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Abstract

We consider the problem of preprocessing an n�vertex digraph with real edge weights so
that subsequent queries for the shortest path or distance between any two vertices can be
e�ciently answered� We give algorithms that depend on the treewidth of the input graph�
When the treewidth is a constant� our algorithms can answer distance queries in O
�
n��
time after O
n� preprocessing� This improves upon previously known results for the same
problem� We also give a dynamic algorithm which� after a change in an edge weight� updates
the data structure in time O
n��� for any constant � � � � �� Furthermore� an algorithm of
independent interest is given	 computing a shortest path tree� or �nding a negative cycle in
linear time�

Keywords� shortest path� graph theory� treewidth� dynamic algorithm�

�This work was partially supported by the EU ESPRIT Basic Research Action No� ���� �ALCOM II��

�



� Introduction

Finding shortest paths in digraphs is a well�studied and important problem with many applica�

tions� especially in network optimization �see e�g� ��	
� The problem is to �nd paths of minimum

weight between vertices in an n�vertex� m�edge digraph with real edge weights �Section �
� In

the single�source problem we seek such paths from a speci�c vertex to all other vertices and in

the all�pairs shortest paths �apsp
 problem we seek such paths between every pair ��	�

For general digraphs the best algorithm for the apsp problem takesO�nm
n� logn
 time ���	�

An apsp algorithm must output paths between ��n�
 vertex pairs and thus requires this much

time and space� A more e�cient approach is to preprocess the digraph so that subsequently�

queries can be e�ciently answered� A query speci�es two vertices and a shortest path query asks

for a minimum weight path between them� while a distance query only asks for the weight of

such a path� This approach is particularly promising when the digraph is sparse i�e� m � O�n
�

An interesting subclass of sparse digraphs� namely outerplanar digraphs� has been intensively

studied� In ���	 it was shown that after O�n
 preprocessing� a shortest path or distance query is

answered in O�L
 logn
 time �where L is the number of edges of the reported path
� In ���	�

a di�erent approach reduces the distance query time to O�logn
 �with the same preprocessing

time
� Recently� in ���	� the distance query time is improved to O���n

� where ��n
 is the

inverse of Ackermann�s function ��	 and is a very slowly growing function�

Another important subclass of sparse graphs is the class of graphs with bounded treewidth�

The study of graphs using the treewidth as a parameter was pioneered by Robertson and Seymour

���	 and continued by many others �see e�g� ��� �� �� �	
� Roughly speaking� the treewidth of a

graph G is a parameter which measures how close is the structure of G to a tree� �A formal

de�nition is given in Section ��
 Graphs of treewidth t are also known as partial t�trees and

have at most tn edges� In ��	� the same bounds as in ���	 are achieved for the above problem

on digraphs with treewidth at most �� Classifying graphs based on treewidth is useful because

diverse properties of graphs can be captured by a single parameter� For instance� the class of

graphs of bounded treewidth includes series�parallel graphs� outerplanar graphs� graphs with

bounded bandwidth and graphs with bounded cutwidth ��� �	� Thus giving e�cient algorithms

parameterized by treewidth is an important step in the development of better algorithms for

sparse graphs�

In this paper we consider the above problem for digraphs of small treewidth� Our main

result is an algorithm that� for digraphs of constant treewidth� after O�n
 preprocessing answers

a distance query in O���n

 time and a shortest path query in O�L��n

 time� This improves

the results in ��� ��� ��� ��	 in two ways� it improves the distance query time and applies to a

larger class of graphs� The data structures in ���� ��	 are not dynamic� while those in ��� ��	

are dynamic� After a change in the weight of an edge� these data structures can be updated in
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O�logn
 time� We also give a dynamic data structure that does not achieve this update bound�

but does achieve a sublinear one� In particular� we can perform updates in O�n�
 time� for any

constant � � � � �� maintaining the previous query times�

We actually show a trade�o� between the preprocessing and query times which is parame�

terized by the treewidth of the graph and an integer � � k � ��n
� Speci�cally� for a digraph

of treewidth t and any integer � � k � ��n
� we give an algorithm that achieves distance

�resp� shortest path
 query time O�t�k
 �resp� O�t�kL

� The preprocessing bound required is

O�t�n logn
� when k � �� O�t�n log� n
� when k � �� and decreases rapidly to O�t�n
 when

k � ��n
 �Section �
� We note that graphs of treewidth t may have ��tn
 edges�

Concerning the single�source problem� most algorithms either construct a shortest path tree

rooted at a given vertex� or �nd a negative weight cycle� Constructing a shortest path tree is

often easier when the digraph has non�negative edge weights� For general digraphs with non�

negative real edge weights the best algorithm takes O�m 
 n logn
 time ���	 to construct the

shortest path tree� If the digraph contains negative real edge weights� then one needs O�nm


time to either construct a shortest path tree� or �nd a negative weight cycle ���	� For outerplanar

digraphs� inO�n
 time� a shortest path tree can be constructed ���� ��	� or a negative cycle can be

found ���	� For planar digraphs with positive real edge weights� an O�n
 time algorithm is given

in ���	� With negative but integer weights� the same paper gives an O�n��� logn
 time algorithm

which constructs a shortest path tree� or �nds a negative cycle� In the case of negative real edge

weights� the results for planar digraphs in ���� ��	� imply an algorithm that in O�n
p
log logn


time either computes a shortest path tree� or decides that the graph contains a negative cycle�

�We note that this algorithmdoes not �nd the cycle�
 The best algorithm to construct a shortest

path tree� or �nd a negative cycle in a planar digraph takes �in the worst case
 O�n��� logn


time ���	�

We also give here an O�n
 time algorithm that� for digraphs of constant treewidth� either

constructs a shortest path tree or �nds a negative cycle �Section �
� This generalizes the results

in ���	 for outerplanar digraphs� To the best of our knowledge� this is the most general class

of graphs for which the complexity of computing a shortest path tree matches that of �nding a

negative cycle�

All of our algorithms start by computing a tree�decomposition of the input digraph G� The

tree decomposition of a graph with constant treewidth can be computed in O�n
 time ��	� The

main idea behind our algorithms is the following� We de�ne a certain value for each node of the

tree�decomposition of G� and an associative operator on these values� We then show that the

shortest path problem reduces to computing the product of these values along paths in the tree�

decomposition� �A similar idea was used in ��	� to show that computing shortest paths reduces

to computing the product of certain elements in a closed semiring�
 Algorithms to compute the

product of node values along paths in a tree are given in ��� ��	� Our preprocessing vs� query
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time trade�o� arises from a similar trade�o� in ��� ��	� The dynamization of our data structures

is based on the above ideas and on a graph partitioning result which is of independent interest�

The paper is organized as follows� In Section � we give preliminary results and de�ne

the treewidth of a graph� In Section � we show the reduction of the shortest paths problem

to computing products of values along paths in the tree�decomposition� and we present the

algorithms for the single�source and the negative cycle problems� Our static data structures are

presented in Section �� while our dynamic data structures are described in Section ��

� Preliminaries

In this paper� we will be concerned with �nding shortest paths or distances between vertices

of a directed graph� Thus� we assume that we are given an n�vertex weighted digraph G� i�e� a

digraph G � �V �G
� E�G

 and a weight function wt � E�G
 �� IR� We call wt�u� v
 the weight

of edge hu� vi� The weight of a path in G is the sum of the weights of the edges on the path�

For u� v � V �G
� a shortest path in G from u to v is a path whose weight is minimum among all

paths from u to v� The distance from u to v� written as ��u� v
 or �G�u� v
� is the weight of a

shortest path from u to v in G� A cycle in G is a �simple
 path starting and ending at the same

vertex� If the weight of a cycle in G is less than zero� then we will say that G contains a negative

cycle� It is well�known ��	 that shortest paths exist in G� i� G does not contain a negative cycle�

For a subgraph H of G� and vertices x� y � V �H
� we shall denote by �H�x� y
 the distance

of a shortest path from x to y in H � A shortest path tree rooted at v � V �G
� is a tree such that

�w � V �G
� the tree path from v to w is a shortest path in G from v to w�

Let G be a �directed or undirected
 graph and letW � V �G
� Then by G�W 	 we shall denote

the subgraph of G induced on W � Let V�� V� and S be disjoint subsets of V �G
� We say that S

is a separator for V� and V�� or that S separates V� from V�� i� every path from a vertex in V�

�resp� V�
 to a vertex in V� �resp� V�
 passes through a vertex in S� Let H be a subgraph of G�

A cut�set for H is a set of vertices C�H
 � V �H
� whose removal separates H from the rest of

the graph�

De�nition ��� Let H be a digraph� with V�� V� and U a partition of V �H
 such that U is

a separator for V� and V�� Let H� and H� be subgraphs of H such that V �H�
 � V� � U �

V �H�
 � V��U and E�H�
�E�H�
 � E�H
� We say that H �

� is a graph obtained by absorbing

H� into H�� if H �

� is obtained from H� by adding edges hu� vi� with weight �H�
�u� v
 or �H�u� v
�

for each pair u� v � U � �In case of multiple edges� retain the one with minimum weight��

Absorbing preserves distances in a digraph� as the following lemma shows� This allows us

to absorb the subgraph on one side of the separator and restrict our attention to the remaining

subgraph� which maybe is smaller�
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Lemma ��� Let H�H�� H� and H �

� be as in De�nition ��	� Then� for all x� y � V �H �

�
�

�H �

�
�x� y
 � �H�x� y
�

Proof� It is enough to show that �H�x� y
 � �H �

�

�x� y
 and �H �

�

�x� y
 � �H�x� y
� Call an edge

hu� vi in H �

� an H��edge if it has weight �H�
�u� v
 and an H�edge if its weight is �H�u� v
�

We �rst show that �H�x� y
 � �H �

�

�x� y
� Consider a shortest path from x to y in H �

��

Construct a walk from x to y in H by replacing� in the above path from H �

�� all H��edges by

a path in H� of the same weight and all H�edges by a path in H of the same weight �both of

which exist� by construction
� Now this walk has weight �H �

�

�x� y
 and a shortest path in H �

�

from x to y cannot weight more�

We now show that �H �

�

�x� y
 � �H�x� y
� Consider a shortest path from x to y in H � Find

all maximal �w�r�t� the number of edges
 subpaths that are contained in H�� These paths must

start and end in vertices in U � Let W be the weight of one such path �in H�
 from u to v�

u� v � U � Then H �

� has an edge hu� vi with weight either �H�
�u� v
 or �H�u� v
� both of which

are at most W � Construct a path from x to y in H �

� by replacing each such subpath by the

corresponding H��edge or H�edge in H �

�� The resulting path has weight at most �H�x� y
�

A tree�decomposition of a �directed or undirected
 graph G is a pair �X� T 
 where T �

�V �T 
� E�T 

 is a tree andX is a family fXiji � V �T 
g of subsets of V �G
� such that�i�V �T �Xi �

V �G
 and also the following conditions hold�

� �edge mapping
 ��v� w
 � E�G
� there exists an i � V �T 
 with v � Xi and w � Xi�

� �continuity
 �i� j� k � V �T 
� if j lies on the path from i to k in T � then Xi 	Xk � Xj � or

equivalently� �v � V �G
� the nodes fi � V �T 
jv � Xig induce a connected subtree of T �

The treewidth of a tree�decomposition is maxi�V �T � jXij � �� The treewidth of G is the

minimum treewidth over all possible tree�decompositions of G�

Fact ��� 
�� �a� For all constant t � IN � there exists an O�n
 time algorithm which tests whether

a given n�vertex graph G has treewidth � t and if so� outputs a tree�decomposition �X� T 
 of G

with treewidth � t� where jV �T 
j � n � t�

�b� We can� in O�n
 time� convert �X� T 
 into another tree�decomposition �Xb� Tb
 of G with

treewidth t� where Tb is a binary tree and jV �Tb
j � ��n� t
�

Part �b
 of the above fact follows by the usual binarization of an arbitrary tree� We will use

this in Section �� Given a tree�decomposition of G� we can quickly �nd separators in G� as the

following proposition shows�

Proposition ��� 
�	� Let G be a graph and let �X� T 
 be its tree�decomposition� Also let e �

�i� j
 � E�T 
 and let T� and T� be the two subtrees obtained by removing e from T � Then Xi	Xj

separates �m�V �T��Xm from �m�V �T��Xm�
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� Constructing a shortest path tree

Call a tuple �a� b� c
 a distance tuple if a� b are arbitrary symbols and c � IR� For two distance

tuples� �a�� b�� c�
� �a�� b�� c�
� de�ne their product �a�� b�� c�
 
 �a�� b�� c�
 � �a�� b�� c� 
 c�
 if

b� � a� and as nonexistent otherwise�

For a set of distance tuples� M � de�ne minmap�M
 to be the set f�a� b� c
 � �a� b� c
 �
M and ��a�� b�� c�
 � M if a� � a� b� � b� then c � c�g� i�e� among all tuples with the same �rst

and second components� minmap retains only the tuples with the smallest third component�

Let M� andM� be sets of distance tuples� De�ne the operator � byM� �M� � minmap�M
�

where M � fx 
 y � x � M�� y � M�g� It is not di�cult to show that � is an associative

operator�

Let G be a digraph with real edge weights� Note that in the above de�nition� if M� and M�

have tuples of the form �a� b� x
 where a� b � V �G
 and x is the weight of a path from a to b�

then M� �M� computes tuples �a� b� y
 where y is the �shortest
 distance from a to b using only

the paths represented in M� and M��

ForX� Y � V �G
� not necessarily distinct� de�ne P �X� Y 
 � f�a� b� �G�a� b

 � a � X� b � Y g�
We will write S�X
 for P �X�X
� �By de�nition� S�X
 contains tuples �x� x� �
� �x � X �


De�nition ��� Let G be an n�vertex weighted digraph without negative cycles and let �X� T 
 be

a tree decomposition of G� with treewidth t� Then� for i � V �T 
� we de�ne ��i
 � S�Xi
�

The following lemma shows that we can compute ��a� b
 by computing the product of the �

values on the path in T between nodes i and j such that a � Xi and b � Xj �

Lemma ��� Let G� �X� T 
 and ��i
� for i � V �T 
� be as in De�nition 
�	� Let v�� � � � � vp be a

path in T � Then ��v�
 � � � � � ��vp
 � P �Xv� � Xvp
�

Proof� It is easy to show� from the de�nitions of P �X� Y 
 and of �� that P �X� Y 
 � P �Z�W 
 �

f�x� w� d
 � x � X�w � W� d is the weight of the shortest x to w path that includes a vertex in

Y 	 Z �this vertex may be x or w
g�
We prove the lemma by induction on p� If p � �� then the lemma holds by the de�nition

of ��v�
� If p 	 �� then by the inductive hypothesis� ��v�
 � � � � � ��vp��
 � P �Xv� � Xvp��

� By

de�nition� ��vp
 � S�Xvp
� By Proposition ���� all paths from a vertex in Xv� to a vertex in

Xvp include a vertex from Xvp��
	Xvp � Hence� by the characterization above� P �Xv� � Xvp��


 �
S�Xvp
 � f�x� y� �G�x� y

 � x � Xv� � y � Xvpg � P �Xv� � Xvp
�

The following lemma shows that we can e�ciently compute the � values for each node of

a tree�decomposition� The algorithm repeatedly shrinks the tree� by absorbing the subgraphs

corresponding to leaves� When the tree is reduced to a single node� the algorithm computes �

using brute force� for this node� since the distances are preserved during absorption� Then� it
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reverses the shrinking process and expands the tree� using the � values already computed to

compute � values for the newly expanded nodes�

Lemma ��� Let G be an n�vertex weighted digraph and let �X� T 
 be the tree decomposition of G�

of treewidth t� For each pair u� v such that u� v � Xi for some i � V �T 
� let Dist�u� v
 � ��u� v


and Int�u� v
 � x� where x is some intermediate vertex �neither u nor v� on a shortest path

from u to v� �If wt�u� v
 � ��u� v
� then Int�u� v
 � null�� Then in O�t�n
 time� we can either

�nd a negative cycle in G� or compute the values Dist�u� v
 and Int�u� v
 for each such pair

u� v�

Proof� Initially all the values Dist�u� v
 are set to � and Int�u� v
 to null� If hu� vi � E�G
�

then set Dist�u� v
 � wt�u� v
� We give an inductive algorithm�

We use induction on jV �T 
j� Choose a leaf� l� of T � Run the Bellman�Ford algorithm �see

e�g� ���	
 onG�Xl	 in timeO�t�
� If G�Xl	 contains a negative cycle� it will be found� so henceforth

assume that G�Xl	 does not contain a negative cycle� Update the values for pairs u� v � Xl as

follows� if the weight of the shortest path found is less than the current value of Dist�u� v
� then

set Dist�u� v
 to the new value and Int�u� v
 to any intermediate vertex on the shortest path

found� If wt�u� v
 is equal to the weight of the shortest path found� then set Int�u� v
 � null�

If jV �T 
j � �� we are done� Otherwise remove l from T and call the resulting tree T �� Let

V � � �i�V �T ��Xi and construct G� by absorbing G�Xl	 into G�V �	� where the weight of each

added edge hu� vi is �G�Xl	�u� v
� Then� for any vertices u� v � V �� �G��u� v
 � �G�u� v
� by

Lemma ���� In particular� if G contains a negative cycle� so does G�� Note that �X �Xl� T
�
 is

a tree�decomposition for G��

Inductively run the algorithm on G�� If a negative cycle is found in G�� then a negative cycle

in G can be found by replacing any edges added during the absorption by their corresponding

paths in G�Xl	� Hence� we may assume that G� does not contain a negative cycle�

For a� b � V �� Dist�a� b
 � �G��a� b
 � �G�a� b
� as desired� If Int�a� b
 � x 
� null� then x

is an intermediate vertex on a shortest a to b path in G� and hence also in G� as desired� If

Int�a� b
 � null� then ha� bi is a shortest path in G�� If wt�a� b
 	 Dist�a� b
� then this edge

must have been added during the absorption� Correct the value Int�a� b
 by setting it to some

intermediate vertex on the corresponding a to b shortest path found in G�Xl	� After this� all Int

values are correct for a� b � V ��

Construct a digraph G�� by absorbing G�V �	 into G�Xl	� with each added edge hu� vi having
weight �G�u� v
� By Lemma ���� �G���x� y
 � �G�x� y
� �x� y � Xl� Run the Bellman�Ford

algorithm on G�� to recompute all pairs shortest paths� Update the values Dist�a� b
 and Int�a� b


for a� b � Xl as before�

For a� b � Xl� Dist�a� b
 � �G�� �a� b
 � �G�a� b
 as desired� For a� b � V � 	 Xl� Int�a� b
 is

not changed since Dist�a� b
 is already �G�a� b
� If either a or b does not belong to V � 	 Xl�

�



Int�a� b
 � an intermediate vertex on a shortest path in G�� and hence in G� or Int�a� b
 � null

in which case wt�a� b
 � �G�a� b
� Thus� the values computed are correct for all pairs a� b which

completes the induction� The time analysis follows easily�

The construction of a shortest path tree is given in the next theorem�

Theorem ��� Let G and �X� T 
 be as in De�nition 
�	� Let s � V �G
� In O�t�n
 time we can

compute a shortest path tree rooted at s�

Proof� Using Lemma ���� we computeDist�u� v
� for u� v such that u� v � Xi� for some i � V �T 
�

From this we can easily compute ��i
� �i � V �T 
� Let i � V �T 
 such that s � Xi� Perform a

depth��rst�search �DFS
 of T starting at vertex i� storing at each vertex j � V �T 
 the product

of the � values on the path from i to j� Since the composition of two � values can be computed

in O�t�
 time� the whole process takes O�t�n
 time�

Let y � V �G
 and let j � V �T 
 such that y � Xj � By Lemma ���� the value stored at vertex j

during the DFS� is P �Xi� Xj
 which contains the tuple �s� y� ��s� y

� Thus� we may assume that

for each y � V �G
� we have the value ��s� y
� To construct the shortest path tree T � we do the

following� Starting with s� we check which vertices u adjacent to s satisfy ��s� u
 � wt�s� u
� All

such vertices are the children of s in T � We proceed similarly with each one of these children of s�

At a given point a subtree T � of T has been constructed and let u be any leaf of T �� Then� the

children of u in T will be those vertices v adjacent to u which satisfy ��s� v
 � ��s� u

wt�u� v


and v 
� T �� It is easy to see that such a vertex must exist� by considering a shortest path from

s to v� A simple induction argument shows that the above procedure creates a shortest path

tree rooted at s�

The following is now immediate from Fact ���� Lemma ��� and Theorem ����

Corollary ��� Let G be an n�vertex weighted digraph of constant treewidth� Then� in O�n


time we can either compute a shortest path tree rooted at a given vertex of G� or �nd a negative

cycle in G�

� Shortest path and distance queries

For a function f let f ����n
 � f�n
� f �i��n
 � f�f �i����n

� i 	 �� De�ne I
�n
 � dn� e and

Ik�n
 � minfj j I�j�k���n
 � �g� k � �� The functions Ik�n
 decrease rapidly as k increases� note�

for example� that I��n
 � dlogne and I��n
 � log� n� Finally� de�ne ��n
 � minfj j Ij�n
 � jg�
The following theorem was proved in ��� ��	�

Theorem ��� Let � be an associative operator de�ned on a set S� such that for q� r � S� q � r
can be computed in O�m
 time� Let T be a tree with n nodes such that each node is labelled with

�



an element from S� Then� �i� for each k � �� after O�mnIk�n

 preprocessing� the composition

of labels along any path in the tree can be computed in O�mk
 time� and �ii� after O�mn


preprocessing� the composition of labels along any path in the tree can be computed in O�m��n



time�

We use this in the proof of the following�

Theorem ��� For any integer t and any k � �� let G be an n�vertex weighted digraph of

treewidth at most t� whose tree�decomposition can be found in T �n� t
 time� Then� the following

hold� �i� After O�t�nIk�n
 
 T �n� t

 time and space preprocessing� distance queries in G can

be answered in time O�t�k
� �ii� After O�t�n 
 T �n� t

 time and space preprocessing� distance

queries in G can be answered in time O�t���n

�

Proof� First� we compute the tree�decomposition �X� T 
 of G� By Lemma ���� we compute

values Dist�u� v
 for u� v such that u� v � Xi for some i � V �T 
� From these values� we can

easily compute ��i
� �i � V �T 
� By Theorem ��� we preprocess T so that product queries on

� can be answered� Given a query� u� v � V �G
� let i� j be vertices of T such that u � Xi and

v � Xj � We ask for the product of the � values on the path between i and j� By Lemma ����

the answer to this query contains the information about ��u� v
� The bounds follow easily by

the ones given in Theorem ��� and by the fact that the composition of any two � values can be

computed in O�t�
 time�

Theorem ��� For any integer t and any k � �� let G be an n�vertex weighted digraph of

treewidth at most t� whose tree�decomposition can be found in T �n� t
 time� Then� the following

hold� �i� After O�t�nIk�n

T �n� t

 preprocessing� we can answer shortest path queries in G in

time O�t�kL
� where L is the number of edges of the reported path� �ii� After O�t�n 
 T �n� t



preprocessing� we can answer shortest path queries in G in time O�t���n
L
� where L is the

number of edges of the reported path�

Proof� We �rst compute a tree decomposition �X� T 
 of G� In the preprocessing phase� we

compute the following data structures� Using Lemma ���� we compute the values Dist�u� v
 and

Int�u� v
� for all pairs u� v � Xi� for some i � V �T 
� From the Dist values� we compute ��i
�

�i � V �T 
� We use Theorem ��� to compute a data structure in O�t�nIk�n

 �or in O�t�n



time so that distance queries can be answered in time O�t�k
 �or O�t���n


� Root the tree T

arbitrarily� De�ne� for each vertex v � V �G
� h�v
 to be the tree node i such that v � Xi and i is

the closest such node to the root of the tree� Preprocess T so that h�v
 can be found in constant

time� Such a preprocessing can easily be done with� say� a DFS of T � Further� preprocess T

so that lowest common ancestor �LCA
 queries can be answered in constant time� Clearly� the

time for the preprocessing is dominated by the time required by Theorem ����

�



Let the query be for the shortest path between u and v� We �rst show that it is su�cient to

consider the case when h�u
 is a descendant of h�v
 in T � or vice versa� Suppose h�u
 and h�v
 are

not descendants of each other� Then let i be the LCA of the two� By Proposition ���� a shortest

path from u to v passes through some vertex z 
� u� v in Xi� and ��u� v
 � ��u� z
 
 ��z� v
� By

O�t
 queries� we can �nd this vertex z and then �nd the shortest paths from u to z and from z

to v� and h�u
 and h�v
 are both descendants of h�z
�

Therefore� assume h�u
 is a descendant of h�v
� �A similar argument holds when h�v
 is a

descendant of h�u
�
 The query algorithm �rst checks if u and v both belong to Xi� for some

i � V �T 
� In particular� if there exists such an Xi� then u and v appear together in Xh�u�� If they

do� then� if Int�u� v
 � null� the algorithm returns the edge hu� vi� If Int�u� v
 � x 
� null� the

algorithm recursively queries for the shortest paths from u to x and from x to v� and returns the

concatenation of these two paths� Therefore� assume that u and v do not appear together in any

