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1 Introduction

Just what is a hybrid anyway? In constructing two-dimensional superconformal field theo-

ries (SCFTs) relevant for superstring vacua we are used to two sorts of massless fluctuating

fields: those corresponding to a non-linear sigma model (NLSM), and those corresponding

to a Landau-Ginzburg (LG) theory. The former define a classically conformally invariant

system. Under favorable conditions, e.g. a Calabi-Yau target space and world-sheet su-

persymmetry, the background fields can be chosen to preserve superconformal invariance,

and when the background is weakly coupled in a “large radius limit” (i.e. the background

fields have small gradients), the theory reduces to a free-field limit. The latter have su-

perpotential interactions that explicitly break scale invariance; however, under favorable

conditions, e.g. a quasi-homogeneous superpotential, the IR limit of such a theory defines

a non-trivial SCFT.

In each case, the utility of the description is two-fold: at a fundamental level, we can use

the weakly coupled UV theory to define a SCFT; as a practical matter, the weakly coupled

description, combined with non-renormalization theorems that follow from supersymmetry,

allow us to identify and compute certain protected quantities such as chiral rings and

massless spectra of the associated string vacua in terms of the UV degrees of freedom.

By now the reader has surely guessed what is meant by a hybrid [1, 2]: it is a two-

dimensional theory that includes both types of massless fluctuating fields: ones that have

classically conformally invariant NLSM self-interactions, as well as some that self-interact

via a superpotential; of course an interesting hybrid also has interactions between the two

types of degrees of freedom. A hybrid is a fibered theory, where the fiber is a LG theory

with potential whose coefficients depend on the fields of the base NLSM. The potential is

chosen so that its critical point set is the base target space. We then have two important

questions: what are the criteria for a hybrid theory to flow to a SCFT? how do we generalize

NLSM/LG techniques to compute physical quantities?

It is well-known that all of these descriptions — large radius limits of NLSMs, Landau-

Ginzburg orbifolds (LGOs), and hybrid loci — arise as phases of (2,2), and more generally

(0,2) gauged linear sigma models (GLSMs) [1]. The GLSM philosophy is that each phase

should yield a limiting locus where at least protected quantities should be amenable to

computation via the UV weakly-coupled field theory description. Such techniques are

known for large radius NLSM and LGO phases but not for more general phases. In this

work, we take a step in developing techniques for what we will call the “good hybrid”

phases of a GLSM.1

Although this does not cover a generic GLSM phase, and there are perhaps good

reasons [3] that we should not expect a simple description for a generic phase, it does

increase the set of special points in the moduli space amenable to exact computations; this

can lead to useful insights into stringy moduli space as in [4–7]. In addition, our definition

of a good hybrid model, although inspired by the GLSM construction, will not explicitly

1Along the way we obtain a simple and direct description of the massless spectrum for the large radius

limit of a (0,2) NLSM — an application to CY NLSMs with non-standard embedding may be found in

appendix D.

– 2 –



J
H
E
P
0
5
(
2
0
1
4
)
0
4
3

invoke the GLSM. Thus, we are in principle providing a new class of UV theories that can

lead to SCFTs without a known GLSM embedding.

In this note we will focus on hybrid theories with (2,2) world-sheet supersymmetry

that are suitable for supersymmetric string compactification, i.e. ones with integral U(1)L×
U(1)R R-symmetry charges; as in the case of LGO string vacua, this is achieved by taking

an appropriate orbifold.

While such models offer a good point of departure, it is clear that a more general

(0,2) hybrid framework will be both computationally useful and conceptually illuminating.

We will describe (0,2) hybrids in a future work; for now we note that just like (2,2) LG

models, the hybrids incorporate a class of Lagrangian deformations away from the (2,2)

locus. These are obtained by smoothly deforming the (2,2) superpotential to a more general

(0,2) form.

In what follows, we first give a broad geometric description of (2,2) hybrids, construct

a Lagrangian for a good hybrid model and study its symmetries. With that basic structure

in hand, we turn to a technique, valid in the large base volume limit and generalizing

the well-known (2,2) and (0,2) LGO results of [8, 9], to compute the massless heterotic

spectrum of a hybrid compactification. We then apply the techniques to a number of

examples and conclude with a brief discussion of applications and further directions.
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2 A geometric perspective

The geometric setting for our theory is a (2,2) NLSM constructed with (2,2) chiral su-

perfields. Consider a Kähler manifold Y0 equipped with a holomorphic function — the

superpotential W — chosen so that its critical point set is a compact subset B ⊂ Y 0.

More precisely, dW , a holomorphic section of the cotangent bundle T ∗
Y0
, has the property

that dW−1(0) = B ⊂ Y0. We call this the potential condition. A LG model, with Y0 ≃ Cn

and B being the origin, is a familiar example. A compact Y0 necessarily has a trivial

superpotential, and the resulting theory is just a standard compact NLSM.

We say a geometry satisfying the potential condition has a hybrid model iff the local

geometry for B ⊂ Y0 can be modeled by Y — the total space of a rank n holomorphic

vector bundle X → B over a compact smooth Kähler base B of complex dimension d. The

point of this definition is that the superpotential interactions will lead to a suppression
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of finite fluctuations of fields away from B, so that the low energy physics of the original

NLSM will be well-approximated by the restriction to the hybrid model. Our main task

will be to describe this low energy physics, and in what follows we will concentrate on the

hybrid model geometry Y . In many examples (e.g. the LG theories) Y ≃ Y0, but our

results apply to the more general situation where Y is simply a local model. A simple

example of a hybrid geometry, where X = O(−2) over B = P1, is presented in appendix A.

In order to be reasonably confident that the low energy limit of a hybrid model is a

(2,2) SCFT, we will need the geometry to satisfy several additional conditions intimately

related to the existence of chiral symmetries and GSO projections. It will be easiest to

discuss these after we introduce the explicit Lagrangian realization of this geometry. In

our examples these features will already be present in the “UV” completion of the hybrid

model, offered either by Y0 or some other high energy description such as a GLSM.2

A final geometric comment, relevant for heterotic applications, concerns (0,2)-

preserving deformations of these theories. (2,2) theories often admit a class of smooth

(0,2) deformations, where the left-moving fermions couple to E → Y , a deformation of

TY , and the (0,2) superpotential is encoded by a holomorphic section J ∈ Γ(E∗) with

J−1(0) = B. In the hybrid case there exist (0,2) deformations where E = TY but dJ 6= 0;

such a (0,2) superpotential cannot be integrated to a (2,2) superpotential W . Turning

these on leads to a simple class of (0,2) hybrid models.

3 Action and symmetries

In this section we construct the (2,2) SUSY UV action for a hybrid model and analyze its

symmetries. We begin with the necessary superspace formalism for a flat Euclidean world-

sheet with coordinates (z, z). Since we are interested in (0,2) deformations of (2,2) theories,

it will be convenient for us to work with both (2,2) and (0,2) superspaces.3 Let’s start with

the latter. Introducing Grassmann coordinates θ and θ, we obtain the supercharges

Q = − ∂

∂θ
+ θ∂̄z, Q = − ∂

∂θ
+ θ∂̄z, (3.1)

where ∂̄z ≡ ∂/∂z. These form a representation of the (0,2) SUSY algebra: Q2 = Q2
= 0

and {Q,Q} = −2∂̄z. The supercharges are graded by a U(1)R symmetry that assigns

charge q = 1 to θ, and they anticommute with the supercovariant derivatives

D =
∂

∂θ
+ θ∂̄z, D =

∂

∂θ
+ θ∂̄z, (3.2)

that satisfy D2 = D2
= 0 and {D,D} = 2∂̄z.

To build a (2,2) superspace we introduce additional Grassmann variables θ′, θ
′
and

form Q′, Q′
, as well as D′ and D′

, by replacing (θ, θ, ∂̄z) → (θ′, θ
′
, ∂z), where ∂z = ∂/∂z.

These supercharges and derivatives are graded by U(1)L that assigns charge q = 1 to θ′.

2It would be interesting to find hybrid examples where these features emerge accidentally.
3Our superspace conventions are those of [10]; more details may be found in [11] or [12].
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3.1 Multiplets

We are interested in Kähler hybrid models with target space Y , and these can be con-

structed by using bosonic chiral (2,2) superfields and their conjugate anti-chiral multiplets4

denoted by Yα and Yα
, with α, α = 1, . . . , dimY . These decompose into (0,2) chiral and

anti-chiral multiplets as follows:

Yα = Y α +
√
2θ′Xα + θ′θ

′
∂zY

α , Yα
= Y

α −
√
2θ

′Xα − θ′θ
′
∂zY

α
,

Y α = yα +
√
2θηα + θθ∂̄zy

α , Y
α
= yα −

√
2θηα − θθ∂̄zy

α ,

Xα = χα +
√
2θHα + θθ∂̄zχ

α , Xα
= χα +

√
2θH

α − θθ∂̄zχ
α . (3.3)

The Y α are bosonic (0,2) chiral multiplets, while the Xα are chiral fermi multiplets, with

lowest component a left-moving fermion χα; the Hα and their conjugates are auxiliary

non-propagating fields.5

Since Y is the total space of a vector bundle, it will occasionally be useful to split the

yα into base and fiber coordinates, which we will denote by yα = (yI , φi), with I = 1, . . . , d

and i = 1, . . . , n. The yI are then coordinates on the base manifold B, while the φi

parametrize the fiber directions.

3.2 The (2,2) hybrid action

The two-derivative (2,2) action is a sum of kinetic and potential terms, with

Skin =
1

4π

∫
d2z DDLkin, Lkin =

1

2
D′D′K(Y,Y),

Spot =

√
2m

4π

∫
d2z DW(Y,X ) + c.c., W =

1√
2
D′W (Y) . (3.4)

As is well-known, the kinetic term leads to a Y NLSM with a Kähler metric g. The

superpotential W is a holomorphic function on Y satisfying the potential condition, i.e.

dW (0)−1 = B; m is a parameter with dimensions of mass. If the metric g is well-behaved,

then the potential condition leads a suppression of field fluctuations away from B ⊂ Y via

the bosonic potential

S ⊃ |m|2
2π

∫
d2z gαβ∂αW∂βW , (3.5)

and at low energies (as compared to |m|) the kinetic term can be taken to be quadratic in

the fiber directions, i.e. the Kähler potential is

K = K(yI , yI) + φh(yI , yI)φ+ . . . , (3.6)

4Recall that a chiral superfield A satisfies the constraints DA = D
′
A = 0; more general (2,2) multiplets

(twisted chiral and semi-chiral) are reviewed in, for instance, [13].
5A comment on Euclidean conventions: the charge conjugation operator C, inherited from Minkowski

signature, conjugates the complex bosons and acts as C(χ) = χ and C(χ) = −χ for every fermion χ.

– 5 –



J
H
E
P
0
5
(
2
0
1
4
)
0
4
3

where K is a Kähler potential for a metric on B, h is a Hermitian metric on X → B, and

. . . denotes neglected terms in the fiber coordinates. Using the base-fiber decomposition

the metric gαβ = ∂α∂βK ≡ Kαβ then takes the form

g = (KIJ − φFIJhφ)dy
IdyJ +DφhDφ+ . . . , (3.7)

where A = ∂hh−1 is the Chern connection for the metric h, F = ∂̄A is its (1,1) curvature,

and Dφ = dφ+ φA is the corresponding covariant derivative.

Positivity of the metric and the case Y ≃ Y0. In many cases we need not worry

about higher order corrections to g in order to define a sensible theory. As in the simple

case of LG models, this would be a situation where we need not consider the distinction

between Y and Y0 from above. Examining the form of g, we see that a necessary condition

is that φFIJhφ is non-positive for all points in Y .6 We say a bundle X → B is non-positive

if it admits a Hermitian metric h that satisfies this non-positivity condition.

Thus, to use (3.6) to define a UV-complete theory, we are led to a geometric question:

what are the non-positive bundles over B? This is closely related to classical questions

in algebraic geometry regarding positive and/or ample bundles, and using those classical

results we can easily find sufficient conditions for non-positivity. Recall that a line bundle

L → B is said to be positive if its (1,1) curvature form is positive; it is said to be negative

if the dual bundle L∗ is positive [14, 15]. Taking X = ⊕iLi, a sum of negative and trivial

line bundles, leads to many examples of non-positive bundles.

We should stress two points: first, even this set of examples leads to many previously

unexplored SCFTs. Second, more generally, we do not need to assume that Y ≃ Y0 or

that g has no higher-order terms in the fibers. The low energy limit of a UV theory with a

hybrid model will be well-described by our action, and the potential condition will imply

that the fiber corrections to the metric will not be important to the low energy physics. We

will analyze one such example below, where X is a sum of a positive and a negative bundle.

(0,2) action. Since we are interested in heterotic applications as well as (0,2) deforma-

tions, it is useful to have the manifestly (0,2) supersymmetric action obtained by integrating

over θ′, θ
′
in (3.4). Absorbing the superpotential mass scale m into W the result is

Lkin =
1

2
(Kα∂zY

α −Kα∂zY
α
) + gαβXαXα

, W = XαWα . (3.8)

where Kα ≡ ∂K/∂Y α, Wα ≡ ∂W/∂Y α, etc. It is a simple matter to obtain the classical

equations of motion from the (0,2) action.7 The result is

D Xα =
√
2Wα, D

[
gαβ∂Y

β
+ gαβ,γX

βX γ

]
=

√
2X βWαβ , (3.9)

where we defined the fermi superfield Xα ≡ gαβ(Y, Y )X β
.

6Suppose there is a point p ∈ B and φ0 ∈ π−1(p) such that the Hermitian form φ0FIJhφ0
has a positive

eigenvalue. Then taking φ = tφ0, for sufficiently large t the metric g will cease to be positive.
7If A and B are (0,2) superfields, then DD(AB)|θ,θ=0

= 0 ∀B =⇒ A = 0; any chiral (anti-chiral)

superfield, say δX (δX ), can be expressed as DP (DP ) for some superfield P .
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Component action. Finally, we can integrate over the remaining (0,2) superspace co-

ordinates θ and θ to obtain the component action. The auxiliary field H
α
is determined

by the equations of motion (3.9):

gαβH
β
= gαβ,γη

γχβ +Wα , (3.10)

and using this as well as χα ≡ gαβχ
β we obtain

2πL = gαβ

(
∂̄zy

α∂zy
β + ηβDzη

α
)
+ χαDzχ

α − ηβηαR δ
αβγ

χδχ
γ − χαηβDβWα

+ χαηβDβWα + gβαWαW β , (3.11)

where the covariant derivatives are defined with the Kähler connection Γα
βγ ≡ gγβ,βg

βα, e.g.

Dzχ
α = ∂̄zχ

α + ∂̄zy
βΓα

βγχ
γ , DαWβ = Wβα − Γγ

αβWγ , (3.12)

and the curvature is R δ
αβγ

≡ Γδ
αγ,β

. This is a complicated interacting theory, and in general

it is not clear that one set of fields is preferred to another (say using χα instead of χα);

however, for the purpose of determining the massless spectrum, it turns out to be useful

to introduce another field redefinition to keep track of the non-zero left-moving bosonic

excitations:

ρα ≡ gαα∂y
α + Γδ

αγχδχ
γ , (3.13)

in terms of which the left-moving kinetic terms take a strikingly simple form:

2πL = ρα∂̄zy
α + χα∂̄zχ

α + ηα
[
gαβDzη

β + ηβR δ
αβγ

χδχ
γ + χβDαWβ

]

+ χαηβDβWα + gβαWαW β . (3.14)

Unlike the other fields ρ does not transform as a section of the pull-back of a bundle on Y

under target space diffeomorphisms; this will have important consequences below.

