
A Polylog-Time and O
(
n
√
lg n

)
-Work Parallel

Algorithm for Finding the Row Minima in
Totally Monotone Matrices∗

Phillip G. Bradford, Rudolf Fleischer, Michiel Smid

March 17, 1995

Abstract

We give a parallel algorithm for computing all row minima in a totally mono-
tone n×nmatrix which is simpler and more work efficient than previous polylog-
time algorithms. It runs in O(lg n lg lg n) time doing O(n

√
lg n) work on a CRCW

PRAM, in O(lg n(lg lg n)2) time doing O(n
√
lg n) work on a CREW PRAM, and

in O(lg n
√
lg n lg lg n) time doing O(n

√
lg n lg lg n) work on an EREW PRAM.

1 Introduction

Let M be an m × n matrix whose entries belong to some totally ordered set. The
row minima problem is to find for each row i ∈ {1, . . . ,m} the index min(i) of that
column that contains the minimal element of row i. The row maxima problem is
defined symmetrically. Throughout this paper, we assume that all entries of M are
distinct; otherwise, we could replace entry Mi,j by the triple (Mi,j, i, j) and use the
lexicographical order on these triples. We assume further that each entry Mi,j can be
accessed in constant time.

Clearly, the row minima problem has time complexity Θ(mn). It turns out, how-
ever, that many problems can be reduced to the row minima problem for matrices of
a special form.

Definition 1 Anm×nmatrixM ismonotone ifmin(i) ≤ min(j) for all 1 ≤ i < j ≤ m.

Aggarwal et al. [1] proved that solving the row minima problem on a monotonem×
n matrix has time complexity Θ(m lg n). They also observed that in many applications
an even more restricted type of matrices occurs.

Definition 2 An m×n matrix M is totally monotone if every 2× 2 minor is monotone.
That is, for all 1 ≤ i < k ≤ m and 1 ≤ j < l ≤ n, if Mi,j > Mi,l then Mk,j > Mk,l.

∗The authors were supported by the ESPRIT Basic Research Actions Program, under contract
No. 7141 (project ALCOM II). The first author was also partially supported by NSF Grant # CCR-
9203942 while he was at Indiana University.

1

Many problems like computing extremal inscribed or circumscribed k-gons [1], wire
routing [1], the matrix chain ordering problem [6], or prediction of RNA secondary
structure [9], can be reduced to the row minima problem on totally monotone matrices.
Therefore, the parallel algorithm for the latter problem, which we develop in this paper,
leads directly to improved parallel solutions for many problems. We remark that in
all these examples it is not necessary to compute the whole matrix in advance, which
would need Θ(mn) time. Rather, in O(m + n) time, we can compute an implicit
representation of the matrix, such that in constant time we can compute any matrix
element.

Consider the following example from [1]: Given a convex n-gon P in the plane with
vertices p0, . . . , pn−1, find for each vertex pi its furthest neighbor in P . This problem
is equivalent to finding the row maxima of the following totally monotone n× (2n−1)
matrix M (see [1] for details) :

If i < j ≤ i+ n− 1 then Mi,j = dist(pi, pj mod n).

If j ≤ i then Mi,j = j − i.

If j ≥ i+ n then Mi,j = −1.

It was shown in [1] that for m ≤ n the row minima problem on a totally monotone
m × n matrix can be solved in asymptotically optimal O(n) time, and so can be the
all-furthest-neighbors problem for a convex n-gon. Recently, Bradford and Reinert [7]
gave a lower bound of 3n − 9 on the number of comparisons needed to solve the row
minima problem on a totally monotone n× n matrix.

Having settled the sequential complexity of the problem asymptotically, researchers
began designing parallel algorithms for the row minima problem on totally monotone
matrices. Let us assume from now on that m = n.

