

Adsorption phenomena in oxidation catalysis studied by microcalorimetry

S. Wrabetz, R. Arrigo, B. Frank, D. Teschner,

A. Trunschke and R. Schlögl

Fritz-Haber-Institute of the Max Planck Society Department of Inorganic Chemistry, 14195 Berlin, Germany, wrabetz@fhi-berlin.mpg.de

7th World Congress on Oxidation Catalysis – June 9 - 12, 2013

- adsorption phenomena play an important role in oxidation catalysis
- \blacktriangleright adsorption steps, surface reaction processes, and desorption steps
- The knowledge about e.g. heat of adsorption of reactant on the surface can contribute to a better understanding of the complex microkinetics.
 - ➢ since perhaps only a minor fraction of all surface atoms form active centers

Adsorption Isothermal Microcalorimetry

key to the effective use of adsorptive microcalorimetry is the careful choice of probe molecules and the adsorption temperature to study

use of probe molecules such as educt, intermediate, product or molecules closely related to the reactants is an elegant method to study the surface sites relevant for catalytic reaction

Equipment

Experimental procedure

Activation:

UHV (10⁻⁸hPa), gases (H₂, O_{2}), rt - 600°C

Reaction:

Calorimeter cell can used as a flow-type reactor.

Catalyst is used in the selected reaction until stady-state performance, rt - 600°C

Transfer

of the sample cell into the calorimeter and degassing/equilibration at $\rm T_{\rm ads.}$

Adsorptive microcalorimetric experiment:

Stepwise adsorption, desorption and re-adsorption of the selected probe molecule at the selected temperature.

Adsorption microcalorimetry is broadly employed in several projects of our department.

- 1. Selective oxidation of propane to acrylic acid over purephase MoVTeNb oxide catalyst - M1 catalyst.
- 2. Oxidative dehydrogenation over oxygen functionalized carbon nanotube oCNT
- 3. Oxidation of HCl to Cl₂ over bare and supported CeO₂
- 4. Oxidation of alcohol over vanadium supported Al_2O_3

Adsorption phenomena in oxidation catalysis

Selective oxidation of propane to acrylic acid [1,2]

Intention: study of the post-reaction state of the surface "used catalyst" in comparison with the prepared state of the surface "fresh catalyst" in order to describe a structure-selectivity relationship

Adsorption

🛧 🛛 propane as probe molecule

Microcalorimetry :

- T_{adsorption}=313K < 673 K=T_{reaction}
- ★ selected catalysts: different selective catalysts

pure-phase MoVTeNb	S _{aa} = 53%
modified MoVTeNb by an oxidizing agent	S _{aa} = 37%
MoV oxide	S _{aa} = 1.8 %

Botella, P., et al., The preparation, characterization, and catalytic behavior of MoVTeNbO catalysts prepared by hydrothermal synthesis. Journal of Catalysis, 2002. 209(2): p. 445-455.
Ueda, W., et al., Structural organization of catalytic functions in Mo-based oxides for propane selective oxidation. Catalysis Today, 2004. 96(4): p. 235-240.

Sabine Wrabetz, Electronic Structure and Adsorption, Dept. of Inorganic Chemistry, Fritz-Haber-Institut

Differential heats of adsorbed propane of different selective catalysts

remarkable selective (S_{aa} = 53%) MoVTeNb oxide surface is characterized by high density of energetically uniform propane adsorption sites with weak acid-base character

The weaker interaction of propane with the post-reaction state of the surface is apparently favorable for the catalytic performance; perhaps because of facile product desorption.

M. Hävecker, S. Wrabetz , A. Trunschke, R. Schlögl et.al. ; Journal of Catalysis, 258(1) (2012) 48 -60.

Adsorption microcalorimetry is broadly employed in several projects of our department.

- 1. Selective oxidation of propane to acrylic acid over purephase MoVTeNb oxide catalyst - M1 catalyst.
- 2. Oxidative dehydrogenation over oxygen functionalized carbon nanotube oCNT
- 3. Oxidation of HCl to Cl₂ over bare and supported CeO₂
- 4. Oxidation of alcohol over vanadium supported Al_2O_3

Intention: To establish a mechanistic model for carbon-catalyzed ODH. Ads. properties (reversibility, heat of ads., number of ads. sites) are important input for kinetic modeling.

Oxidative dehydrogenation of propane over carbon materials

Table 1. Quantitative evaluation of calorimetric measurements of propane and propylene adsorption on CNT and B_2O_3 -CNT catalysts (Figure 1).

- High energy sites can be assigned to oxygen surface groups, low energy sites to carbon surface (0001)
- 3-5% of the surface is capable of strong interaction with C₃ hydrocarbons (*high-energy adsorption sites*)
- Irreversibility of propylene adsorption due to surface reaction with ketones and anhydrides
- The weaker interaction of propane/propylene with the used B₂O₃-oCNT surface is apparently favorable for the catalytic selectivity.

Adsorption phenomena in oxidation catalysis Oxidative dehydrogenation of propane over carbon materials

• The near surface oxygen concentration of 4.3-4.7% on used oCNT and B_2O_3 -oCNT (*XPS*) correlates to the 3-5% of the high-energy adsorption sites (*Calorimetriy*).

Combination of Microcalorimetry^[1], XPS and TPD ^[2] results allows for a quantitative description of the carbon surface under reaction conditions.