3.3 Symmetries

We now examine the symmetries of the hybrid Lagrangian.

The Q supercharge. Our action respects (2,2) SUSY generated by the superspace op-

erators Q and Q, as well as their left-moving images. We define the action of the corre-

sponding operators Q and Q by
√
2[ξQ+ ξQ, A] ≡ −ξQA− ξQA, (3.15)

where ξ is an anti-commuting parameter and A is any superfield. In order to avoid writing

the graded commutator, we will use a condensed notation ξQ ·A ≡ [ξQ, A]. For our subse-

quent study of the right-moving Ramond ground states, we will be particularly interested

in the action of Q. Using the superfields in (3.3), we obtain

Q · yα = 0, Q · χα = 0, Q · ηα = ∂̄zy
α , Q ·Hα = ∂̄zχ

α ,

Q · yα = −ηα , Q · χα = H
α
, Q · ηα = 0 , Q ·Hα

= 0 . (3.16)

– 7 –
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The action of the remaining supercharges is easily obtained from this one by conjugation

and/or switching left- and right-moving fermions. Eliminating the auxiliary fields by their

equations of motion we obtain

Q · yα = 0 , Q · χα = 0 , Q · ηα = ∂̄zy
α ,

Q · yα = −ηα , Q · χα = Wα , Q · ηα = 0 . (3.17)

From (3.9) it follows that up to the η equations of motion we also have Q · ρα = χβWβα.

Hence we can decompose Q as Q = Q0 +QW , where the non-trivial action is

Q0 · yα = −ηα , Q0 · ηα = ∂̄zy
α , QW · χα = Wα , QW · ρα = χβWβα . (3.18)

These satisfy Q
2
0 = Q

2
W = {Q0,QW } = 0.8 Q0 is the supercharge for the NLSM with

W = 0, while QW incorporates the effect of a non-trivial potential.

Chiral U(1) symmetries. The U(1)L × U(1)R symmetries play an important role in

relating the UV hybrid model to the IR physics of the corresponding SCFT. In the classical

NLSM with W = 0 the presence of these symmetries is a consequence of the existence of

an integrable, metric-compatible complex structure on Y . In terms of components fields,

the symmetries leave the bosonic fields invariant, while rotating the fermions as follows:

U(1)0L : δ0Lη = 0, δ0Lχ = −iǫχ ; U(1)0R : δ0Rη = −iǫη, δ0Rχ = 0 , (3.19)

where ǫ is an infinitesimal real parameter. These naive symmetries are explicitly broken by

the superpotential, but they can be improved if the geometry (Y , g) admits a holomorphic

Killing vector V satisfying LV W = W .9 V generates a non-chiral symmetry action

δV Y
α = iǫV α(Y ), δV Y

α
= −iǫV

α
(Y ); δV Xα = iǫV α

,βX β , δV Xα
= −iǫV

α
,βX

β
,

(3.20)

and it is easy to see that δL,R ≡ δ0L,R + δV are symmetries of the classical action.

While U(1)diag ⊂ U(1)L × U(1)R has a non-chiral action on the fermions and hence

is non-anomalous, U(1)L is a chiral symmetry that will be anomaly free iff c1(TY ) = 0,

a condition satisfied when Y is a non-compact Calabi-Yau manifold, i.e. Y has a trivial

canonical bundle KY ≃ OY . In what follows we assume KY is indeed trivial (this is

stronger than c1(TY ) = 0). When X = ⊕iLi, a sum of line bundles such that ⊗iLi is

negative, then since KY = KB ⊗i L
∗
i the anti-canonical class of B is very ample and B

is Fano.10

8If we keep the terms in Q · ρ proportional to η equations of motion and decompose that into a W -

independent and W -dependent contributions, we find that the decomposition Q = Q
0
+ QW into a pair

of nilpotent anti-commuting operators holds without use of equations of motion; for us the result of (3.18)

will be sufficient.
9Holomorphic Killing vectors satisfy V α

,β
= 0 and LV g = 0. They are a familiar topic in supersymmetry —

see, e.g., appendix D of [16]. Note that on a compact Kähler manifold a Killing vector field is holomorphic,

but this can fail on a non-compact manifold. Killing vectors on Kähler manifolds are further discussed

in [17, 18].
10A variety is Fano iff its anti-canonical class is ample; Fano varieties are quite special: for instance

Hi(B,O) = 0 for i > 0, Pic(B) ≃ H2(B,Z); in addition, they are classified in dimension d ≤ 3 and admit

powerful criteria for evaluating positivity of bundles [15].
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In what follows we will denote the conserved charge for U(1)L (U(1)R) by J0 (J0) and

its eigenvalues on various operators and states by q (q).

R-symmetries for good hybrid models. We would like to identify the UV U(1)L ×
U(1)R symmetries described above with their counterparts in the conjectured IR SCFT.

As usual, there is a small subtlety in doing this when V is not unique. In practice this

is easily achieved by picking a sufficiently generic superpotential and more generally, one

could use c-extremization [19] to fix U(1)L × U(1)R up to the usual caveats of accidental

IR symmetries.

More importantly, in order for the UV R-symmetry of the hybrid model to be a good

guide to the IR physics, we need V to be a vertical vector field, i.e. LV π
∗(ω) = 0 for all

forms ω ∈ Ω•(B), and in particular the U(1)L × U(1)R symmetries fix B point-wise. We

denote a model where this is the case a good hybrid. As we show in appendix B this implies

V =
∑n

i=1qiφ
i ∂
∂φi + c.c. (3.21)

for some real charges qi. The qi have to be compatible with the transition functions defining

X → B, and since LV W = W , and W is polynomial in every patch, qi ∈ Q≥0. In a LG

theory, i.e B a point, standard results show that if the potential condition is satisfied then

without loss of generality 0 < qi ≤ 1/2 [20, 21]. More generally, the potential condition

requires that W (yI , φ), thought of locally as a LG potential for the fiber fields φ depending

on the “parameters” yI , should be non-singular in a small neighborhood of any generic

point in B. Hence, the range of allowed qi is the same for a hybrid theory as it is for

LG models.

The orbifold action. Our main interest in the hybrid SCFTs is for applications to

supersymmetric compactification of type II or heterotic string theories. For left-right sym-

metric theories this requires the existence of U(1)L × U(1)R symmetries with integral q,

q charges of all (NS,NS) sector states [22]. Our hybrid theory, if it flows as expected to

a c = c = 9 SCFT in the IR will not satisfy this condition. Fortunately, the solution is

the same as it is for Gepner models [23] or LG orbifolds [24, 25]: we gauge the discrete

symmetry Γ generated by exp[2πiJ0], where J0 denotes the conserved U(1)L charge; since

all fields have q − q ∈ Z, the orbifold by Γ is sufficient to obtain integral charges.

In the line bundle case with qi = ni/di we then see that Γ ≃ ZN , with N the least

common multiple of (d1, . . . , dn). Since Γ is embedded in a continuous non-anomalous

symmetry we expect the resulting orbifold to be a well-defined quantum field theory, and

the resulting orbifold SCFT will be suitable for a string compactification.

In addition to the introduction of twisted sectors and the projection, the orbifold has

one important consequence for the physics of hybrid models: it allows us to consider more

general “orbi-bundles,” where the fiber in X → B is of the form Cn/Γ, and the transition

functions are defined up to the orbifold action. For instance, we will examine a theory with

B = P3 and X = O(−5/2)⊕O(−3/2), where the orbifold Γ = Z2 reflects both of the fiber

coordinates.11

11A GLSM embedding of this hybrid model is given in section 2.5 of [26].
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3.4 The quantum theory and the hybrid limit

Having defined the classical hybrid model’s Lagrangian and discussed its symmetries, we

now discuss the quantum theory. To orient ourselves in the issues involved, let’s recall

the case of (2,2) LG models — the simplest examples of hybrids. These theories have a

Lagrangian description at some renormalization scale µ as a free kinetic term for chiral

multiplets, and a superpotential interaction with dimensionful couplings m. The theory

is weakly coupled when µ ≫ m, and we can use the Lagrangian and (approximately) free

fields to describe the theory. The low energy limit µ → 0 is then strongly coupled, and

while W is protected by SUSY non-renormalization theorems, the kinetic term receives a

complicated but irrelevant set of corrections. There is by now overwhelming evidence that

these do flow to the expected SCFTs, in accordance with the original proposals [27, 28], and

computations of RG-invariant quantities allow us to use the weakly coupled µ ≫ m descrip-

tion to describe exactly the SCFT’s (c,c) chiral ring and more generally the Q-cohomology.

Furthermore, the results extend to LGOs suitable for string compactification.12

There is a small IR subtlety in using the weakly coupled LG description: the theory at

W = 0 is non-compact and has all the usual difficulties associated to non-compact bosons.

This is of course not very subtle since the theory is free; however, more to the point, in using

the weakly coupled description we still keep track of the R-charges and weights that follow

from the superpotential and do not consider states supported away from the W = 0 locus.

A more general hybrid theory has a similar structure, except that now there are two

sorts of couplings: the superpotential couplings m/µ, as well as the choice of Kähler class

on the base B. Although the latter coupling is typically encoded in the kinetic D-term,

it can also be expressed as a deformation of the twisted chiral superpotential. Hence, the

Kähler class and superpotential couplings do not receive quantum corrections. Of course

we do expect corrections to the D-terms, but these should be irrelevant just as they are in

the LG case. Moreover, there is good evidence, based on GLSM constructions, that the

hybrid models with a GLSM UV completion should flow to SCFTs with expected properties

(i.e. correct central charges and R-symmetries), and we expect the same to hold for more

general hybrid models. As in the LG case, the strict W = 0 limit may be subtle, perhaps

even more so, since it may require us to specify additional details about the geometry of

Y . However, we may use the same cure for these IR subtleties as we do in the LG case:

use the R-charges and weights encoded by the superpotential and restrict attention to field

configurations and states supported on B.

Assuming a hybrid model does flow to an expected SCFT, we would like to have

techniques to evaluate RG-invariant quantities such as the Q-cohomology. It is here that

there will be important conceptual and technical differences from the LG case due to the

non-trivial base geometry B. For instance, we expect the Q-cohomology to depend on the

choice of Kähler class on B. While there will not be a perturbative dependence, we do

in general expect corrections from world-sheet instantons wrapping non-trivial cycles in

B. These corrections are suppressed when B is large, which leads us to define the hybrid

12These typically have non-trivial (a,c) rings encoded in the twisted sectors, and that ring structure is

not easy to access directly via the LG orbifold description.
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analogue of the large radius limit of a NLSM: the hybrid limit, where the Kähler class of

B is taken to be arbitrarily deep in its Kähler cone. In what follows, we will study the

Q-cohomology of a hybrid model in the hybrid limit.

4 Massless spectrum of heterotic hybrids

In this section we develop techniques to evaluate the massless spectrum for a compacti-

fication of the E8×E8 heterotic string based on a c = c = 9 (2,2) hybrid SCFT.13 We

first review the standard prescription [8, 23, 24] to obtain a modular invariant theory

and identify world-sheet Ramond ground states with massless fermions in spacetime. We

then discuss how to enumerate these ground states by studying the Q cohomology in the

hybrid limit.

4.1 Spacetime generalities

In order to describe a heterotic string compactification, we complete our hybrid c = c = 9

N = (2, 2) SCFT internal theory to a critical heterotic theory by adding ten left-moving

fermions (with fermion number Fλ) that realize an so(10) level 1 current algebra, a left-

moving level 1 hidden e8 current algebra, and the free c = 4, c = 6 theory of the uncom-

pactified spacetime R1,3.

A modular invariant theory is obtained by performing left- and right- GSO projections.

The left-moving GSO projection onto eiπJ0(−)Fλ = 1 is responsible for enhancing the

linearly realized u(1)L ⊕ so(10) gauge symmetry to the full e6. The right-moving GSO

projection has a similar action, combining J0 with the fermion number of the R1,3 theory.

Its immediate spacetime consequence is N = 1 spacetime supersymmetry, or equivalently,

a relation, via spectral flow, between states in right-moving Neveu-Schwarz and Ramond

sectors. Spacetime fermions arise in the (NS,R) and (R,R) sectors, and supersymmetry

allows us to identify the full spectrum of supermultiplets in the spacetime theory from

these states.

The spacetime theory obtained by this procedure will have a model-independent set of

massless fermions: the gauginos of the hidden e8, the gravitino, and the dilatino. In what

follows we focus on the model-dependent massless spectrum. In particular, the hidden

e8 degrees of freedom are always restricted to their NS ground state and just make a

contribution to the left-moving zero-point energy.

On-shell string states have vanishing left- and right-moving energies. For massless

states there is no contribution to L0 from the R1,3 free fields; massless fermions are thus

states in the (R,R) and (NS,R) sectors with vanishing left-moving and right-moving ener-

gies. In the (R,R) sector, massless states are associated to the ground states in the internal

theory, related by spectral flow to (NS,NS) operators comprising the “chiral rings” [28] of

the theory. Massless states in the (NS,R) sector include states related to these by left-

moving spectral flow as well as additional states. The main result of [8] is a method for

describing these states in LGO theories, which we here extend to hybrids. This relies on

13The SO(32) case can be handled in an entirely analogous fashion.
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the familiar fact that since

{Q,Q} = 2L0 ; Q2 = Q
2
= 0 (4.1)

the kernel of L0 is isomorphic to the cohomology of Q.

The right-moving GSO projection is onto states with q ∈ Z + 1
2 ; those with q =

−1/2 (q = 1/2) correspond to chiral (anti-chiral) multiplets, while states with q = ±3/2

are gauginos in vector multiplets. The U(1)L charge q determines the e6 representation

according to the decomposition

e6 ⊃ so(10)⊕ u(1)

78 = 450 ⊕ 16−3/2 ⊕ 163/2 ⊕ 10

27 = 161/2 ⊕ 10−1 ⊕ 12

27 = 16−1/2 ⊕ 101 ⊕ 1−2 . (4.2)

As in the LG orbifold case [8, 24], the GSO projection can be combined with the hybrid

orbifold of Γ = ZN to an orbifold by Z2 ⋉ ZN
∼= Z2N . Therefore we need to study the

2N sectors twisted by [exp(iπJ0)]
k, k = 0, . . . , 2N − 1.14 Spacetime CPT exchanges the

k-th and the (2N − k)-th sectors, and CPT invariance means we can restrict our analysis

to the k = 0, 1, . . . , N . sectors. The states arising in (R,R) (k even) sectors give rise to

e6-charged matter. This is easy to see since in this case the ground states of the so(10)

current algebra transform in 16 ⊕ 16. Massless e6-singlets are of particular interest, and

they can only arise from (NS,R) sectors, i.e. sectors with odd k.

