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We perform a detailed study of the existence and the properties of Oð4Þ-invariant instanton solutions in
Einstein-scalar theory in the presence of flat potential barriers, i.e. barriers where the second derivative of

the potential is small at the top of the barrier. We find a whole zoo of solutions: Hawking-Moss, Coleman–

de Luccia (CdL), oscillating instantons, and asymmetric CdL as well as other nonstandard CdL-like

solutions with additional negative modes in their spectrum of fluctuations. Our work shows how these

different branches of solutions are connected to each other via ‘‘critical’’ instantons possessing an extra

zero-mode fluctuation. Overall, the space of finite-action Euclidean solutions to these theories with flat

barriers is surprisingly rich and intricate. We find that critical instantons provide the key to understanding

both the existence and the properties of instanton solutions.
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I. INTRODUCTION

The problem of tunneling transitions in Einstein matter
theories was first considered in 1980 by Coleman and de
Luccia (CdL) in their pioneering article [1]. Their analysis
revealed that, as in flat space-time [2], the action of
so-called instanton solutions—Oð4Þ-symmetric Euclidean
solutions respecting appropriate boundary conditions—
determines the tunneling rate and, via analytic continu-
ation, the Lorentzian evolution of the bubbles of true
vacuum produced by tunneling events. After the CdL
instanton, another milestone in the investigation of tunnel-
ing transitions with gravity was the discovery of the
Hawking-Moss (HM) solution [3] which, despite its formal
simplicity, raises many questions of interpretation [4].

In recent years the study of tunneling in the presence of
gravity has gained new momentum. This renewed attention
was triggered on the one side by the string theoretic
prediction of a huge landscape of vacua [5,6] and, on the
other side, by the discovery of new types of ‘‘oscillating’’
bounce solutions [7]. A thermal derivation of the CdL
tunneling prescription was given in Ref. [8], while in
Ref. [9] different situations in which instanton solutions
can disappear under small changes in the potential were
considered. A large body of work exists by now discussing
cosmological applications of instanton solutions, in par-
ticular in the context of false vacuum eternal inflation—see
e.g. Refs. [10–14].

In the present paper, we study instanton solutions in
general relativity minimally coupled to a scalar field with
a very flat potential barrier. By this we mean that we
consider potentials that have a vanishing or small second

derivative at their maximum value; more explicitly, we
principally consider potentials of the form

Vð’Þ ¼ Vtop ��2

2
’2 � 1

p
’p; (1)

with �2 small and the two cases p ¼ 4, p ¼ 6. Compact
instantons connecting vacua separated by such relatively
flat potential barriers present special properties which
were already partially investigated in Refs. [7,15–17].
We continue this line of research and give a detailed and
systematic investigation of these solutions.
The flatness of the potential allows for several nonstan-

dard solutions, which coexist with CdL and HM instantons.
These nonstandard instantons have peculiar properties
such as additional negative modes and asymmetric profiles
despite the symmetry of the potential. Moreover, the de-
pendence of the spectrum of solutions on the parameters of
the potential is generally very complicated, and the usual
undershooting-overshooting method to find solutions is
essentially a blind search. This complexity is the initial
motivation for our adoption of instanton diagrams as a
technique to explore the space of solutions numerically.
Instanton diagrams, first introduced in Ref. [18], show how
each solution evolves with a chosen parameter in the scalar
potential, thus describing branches of solutions. They al-
low us on the one hand to understand the global structure of
the solution space, which can be very complex (for a pre-
view, take a look at Fig. 10), and on the other to extract
valuable information about the properties of the various
instantons. The approach based on instanton diagrams is
completed by the computation of both the Euclidean action
and the number of negative fluctuation modes of the in-
stanton solutions, in order to determine which solution
dominates the tunneling rate, and which solutions contrib-
ute to tunneling at all.
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Our analysis highlights the key role of critical instantons
in determining both the structure of the space of solutions
and the properties of the latter. Critical instantons are
solutions which possess an Oð4Þ-invariant zero-mode fluc-
tuation, which can be thought of as the crossover moment
of the negative fluctuation mode of one branch of solutions
evolving into a positive mode of a different branch. The
presence of new branches of solutions can therefore be
understood as the consequence of the existence of one or
more critical instantons somewhere in the parameter space.
Moreover, branches that are separated by a critical instan-
ton have numbers of Oð4Þ-symmetric negative modes that
differ by 1. The simplest example of a critical instanton is
the critical HM instanton possessing one negative mode,
which separates the CdL branch from the branch of HM
instantons with two negative modes. The number of nega-
tive modes is crucial in determining the role of instantons
as decay-mediating solutions. The fact that, as we show,
critical instantons can be geometrically identified on in-
stanton diagrams, makes the latter a very powerful tool in
understanding the physical properties of the space of
solutions.