Xi� Let p be the parent of h�u
 in T � Then� by Proposition ���� there exists a vertex z � Xp such

that a shortest path from u to v passes through z� hence� ��u� v
 � ��u� z
 
 ��z� v
� �Note that

z may be v�
 This vertex can be found with O�t
 distance queries� The algorithm recursively

queries for the shortest paths from u to z and from z to v� and returns the concatenation of

these two paths�

A simple induction shows that the query algorithmreturns a path inO�t�kL
 �orO�t���n
L



time� where L is the number of edges of the reported path�

The following is immediate from Fact ��� and Theorems ��� and ����

Corollary ��� Let G be an n�vertex weighted digraph of constant treewidth and let k � � be any

constant integer� Then� the following hold� �i� After O�nIk�n

 time and space preprocessing�

distance queries in G can be answered in O�k
 time� while shortest path queries can be answered

in O�kL
 time �where L is the number of edges of the reported path�� �ii� After O�n
 time and

space preprocessing� distance queries in G can be answered in O���n

 time� while shortest path

queries can be answered in O�L��n

 time �where L is the number of edges of the reported path��

� Dynamization

In this section we shall give our dynamic data structures and algorithms� The following lemma

about graph partitions plays a key role�

Lemma 	�� Given an n�vertex digraph G� a binary tree�decomposition of G of treewidth t and

a positive integer � � m � n� we can� in O�t�n
 time� divide G into q � ��n
m subgraphs

H�� � � � � Hq� and construct another subgraph H � such that� �i� Hi has at most tm vertices and

a cut�set C�Hi
 of size at most �t� �ii� H � is the induced subgraph on vertices �qi��C�Hi
�

��



augmented with edges hx� yi� x� y � C�Hi
 for each � � i � q� and �iii� we have a binary tree

decomposition of treewidth t for each Hi and a binary tree decomposition for H � of treewidth �t�

Proof� Let the binary tree�decomposition of G be �X� T 
� Then� by Fact ���� T has at most �n

nodes� We will partition T into at most ��n
m connected components� each with at most m

nodes� such that each component is connected with the rest of the tree via at most three edges�

Once we have done this� it is easy to get the desired graph partition� For each component Ti�

� � i � q� create a subgraph Hi� that is the induced subgraph of G on the vertices in �v�V �Ti�Xv�

Note that Ti is a tree decomposition ofHi� The number of vertices inHi is at most tjV �Ti
j � tm�

Let v�� v� and v� be the nodes through which Ti is connected to the other components� Then�

C�Hi
 � Xv� �Xv� �Xv� � and C�Hi
 has at most �t vertices� H � is constructed by constructing

a clique on C�Hi
 for each � � i � q� The tree decomposition for H � is constructed by shrinking

each component Ti into a single node u and assigning Xu � C�Hi
� It is easily veri�ed that

this is a tree decomposition of H � of width �t� Once the partition of T is computed� the time

required to construct the cliques is ��t
�q and the time for the remaining operations is bounded

by the size of G� i�e� O�tn
� To prove the lemma� it su�ces to �nd the promised tree partition

in O�n
 time�

We assign each node of T an initial weight of �� A number of rounds of a grouping algorithm

�to be described later
 follow� Each round� corresponding to an execution of the grouping

algorithm� starts with a p�node binary tree with weights on the nodes� The nodes are partitioned

into at most �p
� groups of �� � or � nodes such that each group is �i
 a connected component and

�ii
 connected to the rest of the tree via at most � edges� If the combined weight of any group�s

nodes is W � m� then we shrink the corresponding connected component into a single vertex

of weight W whose neighbors are the �at most �
 nodes that were adjacent to the connected

component� If the number of groups with weight more than m is greater than p
�� we stop�

otherwise we proceed to the next round� Each round takes O�p
 time� as shown later�

We now show that in each round� the number of nodes shrinks by a constant factor� which

implies that the total time taken is O�n
� Let i be the number of overweight groups� i�e� with

weight more than m� Since each of the other groups is shrunk to a single node and each

overweight group has at most three nodes� the number of nodes in the resulting tree is at most

�p
� 
 �i� Since i � p
�� this number is at most ��p
���

At the end� we have i � p
�� Since each of the i groups has weight more than m� and the

total weight of nodes in the tree is �n� we havemi � �n� which implies p � ��n
m� The required

partition is obtained by replacing each node by the connected component that was shrunk into it

during the above process� The construction ensures that each component has at most m nodes

and is connected to the rest of the tree via at most three edges�

��



We will now describe the grouping algorithm which runs in O�p
 time on a tree with p nodes�

Root the tree at any node of degree � or �� De�ne a chain to be a maximal subpath of a path

from the root to a leaf which consists of only nodes of degree � or �� It is possible to identify�

in O�p
 time� all the chains using� say DFS� If the length �i�e� the number of nodes
 of a chain

is at least �� then form groups of size � or � out of subchains� such that each node in the chain

belongs to some group� If the length of the chain is �� then place the nodes in a group with its

parent� Any node that is not yet in some group must be a degree � node� or the root� Place it

in a group by itself� These two steps can again be done in O�p
 time� It is easily veri�ed that

the groups thus formed are connected components that are connected to the rest of the tree via

at most three edges�

Let T�� T� and T� denote the number of degree �� � and � nodes respectively� so that T� 


T� 
 T� � p� Write R for the number of groups formed� Observe that each node of degree � or