4.2 Left-moving symmetries in cohomology

The action of U(1)L commutes with Q, and following [29, 30], we can find a representative

for the corresponding conserved current in Q-cohomology, denoted by HQ. Consider the

operator

JL ≡ X β(DβV
α − δαβ )Xα − V αgαβ∂zY

β
. (4.3)

Using (3.9) and LV W = W it follows DJL = 0. Observing that Q and D are conjugate

operators, Q = − exp
[
2θθ∂̄z

]
D exp

[
2θθ∂̄z

]
, we conclude that

JL ≡ JL|θ=0 = χβ(V α
,β − δαβ )χα − V αρα (4.4)

is Q-closed and hence has a well-defined action on HQ. Similarly, we can obtain the re-

maining generators of the left-moving N = 2 algebra in HQ. To find the energy-momentum

generator T we observe that

T0 = −gαβ∂zY
α∂zY

β − XαDzXα = −∂zY
α

[
gαβ∂zY

β − gγβ,αX γX β
]
− Xα∂zXα (4.5)

14That is, schematically, in the k-th twisted sector fields satisfy φ(ze2πi, ze−2πi) = [exp(iπJ0)]
kφ(z, z).

We will make these periodicities more precise shortly.
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satisfies DT0 = 0, as does

T ≡ T0 −
1

2
∂zJL . (4.6)

The lowest component of T is Q-closed and given by

T = −∂yαρα − 1

2
(χα∂zχ

α + χα∂zχα)−
1

2
∂z

[
χβχαV

α
,β − V αρα

]
. (4.7)

The remaining generators of a left-moving N = 2 algebra are obtained from the D-closed

fields

G+ ≡ i
√
2
[
Xα∂zY

α − ∂z(XαV
α)
]
, G− ≡ i

√
2

[
Xαgαβ∂zY

β
]
, (4.8)

yielding the left-moving supercharges G± in HQ:

G+ = i
√
2 [χα∂zy

α − ∂z(χαV
α)] , G− ≡ i

√
2χαρα . (4.9)

4.3 Reduction to a curved bc − βγ system

The action (3.14) determines the OPEs for the left-moving degrees of freedom to be

yα(z)ρβ(w) ∼
1

z − w
δαβ , χα(z)χβ(w) ∼

1

z − w
δαβ . (4.10)

Using the normal ordering defined by these free-field OPEs we can define T , J , and G±

in the quantum theory. This is particularly simple with our choice of fields and Killing

vector V : the operators are quadratic in the fields, and it is easy to check that they indeed

generate an N = 2 algebra with central charge

c = 3d+ 3
∑n

i=1(1− 2qi) , (4.11)

which we recognize as the sum of the fiber LG central charge and the contribution from the

base. The U(1)L charge J0 and left-moving Hamiltonian L0 are obtained in the standard

fashion as

J0 =

∮
dz

2πi
JL(z) , L0 =

∮
dz

2πi
zT (z) , (4.12)

and the resulting charge and weight assignments for the fiber fields are given in table 1

together with the U(1)R charge q. These currents are trivially annihilated by Q0 and

commute with QW , whose action is now realized as

QW ≡
∮

dz

2πi
[χαWα(y)] (z) . (4.13)

It may seem a little bit puzzling that we have been able to reduce the entire problem

to a free first order system. What, the reader may ask, encodes the target space geometry,

for example? The answer, familiar from [31, 32], is that the free field theory description

only applies patch by patch in field-space. That is, we cover Y with open sets Ua and local
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yI ρI χI χI φi ρi χi χi

q 0 0 −1 1 qi −qi qi − 1 1− qi

2h 0 2 1 1 qi 2− qi 1 + qi 1− qi

q 0 0 0 0 qi −qi qi −qi

Table 1. Weights and charges of the fields.

coordinates xαa , and on each Uab = Ua∩Ub 6= ∅ xb = xb(xa), and we define the holomorphic

transition functions

(Tba)
α
β ≡ ∂xαb

∂xβa
, (Sba)

α
βγ ≡ (T−1

ba )αδ (Tba)
δ
β,γ . (4.14)

The left-moving fields then patch according to

yαb = xαb (ya) , χα
b = (Tba)

α
βχ

β
a , χbα = (T−1

ba )βαχaβ ,

ρbα =: (T−1
ba )βα

[
ρbβ − Sδ

baβγχδχ
γ
]
: , (4.15)

where the transition functions are evaluated at ya, e.g. Tba = Tba(ya). Note that the

patching of ρ requires a normal-ordering due to singularities in the y− ρ and χ−χ OPEs.

Of course there are similar transformations for the right-moving fields y and η, η. For

instance, the ηI transform as sections of y∗(TB).
15

These transition functions require a careful analysis when we expand about world-

sheet instanton configurations, i.e. non-trivial holomorphic maps Σ → Y . This, together

with non-trivial fermi zero modes in the background of an instanton will lead to world-

sheet instanton corrections to Q0.
16 These corrections vanish in the hybrid limit where we

expand about constant maps ∂zy = ∂̄zy = 0, and the only non-trivial Q0 action is on the

anti-holomorphic zero modes Q0 · yα0 = −ηα0 . In fact, since the ηı are Q-exact, as far as

cohomology is concerned, we can safely ignore the ηı as well as the anti-holomorphic bosonic

fiber zero modes φ
ı
0. So, the only non-trivial Q0 action is on the base anti-holomorphic zero

modes: Q0 ·yI0 = −ηI0. In what follows we will drop the zero mode subscript on these right-

moving fields with the understanding that y and η will denote the base antiholomorphic

zero modes.

4.4 Massless states in the hybrid limit

Our task now is to work out, in each twisted sector, the set of GSO-even states that belong

to HQ and carry left-moving energy E = 0. We construct the relevant states (i.e. the

only ones with required energy and charges) in the Hilbert space as polynomials in the

fermions and non-zero bosonic oscillator modes tensored with wavefunctions of the bosonic

zero modes. In a generic twisted sector the bosonic zero modes correspond to the compact

base B, while in less generic sectors there can be additional bosonic zero modes. However,

15As we are working on a flat world-sheet throughout this paper, we do not keep track of the world-sheet

spinor properties of the fermionic degrees of freedom.
16Since QW is associated to a chiral superpotential, we do not expect it to be corrected by world-sheet

instantons.
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since the non-compact bosonic modes will be lifted by the superpotential, in what follows

all bosonic wavefunctions will be taken to be polynomial in the fiber fields.

The operators T and JL can be used to grade the states according to their energy

E and left-moving charge q, and we can evaluate Q-cohomology on the states of fixed

E and q. An important simplification comes from working in the right-moving Ramond

ground sector. A look at (3.18) shows that, as far as Q-cohomology is concerned, we can

neglect any states containing oscillators in ∂̄zy
α, as well as any non-zero mode of ηα. We

choose the Ramond ground state annihilated by the zero modes of ηα, so our states will

be constructed without ηα or right-moving bosonic oscillators. We will call the resulting

space of states the restricted Hilbert space H. In general this will be infinite-dimensional

even at fixed E and q.

Twisted modes and ground state quantum numbers. In this section we provide

expressions for E, q and q of the states in a fixed twisted sector. For simplicity, we

work out the case X = ⊕iLi. The result extends immediately to orbi-bundles of the form

X = ⊕iL
xi

i for xi ∈ Q. It should be possible to treat the case of more general X at the

price of additional notation.

The first task is to describe the mode expansions of the fields and the quantum numbers

of the ground states |k〉. While we can restrict to right-moving (i.e. anti-holomorphic) zero

modes, the left-moving oscillators need to be treated in detail. In each patch of the target

space the moding of the left-moving fields in the k-th twisted sector is

yα(z) =
∑

r∈Z−να

yαr z
−r−hα , χα(z) =

∑

r∈Z−ν̃α

χα
r z

−r−h̃α ,

ρα(z) =
∑

r∈Z+να

ραrz
−r+hα−1, χα(z) =

∑

r∈Z+ν̃α

χαrz
−r+h̃α−1, (4.16)

where

να =
kqα
2

mod 1 , ν̃α =
k(qα − 1)

2
mod 1 , h̃α − 1

2
= hα =

qα
2

. (4.17)

We choose 0 ≤ να < 1 and −1 < ν̃α ≤ 0 and recall that the oscillator vacuum |k〉 is

annihilated by all the positive modes. When χ, χ have zero modes our conventions are

that the ground state is annihilated by the χ0 modes.

The mode (anti)commutators follow from (4.10) and (4.16):

[yαr , ρβs] = δαβ δr,−s , {χα
r , χβs} = δαβ δr,−s . (4.18)

Each oscillator carries the obvious q, q charges and contributes minus its mode number

to the energy. By using this mode expansion to compute 1-point functions of T and JL
in the oscillator vacuum |k〉, we determine the quantum numbers of |k〉. The left- and

right-moving charges are given by

q|k〉 =
∑

α

[
(qα − 1)

(
ν̃α +

1

2

)
− qα

(
να − 1

2

)]
,

q|k〉 =
∑

α

[
qα

(
ν̃α +

1

2

)
+ (qα − 1)

(
−να +

1

2

)]
, (4.19)
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and while the left-moving energy is E|k〉 = 0 for k even, we have

E|k〉 = −5

8
+

1

2

∑

α

[να(1− να) + ν̃α(1 + ν̃α)] , (4.20)

for k odd. Note that this includes the usual −c/24 shift: E = L0 − 1.

The oscillator vacuum |k〉 we have constructed is not in general a state in the Hilbert

space. To specify a state we need to prescribe a dependence on the bosonic zero modes so

as to get a well-defined state, but from above we see that |k〉 transforms as a section of a

holomorphic line bundle L|k〉 over B. When X = ⊕iLi we find (using KY = OY )

L|k〉 =




⊗iL

(ν̃i−νi)
i for k even,

⊗iL
(ν̃i−νi+

1

2
)

i for k odd .
(4.21)

From (4.17) we see that if we set νI = 0 and ν̃I = −k/2 mod 1, then τα = να − ν̃α is

τα =

{
0 να = 0

1 να 6= 0
for even k ; τα =

{
1/2 να ≤ 1

2

3/2 να > 1
2

for odd k . (4.22)

This shows that L|k〉 is well-defined because τα ∈ Z for k even and τα ∈ Z + 1
2 for k odd.

A well-defined ground state can be of the form

|Ψk
0〉 = Ψ0(y

′, y)I1···Iuη
I1 · · · ηIu |k〉 , (4.23)

where y′ denotes bosonic zero modes, the ηI are the right-moving superpartners of the base

coordinates and Ψk
u are (0,u) horizontal forms on Y valued in the holomorphic sheaf L∗

|k〉.

In sectors in which there are additional zero modes (k = 0 is always an example of this)

there are more general ground states, and in (R,R) sectors a subset of these ground states

describes the massless spectrum.

This non-trivial vacuum structure is a generalization of familiar limiting cases of the

hybrid construction. When Y = B a compact Calabi-Yau manifold, the Ramond ground

state is a section of a trivial bundle (the square root of the trivial canonical bundle); in the

LGO case each twisted sector has a unique ground state |k〉.

The double-grading and spectral sequence. Our restricted Hilbert space H at fixed

E and q admits a grading by U(1)R charge, and Q acts as a differential, Q : Hq → Hq+1

that preserves the left-moving quantum numbers. A key observation, made in the LG case

in [8], that makes the cohomology problem tractable is that in fact H admits a double-

grading compatible with the split Q = Q0 + QW in (3.18). Let U be an operator that

assigns charge +1 to η, −1 to η, and leaves the other fields invariant. Although U is not

a symmetry of the theory when W 6= 0, we can still grade our restricted Hilbert space

according to the eigenvalues u of U and p ≡ q−u, and since [U,Q0] = Q0 and [U,QW ] = 0

we obtain a double-graded complex with

Q0 : Hp,u → Hp,u+1, QW : Hp,u → Hp+1,u (4.24)

– 16 –



J
H
E
P
0
5
(
2
0
1
4
)
0
4
3

acting, respectively, as anticommuting vertical and horizontal differentials. The cohomol-

ogy of Q is thus computed by a spectral sequence with first two stages

Ep,u
1 = Hu

Q0

(Hp,•), and Ep,u
2 = Hp

QW

Hu
Q0

(H•,•) . (4.25)

In general, Er+1 is obtained from Er as the cohomology of a differential dr acting as

dr : E
p,u
r → Ep+r,u+1−r

r . (4.26)

We have, for example, d0 = Q0 and d1 = QW . The differentials at higher stages are

produced by a standard zig-zag construction [33]. Since the range of U is 0 ≤ U ≤ d

the differentials vanish for r > dimB, and the sequence converges: Ep,u
dimB+1 = Ep,u

∞ =

Hp,u

Q
(H•,•).

We now have almost all of the tools to describe the massless spectrum. In each twisted

sector there is a geometric structure that organizes the states in the spectral sequence. On

H the Q0 action is simply

Q0 = −ηI
∂

∂yI
, (4.27)

so Q0 cohomology amounts to restricting to horizontal17 Dolbeault cohomology groups,

while QW cohomology imposes further algebraic restrictions.

Since the geometry is typically non-compact the Q0 cohomology groups are often

infinite-dimensional. Fortunately we can obtain a well-defined counting problem because

Q0 respects the fine grading by a vector r = (r1, . . . , rn) ∈ Zn that assigns grade r to

a monomial
∏

i φ
ri
i .

18 Restricting to a particular grade leads to finite-dimensional vector

spaces that, as we show in appendix C, are readily computable in terms of sheaf cohomology

over B. The fine grading is a refinement of the physically relevant grading by q and E, and

therefore it gives an effective method for evaluating the first stage in the spectral sequence

Ep,u
1 at fixed twisted sector, q, and E.

The next step is to study the QW cohomology, i.e. the second stage Ep,u
2 =

Hp

QW

(
Hu

Q0

(H•,•)
)
. Once the first two stages of the spectral sequence are determined,

we are able to compute the cohomology of Q; higher derivatives are then determined by

standard zig-zag arguments in terms of the two differentials Q0 and QW .

The geometric structure depends on the twisted sector, and rather than presenting a

universal framework at the price of opaque notation, we will next consider the relevant

geometries in three separate situations:

1. The (R,R) sectors: k ∈ 2Z. In this case since E|k〉 = 0 we can restrict to zero modes

for all the fields, which leads to a very transparent structure.

2. The untwisted (NS,R) sector: k = 1. This and its CPT conjugate sector k = 2N − 1

are the only states with E|k〉 = −1. In this case the geometry is simply Y , and the

spectrum involves an interplay between non-trivial base and fiber oscillators.

17We mean in the sense of the fiber-base geometry of Y .
18This grading has a simple physical interpretation: the W = 0 theory has n U(1) symmetries that rotate

the fiber fields separately.
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3. (NS,R) sectors with odd k and E|k〉 > −1. In this case the organizing geometry

is a sub-bundle of Y → B, and while the choice of sub-bundle is k-dependent, the

spectrum simplifies since base oscillators have h = 1 and do not contribute to the

massless states.

We consider these possibilities in turn in the next section.

5 Twisted sector geometry

To describe the geometric framework for the various twisted sectors we find it useful to

distinguish base and fiber fields, with the latter differentiated according to the values of

τα. More precisely, we split the coordinates yα → (yα
′
, φA), such that τα′ < 1 and τA ≥ 1.

The yα
′
decompose further into base and fiber directions: yα

′
= (yI , φi′), where τi′ < 1

(since νI = 0 for all the base fields τI < 1 in all sectors). We decompose the bundle X

accordingly as X = Xk ⊕⊕ALA and define

Yk ≡ tot(Xk
πk−→ B). (5.1)

The utility of this is that the “light” fields, labeled by α′, including the corresponding

fermions, are organized by Yk, while the remaining “heavy” fields, labeled by A, are or-

ganized by the pull-backs π∗
k(LA). The right-moving sector is considerably simpler: we

restrict to zero modes, and as we described at the end of section 4.3, the only relevant ones

are the zero modes yI and their Q0 superpartners ηI . We now describe how this works in

detail in various twisted sectors.