Aggarwal and Park [2] showed how to solve the problem in O(lg n) time and
O(n lg n) work on a CRCW PRAM. They also gave an O(lg2 n/ lg lg n) (resp. O(nϵ))
time and O(n lg n/ lg lg n) (resp. O(n)) work algorithm for the CREW PRAM (for any
ϵ > 0). As Raman and Vishkin [10] pointed out, the two latter algorithms work on an
EREW PRAM as well. Atallah and Kosaraju [4] gave an EREW PRAM algorithm that
runs in O(lg n) time and does O(n lg n) work.

Raman and Vishkin [10] designed optimal randomized algorithms which run with
high probability in O(lg n) (resp. O(lg lg n)) time on an EREW (resp. CRCW) PRAM
doing O(n) work.

Until now, no deterministic algorithm was known that solves the row minima prob-
lem for a totally monotone n× n matrix in polylogarithmic time and o(n lg n/ lg lg n)
work. In this paper, we give such an algorithm which, on an EREW PRAM, improves
the work of all previous algorithms [2, 4] by a factor of almost Θ(

√
lg n). Moreover,

it is faster than the algorithm in [2]. On the CREW or CRCW PRAM, our algorithm is
even more efficient. More precisely, we prove the following theorem.

Theorem 3 (Main Theorem) We can solve the row minima problem on n×n totally
monotone matrices

• on a CRCW PRAM in O(lg n lg lg n) time and O(n
√
lg n) work,

2

PRAM Model Time Work Source
CRCW O(lg n lg lg n) O(n

√
lg n) this paper

CREW O(lg n(lg lg n)2) O(n
√
lg n) this paper

EREW O(lg2 n/lg lg n) O(n lg n/lg lg n) [2, 10]
O(lg n

√
lg n lg lg n) O(n

√
lg n lg lg n) this paper

O(lg n) O(n lg n) [4]
O(nϵ) O(n) [2, 10]

Table 1: Comparing the most efficient deterministic parallel solutions to the row minima
problem on n× n totally monotone matrices. The results in the third and sixth line were
given in [2] for the CREW PRAM, but [10] observed that they also hold for the EREW
PRAM.

• on a CREW PRAM in O(lg n(lg lg n)2) time and O(n
√
lg n) work,

• on an EREW PRAM in O(lg n
√
lg n lg lg n) time and O(n

√
lg n lg lg n) work.

On the CREW and EREW PRAM, there is in fact a tradeoff between time and work,
the other extreme being O(lg n lg lg n) time and O(n lg n) work.

The rest of this paper is organized as follows. In Section 2, we recall some results
about totally monotone matrices and about elementary sorting subroutines which we
need. In Section 3, we first outline our algorithm, then give the main routines in more
detail in Subsections 3.2 and 3.3, and finally put the pieces together in Subsection 3.4.
We close with some remarks in Section 4.

2 Preliminaries

We start by recalling some results from the literature. Let M be a totally monotone
m× n matrix. The following proposition follows directly from Definition 2.

Proposition 4 For any two columns a < b, there exists a unique row k ∈ {0, . . . ,m},
called the change-over of a and b, such that Mi,a < Mi,b for all i ≤ k and Mj,a > Mi,b

for all j > k.

We say that column b ∈ {1, . . . , n} is useless if it does not contain any row minima.
Obviously, if m < n then M contains at least n−m useless columns.

Lemma 5 If there exist columns a and c with a < b < c and rows i, j ∈ {1, . . . ,m} with
j ≤ i + 1 such that Mi,a < Mi,b and Mj,b > Mj,c, then column b is useless. Moreover, b
is useless if either M1,b > M1,c or Mm,a < Mm,b.

Proof: Proposition 4 implies that column b cannot contain a row minimum above
row i or below row j. (See Figure 1 for the case when j = i+ 1.)

