is completely

determined by this 156 × 248 submatrix. However, there remains the interesting question

of where the extra components come from. The GL(8,R) decomposition

248 −→ 8+ 28+ 56+ 64+ 56+ 28+ 8 (5.1)

suggests that three more fields are required in eleven dimensions in order to give rise to

the remaining 56 + 28 + 8 vector fields in the dimensionally reduced theory.

In addition, one can consider the status of the generalised vielbein postulate in this

case. Decomposing17

A = ([IJ ], A),

where I, J = 1, . . . , 16 and A,B, . . . = 1, . . . , 128 are now SO(16) vector and chiral spinor

indices, respectively, the generalised vielbein emA satisfies [6]

Dµe
m
IJ+∂nBµ

nemIJ+∂nBµ
menIJ+2QµK[Ie

m
J ]K+ΓIJ

ABPµ
AemB =0, (5.2)

∂me
n
IJ + 2QmK[Ie

n
J ]K + ΓIJ

ABPm
AenB = 0, (5.3)

where ΓI
AȦ

is a Spin(16) gamma-matrix and the E8(8) connection components are defined

in [6]. The remaining components emA satisfy similar relations [6]. Analogously, emnA found
in [7] satisfies

DµemnIJ+∂pBµ
pemnIJ+2∂[mBµ

pen]pIJ+18
√
2∂[mBnp]µe

p
IJ+2QµK[IemnJ]K+ΓIJ

ABPµ
AemnB=0,

(5.4)

∂pemnA + 6
√
2

(

∂pAmnq −
1

4!
Fpmnq

)

eqA +
1

4
QpIJΓ

IJ
ABemnB − 1

2
ΓIJ
ABPp

BemnIJ = 0.

(5.5)

Note the striking resemblance of these equations to their E7(7) counterparts, equa-

tions (4.22) and (4.5). In particular, note the presence of the vector field Bµmn, the

supersymmetry transformation of which gives emnA in equation (5.4) and the non-gauge

invariant “connection” term, analogous to connection (4.8), in equation (5.5).

The construction of the E6(6) matrix from the eleven-dimensional fields is more straight-

forward and only requires consideration of the eleven-dimensional metric, 3-form field and

its 6-form dual, because the dual gravity field does not give rise to any physical degrees of

freedom. In the 5 + 6 split, the components of the eleven-dimensional fields that give rise

to vector and scalar degrees of freedom under reduction to five dimensions are

Bµ
m , Bµmn , Bµνm , gmn , Amnp , Bµνρ, (5.6)

16See for example [34], where the E8(8) matrix is found by group theoretic means.
17Our apologies to the reader for the multiple different uses of these letters.
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where now µ, ν, ρ = 0, . . . 4 and m,n, p = 5, . . . , 10. Note that in 5-dimensions, 3-forms are

dual to scalars. Therefore, in total there are 42 scalars coming from gmn, Amnp and Bµνρ

that parametrise the E6/USp(8) coset.

The E6(6) matrix in eleven dimensions can be constructed from the generalised vielbeine

that arise from the supersymmetry transformations of Bµ
m, Bµmn, Bµm1...m5 in a USp(8)

invariant reformulation of D = 11 supergravity along the lines of [3, 6]. The E6(6) matrix

is parametrised by gmn, Amnp and the dual 6-form Am1...m6 . We stress once more that the

construction of the E6(6) does not involve the dual gravity field and only depends on fields

that are well-understood in eleven dimensions. The E6(6) matrix thus constructed should

be equivalent to the E6(6) matrix constructed in [33] by group theory.

6 Concluding remarks

In this paper, we have established new structures in D = 11 supergravity, which demon-

strate most clearly and explicitly the extent to which the duality group E7(7) plays a role

in eleven dimensions. At the heart of the formalism that we develop, which is on-shell

equivalent to the Cremmer-Julia-Scherk theory [1], are the generalised vielbeine that are

packaged into a 56-bein V(z). The 56-bein contains all eleven-dimensional degrees of free-

dom that reduce to scalar degrees of freedom in four dimensions and is determined in terms

of fields that are fully understood in D = 11 supergravity, namely components of the elf-

bein, 3-form and dual 6-form potentials. Furthermore, we show that the components of

the 56-bein transform, under the supersymmetry transformations of D = 11 supergravity,

according to equations (3.16), (3.17), (3.24), (3.33), which are analogues of the supersym-

metry transformation of the scalars in the four-dimensional ungauged theory [5].