Our study shows that the existence of one or more
critical instantons with a nontrivial scalar field profile is a
generic property of potentials with flat or almost flat bar-
riers. In fact, we show that some of the known results about
oscillating instantons (where the scalar field interpolates
more than once between the two sides of the potential
barrier), like the equality of the number of oscillations
and the number of negative modes [19], are generally valid
only in the absence of critical instantons other than HM.
For example, we uncover solutions that look like ordinary
CdL solutions, in that they are compact and interpolate
only once across the potential barrier, but admit more than
one negative fluctuation mode.

The rest of the paper is organized as follows: In Sec. II,
we review the basic properties of regular and singular
Oð4Þ-invariant solutions in Einstein–scalar field theories,
as well as the basic undershooting-overshooting argu-
ments. In Sec. III, we present our numerical method and
apply it to the case of compact CdL instantons. In Sec. IV,
we present numerical results for a flat quartic potential
V ¼ Vtop � ’4. In Secs. V and VI, we generalize our

results to the case of nearly flat, asymmetric and positive
potentials. Finally, in Sec. VII, we describe the space
of instanton solutions in the highly flat potential V ¼
Vtop � ’6. Sec. VIII contains concluding remarks.

II. INSTANTONS IN EINSTEIN–SCALAR
FIELD THEORIES

A. Compact and noncompact solutions

Let us consider the theory of a self-interacting scalar
field minimally coupled to gravity defined by the following
Euclidean action:

SE ¼
Z
d4x

ffiffiffi
g

p �
� 1

2�
Rþ 1

2
r�’r�’þVð’Þ

�
; (2)

where � ¼ 8�GN is the reduced Newtonian gravitational
constant, and the potential Vð’Þ will be specified below.
The general Oð4Þ-invariant Euclidean ansatz

’ ¼ ’ð�Þ; (3)

ds2 ¼ d�2 þ �2ð�Þd�2
3; (4)

where d�2
3 is the metric on the unit 3-sphere, is a solution

of the theory in Eq. (2) when the field equations are
satisfied:

’00 ¼ �3
�0

�
’0 þ V;’; (5)

�02 ¼ 1þ ��2

3

�
1

2
’02 � V

�
: (6)

Note that Eq. (5) has a simple mechanical analogy:
it describes the motion of a ‘‘particle’’ ’ð�Þ in an inverted

potential �Vð’Þ under a frictional force 3 �0
� ’

0.
It is easy to show that any solution of Eqs. (5) and (6)

extends to at least one point where � ¼ 0: defining N �
log�, the field equations read

’00 ¼ �3N0’0 þ V;’; (7)

N02 � e�2N ¼ �

3

�
1

2
’02 � V

�
: (8)

Taking a derivative of Eq. (8) and substituting the scalar
field equation, one gets

N00 ¼ �e�2N � �’02

2
: (9)

If we consider Eq. (9) as a one-dimensional equation of
motion, the particle located atNð�Þ is subject to a potential
vðNÞ ¼ �e�2N=2 and a time-dependent force pushing it
towards negative N: the ‘‘potential’’ is then steep enough
for N to reach N ¼ �1; i.e., � ¼ 0 in a finite ‘‘time,’’
either in the past or the future. The general solution could
fail extending to these points if a singularity showed up at a
finite value of �, but under the assumption that the poten-
tial has no singularity at finite ’, this can be proven not to
occur (see Appendix A 1). Redefining the sign and the
origin of �, one can then assume �ð� ¼ 0Þ ¼ 0, and � > 0
for � positive. Regularity at � ¼ 0 implies the boundary
conditions

’0ð0Þ ¼ 0; (10)

�0ð0Þ ¼ 1; (11)

Depending on the value of ’0 � ’ð� ¼ 0Þ and on the
shape of Vð’Þ, a solution satisfying these boundary con-
ditions can be compact or noncompact [18]:
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(1) Compact solutions: �ð�Þ reaches a maximum �m

and then returns to � ¼ 0 at some finite ‘‘time’’
��> 0. The existence of such solutions requires V
to be strictly positive somewhere in field space.
Indeed, in this case, � must have a local maximum
at some intermediate value of�, and Eq. (6) requires
V > 0 there.