Aggarwal et al. [1] used this in their optimal sequential algorithm for totally mono-
tone n × n matrices which works as follows: Throw away all even rows, walk along

3

Figure 1: The shaded column is useless because A < A′ and B′ > B.

the diagonal of the remaining matrix and eliminate n
2
useless columns, solve the row

minima problem recursively on the now n
2
× n

2
matrix, then reinsert the even rows and

find their minima in time O(n).
The next theorem shows that the last step of this algorithm can be done efficiently

in parallel. However, identifying many useless columns seems to be a difficult task to
do in parallel.

Theorem 6 ([2, 10]) Let M be a totally monotone n × n matrix, and assume we are
given the row minima for every r-th row of M . Then there is an EREW PRAM algorithm
that computes the remaining row minima in O(r + lg n) time using n/r processors.

Unfortunately, applying Theorem 6 recursively does not seem to give an efficient
parallel algorithm. Therefore, we show how to identify useless columns efficiently in
parallel.

Now, we give our basic approach for solving the row minima problem on totally
monotone n× n matrices. We start by recalling some results from the literature.

Theorem 7 ([4]) Let c ≥ 1 be some constant. Given an n×cn totally monotone matrix
M , we can find its row minima in O(lg n) time using n processors on an EREW PRAM.

Proof: Atallah and Kosaraju [4] showed this for c = 1. So if we split M into c
submatrices of size n × n, we can find the row minima of each submatrix in time
O(lg n) using n processors, and then find the row minima of M in time O(1) by
choosing between c candidates in each row.

Let M (resp. N) be an m×n (resp. m×n′) matrix, where n′ ≤ n. We say that N
has the same row minima as M , if for each 1 ≤ i ≤ m, the minimum of the i-th row
of M is the same as the minimum of the i-th row of N .

In the next theorem, we will say that an algorithm computes an m× n′ matrix N
that has the same row minima as a given m×n matrix M . This means that the matrix

4

N is represented implicitly in O(m+n′) space, that we can access every entry of N in
constant time, and that for each 1 ≤ i ≤ m, if we are given the index of the column
in N that contains the minimal element of the i-th row, then we can in constant time
compute the index of the column in M that contains the minimal element of the i-th
row.

Theorem 8 Let c be a positive integer constant. Let A be a PRAM algorithm that, given
any totally monotone n/ lg n×n matrixM ′, computes a totally monotone n/ lg n×cn/ lg n
matrix M ′′ that has the same row minima as M ′. Let f(n) (resp. g(n)) denote the amount
of time (resp. work) this algorithm takes.

Then the row minima problem on totally monotone n × n matrices can be solved in
O(lg n+ f(n)) time and O(n+ g(n)) work.

Proof: Let M be a totally monotone n× n matrix. Let M ′ be the totally monotone
n/ lg n× n matrix obtained by taking every lg n-th row of M . By our assumption, we
can in f(n) time and with g(n) work compute a totally monotone n/ lg n × cn/ lg n
matrix M ′′ that has the same row minima as M ′. By Theorem 7, we can solve the
row minima problem for M ′′ (and, hence, for M ′) in O(lg n) time with O(n) work.
Given the row minima for M ′, Theorem 6 implies that we can find all row minima of
M in O(lg n) time and O(n) work. Note that the results of Theorems 6 and 7 hold for
the EREW PRAM which is the weakest PRAM model. As a result, we can solve the
row minima problem for M on the same PRAM model as that on which algorithm A
works. This completes the proof.

This theorem implies that it suffices to design parallel algorithms that, given a
totally monotone n/ lg n×n matrix M ′, compute a totally monotone n/ lg n× cn/ lg n
matrix M ′′, for some integer constant c, that has the same row minima. In the rest
of this paper, we will show how to design such algorithms. We note that Raman and
Vishkin [10] used a similar strategy in their randomized algorithm.

Note that the matrix M ′′ always exists: M ′ has n/ lg n rows and, hence, there are
this many row minima. Hence, the main problem is to reduce the number of columns
from n to cn/ lg n.

We close this section by mentioning some standard results for computing prefix
sums and parallel integer sorting.