� is placed in a group of size at least �� Thus� the number of groups without any degree � node

is at most �T� 
 T�

�� The number of groups with a degree � node is at most T�� Thus� R is

upper bounded by the sum T�
 �T�
 T�

� � p� �T�
 T�

�� On the other hand� each degree

� node is placed in a group with some other node� so R is less than p by at least the number of

degree � nodes� Hence R � p�T�� It is an easy fact about binary trees that T� � T�� �� which

yields �T�
T�� � � p� or� T�
T� � p�T�� Hence� R � minfp� �T�
T�

�� T�
T�g � �p
��

Our dynamic algorithm works as follows� It divides the digraph into subgraphs with disjoint

edge sets and small cut�sets� and constructs another �smaller
 digraph � the reduced digraph �

by absorbing each subgraph� The sizes of the subgraphs are chosen so that the subgraphs and

the reduced digraph both have size roughly
p
n� The algorithm then constructs a query data

structure for each subgraph and for the reduced digraph� Queries can be e�ciently answered

by querying these data structures� Since the edge sets are disjoint� a change in the weight of an

edge a�ects the data structure for only one subgraph� Then the data structure of this subgraph

is updated� This may result in new distances between vertices in its cut�set� which appear in

the reduced digraph as changes in the weights of edges between these cut�set vertices� Since

the cut�set is small� the weights of only a few edges in the reduced digraph change� The data

structure for the reduced digraph is updated to re�ect these changes� Thus an update in the

original digraph is accomplished by a small number of updates in subgraphs of size
p
n� This

idea is recursively applied below to further reduce the update time�

Let Dyn�G�P� U�Q
 be a dynamic data structure for a digraph G� where O�P 
 is the pre�

processing time and space to be set up� O�Q
 is the time to answer a distance query and O�U


is the time to update it after the modi�cation of an edge�weight�

��



Theorem 	�� For all positive integers t� r� given an n�vertex weighted digraph G� and a binary

tree�decomposition of G of treewidth t� we can construct the following dynamic data structures�

�i� Dyn�G� crt�n� c�rt�n�����
r��

� c�rt���n

� and �ii� Dyn�G� crt�nIk�n
� c�rt�n�����
r��

� c�rt�k
�

where c � �r��t�

Proof� We shall prove part �i
� Part �ii
 can be proved similarly� We use induction on r� For

r � �� the basis is given by the static data structure of Theorem ���� with updates implemented

by simply recomputing the data structure�

We use the notation D�G� n� r� t
 for Dyn�G� crt�n� c�rt�n�����
r��

� c�rt���n

� Assume that

the theorem holds for any r� � r� We show how to construct D�G� n� r� t
�

Use Lemma ��� �with parameter m � �
p
n
 to divide G into subgraphs H�� � � � � Hq� q �

�
p
n� each with at most �t

p
n vertices and construct H � which has at most ��t
�

p
n vertices�

De�ne Gi to be Hi with all edges joining pairs of vertices in its cut�set deleted� De�ne G� to

be H � with edges hx� yi weighted �Gi
�x� y
 for each pair x� y � C�Gi
� � � i � q� Replace

multiple edges by the edge of minimum weight� Note that G� is exactly the graph obtained by

absorbing G�� G�� � � � � Gq into the rest of the graph� By Lemma ���� it follows that �G��x� y
 �

�G�x� y
� �x� y � V �G�
�

Let u � V �Gi
� v � V �Gj
 � V �Gi
� Then� any path from u to v must pass through

a vertex in each of the cut�sets of Gi and Gj � Then we have �G�u� v
 � minf�Gi
�u� x
 


�G��x� y
 
 �Gj
�y� v
 � x � C�Gi
� y � C�Gj
g� Similarly� for u� v � V �Gi
� we have �G�u� v
 �

minf�Gi
�u� v
�minf�Gi

�u� x
 
 �G��x� y
 
 �Gi
�y� v
 � x� y � C�Gi
gg� If we are able to make

queries of the form �Gi
�x� y
 and �G��x� y
� the above directly yields a query algorithm for any

pair of vertices x� y�

Write ni for jV �Gi
j and n� for jV �G�
j� Note that Lemma ��� also gives us a tree�decomposi�

tion of treewidth t for each subgraph Gi� and a tree�decomposition of treewidth �t for G�� Thus

we can inductively construct D�Gi� ni� r � �� t
 for each � � i � q� which enables us to answer

queries of the form �Gi
�x� y
� and D�G�� n�� r � �� �t
 which enables us to answer queries of the

form �G��x� y
� The data structure D�G� n� r� t
 is the union of the above data structures�

The update procedure is the following� note that E�Gi
 	 E�Gj
 � �� i 
� j and E�Gi
 	
E�G�
 � �� i�e� each edge of G belongs to exactly one of the Gi�s or to G

�� Suppose the weight

of an edge belonging to Gi is changed� Then� we update the data structure for Gi� This may

result in new values for �Gi
�x� y
� x� y � C�Gi
� We query the updated data structure for

�Gi
�x� y
� x� y � C�Gi
 and change the weights of the corresponding edges of G�� updating the

data structure for G� after each change� That the procedure is correct follows from the fact that

changing the weight of an edge in Gi does not change �Gj
�x� y
� x� y � C�Gj
 when j 
� i� Thus�

after we change� in G�� the cost of edges hx� yi� x� y � C�Gi
� we have �G��u� v
 � �G�u� v
� u� v �
V �G�
� again� by repeated applications of Lemma ���� After the last update� the data structure