(2) Noncompact solutions: � ! 1 monotonically as
� ! 1. The existence of noncompact solutions
requires the potential to be negative or zero some-
where. Indeed, in this case N0 > 0 everywhere, and
the quantity on the rhs of Eq. (8) is monotonically
decreasing from its initial value ��Vð’0Þ=3 be-
cause of the friction term in Eq. (7). If the solution
is noncompact, the lhs of Eq. (8) cannot approach a
negative constant, so Vð’0Þ � 0. In fact, Vð’0Þ ¼ 0
is compatible with a noncompact solution only
when ’ð�Þ ¼ ’0 solves the scalar field equation—
i.e., when ’0 is a stationary point of V—in
which case the corresponding instanton is four-
dimensional flat Euclidean space.

Among the one-parameter family of solutions of the
field equations obeying Eqs. (10) and (11), the ones which
may be relevant for tunneling are those which respect the
same boundary conditions as the false vacuum Euclidean
geometry, whose action enters in the expression of the
decay rate

� / exp f�ðSEð’Þ � SEð’fvÞÞg: (12)

These special solutions of the field equations are referred to
as instantons. Compact solutions, which describe tunneling
from de Sitter space and will be the focus of this paper,
have the topology of a 4-sphere whose ‘‘north pole’’ can be
taken to be � ¼ 0. In this case, the natural boundary
condition is the requirement of regularity at the ‘‘south
pole’’ �ð ��Þ ¼ 0 of the Euclidean geometry:

�0ð ��Þ ¼ �1; (13)

’0ð ��Þ ¼ 0: (14)

When the scalar potential is everywhere well defined,
these conditions can be shown to be equivalent to requiring
a finite limit �’0 � lim �! ��’ð�Þ for the scalar field (see

Appendix A 2). Unlike for the noncompact case, for com-
pact instantons, the scalar field cannot approach a station-
ary point of V at the south pole � ¼ ��. Thus, �’0 � ’ð ��Þ is
always different from the false vacuum value and, as
described in Ref. [8], a thermal fluctuation from the
minimum of the potential to �’0 is needed to initiate tun-
neling from de Sitter space. Moreover, the similarity of the
boundary conditions in Eqs. (13), (14), (10), and (11) and
the invariance of the field equations under � ! ��� �
imply that if ’0 corresponds to a regular solution, so
does �’0.

B. Overshooting and undershooting

The existence of instanton solutions is usually proven
through the so-called overshooting-undershooting argu-
ment [1]. For each value of ’0 � ’ð� ¼ 0Þ, a unique
solution of the field equations can be found with initial
conditions in Eqs. (10) and (11). For generic values of ’0,
however, the solution will not respect the boundary con-
ditions at � ¼ ��. In the compact case, this means that
generically ’ ! �1 as � ! ��. Across a discrete set
of values f’i

0g, however, the sign of this divergence

changes, e.g.

’!�! �� þ1; ’0 <’i
0; (15)

’!�! �� �1; ’0 >’i
0: (16)

From the continuous dependence of the solution on the
parameter ’0, one deduces that the solution corresponding
to each separating value ’i

0 cannot have either divergent

behavior; hence, it is necessarily regular. A transition from
Eq. (15) to Eq. (16) is always associated with a change in
the number of oscillations or number of passes n of the
scalar field, conventionally defined as the number of zeros
of ’0 plus 1 [excepting the boundary condition zero
’0ð0Þ ¼ 0 and the possible one at � ¼ ��], in such a way
that an instanton with a monotonically varying scalar field
has n ¼ 1. In the compact case, instantons appear at those
special values of ’0 across which the discrete function
nð’0Þ has a jump. In particular, based on the analysis of
perturbations of the regular solutions, one can show that n
can only jump by a unit value [18]: a transition like that
from Eq. (15) to Eq. (16) is necessary and sufficient for
the existence of an instanton solution, whose number of
oscillations is min fnð’i