The first three components of the 56-bein, (3.12), (3.15) and (3.23), are found by

considering supersymmetry transformations (3.13) [3], (3.14) [2] and (3.22). The final

component, (3.34) is uniquely determined by requiring that it satisfies the supersymmetry

transformation (3.33). Therefore, we obtain the E7(7) valued matrix. Note that this final

component does not contain any new degrees of freedom. This is expected as the first three

components already contain all the degrees of freedom that are associated with the scalars

in the reduced theory. In this sense the last component of the 56-bein is somewhat auxiliary.

A natural completion of the would-be vectors would be to identify a field of the

form Bµm1...m7,n whose supersymmetry transformation leads to the final component, equa-

tion (3.35). The structure of this field, and how it emerges, suggests a clear link with dual

gravity. While we do not understand the relation of this field to the D = 11 supergravity

fields, we can deduce that such a field must satisfy a supersymmetry transformation of the

form given in (3.37). In any case this field plays no role in the derivation of the 56-bein,

non-linear uplift ansätze nor the generalised vielbein postulates. Nevertheless, with this

field, the 56-bein is related to a set of B that give rise to the 56 vector degrees of free-

dom in the reduction to four dimensions. Simply stated, the 56-bein V is given by the

supersymmetry transformation of B:

δB ∼ V(fermions).
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The generalised vielbeine satisfy differential constraints, which we refer to as gener-

alised vielbein postulates (see section 3.3). The generalised vielbein postulates reveal a

remarkably rich structure, some of which we point out. However, a deeper analysis of

these equations may reveal interesting insights into the unification of gravitational and

matter degrees of freedom (“generalised geometry”) and the precise role of E7(7) within

this context.

Apart from more fundamental issues related to generalised geometry, the formal-

ism that we develop in this paper and, in particular the generalised vielbein postu-

lates (4.19), (4.22)–(4.24), provide an appropriate setting for understanding issues related

to four dimensional gauged theories. In particular, there is a direct relation between these

generalised vielbein postulates and the embedding tensor of maximal gauged supergravities

in four dimensions. This is not so surprising given that the embedding tensor enters an

E7(7) Cartan equation that includes derivatives of the 56-bein and the gauge vectors —

this is precisely the form of the generalised vielbein postulates. Furthermore, it is not so

surprising given the old results of ref. [9]. In ref. [9], it is shown how one of the generalised

vielbein postulates, (4.19) (the only one known up to now), can be used to derive the em-

bedding tensor of maximal SO(8) gauged supergravity. Now that we have all generalised

vielbein postulates with derivatives a more direct analysis of the embedding tensor from

an eleven dimensional perspective is possible.

Indeed, in [12], we rederive the embedding tensor of maximal SO(8) gauged super-

gravity using the generalised vielbein postulates. As expected, this derivation is much

simpler than that undertaken in ref. [9]. Furthermore, we give explicit uplift ansaetze,

including for dual fields, for a fully constructive uplifting of the solutions of SO(8) gauged

maximal supergravity to eleven dimensions and demonstrate their non-triviality and va-

lidity for some non-trivial examples. This is the first time that non-trivial solutions of

maximal gauged supergravity have been uplifted to eleven dimensional solutions in a fully

constructive approach without recourse to numerical methods.

In a forthcoming paper [72], we demonstrate explicitly how our methods provide a

complete understanding of how the embedding tensor emerges for Scherk-Schwarz com-

pactification with background flux.

One of our main motivations in this program is a possible higher dimensional under-

standing of the new deformed SO(8) gauged supergravities [4]. We hope to address this

exciting prospect in the future.
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A Conventions

We use the following conventions:

A[a1...ap] =
1

p!

(

Aa1...ap + (p!− 1) terms
)

,

(dA)a1...ap+1 = (p+ 1)!∂[a1Aa2...ap+1],

(⋆A)a1...ad−p
=

i

p!
ǫa1...ad−pb1...bpA

b1...bp .

B Supersymmetry transformation identities

Below we list some equations that prove to be useful in deriving the supersymmetry trans-
formations of the generalised vielbeine.