5.1 (R,R) sectors

In this case E|k〉 = 0 as a consequence of the left-moving supersymmetry, and to describe

the massless states we can restrict to zero modes for all the fields. A look back at the

modes in (4.16) and (4.17) shows that the only fields with zero modes are the light fields.

Among these the ρα′ also have no zero modes, while the χα′ zero modes annihilate the

vacuum state. Hence the most general state in the truncated Hilbert space is a linear

combination of

|Ψs
u〉 = Ψ(y′, x)

α′
1
···α′

s

I1···Iu
χα′

1
χα′

2
· · ·χα′

s
ηI1 · · · ηIu |k〉 . (5.2)

The fermions χα′ and ηI transform respectively as sections of T ∗
Yk

and π∗
k(TB),

19 while |k〉
is a section of L|k〉 = π∗

k(⊗AL
∗
A). Hence to be a well-defined state the wavefunction Ψs

u

must be a (0, u) horizontal form valued in the holomorphic bundle Es = ∧sTYk
⊗ L∗

|k〉.

We can decompose the Ψ according to their eigenvalues under the Lie derivative with

respect to the restriction of the holomorphic Killing vector V to Yk: LV Ψ = qΨΨ.20 The

resulting |Ψ〉 has well-defined U(1)L ×U(1)R charges:

q = q|k〉 + qΨ + s , q = q|k〉 + qΨ + u . (5.3)

19The pull-back to the world-sheet is irrelevant since in the hybrid limit we consider constant maps.
20The Lie derivative has a well-defined action even when L|k〉 is non-trivial because V is a vertical vector,

while the transition functions for L|k〉 only depend on B.
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Q0 acts by sending Ψs
u → −∂̄Ψs

u+1, and we can use the fine grading described in appendix C

to reduce Q0 cohomology to computing the finite-dimensional vector spaces H•
r(Yk, E•).

The result is still infinite-dimensional, since these cohomology groups will be non-zero

for an infinite set of grades r. This is a general feature of any sector with bosonic fiber

zero modes. Fortunately, the action of QW , which takes the form

QW = Wα′(y′)χα′
, (5.4)

restricts the spectrum further. When W is non-singular we expect a finite-dimensional

result, and indeed, this is easy to prove for LG models.21 It would be useful to give a more

general proof for hybrids. At any rate, we see from (4.13) that the QW action on our state

is simply

QW : Ψs
u 7→ (sWα′

1
Ψα′

1
α′
2
···α′

s)s−1
u . (5.5)

The spacetime interpretation of these states is either as e6 gauginos (q = ±3/2) or the

16±1/2 components of 27s and 27s.

Y = B. As a simple consistency check we can see that we correctly reproduce the

expected spectrum from the unique k = 0 (R,R) sector when Y = B a compact Calabi-

Yau 3-fold. The non-vanshing Q0-cohomology classes, given with multiplicities and (q, q)

charges are

|0〉⊕1
−3/2,−3/2 |Ψ3

0〉⊕1
3/2,−3/2 |Ψ0

3〉⊕1
−3/2,3/2 |Ψ3

3〉⊕1
3/2,3/2 ,

|Ψ1
1〉

⊕h1(T )
−1/2,−1/2 |Ψ2

2〉
⊕h1(T )
1/2,1/2 |Ψ2

1〉
⊕h1(T ∗)
1/2,−1/2 |Ψ1

2〉
⊕h1(T ∗)
−1/2,1/2 . (5.6)

Comparing to (4.2), we see that the first line corresponds to the gauginos, while the second

line corresponds to the 16−1/2 and 161/2 components of h1(T ) chiral 27 and h1(T ∗) chiral

27 multiplets.

5.2 The k = 1 sector

The k = 1 sector is untwisted with respect to the LG orbifold action. It has the richest

geometric structure and a number of universal features generalizing those observed for the

LGO case [4]. Since τα = 1/2 for all the fields, the geometry is simply Y1 = Y , while the

vacuum bundle L|k〉 = KY is trivial. We also have

q|1〉 = 0 , q|1〉 = −3/2 , E|1〉 = −1 . (5.7)

Since E|1〉 = −1 massless states may include non-zero modes of ∂yI and ρI .

We now want to describe the operators that create zero-energy states from |1〉. It turns
out that hybrid theories for which some qi = 1/2 have additional zero-energy states that

are not found in more generic theories. We will first describe the zero energy states present

generically and then turn to the special states available due to fields with qi = 1/2.

21The result follows from the finite-dimensionality of the Koszul cohomology groups associated to the

ideal 〈W1, · · · ,Wn〉 ∈ C[φ1, . . . , φn] for a non-singular superpotential [34, 35].
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Generic k = 1 operators. Ignoring multiplets with qi = 1/2, we list the operators that

can carry weight h ≤ 1:22

O1,s = Ψ1sα1···αs(y)χα1
· · ·χαs

, O2 = Ψ2
α(y)χ

α , O3 = Ψ3
αβ(y)χ

αχβ ,

O4 = Ψ4
α(y)∂y

α , O5 = : Ψ5α
β (y)χαχ

β : ,

O6 = : Ψ6α(y)ρα +Ψ6α
,β (y)χαχ

β : . (5.8)

The index s in O1s can take values s = 0, 1, 2, 3. In each case we only indicated the

dependence on the left-moving fields; each Ψ also depends on the y and η zero modes:

Ψt =
d∑

u=0

(Ψt
u)I1···Iuη

I1 · · · ηIu , (5.9)

and plugging in this expansion, we obtain a set of operators Ot
u(z). We also used the normal

ordering that follows from (4.10) to subtract off the yρ and χχ short-distance singularities.

Since our free fields are only defined on open sets covering the target space Y , just as in the

k even case the wavefunctions Ψt
0 have to transform as sections of appropriate holomorphic

bundles E t over Y . For instance, the fermi bilinear term appearing in O8 is chosen to

account for the unusual transition function of ρα in (4.15). That is, using (4.15), we find

that for two patches Ua and Ub with Uab 6= ∅ O6
b = O6

a (i.e. O6 is well-defined) iff Ψ6
0

transforms as a section of TY . Similarly, the remaining wavefunctions must transform

in the expected way, e.g. Ψ1s
0 as a section of ∧sTY and Ψ2

0 as a section of T ∗
Y . The

wavefunctions for Ψt
u>0 transform as (0,u) horizontal forms valued in E t, and taking Q0

cohomology means the Ψt
u taken at a fine grade r define classes in H•

r(Y , E•). As in

the k even case we need to consider all r that contain states with h = 1 and non-trivial

QW classes. It is useful to introduce the following notation for the relevant holomorphic

bundles E t:

Bs,t,q ≡ ∧sTY ⊗ ∧tT ∗
Y ⊗ Symq(TY ) . (5.10)

If we grade the wavefunctions by the eigenvalue of the Lie derivative with respect to

the symmetry vector V , i.e. LV Ψ
t
u = qΨ, then we obtain the following weights, charges

and QW action for these operators: qO = q + u, and

op. O1,s
u O2

u O3
u O4

u O5
u O6

u

qO q + s q − 1 q − 2 q q q

hO
q+s
2

q+1
2

q+2
2

q+2
2

q+2
2

q+2
2

QW · sWα1
Ψ1sα1···αsχα2

· · ·χαs
0 0 0 Ψ5β

uγWβχ
γ χα∂α(Ψ

6βWβ)

(5.11)

Note that for s > 0 the O1,s can carry negative eigenvalues under LV , but it is not hard

to show that they are bounded by q > −s/2. Using these operators we create states in

the usual fashion: |Ot
u〉 ≡ limz→0Ot

u(z)|1〉. They carry energy E = hO − 1 and charges

q = qO − 3/2 and q = qO.

22Working with fields, as opposed to modes, avoids complications in patching the non-trivial bosonic

oscillators on the base. These complications do not arise in sectors with E|k〉 > −1.
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Currents. The hO = 1 qO = 0 operators in Q cohomology are conserved left-moving

currents, and in a generic k = 1 sector the corresponding states arise in the bottom row of

the spectral sequence:

|O5
0〉 ⊕ |O6

0〉
QW // |O2

0〉 , (5.12)

where

Ψ5 ∈ ⊕rH
0
r(Y , B1,1,0) , Ψ6 ∈ ⊕rH

0
r(Y , B0,0,1) , Ψ2 ∈ ⊕rH

0
r(Y , B1,0,0) . (5.13)

Before taking cohomology, there are a number of states here, including, for example, holo-

morphic vector fields in H0(B, TB) that lift to Y or various enhanced R-symmetries of the

W = 0 theory. Most of these states are lifted by the superpotential couplings. In fact, for

a suitably generic W the only current that survives is JL, which corresponds to Ψ5 = 1

and Ψ6 = −V ; the resulting state is QW closed as a result of LV W = W . This gaugino

corresponds to the linearly realized u(1)L ⊂ e6. For less generic W additional currents may

appear, and of course they are accompanied by additional chiral q = −1/2 states |O2
0〉

in the cokernel of QW . In spacetime each current corresponds to a gauge boson, and the

appearance of extra currents reflects the spacetime Higgs mechanism.

Y = B. As in the k = 0 case, we examine the case of trivial fiber and a CY target space.

Taking Q0 cohomology on the space of operators in (5.8), we find the following massless

states with q < 0 (for brevity we omit their conjugates with q > 0)

O1,0,O5
0 → |1〉⊕1

0,−3/2 ⊕ χαχ
α|1〉⊕1

0,−3/2 450 ⊕ 10

O1,1,O2 → |O1,1
1 〉⊕h1(T )

1,−1/2 ⊕ |O2
1〉

⊕h1(T ∗)
−1,−1/2 10

⊕h1(T )
1 ⊕ 10

⊕h1(T ∗)
−1

O1,2,O3 → |O1,2
1 〉⊕h1(∧2T )

2,−1/2 ⊕ |O3
1〉

⊕h1(∧2T ∗)
−2,−1/2 1

⊕h1(T ∗)
2 ⊕ 1

⊕h1(T )
−2

O4,O5
1,O6 → |O4

1〉
⊕h1(T ∗)
0,−1/2 ⊕ |O5

1〉
⊕h1(EndT )
0,−1/2 ⊕ |O6

1〉
⊕h1(T )
0,−1/2 1

⊕{h1(T )+h1(T ∗)+h1(EndT )}
0

It is not hard to extend this analysis to a more general (0,2) CY NLSM with su(n)

bundle V 6= TB. In particular, this offers certainly the most direct world-sheet perspective,

in the spirit of [36], on marginal gauge-neutral deformations and agrees with spacetime [37,

38] and world-sheet [10] results on marginal deformations in the large radius limit. This

may be found in appendix D.

A hybrid example. We will now illustrate how to set up the spectrum computation

in a simple but non-trivial hybrid. We consider the “octic model”23 with B = P1 and

X = O(−2)⊕O⊕3. The quantum numbers of the ground states of the twisted sectors, as

well as charges of the fiber fields are given in table 2.

23The name comes from the large radius phase of this much-studied example. Let X0 be an octic

hypersurface in the two-parameter toric resolution of the weighted projective space P4

{2,2,2,1,1}. The hybrid

model O(−2)⊕O⊕3 → P1 arises as one of the phases of the corresponding GLSM [39].
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k E|k〉 q|k〉 q|k〉 ℓk νi ν̃i νI ν̃I

0 0 −3
2 −3

2 0 0 0 0 0

1 −1 0 −3
2 0 1

8 −3
8 0 −1

2

2 0 1
2 −3

2 −2 1
4 −3

4 0 0

3 −1
2 −1 −1

2 0 3
8 −1

8 0 −1
2

4 0 −1
2 −1

2 −2 1
2 −1

2 0 0

φi ρi χi χi

q 1
4 −1

4 −3
4

3
4

q 1
4 −1

4
1
4 −1

4

Table 2. Quantum numbers for the octic model.

In this example as well as those that follow PicB = H2(B,Z), and the vacuum bundle

L|k〉 is determined by a class in H2(B,Z). We label the class of the dual bundle L∗
|k〉 by

ℓk ∈ H2(B,Z). In this example ℓk is simply the degree of the line bundle over P1.

Let us consider as an example the states at E = 0 and q = 2 in the k = 1 sector. We

see from (4.2) that these states belong to 12 of so(10). Energy and charge considerations

show that the relevant operators from (5.8) are O1,s, and the states fit in a double complex

Ψαβ
[2] χαχβ |1〉 Ψα

[5]χα|1〉 0

Ψαβ
[2] χαχβ |1〉 Ψα

[5]χα|1〉 Ψ[8]|1〉
//

OO

−3
2 −1

2
1
2

p

U

(5.14)

The wavefunctions satisfy LV Ψ
αβ = 0 and LV Ψ

α = Ψα; in practice this means that each

Ψ[d](y, y, η) is a quasi-homogeneous polynomial of degree d in the fiber bosons φi if both

indices are vertical, while it is of degree d − 1 is one of the indices is horizontal. To limit

clutter in the notation we suppressed the ηs; their number is indicated by the U grading.

Recall that the horizontal grading is by p = q − u.

Taking Q0 cohomology at the relevant q, q, E eigenvalues indicated by the subscripts,

we obtain

[
H1(Y , B2,0,0)

]
2,−1/2,0

[
H1(Y , B1,0,0)

]
2,1/2,0

0

[
H0(Y , B2,0,0)

]
2,−3/2,0

[
H0(Y , B1,0,0)

]
2,−1/2,0

[
H0(Y , B0,0,0)

]
2,1/2,0 //

OO

−3
2 −1

2
1
2

p

U

(5.15)

To illustrate the counting, we concentrate on the dimension of

[H0(Y , B1,0,0)]2,−1/2,0 = [H0(Y , TY )]2,−1/2,0 =
⊕

∑
i ri=4

H0
r(Y , TY ) . (5.16)
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The computation is simple since Y ≃ Y ′×C3, where Y ′ is the total space of O(−2) → P1.

In this case, as we show in appendix (C), the non-trivial graded cohomology groups are

H0
r1(Y

′,OY ′) = C2r1+1, H0
r1(Y

′, TY ′) = C4r1+4 . (5.17)

Decomposing (TY )r according to (C.12) we find two types of contributions to H0
r(Y , TY ),

those with ri ≥ 0, and those with ri = −1 for i = 2, 3, 4:

[H0(Y , TY )]2,−1/2,0 =
4⊕

r1=0

[
H0

r1(Y
′, TY ′)⊕H0

r1(Y
′,OY ′)⊕3

]
⊗ C

(6−r1
4−r1

)

⊕
[

5⊕

r1=0

H0
r1(Y

′,OY ′)⊗ C6−r1

]⊕3

= C595 ⊕ C273 = C868. (5.18)

The factors of
(
6−r1
4−r1

)
and (6 − r1) arise from counting monomials, respectively, of degree

4− r1 in three variables and 5− r1 in two variables.