0 � �Þ; nð’i
0 þ �Þg.1

Overshooting-undershooting arguments prove the exis-
tence of jumps in nð’0Þ, and hence the existence of an
instanton solution, by showing that nð’0Þ takes different
values at special points in field space. The simplest ex-
ample of such an argument applies to vacuum decay in flat
space [2]. Consider a simple double-well potential as in
Fig. 1. The equation for the scalar field reads

’00 þ 3

�
’0 ¼ V 0ð’Þ: (17)

This is the equation for a particle subject to a potential�V
and a friction force with coefficient 3=�. If ’0 is set close
enough to ’top, the scalar field will not escape from the

Euclidean potential well and will undergo an infinite num-
ber of damped oscillations, hence nð’top þ �Þ ¼ 1

1The noncompact case can be very different. For example,
nð’0Þ can jump by more than unity [18]. Moreover, depending
on the shape of the potential and on the boundary conditions at
� ¼ �� ¼ 1, the existence of instanton solutions may not require
any jump in nð’0Þ.
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(undershooting). On the other hand, if ’0 is set very close
to the local maximum ’þ of the inverted potential, the
scalar field will escape from it at arbitrarily large �:

�escape * � 1

jV00ð’topÞj1=2
log ð’þ � ’0Þ: (18)

In this way, the friction coefficient can be made arbitrarily
small during the nontrivial part of the scalar field evolution,
and provided2 Vþ < V�, the scalar field can go beyond ’�
and then diverge as the potential increases again (over-
shooting). Therefore, nð’0 ¼ ’þ � �Þ ¼ 1, and an n ¼ 1
instanton must separate the undershooting and overshoot-
ing regimes.

III. STANDARD COMPACT CDL SOLUTIONS

A. Overshooting and undershooting in de Sitter space

When gravity is taken into account and the potential
allows only compact instantons, as in Fig. 1, both ends of
the undershooting-overshooting argument need to be up-
dated. All solutions being compact, the friction coefficient
�0=� becomes negative before � ¼ �� (antifriction), and
the scalar field diverges except when the solution is regular.
Therefore, for ’0 very close to ’top, the number of oscil-

lations nð’0Þ remains finite. Its value depends on the shape
and value of the potential at the top of the barrier’ ¼ ’top,

and was determined [7] to be the smallest integer ntop
satisfying

ntopðntop þ 3Þ> jV 00
topj

H2
top

; Htop �
ffiffiffiffiffiffiffiffiffiffiffiffi
�Vtop

3

s
: (19)

This relation translates the fact that only a finite number of
oscillations around’top can be fit in the Hubble radiusH

�1
top

of the compact geometry, before antifriction kicks the
scalar field away from the top of the potential barrier. At
the other end of field space, namely for ’ ¼ ’þ � �, the
overshooting argument applies in a stronger form than in
flat space: even if Vþ � V�, one finds nð’0 & ’þÞ ¼ 1
provided Vþ > 0. Indeed, if the scalar field is initially set
very close to ’þ, the naively expected escape time
[Eq. (18)] can exceed the Hubble radius H�1þ . In this case
the scalar field is kicked away from ’þ by the divergent
antifriction force: by decreasing (’þ � ’0), this kick can
be made large enough to let the scalar field go over ’� and
diverge monotonically. This means that nð’0Þ varies be-
tween ntop and 1 as ’0 varies between ’top and ’þ. Hence,
an odd number of instantons with ’top <’0 <’þ exists

for each value of n between 1 and ntop � 1 (including both

extrema). The same conclusion clearly applies to the part
of the potential between ’� and ’top.

Finding the instanton solutions amounts to finding
those special values of ’0 across which the function
nð’0Þ jumps by unity. In most cases, the function nð’0Þ
can only be evaluated by numerically solving the field
equations with the boundary condition ’ð� ¼ 0Þ ¼ ’0

and counting the number of oscillations in the corre-
sponding scalar field profile. Then, if nð’0Þ is known to
jump by unity inside a given interval, the standard method
consists in finding the approximate position of the dis-
continuity by consecutive bisections. The main difficulty
of this procedure consists in roughly detecting all the
discontinuities of nð’0Þ when the initial bisection inter-
vals are chosen. This difficulty arises when the position
and sign of the discontinuities do not follow a simple
pattern or, more precisely, when this pattern exhibits a
complicated dependence on the parameters of the poten-
tial. As will be illustrated in the next section, instanton
diagrams simplify the task by providing a direct overview
of this dependence, which can be then used as a guide to
find single solutions.

top

V

V

n 3
n 2

n 1

0 5 10 15

top

n 3

n 2

n 1

0 5 10 15
0

1

2

3

4

5

6

7

FIG. 1 (color online). Left panel: Double-well potential and its Euclidean version (bottom). Center and right panels: ð’; �Þ profiles
of three instanton solutions for the potential in Eq. (20), with � ¼ 0:1, Vtop ¼ e�2, and Vtop=Vþ ¼ 4. The appearance of the n ¼ 1 as a

separating solution between n ¼ 1 and n ¼ 2 is highlighted (see also Fig. 2).