Theorem 9 Given n 0/1-variables x1, . . . , xn, we can compute all prefix sums
∑k

i=1 xi, k =
1, . . . , n, on an EREW PRAM in O(lg n) time and O(n) work.

Proof: See for example [8].

Theorem 10 Given n integer variables x1, . . . , xn ∈ {1, . . . , n}, we can stable sort them

• on a CRCW PRAM in O((lg n)/lg lg n) time and O(n lg lg n) work,

• on a CREW PRAM in O(lg n lg lg n) time and O(n
√
lg n) work,

5

• on an EREW PRAM in O
(
lg n

√
lgn

lg lgn

)
time and O(n

√
lg n lg lg n) work.

On the CREW and EREW PRAM, there is in fact a tradeoff between time and work,
the other extreme being O(lg n) time and O(n lg n) work.

Proof: The CRCW algorithm is due to Bhatt et al. [5]. The CREW and EREW
algorithms are due to Albers and Hagerup [3].

3 Our Algorithm

3.1 The General Idea

In this section we want to outline our algorithm for identifying many useless columns
in an r × n totally monotone matrix M , where r ≪ n (later we will choose r = n

lgn
).

Let k =
√
lg r.

The algorithm runs in l phases. (We will see later that we can take l = Θ(lg lg n).)
When we start a new phase with an r ×m matrix (where m ≥ 8r), then during this
phase we will identify and delete at least 1

4
m useless columns, thus leaving a matrix

of size at most r × 3
4
m for the next phase.

At the beginning of a phase, we partition the r ×m matrix into blocks of k con-
tiguous columns (the last block may be smaller), and assign one processor to each
block. Then each processor runs the procedure Color Block independently on its block
of columns. The phase ends with a run of Color All on the entire r × m matrix.
Color Block tries to eliminate columns locally, whereas Color All eliminates columns
based on global information so these columns may be far apart (Color Block computes
candidate columns which are potentially useless and turns them over to Color All).

Color Block uses three colors to color all columns: A red column is known to be
useless, a yellow column still has a chance of being found useless in the procedure
Color All, and a green column will definitely survive this phase, but at the end of a
phase there are at most two green columns in each block.

The yellow columns are always created pairwise, so we call such a pair a yellow
pair. There is also an integer row(a, b) ∈ {1, . . . , r} attached to each yellow pair (a, b),
such that there exist columns c and d, a < c ≤ d < b, with Mrow(a,b),a > Mrow(a,b),c

and Mrow(a,b),d < Mrow(a,b),b ; we call this property the yellow-property of a yellow pair.
Further, all row-values within a block will be different.

Color All will then work on the yellow pairs and find nearly as many useless columns
as there are yellow pairs. It colors these useless columns red, the other columns green.
The green columns can then be compacted (using a prefix sum algorithm) into a
smaller matrix which serves as input for the next phase.

3.2 Procedure Color Block

The procedure Color Block gets as input an r×k matrix (recall that k =
√
lg n). Since

there is only one processor assigned to each block, it is a purely sequential algorithm.

6

At the beginning, all columns are colored green. Color Block now runs in iterations.
In each iteration, we either throw away some columns or some rows. We remark that
after each run of Color Block all rows re-appear. Further after each phase all columns
that were not red re-appear. We stop running executions of Color Block when only
two rows are left.

We maintain the following iteration invariant which holds after each iteration:

All columns are green, and the matrix elements in the top row are in-
creasing from left to right, whereas the elements in the bottom row are
decreasing.

So if we have a matrix of two rows, we know from Lemma 5 that all columns except
the first and the last ones are useless and can therefore be colored red.

We can easily guarantee the iteration invariant before the first iteration. We just
scan through the first row, coloring all columns containing a local maximum red (these
columns are useless by Lemma 5); this may include some backtracking, but each
column is visited at most twice. Similarly, all columns right of a local minimum in the
last row are useless and can be colored red.

