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Abstract

Let S be a set of n points in IRd� and let each point p of S have a positive
weight w�p�� We consider the problem of computing a ray R emanating from the
origin �resp� a line l through the origin� such that minp�S w�p� � d�p� R� �resp�
minp�S w�p� � d�p� l�� is maximal� If all weights are one� this corresponds to
computing a silo emanating from the origin �resp� a cylinder whose axis contains
the origin� that does not contain any point of S and whose radius is maximal�
For d � �� we show how to solve these problems in O�n logn� time� which is
optimal in the algebraic computation tree model� For d � �� we give algorithms
that are based on the parametric search technique and run in O�n log� n� time�
The previous best known algorithms for these three	dimensional problems had
almost quadratic running time� In the 
nal part of the paper� we consider some
related problems�

� Introduction

We consider some problems from the class of facility location problems� These are
geometric optimization problems in low�dimensional spaces� and have been widely
studied in the literature� �See e�g� ��� �� 	� 
� �� ����
 Before we can state the problems
we consider� we need to introduce some notation�

We denote the Euclidean distance between a point p and the origin by kpk� Also�
the Euclidean distance between two points p and q is denoted by d�p� q
� If p is a point
in IRd� and R is a closed subset of IRd� then the distance between p and R is de�ned
as d�p�R
 �� minfd�p� q
 � q � Rg� Finally� we de�ne an anchored ray as a ray that
emanates from the origin�

Problem � Let S be a set of n points in IRd� and let each point p of S have a

weight w�p
� which is a positive real number� Compute an anchored ray R for which

minp�S w�p
 � d�p�R
 is maximal�
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Figure �� A silo with axis R and radius ��

We get an obvious generalization if we ask for a line through the origin instead of
an anchored ray�

Problem � Let S be a set of n points in IRd� and let each point p of S have a weight

w�p
� which is a positive real number� Compute a line l through the origin for which

minp�S w�p
 � d�p� l
 is maximal�
Let R be any ray� and let � � �� The set of all points in IRd that are at distance

at most � from R is called a silo with axis R and radius �� �See Figure ��

If each point of S has weight one� then Problem � asks for the silo whose axis

starts in the origin� that does not contain any point of S in its interior� and that has
maximal radius� Also� in this case� Problem � asks for the cylinder of maximal radius
whose axis contains the origin and that does not contain any point of S in its interior�

Problem � was posed by Prof� Hotz� and appeared for the �rst time in Follert�s
Master Thesis �
�� He shows how to solve this problem in O�n��n
 log n
 time when
d � �� and in O�n���
 expected time when d � �� Here� ��n
 denotes the inverse of
Ackermann�s function� and � is an arbitrarily small positive constant�

Follert also considers Problem �� For d � �� he shows how to solve this problem
in O�n log n
 time� Moreover� he reduces problem Max�Gap�on�a�Circle to Problem ��
�See also Lee and Wu �����
 Hence� Problem � has time complexity ��n log n
 in
the algebraic computation tree model� For d � �� Follert gives an algorithm that
solves Problem � in O�n���n
 log n
 time� where ���n
 is the maximal length of any
Davenport�Schinzel sequence of order six over an alphabet of size n� It is known that
���n
 is slightly superlinear� �See Agarwal et al� ����
 Hence� Follert�s algorithm has
almost quadratic running time�
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��� Our contribution

In Section �� we prove some preliminary results� First� we show that we can assume
w�l�o�g� that all points have weight one� i�e�� it su�ces to consider the unit�weight
versions of Problems � and �� �This observation appears already in �
� ����
 Then we
show that the time complexity of Problem � is bounded above by that of Problem ��

In Section �� we consider the two�dimensional version of Problem �� We give an
extremely simple algorithm that solves this problem in O�n log n
 time� This algorithm
uses the lower envelope of some appropriately chosen curves� A careful analysis shows
that this lower envelope has linear combinatorial complexity�

The results of Section � imply that the two�dimensional version of Problem � can
also be solved in O�n log n
 time� Since Follert �
� proved an ��n log n
 lower bound
for this problem� it follows that our algorithms for solving the planar versions of
Problems � and � are optimal in the algebraic computation tree model�

In Section 	� we consider the three�dimensional version of Problem �� The appro�
priate technique to apply seems to be Megiddo�s parametric search ����� We show that
this is indeed true� In particular� we show that it su�ces to design sequential and
parallel algorithms for the following covering problem� Given a set of n disks on the
unit sphere� decide whether these disks cover the sphere� Then� Megiddo�s technique
immediately solves Problem ��

The overall algorithm for solving Problem � has running time O�n log� n
� By the
results of Section �� the three�dimensional version of Problem � can be solved within
the same time bound� Compared with the previous almost quadratic time bounds
of �
�� these are drastic improvements�

In the �nal part of Section 	� we give alternative algorithms that solve the covering
problem for pseudo disks on the unit sphere�

In Section �� we consider some related problems� In particular� the dual of the
three�dimensional version of Problem �� which asks for an anchored ray R for which
maxp�S w�p
 � d�p�R
 is minimal� can be solved in O�n log� n
 time using basically the
same approach as in Section 	� We also discuss the dual of the three�dimensional
version of Problem �� which seems to be much more di�cult� Finally� for d � �� we
show how to compute a plane H through the origin such that maxp�S w�p
 � d�p�H

is minimal� in O�n log n
 time� It was proved in ���� that the planar version of the
latter problem has an ��n log n
 lower bound in the algebraic computation tree model�
Hence� our algorithm is optimal in this model�

� Some preliminary results

Let S be a set of points in IRd� If S contains the origin� then any anchored ray R
�resp� any line l through the origin
 is a solution to Problem � �resp� �
� Therefore�
from now on� we make the following assumption�

Assumption � The set S does not contain the origin�

Lemma � Let p � �p�� p�� � � � � pd
 be a point in IRd� let w be a positive real number�

and let R be an anchored ray in IRd� Let p� �� �wp�� wp�� � � � � wpd
� Then w �d�p�R
 �
d�p�� R
�
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Proof� We can assume w�l�o�g� that R is the positive x��axis� First assume that
p� � �� Then d�p�R
 � kpk and d�p�� R
 � kp�k� and the claim clearly holds�

Assume that p� � �� Let � be the angle between the vector 	p and the ray R� Then
sin � � d�p�R

kpk and sin� � d�p�� R

kp�k � d�p�� R

�wkpk
� Hence� w � d�p�R
 �
d�p�� R
�

Corollary � Let T �n
 denote the complexity of the unit�weight version of Problem ��

Then the weighted version of Problem � has complexity O�T �n

�

Proof� Given a set S of weighted points in IRd� the previous lemma shows that we
can replace this set by the set S� �� fp� � p � Sg of unit�weight points�

Lemma � Let T �n
 be the complexity of Problem �� Then the complexity of Problem �

is bounded by O�T ��n

�

Proof� Let A be an algorithm that solves Problem � in time T �n
� Let S be a set of
n points in IRd� and let each point p of S have a positive weight w�p
� We want to
compute a line l through the origin for which minp�S w�p
 � d�p� l
 is maximal�

Let S� �� S � �S� where �S �� f��p���p�� � � � ��pd
 � �p�� p�� � � � � pd
 � Sg� We
give each point in �S the weight of the corresponding point of S� Use algorithm A to
compute an anchored ray R� such that minp�S� w�p
 � d�p�R�
 is maximal� Let l� be
the line that supports R��

We claim that l� is a solution to Problem � for the set S� Clearly� this claim proves
the lemma� De�ne � �� maxfminp�S w�p
 � d�p� l
 � l is a line through the origing� and
�� �� minp�S w�p
 � d�p� l�
� Then we have to prove that � � ���

It is clear that � � ��� Since d�p� l�
 � min�d�p�R�
� d��p�R�

 for each point p�
we have �� � minp�S� w�p
 � d�p�R�
� Assume that � � ��� Let l be a line through the
origin such that minp�S w�p
 � d�p� l
 � ��� and let R be an anchored ray contained in
l� Since d�p� l
 � min�d�p�R
� d��p�R

 for each point p� it follows that

min
p�S�

w�p
 � d�p�R
 � min
p�S

w�p
 � d�p� l
 � �� � min
p�S�

w�p
 � d�p�R�
�

This is a contradiction� because R� is an optimal anchored ray for the set S�� This
proves that � � ���

� Problem �� the two�dimensional case

In this section� we give an optimal algorithm for solving the planar version of Prob�
lem �� This algorithm is obtained by reducing the problem to a simple problem on
lower envelopes� We remark that our method has a similarity to those in Melkman and
O�Rourke ���� and Agarwal et al����� In order to be self�contained� however� we give
all details here� Moreover� we introduce quite some notation� The reason for doing
this is to show that the �nal algorithm is based only on very simple curves�

Let S be a set of n points in the plane� and let each point p of S have a positive
weight w�p
� We want to compute an anchored ray R such that minp�S w�p
 � d�p�R


	



is maximal� By Corollary �� we can assume w�l�o�g� that w�p
 � � for all points p�
De�ne

�� �� maxfmin
p�S

d�p�R
 � R is an anchored rayg�

Let ��l �resp� ��r
 denote the analogous quantity where we only consider anchored rays
that lie on or to the left �resp� right
 of the y�axis� It is clear that �� � max���l � �

�
r
�

We show how to compute ��r � The value ��l can be computed in a symmetric way�
Let �min �� minfkpk � p � Sg� For each � � � and each point p of S� let D�

p

denote the disk with center p and radius �� For � � � � �min and p � S� let C�
p denote

the cone consisting of all anchored rays that intersect or touch the disk D�
p� �Since

� � �min � D�
p does not contain the origin� Therefore� C�

p really is a cone�
 Note that
C�

p has the origin as its apex�

Observation � Using these notations� we have

�� ��r is the maximal value of �� � � � � �min� such that there is an anchored ray in

the halfplane x � � that does not intersect the interior of any disk D�
p� p � S�

�� � � ��r � �min�

�� ��r is the minimum of �min and the minimal value of �� � � � � �min � such that

the cones C�
p � p � S� cover the halfplane x � ��

Let � � � � �min and let p � S� Consider the intersection of the cone C�
p with the

halfplane x � �� Let Ip��
 be the interval of slopes spanned by all anchored rays that
lie in this intersection� We represent each slope by the angle between the ray and the
positive x�axis� Hence� Ip��
 � ���
�� �
��� We can easily write down this interval
explicitly�

Let p have coordinates �p�� p�
� and let �p� �� 
 �p � �� be the angle between
the vector 	p and the positive x�axis� Then� sin�p � p�
kpk� Also� for � � � � �min �
let ��

p be the angle between 	p and an anchored ray that is tangent to the disk D�
p�

�There are two such tangents� but both de�ne the same angle�
 Then� � � ��
p � �
�

and sin��
p � �
kpk� �See Figure ��
 If p� � �� then

Ip��
 �

���
��

��p � ��
p� �p � ��

p� if � � � � �min and � � p��
��p � ��

p� �
�� if p� � � � �min and p� � ��
���
�� �p � ��

p� if p� � � � �min and p� � ��

If p� � �� then

Ip��
 �

���
��
	 if � � � � �min and � � �p��
��p � ��

p� �
�� if �p� � � � �min and p� � ��
���
�� �p � ��

p� if �p� � � � �min and p� � ��

It is clear that the cones C�
p� p � S� cover the halfplane x � � if and only if the

intervals Ip��
� p � S� cover ���
�� �
��� Hence� ��r is the minimum of

�� �min � and
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Figure �� Illustration of the angles �p and ��
p�

�� the minimal value of �� � � � � �min� such that the intervals Ip��
 cover
���
�� �
���

Using the intervals Ip��
 has the disadvantage that we need non�algebraic functions�
In order to stay within the algebraic computation tree model� our algorithm works with
the intervals

Jp��
 �� sin �Ip��

 � fsin � � � � Ip��
g�
Note that Ip��
 � ���
�� �
�� and that the function sin��
 is increasing on ���
�� �
���
Using the relations sin�p � p�
kpk� cos�p � p�
kpk� sin ��

p � �
kpk� cos��
p �q

p�� � p�� � ��
kpk� and sin�x � y
 � sin x cos y � cos x sin y� we get the following
expressions for Jp��
� If p� � �� then

Jp��
 �

��������
�������

�
p�
p

p�
�
�p�

�
����p��

kpk�
�
p�
p

p�
�
�p�

�
����p��

kpk�

�
if � � � � �min and � � p���

p�
p

p�
�
�p�

�
����p��

kpk� � �
�

if p� � � � �min and p� � ���
���

p�
p

p�
�
�p�

�
����p��

kpk�

�
if p� � � � �min and p� � ��

If p� � �� then

Jp��
 �

������
�����

	 if � � � � �min and � � �p���
p�
p

p�
�
�p�

�
����p��

kpk� � �
�

if �p� � � � �min and p� � ���
���

p�
p

p�
�
�p�

�
����p��

kpk�

�
if �p� � � � �min and p� � ��

The value of ��r is equal to the minimum of �min and the minimal value of �� � � � �
�min � such that the intervals Jp��
 cover ���� ���






For p � S� let
Rp �� f�x� �
 � � � � � �min � x � Jp��
g�

The region Rp is contained in the rectangle ���� ��
 ��� �min��

Observation � ��r is the minimum of

�� �min � and

�� the minimal value of �� � � � � �min � such that the horizontal segment with

endpoints ���� �
 and ��� �
 is completely contained in
S

p�S Rp�

Let lp be the lower envelope of Rp� Then� lp is the graph of a continuous function on
a subinterval of ���� ��� Finally� let L be the lower envelope of the graphs lp� p � S�
and the line segment with endpoints ���� �min
 and ��� �min
�

Observation � ��r is the y�coordinate of a highest vertex of L�

We now analyze the lower envelope L� Let Bl� Br� Bt and Bb be the left� right� top
and bottom side of the rectangle ���� ��
 ��� �min�� respectively�

Let p � �p�� p�
 be a point of S� and consider the graph lp� If p� � �� then
lp consists of a decreasing part l�p that has �p�
kpk� �
 as its lowest and rightmost
endpoint� and an increasing part l�p that has �p�
kpk� �
 as its lowest and leftmost
endpoint� Moreover� l�p �resp� l�p 
 has its leftmost �resp� rightmost
 endpoint on Bl or
Bt �resp� Br or Bt
� If p� � � and p� � �� then lp is decreasing from some point on
Bt to some point on Br� Finally� if p� � � and p� � �� then lp is increasing from some
point on Bl to some point on Bt�

Let p � �p�� p�
 and q � �q�� q�
 be two distinct points of S� We claim that the
graphs lp and lq intersect at most twice� First� we give a geometric explanation for
this claim� Then� in Lemma � below� we give a rigorous proof�

For the intuitive explanation� assume that p� and q� are both positive and that
�q � �p� For � � � � �min� let Up��
 �resp� Lp��

 be the anchored ray that is upper
�resp� lower
 tangent to the disk D�

p� De�ne Uq��
 and Lq��
 analogously�
Intersections of lp and lq are in one�to�one correspondence with values of � such

that fUp��
� Lp��
g � fUq��
� Lq��
g �� 	�
Consider what happens when we grow � from � to �min � Initially� Up��
 � Lp��


and Uq��
 � Lq��
� If � increases� then the tangents Up��
 and Lp��
 move in opposite
directions� Similarly� the tangents Uq��
 and Lq��
 move in opposite directions� �See
Figure ��
 Clearly� there is exactly one �� such that Lq���
 � Up���
� This corresponds
to an intersection of l�q and l�p � Also� for � 
 ��� there are no intersections between lp
and lq� Now we grow � further� from �� to the next �time� �� at which fUp���
� Lp���
g�
fUq���
� Lq���
g �� 	� �If there is no such time� then the graphs lp and lq intersect
exactly once� and we are done�
 Then� Up���
 � Uq���
 or Lp���
 � Lq���
� Assume
w�l�o�g� that at time ��� Up���
 � Uq���
� This corresponds to the second intersection
between lp and lq� more precisely� an intersection between l�p and l�q � Note that then
Up��
 must move faster than Uq��
� Hence� for � � ��� these two tangents never
coincide any more� That is� l�p and l�q intersect only once� Now look at Lp��
 and

�
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�
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Uq���

Lq���

Up���

Lp���

Figure �� Growing � from � to �min �

Lq��
� Since Lp��
 and Up��
 �resp� Lq��
 and Uq��

 move at the same� but opposite�
velocities� Lq��
 will never overtake Lp��
� That is� l�p and l�q do not intersect�

This concludes the intuition why the graphs lp and lq intersect at most twice� We
now prove this rigorously�

Lemma � Let p and q be two distinct points of S� Then� the graphs lp and lq intersect
at most twice�

Proof� Assume �rst that �p � �q� Then� kpk �� kqk� This implies that for all ��
� � � � �min� the cone C�

p is completely contained inside C�
q � or vice versa� As a

result� lp and lq have only one intersection point� with y�coordinate zero�
Assume from now on that �p �� �q� W�l�o�g� assume that �q � �p� Let I be the

interval of all values � such that Jp��
 and Jq��
 are both non�empty� Consider the
function

f��
 �� �q � �p � ��
q � ��

p�

for � � I� Then f��
 � � if and only if the increasing part of lp and the decreasing
part of lq have an intersection point with y�coordinate �� Note that

f��
 � �q � �p � arcsin��
kqk
� arcsin��
kpk
�
The derivative of f is equal to

f ���
 �
��q

kqk� � ��
�

��q
kpk� � ��

�

Hence� f � is strictly negative� which implies that f has at most one root�

�



Next let
g��
 �� �q � �p � ��

q � ��
p�

for � � I� The roots of g are in one�to�one correspondence with the intersections
between the increasing parts of lp and lq� We have

g���
 �
�q

kqk� � ��
� �q

kpk� � ��
�

If kpk � kqk� then g��
 � �q � �p� which is never zero� If kpk �� kqk� then g� is either
strictly positive or strictly negative for all � � I� Hence� the function g has at most
one root�

In a completely symmetric way� it follows that the function

h��
 �� �q � �p � ��
q � ��

p�

for � � I has at most one root� That is� the decreasing parts of lp and lq intersect at
most once�

Now we can prove the lemma� First assume that p� � �� Then lp consists only
of a decreasing part� or only of an increasing part� If q� � �� then lq consists of one
monotone part� The above analysis shows that in this case� lp and lq intersect at most
once� If q� � �� then lq consists of two monotone parts� each of which intersects lp at
most once� Hence� in this case� lp and lq intersect at most twice�

If p� � � and q� � �� then a symmetric argument shows that lp and lq intersect at
most twice�

It remains to consider the case where p� � � and q� � �� We proved above that
the increasing part l�p of lp and the decreasing part l�q of lq intersect at most once�

Assume that l�p and l�q intersect� Then the analysis above shows that they intersect
exactly once� Since the function g is monotone� g��
 � �q ��p � �� and g has a root�
this function is decreasing� But this implies that h is increasing� Since h��
 � �� the
function h does not have any root� which proves that l�p and l�q do not intersect�

If l�p and l�q intersect� then it follows in a completely symmetric way that l�p and
l�q do not intersect�

This proves that lp and lq intersect at most twice�

Lemma � The lower envelope L consists of O�n
 vertices�

Proof� We will show that the names of the points that correspond to the edges of L�
when we traverse L from left to right� form a Davenport�Schinzel sequence of order
two� This will prove the claim� �See e�g� ����
 Hence� we must show that for any pair
p and q of distinct points of S� this sequence of names does not contain a subsequence
of the form p � � � q � � � p � � � q� But this follows from the fact that lp and lq intersect at
most twice� and from the restrictions on the endpoint of these graphs�

Now we are ready to give the algorithm for computing ��r and a corresponding ray
R��

�� Compute the graphs lp� p � S�

�



�� Compute the lower envelope L of the graphs lp� p � S� and the horizontal segment
with endpoints ���� �min
 and ��� �min
�

�� Walk along L and �nd a highest vertex on it� Let this vertex have coordinates
�a� �
�

	� Output � and the anchored ray R �� f�x� ax
p�� a�
 � x � �g�
To prove the correctness of this algorithm� consider the vertex �a� �
 that is found

in Step �� Observation � implies that � � ��r � Let � be the angle such that ��
� �
� � �
� and sin� � a� Let R� be the anchored ray that makes an angle of � with
the positive x�axis� Then � � minp�S d�p�R�
� It is easy to see that R � R��

Next we analyze the running time of our algorithm� Step � takes O�n
 time� The
lower envelope L can be computed by a divide�and�conquer algorithm� �See e�g� ����

Since L has linear size� this algorithm� and hence Step �� takes O�n log n
 time� Step
� takes O�n
 time� and Step 	 takes O��
 time�

We have proved the following result�

Theorem � Let S be a set of n points in the plane� and let each point p of S have

a positive weight w�p
� In O�n log n
 time� we can compute an anchored ray R� for

which minp�S w�p
 � d�p�R�
 is maximal�

Lemma � immediately implies the following result�

Corollary � Let S be a set of n points in the plane� and let each point p of S have a

positive weight w�p
� In O�n log n
 time� we can compute a line l� through the origin

for which minp�S w�p
 � d�p� l�
 is maximal�

The results of Theorem � and Corollary � are optimal in the algebraic computation
tree model� �Note that our algorithm �ts into this model�
 Follert �
� proves an
��n log n
 lower bound for Problem �� It follows from Lemma � that this lower bound
holds for Problem � as well�

� Problem �� the three�dimensional case

��� The parametric search technique

We brie�y recall Megiddo�s parametric search technique ����� �See also �	��

Suppose we are given a �xed set of n data items� such as points in IR�� Let P�t


be a decision problem whose value depends on the n data items and a real parameter
t� Assume that P is monotone� meaning that if P�t�
 is true for some t�� then P�t

is also true for all t 
 t�� Our aim is to �nd the maximal value of t for which P�t
 is
true� We denote this value by t��

Assume we have a sequential algorithm As that� given the n data items and t�
decides if P�t
 is true or not� The control �ow of this algorithm is governed by
comparisons� each of which involves testing the sign of some low�degree polynomial in
t� Let Ts and Cs denote the running time and the number of comparisons made by

��



algorithm As� respectively� Note that by running As on input t� we can decide if t � t�

or t � t�� we have t � t� i� P�t
 is true�
The parametric search technique simulates As on the unknown value t�� Whenever

As reaches a branching point that depends on a comparison operation� the comparison
can be reduced to testing the sign of a suitable low�degree polynomial f�t
 at t � t��
The algorithm computes the roots of this polynomial and checks each root a�by
running As on input a�to see if it is less than or equal to t�� In this way� the algorithm
identi�es two successive roots between which t� must lie and thus determines the sign
of f�t�
� Hence� we get an interval I that contains t�� Also the comparison now
being resolved� the execution can proceed� As we proceed through the execution� each
comparison that we resolve results in constraining I further and we get a sequence of
progressively smaller intervals each known to contain t�� The simulation will run to
completion and we are left with an interval I that contains t�� It can be shown that
for any real number r � I� P�r
 is true� Therefore� t� must be the right endpoint of I�

Since As makes at most Cs comparisons during its execution� the entire simulation
and� hence� the computation of t� take O�CsTs
 time� To speed up this algorithm�
Megiddo replaces As by a parallel algorithm Ap that uses P processors and runs in
Tp parallel time� At each parallel step� let Ap make a maximum of Wp independent
comparisons� Then our algorithm simulates Ap sequentially� again at the unknown
value t�� At each parallel step� we get at most Wp low�degree polynomials in t� We
compute the roots of all of them and do a binary search among them using repeated
median �nding to make the probes for t�� For each probe� we run the sequential
algorithm As� In this way� we get the correct sign of each polynomial in t�� and our
algorithm can simulate the next parallel step of Ap�

For the simulation of each parallel step� we spend O�Wp
 time for median �nding�
Hence� the entire simulation of this step takes time O�Wp � Ts logWp
� As a result�
the entire algorithm computes t� in time O�WpTp � TsTp logWp
� Since Wp � P � the
running time is bounded by O�PTp � TsTp log P 
�

��� Applying the parametric search technique

Let S be a set of n points in IR�� Each point p of S has a positive weight w�p
� De�ne

�� �� maxfmin
p�S

w�p
 � d�p�R
 � R is an anchored rayg�

Our goal is to compute �� together with the corresponding ray R�� We saw already
that we may assume w�l�o�g� that w�p
 � � for all points p�

The way we apply parametric search is standard by now� �See e�g�����
 We have to
solve the following decision problem P��
� Given the set S and the real number � � ��
decide if there is an anchored ray R such that minp�S d�p�R
 � �� It is clear that P is
monotone� and �� is the maximal � for which P��
 is true�

We reformulate the decision problem P��
 in the following way� Let � � �� For
each point p of S� let B�

p denote the ball with center p and radius �� Then P��
 is true
if and only if there is an anchored ray R that does not intersect the interior of any of
these balls�

Let �min �� minfkpk � p � Sg� Then P��
 is clearly false for � � �min �

��



For � � � � �min � let C�
p denote the circular cone consisting of all anchored rays

that intersect or touch the ball B�
p� This cone intersects the unit sphere�i�e�� the

surface of the ball of radius one centered at the origin�in a disk� We denote this disk
by D�

p�
Let � � � � �min� It is clear that P��
 is true if and only if there is a point x on

the unit sphere that is not contained in the interior of any of these n disks� If there
is such a point x� then the ray R that starts in the origin and contains x satis�es
minp�S d�p�R
 � �� In other words� P��
 is true if and only if the interiors of these n
disks do not cover the unit sphere�

����� Deciding the covering problem using a convex hull algorithm

Consider the n disks D�
p� p � S� on the unit sphere S�� We want to decide if the

interiors of these disks cover S��
Let Ip �resp� �p
 denote the interior �resp� boundary
 of D�

p� p � S� and let I ��S
p�S Ip� Let Hp denote the plane whose intersection with the unit sphere S� is equal

to �p� Let H�
p denote the closed halfspace bounded by Hp containing the origin�

The intersection Pol �� �p�SH
�
p of these halfspaces is a possibly unbounded convex

polyhedron� Every point of S� contained in the union I is not contained in at least one
of the halfspaces H�

p � and hence not in Pol� Every point in S��I is contained in every
halfspace H�

p and hence in Pol � Consequently� the intersection of the polyhedron Pol

and the unit sphere S� corresponds exactly to the set of admissible orientations� i�e��
the set of all ray orientations maintaining Euclidean distance � � to all points p � S�
Therefore� P��
 is true i� Pol � S� is not empty�

Since all halfspaces H�
p contain the origin� this is also true for Pol � and its construc�

tion can be reduced to a �D convex hull problem by a standard dual transformation�
The convex hull of n points in ��space can be computed in O�n log n
 sequential time
and in O�log� n
 parallel time using n processors on a CREW PRAM� �See ��� ����


We remark that it is not necessary to compute the intersection of Pol and S�

explicitly� Pol � S� is empty if and only if Pol is bounded and all its vertices are
contained in the interior of the unit ball�

The discussion above together with the results of Section 	�� immediately provide
a solution for Problem ��

Theorem � Let S be a set of n points in IR�� and let each point p of S have a positive

weight w�p
� In O�n log� n
 time� we can compute an anchored ray R� for which

minp�S w�p
 � d�p�R�
 is maximal�

Corollary � Let S be a set of n points in IR�� and let each point p of S have a positive

weight w�p
� In O�n log� n
 time� we can compute a line l� through the origin for which

minp�S w�p
 � d�p� l�
 is maximal�

��� Solving the covering problem for pseudo disks

The algorithm we gave in Section 	���� only works for disks� In this section� we give
an alternative algorithm that works for pseudo disks on the unit sphere� Using this

��



alternative algorithm for solving Problem � would lead to a running time of O�n log� n
�
We include the present section� however� because it is more general� and� hence� may
have applications for other problems�

Let D��D�� � � � �Dn be a set of n pseudo disks on the unit sphere� That is� for i �� j�
the boundaries of Di and Dj intersect at most twice� We assume that the boundary of
each Di is a closed curve that can be described by a constant number of polynomials�
each having a degree that is bounded by a constant� We want to decide if the interiors
of these pseudo disks cover the unit sphere� Clearly� we can use the arrangement of
the pseudo disks for deciding this� This arrangement� however� may have size ��n�
�
In the next two sections� we give sequential and parallel algorithms that solve this
covering problem much more e�ciently�

����� A sequential algorithm that decides the covering problem

Let Ii �resp� �i
 denote the interior �resp� boundary
 of Di� � � i � n� and let
I ��

Sn
i	� Ii� �Note that there may be i �� j such that �i � �j�
 We denote the closure

of I by cl �I
� The boundary B of I is equal to

B � cl �I
 n I �

�
n�

i	�

Di

	
n
�

n�
i	�

Ii

	
�

The interiors of the pseudo disks D��D�� � � � �Dn cover the unit sphere if and only if
B is empty� Hence� our problem can be solved by computing the boundary B rather
than the entire arrangement of the n pseudo disks�

The boundary B is a planar graph on the unit sphere� Each edge of this graph is
part of a curve �i for some i� and each vertex is an intersection point of at least two
distinct curves� We choose an arbitrary point pi on each curve �i� � � i � n� with the
restriction that pi � pj if �i � �j � Then� if �i does not intersect any other curve� it
forms an edge of B with both endpoints equal to pi� Note that B can have isolated
vertices� If three curves intersect in one point x� and there is an arbitrarily small disk
� �not equal to any of D��D�� � � � �Dn
 centered at x such that � n fxg is contained in
the union of the interiors of these three curves� then x is a vertex of B� and x is not
incident to any edge of B�

The proof of the following lemma can be found in Kedem et al� ����� �See also
Remark ��
 on page 

 in �����


Lemma � 	
���
 The boundary B is a planar graph on the unit sphere� and� if n � ��
it contains at most 
n� �� vertices�

In ����� an algorithm is given that computes the boundary of the union of n regions
in the plane� each of which is bounded by a simple closed Jordan curve� This algorithm
follows the divide�and�conquer paradigm� and the merge step is implemented by using
a plane sweep algorithm of Ottmann� Widmayer and Wood ��	� for computing the
boundary of the union of superimposed polygonal planar regions� This plane sweep
algorithm also works if the edges of the planar regions are curved� We can easily
modify this algorithm such that it computes the boundary B�

��



Consider the pseudo disks D��D�� � � � �Dn� Recursively compute the boundary B�

�resp�B�
 of the union of the interiors ofD��D�� � � � �Dn�� �resp�Dn�����Dn����� � � � �Dn
�
Note that B� and B� are planar graphs on the unit sphere� Let l and r be the points
on the unit sphere with minimal and maximal y�coordinate� respectively� Using the
algorithm of ��	�� we compute the boundary B from B� and B� by sweeping a circular
arc with endpoints l and r around the unit sphere� Let b� and b� denote the number of
edges of B� and B�� respectively� and let t denote the number of intersections between
B� and B�� Then this sweep algorithm runs in time O��b� � b� � t
 log�b� � b�

� It
follows from Lemma � that b� � b� � O�n
� Since each intersection point between B�

and B� is a vertex of B� Lemma � also implies that t � O�n
� Hence� the entire sweep
algorithm runs in time O�n log n
� This shows that the entire divide�and�conquer al�
gorithm for computing the boundary B takes O�n log� n
 time� The interiors of the
input pseudo disks D��D�� � � � �Dn cover the unit sphere if and only if the graph B is
empty� If B is not empty� then any vertex of B is a point on the unit sphere that is
not contained in the interior of any pseudo disk� We have proved the following result�

Theorem � Let D��D�� � � � �Dn be a set of pseudo disks on the unit sphere� In

O�n log� n
 time� we can decide if the union of the interiors of these pseudo disks

covers the unit sphere� If this is not the case� then the algorithm �nds a point on the

unit sphere that is not contained in the interior of any pseudo disk�

����� A parallel algorithm that decides the covering problem

Now we give a parallel algorithm for computing the boundary B� Consider again the
pseudo disks D��D�� � � � �Dn� The algorithm uses n processors� The �rst �resp� last

n
� processors compute the boundary B� �resp� B�
 of the union of the interiors of
D��D�� � � � �Dn�� �resp�Dn�����Dn����� � � � �Dn
� It remains to describe the merge step�
That is� given B� and B�� how to compute the boundary B of the union of the interiors
of the n input pseudo disks�

R ub ��
� gives a parallel algorithm based on a segment tree� that computes the
intersections among red and blue curved segments in the plane� The interiors of the
red �resp� blue
 segments are assumed to be pairwise disjoint� Also� each segment
is assumed to be x�monotone� meaning that any vertical line intersects a segment at
most once� Finally� it is assumed that each red�blue pair of segments intersect at most
a constant number of times� If n denotes the total number of red and blue segments�
and t denotes the total number of intersection points among the red�blue pairs of
segments� then R ub�s algorithm runs on a CREW�PRAM in time O�log n� t
n
 using
n processors�

This algorithm can be used to compute the boundary B from B� and B�� In our
case� the slabs that de�ne the segment tree are bounded by circular arcs on the unit
sphere with two �xed diametral endpoints� In order to guarantee that each curved
edge of B� and B� is monotone� we cut each of them into at most two parts� Note that�
by Lemma �� t � O�n
� Hence� using R ub�s algorithm� we compute all intersections
of B� and B� in O�log n
 time using n processors�

Then� for each edge e of B�� we sort the intersection points on this edge� This gives
the arrangement A of the union B� and B�� Given this arrangement� we compute the

�	



boundary B by removing the appropriate vertices and edges from A� All this can be
done in O�log n
 time using n processors�

Hence� the entire merge step of our parallel divide�and�conquer algorithm takes
O�log n
 time and uses n processors� This proves�

Theorem � Let D��D�� � � � �Dn be a set of pseudo disks on the unit sphere� There is

a CREW�PRAM algorithm that decides if the union of the interiors of these pseudo

disks covers the unit sphere� If this is not the case� then the algorithm �nds a point on

the unit sphere that is not contained in the interior of any pseudo disk� The algorithm

takes O�log� n
 time and uses n processors�

� Some related problems

Until now� we considered maxmin�problems� In this section� we brie�y discuss some
dual versions�

Problem � Let S be a set of n points in IRd� and let each point p of S have a

weight w�p
� which is a positive real number� Compute an anchored ray R for which

maxp�S w�p
 � d�p�R
 is minimal�

As before� we can assume w�l�o�g� that all points have weight one� In ����� Lee and
Wu show how to solve this problem in O�n log n
 time when d � �� They state as an
open problem to decide whether this is optimal�

We show how to solve Problem � for d � �� Let B�
p denote the ball with center

p and radius �� Then we want to compute the minimal real number � � � such that
there is an anchored ray that intersects all balls B�

p� p � S� We �nd this minimal �
using the parametric search technique�

Let � � �� We need sequential and parallel algorithms for deciding if there is an
anchored ray that intersects all balls B�

p� p � S� Clearly� we do not have to consider
those balls that contain the origin� Using the same approach as in Section 	� we arrive
at the following problem� Given a set of at most n disks on the unit sphere� decide
if their intersection is empty� This intersection has combinatorial complexity O�n
�
Moreover� it can be computed by basically the same approach as in Section 	�����
Hence� we get the following result�

Theorem � Let S be a set of n points in IR�� and let each point p of S have a

positive weight w�p
� In O�n log� n
 time� we can compute an anchored ray R for

which maxp�S w�p
 � d�p�R
 is minimal�

Problem � Let S be a set of n points in IRd� and let each point p of S have a weight

w�p
� which is a positive real number� Compute a line l through the origin for which

maxp�S w�p
 � d�p� l
 is minimal�

For d � �� this problem can be solved in O�n log n
 time� which is optimal in the
algebraic computation tree model� See ����� The three�dimensional version seems to
be much harder� Follert �
� solves this problem in O�n���n
 log n
 time�

��



A symmetric slab is de�ned as the region between two parallel planes in IR� that
are at the same distance from the origin� If we intersect a symmetric slab with the unit
sphere� then we get a symmetric slab on the unit sphere� A natural approach to solve
the three�dimensional version of Problem 	 is to use the parametric search technique�
Then we have to design sequential and parallel algorithms for the following decision
problem� Given a set of n symmetric slabs on the unit sphere� do they cover the unit
sphere�

This decision problem resembles the following problem� Given a circle C and a
set of n slabs� both in the plane� decide whether these slabs cover C� Gajentaan and
Overmars ��� proved that this problem is n��hard� which indicates that it is probably
very hard to �nd a subquadratic algorithm for it�

Open problem � Decide if the problem

Given a set of n symmetric slabs on the unit sphere� do they cover the unit

sphere�

is n��hard� or if it can be solved in subquadratic time�

Note that if this problem is n��hard� that then also the three�dimensional version
of Problem 	 is n��hard�

Problem � Let S be a set of n points in IRd� and let each point p of S have a weight

w�p
� which is a positive real number� Compute a hyperplane H through the origin for

which maxp�S w�p
 � d�p�H
 is minimal�

Lee and Wu ���� proved an ��n log n
 lower bound for the planar version of this
problem� Clearly� this implies the same lower bound for any dimension d�

We show how to solve the three�dimensional version of Problem � in O�n log n

time� We can assume w�l�o�g� that all points of S have weight one�

Our problem is equivalent to that of computing the symmetric slab of minimal
width that contains all points of S� Let S� �� S ��S� where �S �� f��p���p���p�
 �
�p�� p�� p�
 � Sg� For any plane H through the origin� we have H � �H� Therefore�

d�p�H
 � d��p��H
 � d��p�H
�

As a result� it su�ces to solve our problem for the set S�� Since this set is symmetric
w�r�t� the origin� the width of the minimal symmetric slab containing S� is equal to
the width of S�� which is de�ned as the minimal width of any slab containing this set�

The best known algorithm for computing the width of an arbitrary set of n points
in IR� has running time O�n�
�����
� where � is an arbitrarily small positive constant�
�See Agarwal et al� ����
 In our case� however� the set of points has a special form� As
we will see� this allows to compute the width of S� in O�n log n
 time�

Houle and Toussaint ��� observed that the width of a set of points in IR� is the min�
imum distance between parallel planes of support passing through either an antipodal
vertex�face pair or an antipodal edge�edge pair of the convex hull of the set�

It is not di�cult to see that in order to compute the width of our set S�� we only
have to consider parallel planes of support passing through an antipodal vertex�face

�




pair of the convex hull of S�� and take the minimum distance between any such pair of
planes� This minimum distance can be computed in O�n log n
 time� �See ����
 Hence�
we have proved the following result�

Theorem � Let S be a set of n points in IR�� and let each point p of S have a positive

weight w�p
� In O�n log n
 time� we can compute a plane H through the origin for

which maxp�S w�p
 � d�p�H
 is minimal� This is optimal in the algebraic computation

tree model�
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