2Our notation should be obvious: Vð’�Þ � V�, Vð’topÞ �
Vtop, and Vð’0Þ � V0.
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B. Instanton diagrams

In many cases, exactly one instanton exists for every n
between 1 and ntop � 1. Put differently, nð’0Þ jumps only

by positive unities when ’0 is varied from ’þ to ’top.

As an example, consider the potential

V ¼ Vtop � 1

2
’2 � �1=2�

3
’3 þ �

4
’4: (20)

The left panel of Fig. 2 depicts an instanton diagram, with
the x variable defined by

’0 ¼
(
’þð1� e�x2Þ; x > 0;

’�ð1� e�x2Þ; x < 0:
(21)

The use of this logarithmic variable is particularly helpful,
because instanton initial values ’0 tend to accumulate near
the vacuum values ’�. The parameter � in the potential is
adjusted to keep the ratio r ¼ Vþ=Vtop constant and equal

to 1=4, and we set � ¼ 0:1, � ¼ 1.
Each point of the diagram specifies a potential (via Vtop)

and a boundary condition (via ’0) which can be used to
solve the field equations and extract the number of oscil-
lations nð’0; VtopÞ of the scalar field. The instanton dia-

gram shows the regions of constancy of nð’0; VtopÞ and the
instanton curves across which the function is discontinu-
ous. According to the discussion of the previous section,
each point ð’�

0; V
�
topÞ on a curve separating the n ¼ n� from

the n ¼ n� þ 1 regions corresponds to an instanton with n�
oscillations in the theory specified by the parameter V�

top. In

other words, the instanton solutions of a given theory are
the intersections of the instanton curves with the horizontal
line corresponding to the theory. Globally, the various
curves describe how a given instanton evolves when the
potential is changed. In order to obtain the instanton dia-
gram numerically, the function nðx; VtopÞ is sampled on a

grid of values of ðx; VtopÞ. A more accurate estimate for the

values of ’0 corresponding to particular instantons can
then be obtained by using a bisection algorithm as ex-
plained in the previous section.
The diagram in Fig. 2 shows that, for fixed Vtop,

the function nð’0Þ indeed grows monotonically from
n ¼ 1 to n ¼ ntop when ’0 is varied from ’þ (x ¼ 1) to

’top (x ¼ 0), so that a single instanton is found for each

n ¼ 1; . . . ; ntop � 1. A similar conclusion holds for ’� <

’0 <’top. It should be rather clear that, in cases like the

one depicted in Fig. 2, the instanton diagram technique
only brings a different way to visualize the location of
various solutions in field/parameter space. Indeed, the
appearance and the evolution of the different branches
can also be studied by simply studying a few constant
Vtop slices, as done in Ref. [19]. Moreover, the fact that

nð’0Þ varies monotonically makes the search for its dis-
continuities a rather straightforward task. On the other
hand, in the case of flat potential barriers, this visualization

n 1

n 2

n 3

n 4

n 5

n 6

4 2 0 2 4
3

2

1

0

1

2

3

4

5

6

ln
V

to
p

n t
op

k 1

k 2

k 3

3 2 1 0

1.0

1.1

1.2

1.3

1.4

1.5

123456

ln Vtop

S
S H

M

ntop

FIG. 2 (color online). Left panel: Instanton diagram for the potential in Eq. (20) with � ¼ 0:1 and Vtop=Vþ ¼ 4. The three circles
correspond to the solutions represented in the right panel of Fig. 1. The vertical, dotted line represents ’0 ¼ 0 and the continuous
family of HM solutions: the value of n on this line is formally undetermined but can be interpolated from the neighboring solutions.
Right panel: Euclidean action of the different branches of instanton solutions normalized to the action of the corresponding Hawking-
Moss instanton. Solid (dashed) lines represent the instantons with x > 0 (x < 0). The number of negative modes k is also indicated.
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is extremely helpful in understanding the nature of various
nonstandard solutions, which are the subject of the next
sections.