Computing the remaining cohomology groups in a similar fashion we obtain the E1

stage of the spectral sequence

C18 QW // C21 0

C126 QW // C868 QW // C825
//

OO

−3
2 −1

2
1
2

p

U

(5.19)

Finally, we turn to the computation of the QW cohomology for these states and for sim-

plicity consider the Fermat superpotential

W = S[8](φ
1)4 + (φ2)4 + (φ3)4 + (φ4)4 , (5.20)

where S[8] ∈ H0(P1,O(8)). From (5.8) we see that for the states appearing at p = −3
2

QW

(
Ψαβ

[2]uχαχβ

)
|1〉 = 2Ψαβ

[2]Wβχα|1〉 , (5.21)

and the derivatives of the superpotential that appear are (a = 2, 3, 4)

Wa = 4(φa)3 , W1 = 4S[8](φ
1)3 , WI = ∂IS[8](φ

1)4 . (5.22)

The map (5.21) has vanishing kernel, while the QW action on the p = −1
2 states is

QW

(
Ψα

[5]χα

)
|1〉 = Ψα

[5]Wα . (5.23)

Setting this to zero implies Ψα
[5] = Φαβ

[2]Wβ for some Φαβ
[2] anti-symmetric in its indices.

Hence the cohomology in the (p, u) = (−1
2 , 0) position is trivial, and the spectral sequence
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degenerates at

0 C3 0

0 0 C83
//

OO

−3
2 −1

2
1
2

p

U

(5.24)

Here we count 86 anti-chiral states in the 12. These correspond to the 83 polynomial

and the 3 non-polynomial deformations of complex structure of the octic hypersurface now

determined from the hybrid’s point of view.

Extra states in k = 1. Multiplets with qi =
1
2 can potentially give rise to additional

massless states. In a LGO theory these genuinely correspond to massive multiplets that can

be integrated out without affecting the IR physics. In general this is not so in the hybrid

theory: if a qi =
1
2 field is non-trivially fibered then its mass vanishes on the discriminant

of W in B, and the field cannot be integrated out globally over B. This leads to a rich

structure entirely absent from LGO theories.

To describe the additional operators with h = 1 we sadly need a little more notation.

Just in this section we use the indices i′, j′, etc. to denote the multiplets with qi′ = 1
2 ;

the α, β, . . . continue to denote all the fields, while I, J, . . . denote the fields of the base

geometry. Let X 1

2

≡ ⊕i′Li′ and A be a holomorphic (in fact diagonal) connection on the

bundle X 1

2

→ B. The new operators are then

O7 = Ψ7i′j′k′m′
(yI)χi′χj′χk′χm′ , O8 = : Ψ8i′j′

I (yI)χi′χj′χ
I : ,

O9 = : Ψ9i′j′(yI)(ρi′ + χIAk′

Ii′χk′)χj′ : . (5.25)

The wavefunctions are (0,u) forms valued in the following bundles:

Ψ7 : ∧4 X 1

2

, Ψ8 : ∧2 X 1

2

⊗ T ∗
B , Ψ9 : X 1

2

⊗X 1

2

. (5.26)

These operators have weight h = 1 and charges

O7
u O8

u O9
u

q 2 0 0

q u− 2 u− 1 u− 1

(5.27)

The action of Q0 on O7 is simply to send Ψ7
u → (−∂̄Ψ7)u+1. Since we used the holomorphic

connection A in O9 to build a well-defined operator, the Q0 action on O8
u + O9

u is a bit

more involved:

Q0 · (O8
u +O9

u) = −(∂̄Ψ9i′j′)I0···Iuη
I0 · · · ηIu(ρi′ + χIAk′

Ii′χk′)χj′

+
[
obs(Ψ9)k

′j′

I − ∂̄Ψ8k′j′

I

]
I0···Iu

ηI0 · · · ηIuχk′χj′χ
I , (5.28)
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where the linear map

obs : Ω0,u(X 1

2

⊗X 1

2

) → Ω0,u+1(∧2X 1

2

⊗ T ∗
B) (5.29)

is given by contracting Ψ9 with the curvature F = ∂̄A:

obs(Ψ9)k
′j′

I I0···Iu
dyI0 · · · dyIu ≡ 1

2

(
F k′

II0 i′
Ψ9i′j′

I1···Iu
−F j′

II0 i′
Ψ9i′k′

I1···Iu

)
dyI0 · · · dyIu . (5.30)

It is easy to see that obs(Ψ9) is ∂̄-closed when Ψ9 is ∂̄-closed, so that O8
u+O9

u is Q0-closed

iff ∂̄Ψ9 = 0 and obs(Ψ9) corresponds to the trivial class in Hu+1(B,∧2X 1

2

⊗ T ∗
B). We will

meet examples of such possible “obstruction classes” below, but for now we simply note

that obs vanishes in a number of important cases that often arise in particular examples.

For instance, obs(Ψ9
d) is clearly zero, and obs = 0 for any Ψ9 ∈ H•(B,Lj′ ⊗ Lj′). A little

less trivially, we can also show that obs vanishes for any Ψ9 ∈ H•(B,∧2X 1

2

).

The QW action can also be determined;24 the results are:

QW · O7 = 4Wi′Ψ
7i′j′k′m′

χj′χk′χm′ , QW · O8 = 2Wi′Ψ
8i′j′

I χj′χ
I ,

QW · O9 = Ψ9i′j′
[
(ρi′ −Ai′

I χi′χ
I)Wj′ + (χαWi′α − χIAk′

Ii′Wk′)χj′

]
. (5.31)

5.3 k > 1 (NS,R) sectors

Finally, we turn to (NS,R) sectors with 1 < k < 2N − 1. These sectors have, in general,

two complications relative to the k = 1 sector: in general Yk 6= Y , and |k〉 may transform

as a section of a nontrivial bundle over the base B.

The vacuum. Recalling the discussion above (5.1), we split the coordinates as yα →
(yI , φi′ , φA). The quantum numbers of the vacuum are then write the vacuum energy as

E|k〉 = −1 +
1

2

[
∑

i′

(
νi′ −

qi′

2

)
+
∑

A

(
1− q

2
− νA

)]
,

q|k〉 =
∑

i′

(qi′
2

− νi′
)
+
∑

A

(
1− qA

2
− νA

)
,

q|k〉 =
∑

i′

(
qi′

2
− 1

2
− νi′

)
+
∑

A

(
νA − qA

2
+

1

2

)
− d

2
, (5.32)

where d is the dimension of the base B. Note that in the twisted sectors 1 < k < 2N − 1

we have E|k〉 > −1. The vacuum bundle (4.21) is given by

L|k〉 = ⊗AL
∗
A . (5.33)

Modes and transition functions. Because we have Ek > −1 we can restrict attention

to the subspace of the Hilbert space generated by the lowest modes of the left-moving

fields. That is, we truncate (4.16) to

yα(z) = zνα−qα/2(yα + z−1ρ†α) , ρα(z) = zqα/2−να(ρα + z−1y†α) ,

χα(z) = zν̃α−qα/2−
1

2 (χα + z−1χ†α) , χα(z) = zqα/2+
1

2
−ν̃α(χα + z−1χ†

α) , (5.34)

where in our restricted Hilbert space ρI = 0.

24A little care is required in using point-splitting and the free OPE in computing the action on O9.
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The transition functions for these oscillators follow by expanding (4.15). These show

that yα
′
are coordinates on Yk, while χα′

(χα′) take values in TYk
(T ∗

Yk
). On the other

hand, φA and λA take values in Ẑk = π∗
k(⊕LA) and ρA and λA in Ẑ∗

k . As is the case for

k = 1, ρi′ is not a covariant operator due to the fermion bilinear term.

Conserved charges. Inserting (5.34) into our expressions for the conserved

charges (4.12) we find in our Hilbert space

L0 =
∑

α

[
−ναφ

αφ†
α + (1− να)ραρ

†α + (1 + ν̃α)χ
αχ†

α − ν̃αχαχ
†α
]
,

J0 =
∑

α

[
(qα − 1)(χαχ†

α − χαχ
†α)− qα

(
yαy†α + ραρ

†α
)]

,

J0 =
∑

α

qα

(
−yαy†α − ραρ

†α + χαχ†
α − χαχ

†α
)

.

States. We again list the operators that can carry weight h < 1, suppressing the right-

moving ηI dependence. These can contain at most one operator with h ≥ 1
2 and we organize

them according to the nature of this operator as

O1,l,m = Ξ1lmα′,i′
2
···i′

l

A1···Am
χα′χi′

2
· · ·χi′

l
χA1 · · ·χAm

O2,l,m = Ξ2lmi′
1
···i′

l

α′,A2···Am
χi′

1
· · ·χi′

l
χα′

χA2 · · ·χAm

O3,l,m = Ξ3lmB,i′
2
···i′

l

A1···Am
χBχi′

2
· · ·χi′

l
χA1 · · ·χAm (5.35)

O4,l,m = Ξ4lmi′
1
···i′

l

B,A1···Am
φBχi′

1
· · ·χi′

l
χA1 · · ·χAm

O5,l,m = Ξ5lmj′,i′
1
···i′

l

A1···Am

[
ρj′ −AJ

k′

j′χ
Jχk′

]
χi′

1
· · ·χi′

l
χA1 · · ·χAm .

In constructing O5 we have introduced a holomorphic (and diagonal) connection on ⊕i′Li′ .

Here the Ξt include the dependence on yα
′
and ρA, as well as on the right-moving zero

modes of yI . We can make this more explicit by writing, for example,

Ξ1lmα′,i′
2
···i′

l

A1···Am
=
∑

t

Ψ1lm
t (y)

α′,i′
2
···i′

l

A1···Am

∏

B

ρ
tB+

∑m
a=1

δB,Aa

B , (5.36)

in terms of a vector of integers tB ≥ −1 such that no negative powers of ρB appear. O1

will now create a well-defined state when acting on |k〉 provided the wavefunction Ψ1lm
t

transforms as a section of a suitable bundle E1lm
t over Yk

E1lm
t = TYk

∧
(
∧l−1π∗

k(Xk)
)
⊗
(
⊗B(π

∗
kL

tB+1
B )

)
. (5.37)

Note that this takes into account the transformation properties of the vacuum (5.33) and

that the odd shift in the power of ρB is now seen to be sensible. Incorporating the right-

moving fermion zero modes, the wavefunction is in general a (0,u) horizontal form valued

in this bundle. These can be fine graded as in C by a vector of integers r = (rα′).
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Proceeding in an analogous way with the other operators we find that the wavefunctions

take values in the following bundles, organized by t and the fine grading r

E1lm
t,r (k) =

[
TY k

∧
(
∧l−1π∗

k(Xk)
)
⊗
(
⊗A(π

∗
kL

tA+1
A )

)]
r

E2lm
t,r (k) =

[(
∧lπ∗

k(Xk)
)
⊗ T ∗

Y k
⊗
(
⊗A(π

∗
kL

tA+1
A )

)]
r

E3lm
t,r (k) = ⊕B

[(
∧l−1π∗

k(Xk)
)
⊗
(
⊗A(π

∗
kL

tA+1
A )

)]
r

(5.38)

E4lm
t,r (k) = ⊕B

[(
∧lπ∗

k(Xk)
)
⊗
(
⊗A(π

∗
kL

tA+1
A )

)]
r

E5lm
t,r (k) =

[
π∗
k(Xk)⊗

(
∧lπ∗

k(Xk)
)
⊗
(
⊗A(π

∗
kL

tA+1
A )

)]
r

We need to consider all t, r that contain states O|k〉 with E = 0.

Q and cohomology. On states of the form O1
u|k〉, . . . ,O4

u|k〉 Q0 acts as −∂̄ on horizontal

(0,u) forms valued in holomorphic bundles over Yk, and Q0 cohomology is the horizontal

Dolbeault cohomology. The action on states of the form O5|k〉 has an added term of the

sort already familiar from (5.28), (5.29) for the “massive” states in the k = 1 sector:

Q0O5
u|k〉 = −ηK

[
∂̄KO5

u
j′ + FKJ

j′

k′χ
Jχj′(Ξ

5k′

u )
i′
1
···i′

l

A1···Am
χi′

1
· · ·χi′

l
χA1 · · ·χAm

]
|k〉 , (5.39)

where F is the curvature of A. For ∂̄-closed Ψ5, the additional “obstruction” term is

∂̄-closed and gives a linear map

obs : Ω0,u(E5l,m) → Ω0,u+1(E4(l+1),m ⊗ π∗
kT

∗
B) . (5.40)

If obs(Ψ5) is exact, then we can construct a Q0-closed state just as we saw in the k = 1

case. We have not encountered a nontrivial obstruction term in any of the examples we

considered, and in 5.4 we argue that this will be the case in any well-defined model.

The action of QW is given by the mode expansion of

QW =

∮
dz

2πi
χαWα = χα

∮
dz

2πi
zν̃α−qα/2−1/2Wα + χ†α

∮
dz

2πi
zν̃α−qα/2−3/2Wα , (5.41)

where we write

Wα = Wα

(
zνβ−qβ/2(φβ + z−1ρ†β)

)
. (5.42)

We can use the homogeneity relation Wα(λ
qφβ) = λ1−qαWα(φ

β) and simplify this to

QW = χα

∮
dz

2πi
zν̃αWα

(
zνβ (φβ + z−1ρ†β)

)
+ χ†α

∮
dz

2πi
zν̃α−1Wα

(
zνβ (φβ + z−1ρ†β)

)
.

(5.43)

5.4 Comments on CPT

The spectrum we obtain should be invariant under CPT. This means that for any massless

state with charge (q, q) in the k sector we should find a massless state with charge (−q,−q)
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in the 2N − k sector. In this section we will discuss how this works for sectors with odd k.

To avoid additional notational elaborations we will make the simplifying assumption that

ν̃ < 0 for all fields.25 As we will now argue, CPT invariance essentially reduces to Serre

duality for Dolbeault cohomology on B, as well as a natural dual action of QW .26

A pairing on the Hilbert spaces. The two-point function in the CFT is a natural

pairing between the conjugate sectors respecting charge conservation and pairing states

with the same energy, and given the quantum orbifold symmetry we expect that the Hilbert

spaces of states in the |k〉 and |2N − k〉 sectors are dual to each other in this way.