Now, as well as after each iteration, we must deal with the columns we have just
colored yellow or red. Since we need to delete these columns (at least conceptually),
the easiest way seems to have two arrays left and right of size k which contain for each
green column its closest green neighbor to the left and to the right, respectively. Then
each coloring (i.e., deletion) takes constant time. To make the algorithms simpler, we
simulate two more columns 0 and k+1 that are always green, and whose entries are all
∞. These two columns should obviously not be included into the iteration invariant.

3.2.1 One Iteration

Each iteration consists of two steps. Assume, the current matrix consists of rows
v, v + 1, . . . , w − 1, w of our original r × k matrix.

First, we start a binary search for the change-over between the first two columns
from row v down to row w, but we stop after k comparisons. This gives us two rows
i < j with Mi,1 < Mi,2 and Mj,1 > Mj,2. If w − v = r′, then j − i = r′/2k.

Then we make rows i and j monotone by calling ScanRow for both of them (see
Figure 3). ScanRow (s) first deletes useless columns until the elements of s form a
monotone decreasing chain followed by a monotone increasing chain. If the decreasing
chain is not longer than the increasing chain, then we could pair all columns of the
decreasing chain with columns of the increasing chain to create yellow pairs, except
that then all of them would have the same row-value. Therefore, we call ScanUp which
establishes a staircase of >’s as depicted in Figure 2, and in the process eventually finds
some more useless columns. Since all rows above s must also be increasing where row s
is increasing (Proposition 4), we can now create yellow pairs with different row-values.
Deleting them gives us a monotone increasing row s.

Similarly, we compute a downward staircase if the increasing chain is shorter; then
row s becomes decreasing.

Among rows {v, i, j, w}, let v′ be the largest of the increasing rows, and w′ the
smallest of the decreasing rows. By Proposition 4, v′ < w′. Now we delete all rows

7

s− 4 • < • • • • • • •
s− 3 • ? • > • • • • • •
s− 2 • ? • > • > • • • ... • ... • ...
s− 1 • ? • > • > • > • • < • < • < · · ·

s · · · > • > • > • > • > • > • < • < • < · · ·
p− 4 p

Figure 2: ScanUp starts at column p and goes diagonally upwards (among the green
columns) until it finds a ‘<’ (here in row s− 4), then it deletes the right column (p− 4)
and backtracks to the row below (i.e., row s − 3). Here, we assume for simplicity that
left(x) = x− 1 for all x.

above v′ and below w′, i.e., the next iteration works on rows v′, . . . , w′. Clearly, the
iteration invariant holds now.

Lemma 11 With the notation above we have :

(a) If no yellow pairs are created then v′ = i and w′ = j.

(b) All yellow pairs have the yellow-property.

(c) The row-values of all yellow pairs are different.

Proof:

(a) If no yellow pairs are created, then procedures ScanUp and ScanDown have not
been called, i.e., row i is increasing and row j is decreasing.

(b) By construction.

(c) Since the iteration invariant holds, ScanUp and ScanDown can never leave the
submatrix on which the iteration started. Further, the rows which are used as
row-value for yellow pairs do not belong to the submatrix of the next iteration.

Lemma 12 After at most 3
2
k iterations, the block consists of only two rows, i.e., proce-

dure Color Block stops. The total time used for the iterations is O(lg r).

Proof: In each iteration, we either find a yellow pair, or the k probes of the binary
search decrease the number of rows by a factor of 2k (Lemma 11 (a)). Since there can
be no more than k

2
yellow pairs, after 3

2
k iterations the number of rows would have

shrunk to r
(2k)k

= 1.

For the time bound, observe that ScanRow needs O(k+ number of red columns
found) time for each iteration. Since red columns are deleted, this sums to O(k2+k) =
O(lg r) time for all iterations.