C. Zero and negative modes

Let us consider again the global structure of the instan-
ton diagram in Fig. 2. As Vtop decreases, ntop [which we

defined in Eq. (19)] increases and more and more instanton
solutions appear, moving away from the Hawking-Moss
(HM) solutions ’ ¼ ’top located at

Vn ¼
jV00

topj
�

3

nðnþ 3Þ ; (22)

�n ¼ H�1
n sin ðHn�Þ; Hn ¼

ffiffiffiffiffiffiffiffiffi
�Vn

3

s
: (23)

For Vtop smaller but infinitesimally close to Vn, the

n-oscillating instantons have infinitesimally small ’0 and
appear as a regular, Oð4Þ-invariant perturbation (or zero
mode) of the HM instanton [Eqs. (22) and (23)] which,
according to Sec. I, is called critical. This zero mode is the
deformation of the critical solution produced by an infini-
tesimal variation of the boundary condition ’0, i.e. an
infinitesimal horizontal displacement in the instanton dia-
gram. The regularity of this deformation is signaled by the
horizontal slope of the instanton curve: the infinitesimal
variation of ’0 transforms HM into an infinitesimally close
solution that still lies on the curve, i.e. the transformed
solution is also a regular solution to the same theory. This is
true more generally: A critical instanton corresponds to a
point in the diagram where the tangent instanton curve is
parallel to the ’0 axis.

It follows from this observation that all the instantons
located on a single curve in the diagram of Fig. 2 possess
the same number of negative modes in the Oð4Þ-invariant
sector of the scalar field perturbations. Denoting the gauge-
invariant scalar fluctuation mode by f, it satisfies the
equation [20–24]

� f00 þU½�ð�Þ; ’ð�Þ�f ¼ �f; (24)

with eigenvalue � and effective potential

U½�ð�Þ; ’ð�Þ� � 1

Q
V;’’ � 10�02

�2Q
þ 12�02

�2Q2
þ 8

�2Q

� 6

�2
� 3Q

�2
� �02

4�2
þ ��2

2Q2
V2
;’

� 2���0’0

Q2
V;’ � �

6
ð’02 þ VÞ; (25)

Q � 1� ��2’02

6
: (26)

A property of this equation is that the eigenvalues f�igi¼1;2;...

of different families of solutions vary continuously on each

family. Therefore, additional negative eigenvalues can only
appear at critical points corresponding to instantons possess-
ing a zero mode, i.e. a regular perturbation mode. For the
same reason, the number of negative modes along an in-
stanton curve generally increases or decreases by 1 across a
critical solution. In the case described in Fig. 2, the number k
of Oð4Þ-invariant negative modes of oscillating instantons
(’0 > 0) turns out to be equal to the number of oscillations
(see Ref. [19] for a detailed study of these negative modes),
i.e. k ¼ n. On the other hand, the number of negative modes
of HM instantons is always equal to ntop, and jumps from n

to nþ 1 across the critical solution in Eqs. (22) and (23).
Hence, in agreement with the discussion of Sec. I, the
critical HM solution at Vtop ¼ Vn separates a branch of

solutions with n negative modes, namely the n-oscillating
instantons, from a branch with nþ 1 negative modes,
namely the HM solutions with Vnþ1 < V < Vn. In a sense,
the criticality of the HM solutions explains the existence of
the standard oscillating instantons.
Finally, as shown in the right panel of Fig. 2, the

Euclidean action of the n ¼ 1 solutions turns out to be
always the most negative and, in particular, to be more
negative than the action of the corresponding HM
solutions,

SHM ¼ � 24�2

�2Vtop

: (27)

Therefore, the n ¼ 1 instantons are the solutions which
determine the tunneling rate in the theory specified by the
potential in Eq. (20), and they are commonly referred to as
Coleman–de Luccia instantons.