From the expressions above it is clear that the vacua satisfy

E|2N−k〉 = E|k〉; (q|2N−k〉, q|2N−k〉) = (−q|k〉, d− q|k〉) (5.44)

while the moding in the conjugate sectors is related by

να ↔ 1− να; ν̃α ↔ −1− ν̃α . (5.45)

This implies that the fields φi′ for which τ = 1/2 in the k sector have τ = 3/2 in the

conjugate 2N − k sector, and vice versa, so that we have

Yk = tot(⊕i′Li′→B) L|k〉 = ⊗AL
∗
A

Y2N−k = tot(⊕LA→B) L|2N−k〉 = ⊗i′L
∗
i′ . (5.46)

In particular L|k〉 ⊗ L|2N−k〉 = K∗
B. For any state with weight h and charge (q, q) in the

k sector, we can find a state with the same weight and charge (−q, d − q) in the 2N − k

sector by exchanging the oscillator excitations according to

yα ↔ ρα χα ↔ χα . (5.47)

This is enough to show that at the level of left-moving oscillators the two-point function

leads to a pairing between the state spaces defined above, which respects q and violates q

by d. If we denote Htlm
t,r (k) = Γ(E tlm

t,r (k)), then the pairing takes the form

H1⊕2⊕3lm
t,r(k)×H1⊕2⊕3ml

r,t(2N − k) → C

H4lm
t,r (k)×H5ml

r,t (2N − k) → C , (5.48)

Q0 and Serre duality. The pairing descends to Q0 cohomology, and in a reasonable

physical theory this must be nondegenerate. This will be the case if

H•
Q0

(
Hlm

k (t, r)
)
=
[
Hd−•

Q0

(
Hml

2N−k(r, t)
)]∗

. (5.49)

For the first line in (5.48), in which Q0 acts as −∂̄, this is in fact equivalent to Serre

duality. For simplicity let’s see first how this works in H111
r,t . The fine grading on H•(TY k

)

25When this is not the case there are, as in the (R,R) sectors, χ and χ zero-modes. It should be possible

to extend the CPT discussion to these situations as well.
26This extends an observation made in [4] where a similar result was found for the twisted sectors of an

orbifold theory with a fixed curve; the structure is similar but in the orbifold case QW = 0.
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can be obtained from the long exact sequence (LES) following from the short exact sequence

(SES) (C.11)

0 // ⊕i(π
∗
kLi)r+xi

// (TYk
)r // (π∗

kTB)r // 0 , (5.50)

which we here encounter twisted by a vector bundle (so still exact) as

0 // ⊕i(π
∗
kLi)r+xi

⊗ V̂t
// (TYk

)r ⊗ V̂t
// (π∗

kTB)r ⊗ V̂t
// 0 , (5.51)

where

V̂t = π∗
k

[
⊕B

(
⊗A(L

tA+1
A )

)]
. (5.52)

The bundles on either end of the SES are pulled back from B, and we can use (C.2) to

compute their cohomology. Thus

H•
r

(
Yk,⊕i(π

∗
kLi)r+xi

⊗ V̂t

)
= H•

(
B,⊕i,B

(
⊗A(L

tA+1
A )⊗

(
⊗j(L

∗
j )

rj
)))

, (5.53)

while

H•
r

(
Yk, (π

∗
k TB)r ⊗ V̂t

)
= H•

(
B, TB ⊗

(
⊕B

(
⊗A(L

tA+1
A )⊗

(
⊗j(L

∗
j )

rj
))))

. (5.54)

Recalling that KB = ⊗αLα, these are Serre dual, respectively, to

Hd−•
(
B,⊕i,B

(
⊗A(L

∗
A)

tA ⊗
(
⊗j(Lj)

rj+1
)))

= Hd−•
(
Y2N−k,⊕i,B

(
π∗
2N−k(L

∗
A)t−yA

⊗
(
⊗j(L̂

rj+1
j )

)))
(5.55)

and

Hd−•
(
B, T ∗

B ⊗
(
⊕B

(
⊗A(L

∗
A)

tA ⊗
(
⊗j(L

rj+1
j )

))))

= Hd−•
(
Y2N−k,

(
π∗
2N−k T

∗
B

)
t
⊗
(
⊕j(π

∗
2N−k(Lj)

rj+1)
))

. (5.56)

Inserting this result into the dual LES we find

H•((TYk
)r ⊗ V̂t) =

[
Hd−•((TY2N−k

)t ⊗ V̂r)
]∗

(5.57)

with a suitable natural definition for V̂r.

Higher powers of the tangent/cotangent bundles are fine graded by recursively using

the same SES and the dual, so recursively applying this argument we find that Serre duality

implies CPT in the sense above whenever we can use Q0 = −∂̄. This argument will fail

if nontrivial obstruction classes arise in (5.39), because no such obstruction can arise for

the dual states in H4. We conclude that in reasonable physical theories there will be no

nontrivial obstructions in the twisted sectors.
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QW and CPT. Given that the cohomology of Q0 produces a spectrum consistent with

CPT, we can also show that the action of QW is consistent with this. Consider a monomial

in Wα that contributes to QW in the k sector a term

χα
∏

β

[
(φβ)mβ (ρ†β)nβ

]
. (5.58)

This means that

∑

β

[νβ,k(mβ + nβ)− nβ] = −ν̃α,k − 1 . (5.59)

Using (5.45) we see that this implies

∑

β

[νβ,2N−k(mβ+nβ)−mβ ]=
∑

β

[−νβ,k(mβ+nβ) + nβ] = ν̃α,k+1=−ν̃α,2N−k , (5.60)

which means that the same monomial contributes a term

χ†α
∏

β

[
(φβ)nβ (ρ†β)mβ

]
(5.61)

to QW in the 2N − k sector. This acts in precisely the appropriately dual way on the

states as mapped above, showing that CPT is maintained as a symmetry after taking QW

cohomology.

6 Examples

In this section we will apply the techniques developed in the previous sections to a number

of hybrid examples. In each case we will focus on characterizing first order deformations

that preserve (0,2) superconformal invariance and the e8⊕ e6 spacetime gauge symmetry.

The infinitesimal deformations which preserve (2,2) symmetry parametrize the tangent

space of the (2,2) moduli space. They are not obstructed and in a large radius limit are

identified with complex structure and complexified Kähler moduli of the CY. There is a

well-known correspondence between the (2,2) moduli and the e6-charged matter, and we

will borrow the large radius notation by denoting the number of chiral 27’s and 27’s in

the hybrid computation by h1,1 and h2,1 respectively.

More interesting are the deformations which only preserve (0,2) superconformal in-

variance. The computation of the number of massless gauge singlets associated to these

deformations, which we indicate as M, is the main goal of this section. These singlets arise

in (NS,R), i.e. the odd k sectors. In the following we will compute M in three examples

that illustrate a number of technical and conceptual points.

1. For the first example we choose the simplest possible base, i.e. B = P1. This is a

good warm-up for more difficult cases and is of interest in its own right since the

model can be found as a phase of a GLSM without a large radius limit in its Kähler

moduli space. In fact, it can be shown [40] that h1,1 = 1, and the only other phase is

a LGO.
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k E|k〉 q|k〉 q|k〉 ℓk νa, ν1 ν̃a, ν̃1

0 0 −3
2 −3

2 0 0, 0 0, 0

1 −1 0 −3
2 0 1

8 ,
1
4 −3

8 ,−1
4

2 0 1
2 −3

2 −2 1
4 ,

1
2 −3

4 ,−1
2

3 −1
2 −1 −1

2 −2 3
8 ,

3
4 −1

8 ,−3
4

4 0 −1
2 −1

2 0 1
2 , 0 −1

2 , 0

φi, φ1 ρi, ρ1 χi, χ1 χi, χ1

q 1
4 ,

1
2 −1

4 ,−1
2 −3

4 ,−1
2

3
4 ,

1
2

q 1
4 ,

1
2 −1

4 ,−1
2

1
4 ,

1
2 −1

4 ,−1
2

Table 3. Quantum numbers for the X = O(−2)⊕O⊕4 → P1 model.

2. In the second example we describe a model in the broader orbi-bundle set-up with

B = P3. It will be clear that most of our discussion above was restricted to the case

in which X is a sum of line bundles solely for ease of exposition. This example also

give us a chance to compute a higher order differential (it will turn out to be zero).

3. In the last example we consider the case in which one of the line bundles defining X

is positive, and B = F0 is not a projective space.

While our construction does not depend on a GLSM embedding, all of these models do

arise as phases of a GLSM. That gives us the possibility to compare the hybrid spectrum

with the spectrum known in other phases. What we discover is that while in the hybrid

limit extra singlets appear at a particular complex structure or Kähler form, there is no

evidence of world-sheet instanton corrections to masses of e6 singlets.

6.1 A hybrid with no large radius

We begin with the model X = O(−2)⊕O⊕4 and B = P1 with superpotential

W =
2∑

p=0

F[2p](φ
1)p. (6.1)

Some notational clarifications are in order: it is convenient to distinguish between the

trivial and non-trivial fiber indices, so let a, b = 2, . . . , 5; moreover, let F[d] be a generic

polynomial of degree 4−d in the φa’s, whose coefficients belong to H0(P1,O(d)). The left-

and right-moving charges for the fields and the quantum numbers of the twisted ground

states are summarized in table 3.

The orbifold action Γ = Z8 introduces 7 twisted sectors; because of CPT invariance

to compute the number of massless e6-singlets it is sufficient to study the k = 1 and

k = 3 sectors.

k = 1 sector. The E1 stage of the spectral sequence is obtained by taking HQ0

(H) as

described in section 4.4 and we reproduce here the result, where the subscripts denote the
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dimension of the respective cohomology groups

Ep,u
1 :

H1 (Y , B1,0,0)3
QW //

H1 (Y , B0,0,1)10
⊕

H1 (Y , B1,1,0)63

QW // H1 (Y , B0,1,0)35

H0 (Y , B0,0,1)20
⊕

H0 (Y , B1,1,0)17

QW // H0 (Y , B0,1,0)176

//

OO

−3
2−5

2 −1
2

p

U

(6.2)

The lowest row of the sequence provides an example of the universal structure of

currents we indicated above in (5.12), and for generic W the kernel is one-dimensional,

corresponding to the U(1)L symmetry. By choosing a particular form of the superpoten-

tial (6.1) we can increase kerQW , and the additional vectors correspond to an enhanced

symmetry at the special locus in the moduli space.

In order to compute the cohomology of the top row of (6.2) let us list all the states

contributing at Ep,1
1 :

V ρ1χ1|1〉3
QW //

H[2]χ1χ
I |1〉30

⊕
G[1]χbχ

I |1〉16
⊕

G[1]χ1χ
b|1〉16

⊕
ΦIφ

1χ1χ
I |1〉1

⊕
G[2]ρ1|1〉10

⊕
ΨI∂zy

I |1〉1

QW // G[4]χ
I |1〉35 (6.3)

where G[d] and H[d] are generic polynomials of degree d in the φa’s with coefficients in

H1(P1,O(−2)) and H1(P1,O(−4)), respectively, while ΨI ,ΦI ∈ H1(P1,O(−2)). First,

consider the map on the left. We have the state V ρ1χ1|1〉 where V ∈ H1(Y , TY ⊗ TY ) ≃
H1
(
P1,O(−4)

)
. Under QW it maps to

QWV ρ1χ1|1〉 = V
(
∂1Wρ1 + ∂11Wχ1χ1 + ∂1IWχIχ1

)
|1〉+ V (∂1aWχaχ1) |1〉 . (6.4)

Since ∂1W,∂1aW ∈ Γ(P1,O(2)), it follows that V ∂1W,V ∂1aW ∈ H1
(
P1,O(−2)

)
. To

compute the dimension of the cokernel of this map we first note that if we restrict the

superpotential to its Fermat form, namely W =
∑5

i=2(φ
i)4 + S[4](φ

1)2, we have

QWV ρ1χ1|1〉 = 2V
(
φ1S[4]ρ1 + S[4]χ

1χ1 + φ1∂IS[4]χ
Iχ1

)
|1〉 . (6.5)
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Since V φ1S[4] ∈ H1
(
P1,O(−2)

)
and h1(P1,O(−2)) = 1 the kernel at Fermat is

2-dimensional.

Adding to W a term of the form S[2]φ
2φ3φ1+T[2]φ

4φ5φ1, where S[2], T[2] ∈ Γ(B,O(2)),

we find that (6.4) reads

QWV ρ1χ1|1〉 = V
(
∂1Wρ1 + ∂11Wχ1χ1 + ∂1IWχIχ1

)
|1〉

︸ ︷︷ ︸
Fermat

+ V S[2]

(
φ2χ3 + φ3χ2

)
χ1|1〉+ V T[2]

(
φ4χ5 + φ5χ4

)
χ1|1〉 , (6.6)

and the map is injective for W generic enough. Now, for the map on the right in (6.3)

we have

QW

(
Ψabρ1 +Ψab,Iχ

Iχ1

)
φaφb|1〉 = ∂α (Ψab∂1W )χαφaφb|1〉

QWΣabIχ
Iχ1φ

aφb|1〉 = −ΣabIχ
I∂1Wφaφb|1〉

QWV b
a φ

aχIχb|1〉 = −V b
a φ

a∂bWχI |1〉
QWΦIφ

1χIχ1|1〉 = −ΦIφ
1∂1WχI |1〉 (6.7)

The cokernel of this map is thus any object of the form Ψabcdφ
aφbφcφdχI |1〉 for Ψabcd ∈

H1(P1,O(−2)), which cannot be written as ∂1WφaφbχI |1〉 or φa∂bWχI |1〉. We find a

9-dimensional space. Thus, the E2 stage of the spectral sequence is

Ep,u
2 :

0 C45 C9

C1 C139
//

OO

−5
2 −3

2 −1
2

p

U

(6.8)

and obviously all higher differentials vanish. Hence the spectral sequence degenerates

already at this stage, E∞ = E2. Thus, in this sector we count 45 + 139 = 184 chiral and 9

anti-chiral e6-singlets.

k = 3 sector. The k = 3 ground state has a non-trivial vacuum bundle L|3〉 = O(2) and,

as discussed in section 5, we must distinguish between light and heavy fields. In particular

we have A = 1, i′ = 2, . . . , 5, α′ = (I, i′), while the geometry is determined by Y3, the total

space of O⊕4 π3−→ P1. The expansion of QW in this sector takes the form

QW = χA†∂AW + χA∂AiWρi† + χα′†∂α′iWρi† + χα′
∂α′ijWρi†ρj† . (6.9)
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The E1 stage of the spectral sequence is given by

Ep,u
1 :

H1(Y3, π
∗
3 (L

∗
6)⊗ ∧2TY3

)18
QW // H1(Y3, TY3

)16

0

H0(Y3,∧2TY 3
⊗ T ∗

Y 3
)6

⊕
H0(Y3, TY 3

)1
//

OO

−3
2 −1

2
p

U

(6.10)

Now, the only non-trivial map is at U = 1, where

QWV abρ1χaχb|3〉 = 2V abρ1∂1aWχb|3〉 6= 0 . (6.11)

The r.h.s. never vanishes, giving a 6-dimensional image. Hence, the spectral sequence

degenerates at the E2 term

Ep,u
2 :

C12 C10

0 C7
//

OO

−3
2 −1

2
p

U

(6.12)

Hence we count 19 chiral and 10 anti-chiral states for a total of 222 e6 singlets. By similar

methods we compute h2,1 = 61 and h1,1 = 1, yielding M = 160.

6.2 The orbi-bundle

Now we present an example in which X is not a sum of line bundles, but a more general

orbi-bundle. Let us take B = P3 and X = O(−5/2) ⊕ O(−3/2) along with the quasi-

homogeneous superpotential

W = S5(φ
1)2 + S4φ

1φ2 + S3(φ
2)2, (6.13)

where Sd ∈ H0(B,O(d)). The ground state quantum numbers and charges of the fields are

given in table 4, and to find the singlets we need only consider the first twisted sector.
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k E|k〉 q|k〉 q|k〉 ℓk νi ν̃i

0 0 −3
2 −3

2 0 0 0

1 −1 0 −3
2 0 1

4 −1
4

2 0 1
2 −3

2 −4 1
2 −1

2

φi ρi χi χi

q 1
2 −1

2 −1
2

1
2

q 1
2 −1

2
1
2 −1

2

Table 4. Quantum numbers for the X = O(−5/2)⊕O(−3/2) → P3 model.