Type	Differential heat	Ads. surface site			
	kJ/mol				
А	45	ketone and quinone groups			
	homogeneous high energy sites	sites react rev. with C_3H_8			
		sites react irrev. with C_3H_6			
В	35 - <45	carboxylic anhydrides, phenol,			
	heterogeneous composition	ether			
		sites react rev. with C_3H_8			
		sites react irrev. with C_3H_6			
С	30	lactone/ester, carboxylic acid			
	homogeneous low energy sites	sites react rev. with C_3H_8 & C_3H_6			
D	20 - < 25	basal plane of graphitic carbon			
		(free of oxygen)			
		sites react rev. with C_3H_8 & C_3H_6			

Indications for a higher selective surface:

- more medium energy adsorption sites, such as phenol
- weaker interaction of propane/propylene with the oxygen surface sites

[1] B. Frank, S. Wrabetz, O.V. Khavryuchenko, R. Blume, A. Trunschke, R. Schlögl, ChemPhysChem 12 (2011) 2709.
[2] B. Frank, J. Zhang, R. Blume, R. Blume, R. Schlögl, D.S. Su, Angew. Chemie 121 (2009) 7046-6917.
B. Frank, M. Morassutto, R. Schomäcker, R. Schlögl, D.S. Su, ChemCatChem, 2 (2010) 644-648.

Adsorption microcalorimetry is broadly employed in several projects of our department.

- 1. Selective oxidation of propane to acrylic acid over purephase MoVTeNb oxide catalyst - M1 catalyst.
- 2. Oxidative dehydrogenation over oxygen functionalized carbon nanotube oCNT
- 3. Oxidation of HCl to Cl_2 over bare and supported CeO_2
- 4. Oxidation of alcohol over vanadium supported Al_2O_3

Reactivity seems to be linked with the reducibility of the surface.

Farra, R., Wrabetz, S., Schuster, M. E., Stotz, E., Hamilton, N., Amrute, A. P., Pérez-Ramírez, J., López, N., Teschner, D., Phys. Chem. Chem. Phys., 15 (2013) 3454 - 3465. M. Mosera C. Mondellia T. Schmidtb F. Girgsdiesc M.E. Schusterc R. Farra, L. Szentmiklósi, D. Teschner, J. Pérez-Ramírez, Applied Catalysis B: Environmental 132–133 (2013) 123–131.

Adsorption microcalorimetry is broadly employed in several projects of our department.

- 1. Selective oxidation of propane to acrylic acid over purephase MoVTeNb oxide catalyst - M1 catalyst.
- 2. Oxidative dehydrogenation over oxygen functionalized carbon nanotube oCNT
- 3. Oxidation of HCl to Cl₂ over bare and supported CeO₂
- 4. Oxidation of alcohol over vanadium supported Al_2O_3

Adsorption phenomena in oxidation catalysis Oxidation of Alcohol

Catalyst: $V_x O_y / \gamma - Al_2 O_3$ $T_{reaction} = 140 - 200 \ ^{\circ}C$

Intention: Determination of kinetic data: N_o, K and $_{\Delta}H_{ads}$ of Ethanol on V_xO_y/Al₂O₃

 $C_2H_5OH + O_2 \longrightarrow H_4O + H_2O \Delta_RH = -78,5 \text{ kJ/mol}$

Microcalorimetry alone or combined with to other techniques, is a very powerful/sensitive tool to probe catalytically active surfaces <u>quantitatively</u>.

Quantitative data (*reversibility, heat of adsorption, number of adsorption sites, equilibrium constant*) provide a basis for <u>theoretical modeling</u>.

Microcalorimetry can applied under or close to reaction conditions ! \rightarrow investigation of the <u>catalytic relevant surface sites</u>

Thank you for your attention

http://www.fhi-berlin.mpg.de Dept. of Inorganic Chemistry, Director: Prof. R. Schlögl

Supporting Material

Obtained physical quantities & evaluation criteria of the calorimetric results

CATALYTIC TEST (fresh/used catalyst)

propane oxidation data obtained from fresh and used MoVTeNb catalyst

SURFACE STUDY_(fresh/used catalyst)

in situ XPS: surface element composition during and after PO over MoVTeNb catalyst

Surface composition of the used M1 is similar to the composition measured in the *in situ* experiment in the presence of steam. [A.Celaya Sanfiz et.al., J. Phys. Chem. C, 2010, 114, pp 1912]

ex situ surface analysis of the used catalyst can be done

 n_{ads} (total) : overall adsorbed amount under an equilibrium pressure of 95 mbar n_{ads} (irrev.) : chemisorbed amount

Specific surface area $_{propane}$ = N $_{mono}$ * S * cross-section area $_{propane,T}$ * Avogadro constant

	10%V/SBA15 dehydration temperature	N _{mono} μmol *g ⁻¹ higher	n order Lan	R ² gmuir	Spropane m ² *g ⁻¹	BET S _{N2} m ² *g ⁻¹
n = 1 non-dissociative ads. n > 1 dissociative ads :	373 K	0.9 (2)	1.20 (2)	0.99983	226 (10)	329 (4)
activated ads.	573 K	1.3 (4)	1.22 (2)	0.99982	304 (10)	
	673 K	1.2 (3)	1.22 (2)	0.99905	290 (10)	

[1] Dinse, A.; Wrabetz, S. et.al., J.Mol.Catal. A 307 (2009)43.

obtained results Differential heat versus the n_{ads}

Evaluation criteria of the calorimetric experiment

Background of the thermo signal during the stepwise adsorption

Background deviates from the base-line

- → Adsorption process is accompanied by secondary processes
 - e.g. during n-butane ads. a partial isomerization of n-butane to isobutane in the calorimeter cell was observed

Evaluation criteria of the calorimetric experiment

Determination of the time constant τ of the integral heat signal