IV. TUNNELING THROUGH FLAT BARRIERS:
QUARTIC POTENTIAL

The case we just described is the simplest one compat-
ible with the values of nð’0Þ obtained from the
undershooting-overshooting arguments: nð’0Þ grows
monotonically from 1 ¼ nð’þ � �Þ to ntop¼nð’topþ�Þ.
However, sufficient conditions on the shape of the potential
are not known which guarantee this behavior of nð’0Þ. In
particular, when ntop ¼ 1, the number of instantons of any

order n with ’top <’0 <’þ is constrained to be an even

integer, but the undershooting-overshooting argument does
not force it to vanish. The corresponding potentials are
characterized by a flat barrier separating the two vacua:

3jV 00
topj

�Vtop

� 4: (28)

A particular case of exactly flat potential was studied in
Ref. [15], where the existence of several n ¼ 1 solutions
was established despite ntop ¼ 1. In particular, it was

shown that these solutions have more negative Euclidean
action than the corresponding HM solution. In Ref. [7],
similar results were found together with other nonstandard
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behaviors of the nð’0Þ function. Moreover, the authors
suggested the existence of a generalized bound on the
curvature of the potential around the top of the barrier
for the existence of n ¼ 1 instantons. However, the only
analytic result known so far is a necessary condition,
stating that the inequality

3jV 00ð’Þj
�Vð’Þ > 4 (29)

must be satisfied for some value of ’ in order for n ¼ 1
solutions to exist [25].

In order to reconsider the question of tunneling through
flat barriers, we start from the simple quartic potential

V ¼ Vtop � �

4
’4; � > 0: (30)

In flat space (� ¼ 0), the conformal invariance of the scalar
field theory allows for the existence of a continuous family
of instanton solutions [26], called Fubini instantons, for
which the scalar field approaches ’top ¼ 0 asymptotically:

’bð�Þ ¼
ffiffiffiffi
8

�

s
b

�2 þ b2
; b 2 R: (31)

In fact, S. Fubini found these finite-action Euclidean solu-
tions in scalar field theory with conformally invariant
(quartic) potential almost at the same time as instantons
were discovered in the Yang-Mills theory [27]. Later,
Fubini instantons were rediscovered several times
[28,29]. They describe tunneling without barriers [29–31]
and have applications in particle physics as well as in the
context of the AdS/CFT conjecture [32–35]. Moreover, it
was suggested [36] that Fubini vacua can be used as
classical de Sitter vacua.

It is easy to prove that Fubini instantons have one
negative mode in their spectrum of linear perturbations
(such solutions are also commonly referred to as bounces).
Indeed, all Fubini instantons possess a regular zero mode
fb corresponding to an infinitesimal displacement along
the family of solutions

fb ¼ @b’b ¼
ffiffiffiffi
8

�

s
�2 � b2

ð�2 þ b2Þ2 : (32)

Each such zero mode has a single node at � ¼ b and
hence, according to nodal theorems, there must exist one
node-free solution with a lower eigenvalue—in other
words, each Fubini instanton possesses a single negative
mode.

When gravity is included, this picture changes radically:
conformal invariance is lost, and at most a finite number of
instantons is left [37]. Via the rescalings

g�	 � �

�
~g�	; ’ � ��1=2 ~’; (33)

one can set � ¼ � ¼ 1. The rescaling produces a multi-
plicative factor in front of the Euclidean action

S�;�;Vtop
½g�	; ’� ¼ ��1S1;1; �Vtop

½~g�	; ~’�;

�V top ¼
�2Vtop

�
;

(34)

which does not modify any conclusion regarding the
existence of instanton solutions, their relative contribution
to the tunneling rate, or the spectrum of their negative
modes. From now on, we will drop bars and denote by
Vtop the reduced parameter appearing in the action when

� ¼ � ¼ 1.
Assuming Vtop > 0, one can easily show that the general

Oð4Þ-invariant solution is compact. Indeed, in a noncom-
pact solution, the scalar field generally approaches a
stationary point of the potential. As the only stationary
point for the potential in Eq. (30) is located at V > 0, the
corresponding asymptotic geometry cannot be noncom-
pact. The instanton diagram obtained with this potential
is plotted in Fig. 3. Because of the symmetry of the potential,
the diagram is also symmetric under ’0!�’0. The mani-
fest differences with respect to the standard case of
Fig. 2 can already be partially explained in terms of the
expected behavior of nð’0Þ at the two extrema of field
space:
(1) ’0 ¼ ’top þ �: The flatness of the potential near

’top implies ntop ¼ 1. For this reason, all the instan-

ton curves bend and do not cross the vertical axis.
This corresponds to the fact that small perturbations
of the scalar field around the HM solution ’ ¼ 0
always ‘‘overshoot’’ without oscillating. Indeed, the
time scale for the potential-induced oscillations to
start is roughly

�osc � jV;’’ð’0Þj�1=2 � j’0j�1: (35)

Hence, if ’0 is made small enough, �osc can be
made arbitrarily larger than the HM Hubble radius,
and the antifriction term makes the scalar field
diverge before the oscillations start.