The first stage of the spectral sequence is

Ep,u
1 :

H3 (Y , B1,0,1)6
⊕

H3 (Y , B2,1,0)15

0 0

0 H1 (Y , B1,1,0)2 0

0

H0 (Y , B0,0,1)21
⊕

H0 (Y , B1,1,0)6

QW // H0 (Y , B0,1,0)295

//

OO

−5
2 −3

2 −1
2

p

U

(6.14)

The bottom row is the only place where we can have cokernel, and for generic superpotential

we find dimkerQW = 1.

Thus, the E2 stage of the spectral sequence is

Ep,u
2 :

C21

0 0

0 C2 0

0 C C269 0 //

OO

−5
2 −3

2 −1
2

1
2

p

U

(6.15)

All higher differentials vanish, and the spectral sequence degenerates at the E2 term. We

then count 271 chiral and 21 antichiral states corresponding to massless e6 singlets. We

also computed by similar methods the number of charged singlets, h2,1 = 90 and h1,1 = 2,

corresponding to the (2,2) moduli, which we can subtract from the total number of neutral

singlets to find M = 200.
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A higher differential? It is worth noting that the spectral sequence for computing the

number of 12 ⊂ 27 states degenerates only at the E4 term, giving us an example of a

possible higher differential. At zero energy and q = 2 we have

Ep,u
1 :

0

H2(Y , B1
3,0,0)1 0

0 0 0

0 H0(Y , B2,0,0)120
QW // H0(Y , B1,0,0)905

QW // H0(Y , B0,0,0)875 //

OO

−5
2 −3

2 −1
2

1
2

p

U

(6.16)

Trivially d2 = 0, thus E3 = E2, but there is one more map we have to compute, in fact

Ep,u
3 :

0

C

d3

$$❏
❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

0

0 0 0

0 0 0 C90
//

OO

−5
2 −3

2 −1
2

1
2

p

U
(6.17)

Let us recall that an element b ∈ H represents a cohomology class in E3 if there exist

c1, c2 ∈ H such that

Q0b = 0 , QW b = Q0c1 , QW c1 = Q0c2 , (6.18)

and d3 on the cohomology class [b]3 is given by

d3[b]3 = [QW c2]3 . (6.19)
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Thus, we just chase down the state ηJηKV I
JK

χ1χ2χI |1〉 ∈ E
−5/2,3
3 as prescribed in (6.19)

0 0

ηJηKV I
JK

χ1χ2χI |1〉
QW //

Q0

OO

ηJηKV I
JK

ǫαβγ∂αWχβχγ |1〉

Q0

OO

ηJSI
J
ǫαβγ∂αWχβχγ |1〉

Q0

OO

QW // ηJSI
J
ǫαβγ∂αW∂[βWχγ]|1〉

RIǫαβγ∂αW∂[βWχγ]|1〉

Q0

OO

QW // 0 .

(6.20)

The coefficients satisfy

V I
JK

= −(∂̄S)I
JK

, SI
J
= −(∂̄R)I

J
. (6.21)

We just showed that d3, while in principle allowed, vanishes, and the spectral sequence

degenerates at the E4 = E2 term. In this sector we count h2,1 = 90 and h1,1 = 1 and the

“missing” Kähler modulus is to be found in the k = 3 sector, as expected.

6.3 A positive line bundle

For our last example we consider X = O(−3,−3)⊕O(1, 1) and B = F0. The novelty here

is that we allow a positive line bundle over a non-projective base.

A non degenerate superpotential is given by

W = (φ1)4S[12,12] + (φ1)3φ2S[8,8] + (φ1φ2)2S[4,4] + φ1(φ2)3S[0,0] , (6.22)

where S[m,n] ∈ Γ(F0,O(m,n)) and the quantum numbers for this theory are listed in

table 5. Studying the (R,R) sectors we find h1,1 = 3 and h2,1 = 243, and to count the

remaining e6 singlets we need to consider the k = 1 and k = 3 sectors.

k = 1 sector. In the first twisted sector the spectral sequence at q = 0 is

Ep,u
1 :

H2(Y , B1,1,0)39
⊕

H2(Y , B0,0,1)9

QW // H2(Y , B0,1,0)39

H1(Y , B1,1,0)10
QW // H1(Y , B0,1,0)2

H0(Y , B1,1,0)63
⊕

H0(Y , B0,0,1)27

QW // H0(Y , B0,1,0)825

//

OO

p

U

−3
2 −1

2

(6.23)
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k E|k〉 q|k〉 q|k〉 ℓk νi ν̃i

0 0 −3
2 −3

2 0 0 0

1 −1 0 −3
2 0 1

8 −3
8

2 0 1
2 −3

2 (−2,−2) 1
4 −3

4

3 −3
4 −1

2 −1 0 3
8 −1

8

4 0 −1 −1 (−2,−2) 1
2 −1

2

φi ρi χi χi

q 1
4 −1

4 −3
4

3
4

q 1
4 −1

4
1
4 −1

4

Table 5. Quantum numbers for the X = O(−3,−3)⊕O(1, 1) → F0 model.

It is not hard to verify that both the maps QW

∣∣
U=1

and QW

∣∣
U=2

are surjective for suffi-

ciently generic W , and as we already saw in the discussion about the general k = 1 sector,

there is only one state at q = −3
2 , u = 0 in the kernel of QW . The spectral sequence

degenerates at the E2 term

Ep,u
2 :

C9

C8 0

C C736
//

OO

p

U

−3
2 −1

2

(6.24)

Thus we count 744 chiral and 9 anti-chiral massless e6-singlets and one vector.

k = 3 sector. In the k = 3 sector all the fields are “light”, L|3〉 is trivial, and the

geometry is again encoded in the full Y3 = Y . The spectral sequence starts then as

Ep,u
1 :

H2(Y , Sym2 TY )27
⊕

H2(Y ,∧2TY ⊗ T ∗
Y )6

QW // H0(Y ,O)1

0 0

H0(Y , Sym2 TY )9
QW // H0(Y ,O)58 //

OO

−3
2 −1

2
p

U

(6.25)
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It can be shown that the map QW

∣∣
U=0

is injective while the map QW

∣∣
U=2

is surjective.

Therefore the second stage of the spectral sequence is

Ep,u
2 :

C32 0

0 0

0 C49
//

OO

p

U

−3
2 −1

2

(6.26)

The spectral sequence degenerates at the E2 term, and we find 49 chiral and 32 anti-chiral

singlets.

Summarizing, we count 834 massless chiral e6-singlets and once we subtract the moduli

we obtain M = 588.

7 Discussion

We have described a class of perturbative vacua for heterotic string compactifications and

a limit in which their properties are computable. We have illustrated these computations

in models with (2,2) world-sheet supersymmetry, although the methods clearly extend to

more general (0,2) theories.

Our class of (2,2) models fits in with a number of other constructions. To describe this

we proceed in increasing dimension d of the base B and assume this is Fano. For d = 1

this means B = P1 and the c = 6 LGO theory on the fiber determines a one-parameter

family of K3 compactifications. Models with no large radius limit in the Kähler moduli

space, such as the first example in section 6, are obtained when the monodromies of the

family are not simultaneously geometrical in any duality frame. It seems likely that any

such model would be obtained as a limit in some GLSM, but we have not shown this.

For d = 2 the base is a del Pezzo surface and the c = 3 LGO theory on the fiber can

be interpreted as determining in Weierstrass form an elliptic fibration over B. This can

be smooth if the discriminant is nonsingular in B, in which case the model will have a

large-radius limit. It is not clear how to construct a GLSM embedding for a hybrid with a

non-toric base.

For d = 3 there are many possible choices for B, but the c = 0 LGO theory is quadratic,

and hence appears to be trivial. Since the fiber fields are massive at generic points on the

base, one might think the low-energy theory would be a NLSM with target space B, but

this cannot be correct, as this would not be conformally invariant. This näıve discussion

omits the orbifold action. Since at low energy there are no excitations in the fiber direction,

one can try [41] to describe the resulting model as a NLSM with target space a double cover

of B branched over the singular locus of W (y, φ) considered as a function of φ only. This

leads to a geometric interpretation of the limiting point we called the hybrid limit. It is not

directly related to a symplectic quotient construction and, if the model has a large-radius

limit, it is not birational to the target space at this limit. The relationship between the two
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descriptions is unclear. It would be interesting to study, among other things, the behavior of

the D-brane spectrum and moduli in a type-IIA compactification near such a hybrid limit.

The models we have studied have been “good” hybrids, in which the R-symmetry does

not act on the base. Limiting points of GLSMs often produce hybrids for which this does

not hold. The hybrid limit for “good” hybrids is expected to lie at infinite distance in the

moduli space of SCFTs; it should be possible to determine the approximate moduli space

metric in the hybrid limit. We expect that the approximation should improve as the hybrid

limit is approached and the distance to the hybrid limit deep in the Kähler cone of B will

diverge. It would be interesting to verify this in detail. In [3] “pseudo” hybrids were defined

as hybrid limits lying at finite distance; the behavior of the D-brane spectrum near these

limits was found to be quite different from that expected near a “good” hybrid. It seems

natural to conjecture that “good” hybrids and “true” (not “pseudo”) hybrid limits coincide.

Although we focused on models with (2,2) world-sheet supersymmetry, the methods

extend naturally to a much larger class of models with (0,2) supersymmetry. This larger

class presents an array of interesting questions. As a first foray in this direction, the

massless e6 singlets in (NS,R) sectors belong to (anti-) chiral multiplets containing massless

scalars. Expectation values for these represent marginal deformations of the world-sheet

SCFT preserving (0,2) supersymmetry. We do not at present have effective techniques to

determine which of these are exactly marginal, and the structure of the moduli space of

(0,2) SCFTs is still largely unknown.

In general one expects [36, 42] that away from the hybrid limit the (0,2) models we

construct will be destabilized by world-sheet instantons wrapping cycles in B. In some

classes of models this expectation has been thwarted, and the anticipated corrections are

absent [43–45]. Even in cases in which no known argument precludes such corrections they

have been found less generally than one might expect [4, 5]. It would be very interesting to

investigate this issue in the context of hybrid models, in which the structure of the relevant

instantons — associated to rational curves in B rather than in a Calabi-Yau threefold, may

provide a simpler context for their study.

More generally, we can construct (0,2) hybrid models that are not deformations of

(2,2) models by taking the left-moving fermions to be sections of a holomorphic bundle

E → Y and a (0,2) superpotential given by a section J ∈ Γ(E∗) with J−1(0) = B. It is

to be expected that most such models will not have a limit in which they are described

by a (0,2) NLSM or one in which they reduce to a (0,2) LGO theory, so that these will

determine a large class of new perturbative vacua of the heterotic string. These models

will be considered in a forthcoming work.

A Hybrid geometry: an example

Let B = P1 and take Y to be the total space of X = O(−2) → P1. We cover Y by two

patches Uu and Uv, with local coordinates (u, φu) and (v, φv), respectively :

u = v−1, φu = v2φv on Uu ∩ Uv = C∗. (A.1)
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The projection π : Y → B is simply (u, φu) → u and (v, φv) → v in the two patches. The

transition function for σ = σ1
u∂u + σ2

u∂φu
, a section of TY , is

(
σ1
u σ2

u

)
=
(
σ1
v σ2

v

)(−v−2 2vφv

0 v2

)
. (A.2)

TY belongs to a family of rank 2 holomorphic bundles Vǫ → Y with transition function

(
σ1
u σ2

u

)
=
(
σ1
v σ2

v

)
Mǫ , Mǫ ≡

(
−v−2 2ǫvφv

0 v2

)
. (A.3)

When ǫ = 0 the bundle splits: Vǫ=0 = π∗O(2)⊕π∗O(−2); more generally Vǫ is an irreducible

rank 2 bundle over Y .

An example of a quasi-homogeneous superpotential depending on a parameter α is

Wu = (α+ u8)φ4
u , Wv = (αv8 + 1)φ4

v . (A.4)

Clearly Wu = Wv on the overlap. Computing the gradient in the two patches, we obtain

dWu = 8u7φ4
udu+ 4(α+ u8)φ3

udφu , dWv = 8αv7φ4
vdv + 4(αv8 + 1)φ3

vdφv . (A.5)

It is then easy to see that for α 6= 0 we have dW−1(0) = B. A more general superpotential

respecting the same quasi-homogeneity is

Wu = Su(u)φ
4
u , Wv = Sv(v)φ

4
v , (A.6)

where Su,v is the restriction of Σ ∈ H0(B,O(8)) to Uu,v. The potential condition is satisfied

for generic choices of Σ.

We can see how the fibration affects the naive chiral ring Rp of the LG fiber theory over

a point p ∈ B: dimRp jumps in complex co-dimension 1 but stays finite if the potential

condition is satisfied. In our example Ru = {1, φu, φ
2
u} for u8 + α 6= 0, while at the 8

special points R = {1, φu, φ
2
u, φ

3
u}. If α = 0 then the potential condition is violated, and

dimR0 = ∞.

A (0,2) deformation. Taking the left-moving bundle to be E = Vǫ, we obtain a class

of (0,2) theories. The most general (0,2) superpotential that respects the same quasi-

homogeneity as dW , J ∈ Γ(E∗), takes the form

Ju =

(
Tu(u)φ

4
u

4Su(u)φ
3
u

)
, Jv =

(
Tv(v)φ

4
v

4Sv(v)φ
3
v

)
, (A.7)

where S and T are holomorphic functions constrained by Ju = M−1
ǫ Jv when u 6= v. Su,v

are restrictions of Σ as above, while Tu,v are given by

Tu(u) = − Σ̃
∣∣∣
u
+ 8ǫu−1 (Su(u)− Su(0)) , Tv(v) = Σ̃

∣∣∣
v
+ 8ǫv7Su(0) , (A.8)
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where Σ̃ ∈ H0(B,O(6)). The potential condition is satisfied for generic Σ and Σ̃. Setting

ǫ = 1 and Tu = ∂uSu, we recover the (2,2) potential from above. On the other hand, taking

ǫ = 0, we see that T is just given by restriction of holomorphic sections of O(6).

We can compare the number of holomorphic deformation parameters in the (2,2) or

(0,2) superpotentials. W depends on 9 holomorphic parameters specifying section Σ. The

more generic (0,2) superpotential J , on the other hand, depends on 16 parameters, inde-

pendent of ǫ; as a check, we see that demanding that J is integrable to W reduces the

parameters to 9.

Metrics for Y and E. It is well known that Y admits an ALE Kähler Ricci-flat metric

with Kähler potential27

KCY =
√
1 + L+

1

2
log

√
1 + L− 1√
1 + L+ 1

, L ≡ 4φφ(1 + uu)2 . (A.9)

This is obviously well-defined with respect to the patching. To leading order in the fiber

coordinates, we find that up to irrelevant constants

KCY = K +O(|φ|4), K = log(1 + uu) + (1 + uu)2φφ . (A.10)

K leads to a complete non-Ricci-flat metric on X:

gX =

(
guu guφ
gφu gφφ

)
=

(
(1 + uu)−2 + 2(1 + 2uu)φφ 2uφ(1 + uu)

2uφ(1 + uu) (1 + uu)2

)
. (A.11)

To O(|φ|4) this agrees with the Kähler metric obtained by symplectic reduction from C3.

We can also endow E with a Hermitian metric. In our example with E = Vǫ, a

convenient choice is

(σ, τ) ≡ σGτ , G =

(
(1 + uu)−2 + 2ǫǫ(1 + 2uu)φφ 2ǫuφ(1 + uu)

2ǫuφ(1 + uu) (1 + uu)2

)
. (A.12)

Setting ǫ = 1, we obtain a Hermitian, in fact Kähler, metric on TY . Setting φ = 0 we

obtain the bundles restricted to B. As we might expect, TY |B = Vǫ|B = O(2)⊕O(−2).