8

Procedure ScanRow (s)
– – Columns 0 and k + 1 are green, and Ms,0 = Ms,k+1 = ∞.

j = right (0); – – first green column

while j < k + 1
do if (Ms,left (j) < Ms,j) and (Ms,j > Ms,right (j))

then j′ = left (j);
color column j red and delete it; – – Lemma 5
j = j′; – – backtrack

else j = right (j);
– – Now the green columns form a pattern
– – Ms,1 > · · · > Ms,p < Ms,p+1 < · · · < Ms,q

if p ≤ q
2 then ScanUp (s, p);

for j = 1, . . . , p− 1 do create yellow pairs (p− j, p+ j)
with row-value s− j + 1;

else ScanDown (s, p);
for j = 1, . . . , q − p do create yellow pairs (p− j, p+ j)

with row-value s+ j − 1;

Procedure ScanUp (s, p)
– – Search a diagonal of >’s going up from p.
– – We know that Ms,left (p) > Ms,p.

p = left (p); s = s− 1;

while p > 0 – – Invariant : Ms+1,p > Ms+1,right (p)

do if Ms,left (p) > Ms,p

then s = s− 1;
p = left (p);

else q = right (p);
color p red and delete it; – – Lemma 5
s = s+ 1; – – backtrack
p = q;

Procedure ScanDown (s, p)
– – Search a diagonal of <’s going down from p.
– – We know that Ms,p < Ms,right (p).

p = right (p); s = s+ 1;

while p < k + 1 – – Invariant : Ms−1,left (p) < Ms−1,p

do if Ms,p < Ms,right (p)

then s = s+ 1;
p = right (p);

else q = left (p);
color p red and delete it; – – Lemma 5
s = s− 1; – – backtrack
p = q;

Figure 3: Procedures ScanRow, ScanUp and ScanDown

9

3.3 Procedure Color All

We may assume that Color Block created exactly k
2
yellow pairs in each block, storing

all of them in an array of size m
2

(we can add dummy yellow pairs which are later
ignored). If we now sort the yellow pairs by their row-values, they will be grouped
in contiguous blocks with the same row-value. The next lemma shows that if now
two neighbors in the array happen to have the same row-value, then we can color one
of the four columns involved red. This can easily be done with O(n

lgn
) processors in

O(lg n) time.

Lemma 13 Let (a, b) and (s, t) be two yellow pairs with b < s. If row(a, b) = row(s, t),
then either column b or column s is useless.

Proof: Let i = row(a, b) = row(s, t). The yellow-property and Lemma 5 imply that
column s is useless if Mi,b < Mi,s, otherwise column b is useless.

Lemma 14 Procedure Color All runs

• on a CRCW PRAM in O((lgm)/lg lgm) time doing O(m lg lgm) work,

• on a CREW PRAM in O(lgm lg lgm) time doing O(m
√
lgm) work,

• on an EREW PRAM in O
(
lgm

√
lgm

lg lgm

)
time doing O(m

√
lgm lg lgm)

work.

Proof: Follows directly from Theorem 10.

Lemma 15 If m ≥ 8r and k ≥ 8 (i.e., n ≥ 264), then at least m
4
columns will be colored

red during Color All.

Proof: Assume that we have a total of l1 red and l2 yellow columns after running
Color Block on all blocks. Since there can be at most two green columns in each of
the m

k
blocks, we have l1 + l2 ≥ m− 2m

k
.

If there are ti yellow pairs with row-value i then we will color ti−1 columns red (note
that the sorting algorithm is stable, so the yellow pairs are ordered with increasing
column numbers). Hence we will get a total of l1+

∑
i (ti − 1) = l1+

l2
2
−r ≥ m

2
−m

k
−r ≥

m
4
red columns.

3.4 Analysis of the Algorithm

Let r = n
lgn

.