δ
(

i∆−1/2Γp
AB

)

=−
√
2ΣABCD

(

i∆−1/2Γp
CD

)

− 2ΛC
[A

(

i∆−1/2Γp
B]C

)

, (B.1)

δ
(

i∆−1/2ΓmnAB

)

=−
√
2ΣABCD

(

−i∆−1/2ΓmnCD

)

− 2ΛC
[A

(

i∆−1/2ΓmnB]C

)

+
3

2
i∆−1/2 ε̄Γ[mnΨp] Γ

p
AB , (B.2)

δ
(

i∆−1/2Γm1...m5AB

)

=−
√
2ΣABCD

(

i∆−1/2Γm1...m5CD

)

− 2ΛC
[A

(

i∆−1/2Γm1...m5B]C

)

+ 15 i∆−1/2 ε̄Γ[m1m2
Ψm3

Γm4m5]AB + 3 i∆−1/2 ε̄γ5Γ[m1...m5
Ψp] Γ

p
AB ,

(B.3)

δ
(

∆−1/2ǫm1...m7
ΓnAB

)

=−
√
2ΣABCD

(

−∆−1/2ǫm1...m7
ΓnCD

)

− 2ΛC
[A

(

∆−1/2ǫm1...m7
ΓnB]C

)

−∆−1/2ǫm1...m7

(

3

4
ε̄Γ[pqΨn]Γ

pq
AB +

1

2
ε̄γ5Γ

pqΨp ΓqnAB

)

. (B.4)

The first equation in the list above is the precisely the supersymmetry transformation

of the generalised vielbein emAB found in [3]. The second equation [2] is used to derive the

supersymmetry transformation of the generalised vielbein emnAB.

C Six-form potential of the Englert solution

In this appendix, we demonstrate that even for a very simple eleven-dimensional solu-

tion with non-vanishing flux, the Englert solution [46], the six-form potential is non-zero

and contains non-vanishing components mixing space-time and internal components (thus

vitiating one of the basic assumptions made in several recent approaches to generalised

geometry). This leads us to expect that the six-form potential will in general acquire a

non-trivial form for all solutions with non-vanishing flux, that is, all solutions other than

the torus compactification.

The Englert solution satisfies the Freund-Rubin ansatz [75] and preserves an SO(7)−

subgroup of SO(8). More explicitly, the solution is of the form

gMN = γ7/18
(

◦
ηµν , γ

−1/2 ◦
gmn

)

,

FMNPQ =

(

2
√
2im7 γ

5/6 ◦
ηµνρσ,

√
2

6
m7 γ

−1/6 ◦
ηmnpqrst

◦
Srst

)

, (C.1)
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where
◦
ηµν is the anti-de Sitter metric,

◦
gmn is the round metric on the seven-sphere with

inverse radius m7 and all quantities with four-dimensional (seven-dimensional) indices are

tensors with respect to
◦
ηµν (

◦
gmn). γ is an arbitrary positive constant, which takes the

value γ1/3 = 5/4 when the solution is constructed via the non-linear flux ansatz [11].

Furthermore, the torsion tensor
◦
Smnp satisfies the relation

◦
DmSnpq =

1

6
m7

◦
ηmnpqrst

◦
Srst. (C.2)

From equation (2.13), the six-form potential is given by the following equation

7!D[M1
AM2...M7] =

i

4!
ηM1...M11F

M8...M11 − 7!
√
2

4! 2
A[M1...M3

FM4...M7]. (C.3)

Note that

ηµνρσm1...m7 = γ7/18
◦
ηµνρσ

◦
ηm1...m7 , (C.4)

while

FMNPQ =

(

2
√
2im7 γ

−13/18 ◦
ηµνρσ,

√
2

6
m7 γ

5/18 ◦
ηmnpqrst

◦
Srst

)

, (C.5)

where the indices on FMNPQ are raised using the eleven-dimensional (inverse) metric gMN .

Clearly, the right hand side of equation (C.3) is only non-zero for [M1 . . .M7] equal to

[m1 . . .m7], [µνρσmnp] or [µνρm1 . . .m4]. Thus,

7! D[M1
AM2...M7] =



























−15
√
2

4 m7 γ
−1/3 ◦

ηm1...m7 [m1 . . .m7]√
2
2 im7 γ

2/3 ◦
ηµνρσ

◦
Smnp [µνρσmnp]

−2
√
2im7 γ

2/3
◦
ζµνρ

◦
ηm1...m7

◦
Sm5...m7 [µνρm1 . . .m4]

0 otherwise

, (C.6)

where
◦
ζµνρ is the potential for the Freund-Rubin field strength and is only defined locally

4! ∂[µ
◦
ζ νρσ] = m7

◦
ηµνρσ. (C.7)

Hence,

AM1...M6 =















√
2

12 i γ
2/3

◦
ζµνρ

◦
Smnp [µνρmnp]

−15
√
2

4 γ−1/3
◦
ζm1...m6 [m1 . . .m6]

0 otherwise

, (C.8)

where
◦
ζm1...m6 is such that

7! ∂[m1

◦
ζm2...m7] = m7

◦
ηm1...m7 . (C.9)

As anticipated, AM1...M6 has non-vanishing components with both space-time and internal

indices.
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