��



for G� yields correct distances in G� between vertices in V �G�
� Now suppose we change the

weight of an edge belonging to G�� Then the distances �Gi
�x� y
 do not change� Thus� in this

case� we simply update the data structure for G��

This completes the description of the preprocessing� query and update algorithms� Let

the time taken for preprocessing� querying and updating D�G� n� r� t
 be P �r� t
n� Q�r� t
��n


and U�r� t
n�����
r��

� respectively� Writing N � maxfni � � � i � qg� we have the following

recurrences�

P �r� t
n � t�n

qX

i��

P �r � �� t
N 
 P �r � �� �t
n�

Q�r� t
��n
 � ��t
���Q�r� �� t
��N
 
Q�r � �� �t
��n�
	

U�r� t
n�����
r�� � U�r� �� t
N �����r��




��t
��Q�r� �� t
��N
 
 U�r � �� �t
�n�
�����
r��

	

The terms in the recurrence for P �r� t
n are for constructing the Gi�s and G using Lemma

���� for constructing D�Gi� ni� r� �� t
 for each Gi and for constructing D�G�� n�� r� �� �t
� The

terms in the recurrence for Q�r� t
��n
 are for the two queries in Gi and Gj and for the query in

G�� which have to be made for each pair of vertices� one in the cut�set of Gi and one of Gj � The

terms in the update recurrence are for updating Gi� and then updating the edges in G� between

vertices in the cut�set of Gi�

By construction� n�� N � �t
p
n� The sum of the number of vertices in each Gi cannot

exceed the number of vertices in the initial tree decomposition� so
Pq

i�� ni � �tn� Making these

substitutions in the above recurrences and estimating gives�

P �r� t
n � t�n 
 �tnP �r � �� t
 
 �t
p
nP �r � �� �t
 � �tP �r � �� �t
n

Q�r� t
��n
 � ��t
���Q�r� �� t
���t
p
n
 
Q�r � �� �t
���t

p
n
	

� ���t
�Q�r � �� �t
��n


U�r� t
n�����
r�� � U�r � �� t
��t

p
n
�����

r��




��t
��Q�r � �� t
���t
p
n
 
 U�r� �� �t
��t

p
n
�����

r��

	

� ��t
���tU�r � �� �t
n�����
r��

It is easily veri�ed that the claimed bounds satisfy the recurrences above� Thus we can

construct D�G� n� r� t
� completing the induction�

The next theorem follows directly from Fact ��� and Theorem ��� with r � �� log��

Theorem 	�� Let k � � be any constant integer and let � � � � � be any constant� Given an

n�vertex weighted digraph G of constant treewidth� we can construct� �i� Dyn�G� n� n�� ��n

�

and �ii� Dyn�G� nIk�n
� n
�� k
�

��



The algorithms described above give answers to distance queries only� We brie�y discuss

now how they can be modi�ed to answer path queries as well� in time O�kL
 �or O�L��n


�

It is clear� by the proof of Theorem ���� that if we are able to answer shortest path queries in

any Gi and in G�� then we can answer a shortest path query between any two vertices x and

y in G� Shortest path queries in any Gi and in G� are answered by constructing recursively

dynamic data structures D�Gi� ni� r � �� t
 and D�G�� n�� r � �� �t
 �which now answer shortest

path queries as well
 in a similar way to that described in the proof of Theorem ���� For the

basis �r � �
� we simply use our static data structures of Theorem ����

We additionally maintain in D�G�� n�� r��� �t
 a pointer IntGi
�x� y
 � z� for every edge hx� yi

in G�� where z is an intermediate vertex in the shortest path from x to y in G and z belongs

to that Gi which gives the minimum weight path between x and y� If �G�x� y
 � wt�x� y
� we

set IntGi
�x� y
 � null� Note that this additional information can be easily computed during the

preprocessing of G� and will help us to output the real shortest path from its encoded version in

G�� IntGi
�x� y
 will tell us which subgraph we have to query in order to �nd the shortest path

represented by the edge hx� yi in G��

Hence� it remains to show how the above information is maintained during an update oper�

ation� Assume that the weight of an edge ha� bi in G is modi�ed� If this edge belongs to some

Gj � then we update the data structure of Gj � This will probably result in new shortest paths

between vertices x� y in C�Gj
� Then� by querying the updated data structure of Gj � we change

the weight of the corresponding edge in G�� as well as the value of IntGi
�x� y
� and update the

data structure of G�� We repeat this for each such pair x� y� If ha� bi belongs to G�� then we only

update �as in the proof of Theorem ���
 the data structure of G��

This completes the description of the modi�cations of our dynamic algorithms to answer

shortest path queries� The claimed query bound follows easily by a similar analysis to that

given in the proof of Theorem ����

As a �nal remark to our dynamic algorithms� we note that before running an update pro�

cedure after a change in the weight of an edge� we have to ensure that this change does not

create a negative cycle in G� This can be easily tested as follows� Let hu� vi be an edge with

weight wt�u� v
 and let wt��u� v
 be its new weight� Clearly� the new weight wt��u� v
 creates

a negative cycle in G i� �G�v� u
 
 wt��u� v
 � �� This test takes time proportional to that of

�nding �G�v� u
 and hence does not a�ect our update bounds�
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