Theorem 16 After 3 lg lg n phases of our algorithm, an r × n matrix M is reduced to
an at most r × 8r matrix with the same row minima as M . This takes

• O(lg n lg lg n) time and O(n
√
lg n) work on a CRCW PRAM,

10

• O(lg n(lg lg n)2) time and O(n
√
lg n) work on a CREW PRAM,

• O(lg n
√
lg n lg lg n) time and O(n

√
lg n lg lg n) work on an EREW PRAM.

Proof: After l phases the matrix has at most
(
3
4

)l
n columns (Lemma 15). So after

at most 3 lg lg n phases there are at most 8n
lgn

= 8r columns.

In phase i, Color Block needs O(lg r) = O(lg n) time and

O

((
3

4

)i n

k
lg r

)
= O

((
3

4

)i

n
√
lg n

)

work (Lemma 12), so the total time for Color Block over all phases is O(lg n lg lg n),
and the total work is O(n

√
lg n). The complexity bound now follows from Lemma 14.

This together with Theorem 8 implies our Main Theorem (Theorem 3).

4 Conclusions

We have given an efficient deterministic parallel algorithm for computing the minima
of all rows of a totally monotone matrix. For the CREW and EREW PRAM, the
bottleneck is the sorting step.

But we do not really need sorting here, a weaker concept like semi-sorting [11]
(i.e., group all equal elements together, not regarding the order between groups) would
also suffice. Unfortunately, only efficient randomized algorithms are known for that
problem.

Further, when we start a new phase of our algorithm in Section 3 we forget every-
thing which we might have learned in previous phases. We cannot say exactly how
much we lose here, but we have the impression that a thorough analysis could improve
our complexity bounds.

Acknowledgements

We thank Torben Hagerup for discussions about parallel sorting algorithms.

References

[1] A. Aggarwal, M.M. Klawe, S. Moran, P. Shor, and R. Wilber. Geometric appli-
cations of a matrix-searching algorithm. Algorithmica 2 (1987), pp. 195–208.

[2] A. Aggarwal and J. Park. Notes on searching multidimensional monotone arrays.
Proceedings of the 29th Annual IEEE Symposium on the Foundations of Com-
puter Science (FOCS’88), 1988, pp. 497–512. To appear in Journal of Algorithms.

11

[3] S. Albers and T. Hagerup. Improved parallel integer sorting without concurrent
writing. Proceedings of the 3rd Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA’92), 1992, pp. 463–472.

[4] M.J. Atallah and S.R. Kosaraju. An efficient parallel algorithm for the row minima
of a totally monotone matrix. Journal of Algorithms 13 (1992), pp. 394–413.

[5] P.C.P. Bhatt, K. Diks, T. Hagerup, V.C. Prasad, T. Radzik, and S. Saxena.
Improved deterministic parallel integer sorting. Information and Computation 94
(1991), pp. 29–47.

[6] P.G. Bradford, G.J.E. Rawlins, and G.E. Shannon. Efficient matrix chain ordering
in polylog time with linear processors. Proceedings 8th IEEE International Parallel
Processing Symposium, 1994, pp. 234–241.

[7] P.G. Bradford and K. Reinert. An exact lower bound for finding the row minima
in totally Monotone Matrices. In preparation.

[8] R.M. Karp and V. Ramachandran. Parallel Algorithms for Shared-Memory Ma-
chines. In Handbook of Theoretical Computer Science, Vol. A (“Algorithms and
Complexity”), Elsevier, 1990. Page 875.

[9] L.L. Larmore and B. Schieber. On-Line Dynamic Programming with applications
to the Prediction of RNA Secondary Structure. Proceedings of the 1st Symposium
on Discrete Algorithms (SODA’90), 1990, pp. 503–512.

[10] R. Raman and U. Vishkin. Optimal randomized parallel algorithms for computing
the row minima of a totally monotone matrix. Proceedings 5th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA’94), 1994, pp. 613–621.

[11] L.G. Valiant. General Purpose Parallel Architectures. In Handbook of Theoretical
Computer Science, Vol. A (“Algorithms and Complexity”), Elsevier, 1990. Page
965.

12

