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Black-Hole Lattices

Eloisa Bentivegna

Abstract The construction of black-hole lattices, first attempted byRichard Lindquist
and John Wheeler in 1957, has recently been tackled with renewed interest, as a test
bed for studying the behavior of inhomogeneities in the context of the backreaction
problem. In this contribution, I discuss how black-hole lattices can help shed light
on two important issues, and illustrate the conclusions reached so far in the study of
these systems.

1 Introduction

The first appearance of the concept of a periodic arrangementof black holes can
be found in [1]. There, the authors discuss a strategy to stitch together patches of
the Schwarzschild solution so as to construct a space with a discrete translational
symmetry but some degree of spatial inhomogeneity.

In their work, the stitching prescription does not lead to a global solution of
Einstein’s equation. Accepting the constraint violations, however, buys one some
freedom in the specification of such prescription, which theauthors use to impose
that the time evolution of a suitably-defined scale factor inthis space follows that
of a universe filled with dust of the same total mass. One then has a simple, analyt-
ical test bed in which to measure the effect of inhomogeneities in, say, the optical
properties of a cosmological model. In this work and in subsequent ones [2], it was
pointed out how an exact initial-data construction could beobtained.

A few years ago, Clifton and Ferreira extended this model, originally limited to
the positive-curvature case, to zero and negative curvature [3]. Again, the junction
conditions were designed to reproduce an assigned time evolution, and the models
were used to explore the propagation of null rays in an inhomogeneous universe.
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Recently, the first exact initial data describing a black-hole lattice have been ana-
lyzed [4] and evolved in full numerical relativity [5]. Thishas helped make progress
on two fronts:

1. From a conceptual point of view, it has clarified some of theconditions under
which black-hole solutions can be glued together; this gives some insight into
the requirements for constructing a metric tensor for the universe starting from
the basic building block of a spherically-symmetric, isolated object. It turns out
that these conditions are remarkably close to the conditions for the existence of
homogeneous, periodic solutions of Einstein’s equation. The requirements that
periodic boundary conditions impose on the Hamiltonian constraint are likely at
the root of this correspondence.

2. From a practical standpoint, the time evolution of a lattice gives one example of
the behavior of inhomogeneities in a cosmological setting and in the non-linear
regime, thereby serving as a nice complement to perturbative studies and the
averaging framework. Surprisingly, even the time development of these lattices
remains in some sense close to the counterpart model in the dust Friedmann-
Lemaı̂tre-Robertson-Walker (FLRW) class.

In the following two sections, I will discuss the initial-data construction and illus-
trate the time evolution of a black-hole lattice with positive conformal curvature.

2 The Construction of Exact Black-Hole-Lattice Initial Data

As pointed out in [1], in order to construct an exact black-hole lattice one should di-
rectly tackle the Einstein constraints. Working in theconformal transverse-traceless
decomposition, these read:
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Let us focus on the hamiltonian constraint first. If one integrates this equation over
one of the cells of the black-hole lattice, the following condition is obtained:
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wheremi represent the masses of the black holes contained in the cell. This condition
implies thatR̃ andKi j cannot both be zero. In other words, conformally-flat lattices
do not admit a time-symmetric spatial hypersurface; vice versa, lattices with aK = 0
spatial hypersurface must be conformally curved. This mirrors the identical property
of the FLRW class.
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Fig. 1 A two-dimensional section of theN = 8 S3 black-hole lattice, embedded in three dimen-
sions.

The two simplest roads to the construction of a periodic black-hole lattice are
thus the following:

• ChoosingK = 0, and solving:

∆̃ψ −

R̃
8

ψ = 0 (4)

Equation (3) implies thatR > 0, so that the spacetime can be foliated by
conformally-S3 hypersurfaces. As shown in [2], this equation can be solved ex-
actly. Furthermore, it is linear, so one can simply superimpose known solutions
to generate new ones. Notice, however, that if one is interested in regular lattices,
only six possible arrangements of black holes are possible,corresponding to the
six regular tessellations ofS3, which consist ofN = 5,8,16,24,120 and 600 cells.

• ChoosingR̃ = 0, and solving:
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This system is more difficult to solve, as the Hamiltonian constraint is non-linear
and the momentum constraint is not an identity as in the previous case. For a
numerical approach to the problem, see [6].

3 The Evolution of an S3 Lattice of Eight Black Holes

In [5], the initial data for theN = 8 S3 lattice (a section of which is shown in Figure
1) has been evolved in time for approximately one third of thecorresponding FLRW
recollapse time. A scale factor can be defined via the proper length of one of the
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cell edges; its evolution is shown in Figure 2. This scale factor is compatible with
the FLRW result in this entire time window; eventually, though, due to the gauge
condition used to evolve this system, reaching later and later values of the proper
time is subject to an increasing numerical error, and eventually becomes impossible.
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Fig. 2 Proper length of the edge of a lattice cell as a function of proper timeτ . The dashed line
represents a closed FLRW model in which the edge of a cell of the N = 8 tessellation is equal to
Dedge(0) initially.
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