The explicit Ricci-flat metric on Y is fairly complicated, and generalizations to other

spaces are typically not available. Fortunately, we do not need the explicit form of the

metric for our analysis: by construction the superpotential restricts low energy field con-

figurations to B, and the details of the metric on Y away from the base become irrelevant

to the IR physics.

B Vertical Killing vectors

In this appendix we examine holomorphic vertical Killing vectors on Y and prove that

with our assumptions they act homogeneously on the fiber directions.

27Constructions of such metrics for line bundles over Pn−1, which generalize the classic work of Eguchi

and Hanson [46], go back to [47, 48]; [49] gives an elegant generalization for line bundles over symmetric

spaces. These are also the only explicitly known ALE metrics with SU(n) n ≥ 3 holonomy [50].
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Let V = V α ∂
∂yα + c.c. be an holomorphic vector field on Y , i.e. V α

,β
= 0. Then the

Killing equation for a Kähler metric gαβ takes the form

∂γ(gαβV
α) + ∂β(gγαV

α
) = 0 . (B.1)

Using the base/fiber decomposition yα = (uI , φi), the hybrid metric has components

gIJ = GIJ + φhIJφ, giJ = himJφ
m
, gI = φmhmI , gi = hi . (B.2)

Since V is vertical, we have V = V i ∂
∂φi +c.c., and a moment’s thought shows that V i(u, φ)

transforms as a section of π∗(X). In this case the Killing equation reduces to

∂γ(giβV
i) + ∂β(gγıV

ı
) = 0 , (B.3)

and decomposing it further along base/fiber directions leads to two non-trivial conditions.

First, from β, γ = , k we obtain

∂kV
i + hi∂V

ı
hkı = 0 . (B.4)

Since h is φ-independent and ∂mV
ı
 = 0, we conclude that

V i = Ai
k(u)φ

k +Bi(u), A
ı
k = (Ai

k)
∗ = −hıiAk

i hkk . (B.5)

The latter restriction on A ∈ H0(B,X ⊗ X∗), combined with its holomorphy leads to

DJA = 0. The remaining non-trivial conditions are obtained by taking β, γ = J, k in the

Killing equation, and they lead to DJB = 0 for B ∈ H0(B,X).

So, we have learned that vertical automorphic Killing vectors are characterized by

covariantly constant sections A ∈ Γ(X⊗X∗) and B ∈ Γ(X), with the additional restriction

(Ai
k)

∗ = −hıiAk
i hkk . (B.6)

In fact, we can always shift away the global section B by a redefinition of the φi; moreover,

for a generic choice of metric h the only solution for A is a diagonal anti-Hermitian u-

independent matrix; demanding LV W = W will fix the eigenvalues (up to an overall i) to

be the charges qi.

C A little sheaf cohomology

In this section we present some useful results for reducing sheaf cohomology on Y to

computations on the baseB in the case thatX = ⊕iLi. In order to computeQ0 cohomology

we need an effective method to evaluate

H•
r(Y , π∗(E)⊗ ∧sTY ⊗ ∧tT ∗

Y ), (C.1)

where E is some bundle (or more generally sheaf) on B, and r is the restriction to fine grade

r. Recall that the grading r ∈ Zn assigns to every monomial
∏

i φ
ri
i grade r = (r1, . . . , rn);

in particular φi has grade xi with (xi)j = δij . Since Y is non-compact the grade restriction

is necessary to obtain a well-posed counting problem. For instance, the structure sheaf OY

clearly has infinite-dimensional cohomology group H0(Y ,OY ).
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Graded cohomology of a pulled-back sheaf. Suppose s = t = 0 in (C.1). As we

now show,

H•
r(Y , π∗(E)) ≃ H•(B, E ⊗ Lr), (C.2)

where Lr → B is the line bundle Lr ≡ ⊗i(L
∗
i )

ri .

The proof follows from the basic geometry. First, to describe the line bundles Li → B,

we work with a cover U = {Ua} for B with local coordinates uIa in each patch, so that on

overlaps Uab 6= ∅ sections of Li satisfy

λi
b(ub) = λi

a(ua)g
i
ab(ua) , (C.3)

where the giab are the transition functions defining the bundle Li. The sections σa of a

sheaf E → B satisfy

σb(ub) = σa(ua)Gab(ua) , (C.4)

where the Gab are the transition functions for E , and sections of π∗(E) → Y patch as

σb(ub, φb) = σa(ua, φa)Gab(ua) , (C.5)

with φi
b = φi

ag
i
ab(ua) . Since the transition functions for π∗(E) are identical to the transition

functions for E over B, at fixed grade (C.5) takes the form

∏

i

(φi
b)

riξb(ub) =
∏

i

(φi
a)

riξa(ua)Gab(ua) ⇐⇒ ξb(ub) = ξa(ua)Gab(ua)
∏

i

[
giab(ua)

]−ri .

(C.6)

Hence the space of sections of π∗(E)r over Y is isomorphic to the space of sections of

E ⊗ Lr over B. The grading is compatible with Čech cohomology (i.e. with defining

chains for higher intersections Ua1···ak and taking cohomology of the Čech differential),

and (C.2) holds.

The tangent bundle. Having reduced the graded cohomology of a pull-back sheaf to a

cohomology problem on the base, we now turn to the tangent bundle. This is of course not

in general the pull-back of a sheaf from B, as we explictly saw in appendix A. However,

TY fits into a short exact sequence

0 // π∗(X) // TY
// π∗(TB) // 0 . (C.7)

This is easy to see explicitly. In an open neighborhood Ua a vector field Σ takes the form

Σa = Va
∂

∂ua
+ νa

∂

∂φa
, (C.8)

and on overlaps Uab

Vb = Va
∂ub
∂ua

, νb = νagab + φaLV gab , (C.9)
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where gab are the transition functions for X. Hence, we see that a section ν of X lifts to a

section of TY with V = 0, while a section of TY at φ = 0 yields a section of TB.

This short exact sequence can be decomposed with respect to the fine grading. Working

again in the case X = ⊕iLi, the transition functions for sections of TY can be written

explicitly as

(σ0
b , σ

1
b , . . . , σ

n
b ) = (σ0

a, σ
1
a, . . . , σ

n
a )




∂ub

∂ua
φ1
a∂g

1
ab φ2

a∂g
2
ab · · · φn

a∂g
n
ab

0 g1ab 0 · · · 0

0 0 g2ab · · · 0
...

...
...

. . .
...

0 0 0 · · · gnab




. (C.10)

Hence, sections of TY also admit a fine grading, which we define

(Σ)r ≡ (σ0
r, σ

1
r+x1

, σ2
r+x2

, . . . , σn
r+xn

) . (C.11)

This means the short exact sequence for TY can be decomposed according to r as

0 // ⊕i(π
∗Li)r+xi

// (TY )r // (π∗TB)r // 0 . (C.12)

Using the induced long exact sequence on cohomology, together with (C.2), we can evaluate

H•
r(Y , TY ). Taking appropriate products one can generalize this result to compute all

desired cohomology groups in (C.1).

We should mention one small subtlety in grading the sections of TY : from (C.11) we

see that there can be non-trivial contributions for ri = −1. More precisely, (TY )r = 0

whenever any ri < −1 or ri = rj = −1, and if a single ri = −1 we have

(TY )r = (π∗Li)r+xi
, (C.13)

in which case H•
r(Y , TY ) = H•(B,Lr).

Application to X = O(−2) and B = P1. In this case the grading is one-dimensional

r = (r), the grading bundle is Ls = (O(−2)∗)s = O(2s), and for any r ≥ 0 the structure

sheaf cohomology is

H0
r (Y ,OY ) = H0(B,O(2r)) ≃ C2r+1 , Hq

r (Y ,OY ) = 0, for q > 0 . (C.14)

For the tangent sheaf the short exact sequence

0 // (π∗O(−2))r+1
// (TY )r // (π∗O(2))r // 0 (C.15)

leads to the long exact sequence in cohomology

��

0 // H0(B,O(2r)) // H0
r (Y , TY ) // H0(B,O(2r + 2))BC

GF
H1(B,O(2r)) // H1

r (Y , TY ) // H1(B,O(2r + 2)) // 0

(C.16)

– 45 –



J
H
E
P
0
5
(
2
0
1
4
)
0
4
3

At grade 0 we obtain

0 // C // H0
0 (Y , TY ) // C3

0 // H1
0 (Y , TY ) // 0 // 0

(C.17)

Hence, H0
0 (Y , TY ) ≃ C4, and H1

0 (Y , TY ) = 0. More generally, for any non-negative grade

H0
r (Y , TY ) = H0

r (B,O(2r))⊕H0
r (B,O(2r + 2)) ≃ C4r+4, H1

r (Y , TY ) = 0 . (C.18)

A note on horizontal representatives. In order to evaluateQ0 cohomology we needed

to study the finely graded Dolbeault cohomology of horizontal forms on Y valued in a

holomorphic sheaf F . One might wonder what is the relationship between these horizontal

forms and more general Dolbeault classes in H
(0,u)

∂̄
(Y ,F). In fact, every such class has a

horizontal representative, which is why our results on finely graded cohomology describe

horizontal Dolbeault cohomolgy as well. This is rather intuitive, since the fiber space is

simply Cn (or Cn/Γ for orbi-bundles), but for completeness we give a sketch of the proof.28

The statement is trivial at u = 0, so we consider u = 1. Let τ ∈ ker ∂̄ ∩Ω(0,1)(Y ,OY ).

In any patch Ua we have

τa = ωaIdu
I
a + σaıdφ

ı
a . (C.19)

We define ηa(ua, ua, φa, φα) via the line integral

ηα =

∫ φa

0
dzıσaı(ua, ua, φa, z) . (C.20)

Since ∂̄τ = 0 implies σaı, = σa,ı, the line integral does not depend on the choice of

contour from 0 to φ; moreover, a change of variables zı = gıbay
ı in the integral shows that

ηa = ηb on any Uab 6= ∅, so that η patches to a function on Y . Therefore τ ′ = τ − ∂̄η is

a (0,1) horizontal form, and a moment’s thought shows that ∂̄τ ′ = 0 implies that it has a

holomorphic dependence on the fiber coordinates.

One can generalize the argument to u > 1 and more general holomorphic sheaf F → Y .

The analogous construction yields η, a section of Ω(0,u−1)(Y ,F), such that τ ′ = τ − ∂̄η is

a horizontal representative of [τ ] ∈ H
(0,u)

∂̄
(Y ,F).

D Massless spectrum of a (0,2) CY NLSM

In this appendix we apply the first-order techniques developed in section 4.3 to marginal

deformations of (0,2) NLSMs with CY target space B and a left-moving SU(n) bundle

V . We assume ch2(V) = ch2(TB) and V is a stable bundle. This ensures that the NLSM

is conformally invariant to all orders in α′ perturbation theory [42, 51]. Our techniques

allow us to determine the massless spectrum to all orders in α′. The results for the (R,R)

28This essentially follows the standard proof [33] that Hk
dR(R

n,R) = 0 for k > 0.
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sector and for the gauge-charged matter are exactly the same as those obtained by a Born-

Oppenheimer approach in [36]. However, the massless gauge-neutral chiral matter has to

our best knowledge not been studied directly in the NLSM. The first-order formulation of

Q0 cohomology turns out to be perfectly suited to this task and should be thought of as a

first step in systematically including any non-perturbative world-sheet effects.

In parallel with the analysis of the k = 1 sector in section 5.2, we first list the op-

erators that can give rise to massless singlets. We need to slightly alter our notation in

comparison to the TB = V analysis of section 5.2; just in this appendix we use I, J, . . . for

tangent/cotangent indices, while the α, β indices will refer to sections of the left-moving

bundle V and its dual V∗. We will continute to denote the bosonic coordinates by y, y.

Thus, χα (χα) transforms as a section of the pullback of V (V∗). In particular, the χ kinetic

term is

2πL ⊃ χαDzχ
α = χα(∂̄zχ

α + ∂̄zy
IAα

Iβχ
β) , (D.1)

where A is a HYM connection on V with traceless curvature F = ∂̄A.

Using the connection, we can easily describe the full set of operators that can give rise

to gauge-netural massless states in the (NS,R) sector (we ignore the universal gravitino

and dilatino states and drop the normal ordering):

O4(z) = Ψ4
I∂y

I , O5+6(z) = Ψ5α
β χαχ

β +Ψ6I(ρI −Aα
Iβχαχ

β) . (D.2)

As in our discussion of states in the k = 1 sector we suppressed the expansion of each of

these in η; taking that into account the wavefunctions correspond to the following bundles:

Ψ4 ∈ Γ(⊕uΩ
(0,u)(T ∗

B)) , Ψ5 ∈ Γ(⊕uΩ
(0,u)(EndV)) , Ψ6 ∈ Γ(⊕uΩ

(0,u)(TB)) . (D.3)

These states are Q0 closed iff Ψ4, Ψ5 and Ψ6 are ∂̄-closed and

obs(Ψ6) + ∂̄Ψ5 = 0 , (D.4)

where obs(Ψ6
u) is a (0,u+1) ∂̄-closed form valued in (traceless) endomorphisms of V

obs(Ψ6)α
βJ0···Ju

≡ Ψ6I
[J1···Ju

Fα
J0]Iβ

. (D.5)

Taking cohomology, [obs(Ψ6
u)] ∈ Hu+1(B,EndV). As explained in [38], at u = 1 this is

the Atiyah class [52] — an obstruction to extending infinitesimal complex structure defor-

mations of the base B to infinitesimal complex structure deformations of the holomorphic

bundle V → B. Thus, our states fit into the complex

O4
0

Q0 // O4
1

Q0 // O4
2

Q0 // O4
3

O5
0

⊕
O6

0

Q0 //
O5

1

⊕
O6

1

Q0 //
O5

2

⊕
O6

2

Q0 //
O5

3

⊕
O6

3

(D.6)
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Taking Q0 cohomology we find

0 H1(T ∗)
0 // H2(T ∗) 0

H0(EndV)
⊕

H0(T )

obs0 //
H1(EndV)

⊕
H1(T )

obs1 //
H2(EndV)

⊕
H2(T )

obs2 //
H3(EndV)

⊕
H3(T )

.

(D.7)

For traceless EndV on the CY 3-fold B

H0(B,EndV) = H3(B,EndV) = 0 , H2(EndV) ≃ H1(B,EndV) , (D.8)

so that the complex reduces to

0 H1(T ∗)
0 // H2(T ∗) 0

0

H1(EndV)
⊕

H1(T )

obs1 //
H2(EndV)

⊕
H2(T )

0

(D.9)

The only Atiyah obstructions arise in H1(B, T ) → H2(B,EndV), and hence there are

h1(T ∗) + h1(T ) + h1(EndV)− dimker obs1 (D.10)

massless gauge-neutral singlets.

The patient reader who has made it to this last appendix may perhaps be aware that

in a (0,2) NLSM with a tree-level H-flux there are additional obstructions similar to the

H1(B, T ) → H2(B,EndV) map just discussed [10]. The B-field coupling will alter the η

equations of motion and lead to H-flux appearing in Q0 · ρ, and we expect that including

this contribution should reproduce the result of [10]. It would be useful to check that

in detail.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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