(2) ’0 ! ’þ ¼ 1: In this limit, the overshooting argu-
ment clearly does not apply, because the asymptotic
geometry is generally that of Euclidean anti–de
Sitter space; hence, we generally find nð’0Þ> 1
for large values of ’0. Instead, the instanton curves
approach horizontal asymptotes. This means that
the shift ’0 ! ’0 þ c becomes an approximate
solution-generating transformation. Indeed, the cor-
responding solutions consist of two large patches of
slow-roll pseudoinflationary solutions in the poten-
tial�V � ’4, glued together by a ‘‘wall’’ consisting
of the scalar field evolution near ’ ¼ ’top.

All the solutions represented in Fig. 3, except the
‘‘strange’’ n ¼ 1 solutions represented by a dashed line,
are symmetric under ’ ! �’, � ! ��� �, namely
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� ! ��� �; (36)

’ ! ð�1Þn’: (37)

In particular, they connect ’0 � ’ð� ¼ 0Þ to �’0 �
’ð ��Þ ¼ ð�1Þn’0. The ‘‘strange’’ solutions appear from
the bifurcation point A2 and connect the values of ’0 on
one side of that point to the negative of the values on the
opposite side; see Fig. 3. The appearance of this bifurcation
point and the asymmetry of the corresponding solutions
despite the symmetry of the potential (first noticed in
Ref. [7]) could not be observed for the n > 1 branches in
the interval of parameters we considered, but may exist at
smaller values of Vtop.

All the nonstandard solutions located on the left of the
points A1; B1; . . . turn out to have higher Euclidean action
than the corresponding HM instanton (see the right panel
of Fig. 3). Moreover, focusing on the n ¼ 1 solutions, we
observe that across the points A1 andA2 additional negative
modes appear. In particular, the symmetric branch pos-
sesses two negative modes between A1 and A2 and three
negative modes below A2. This is in full agreement with
our expectations; at these two points the horizontal slope of
an instanton curve signals the presence of a zero mode: the
instantons located at A1 and A2 are critical solutions. On
the other hand, the asymmetric n ¼ 1 branch possesses
two negative modes and has lower Euclidean action than
the symmetric one (see the right panel of Fig. 3). For this

reason, the additional negative mode of the latter can then
be interpreted as the perturbation generating the transition
from the symmetric to the nonsymmetric branch.
This qualitative analysis is confirmed by an explicit

computation, along the different n ¼ 1 branches, of the
three lowest eigenvalues of the perturbation equation
[Eq. (24)] (see Fig. 4). Across A1 and A2, a positive
eigenvalue becomes negative on the symmetric branch.3

These results show that the number of negative modes
can be different from the number of oscillations of an
instanton solution. Furthermore, several solutions with
the same number of negative modes can coexist: e.g.,
the n ¼ 1 symmetric solutions below A2 and the n ¼ 2
solutions on the left of B1, both possessing three negative
modes.
The solutions located to the right of the critical points

A1; B1; . . . appear as standard CdL solutions, for which the
number of negative modes k coincides with the number of
oscillations n. However, as the potential in Eq. (30) is
unbounded from below, they only exist in small ranges of
values of Vtop. Moreover, as shown in Fig. 3, the scalar field

takes values for which the potential is negative for all these
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FIG. 3 (color online). Left panel: Instanton diagram for the potential in Eq. (30), with the choice of units � ¼ � ¼ 1. The vertical
dotted line represents ’0 ¼ 0 and the continuous family of HM solutions. The curved dotted line represents V ¼ 0. The asymmetric
solutions mentioned in the text correspond to the dashed line emanating from the bifurcation point A2; these solutions interpolate
between two values �’1, 	’2, where ’1, ’2 are the intersections of a horizontal line and the dashed line. Right panel: Difference
between Euclidean action of the n ¼ 1 and n ¼ 2 solutions and the corresponding HM solutions; the number of negative modes, k,
is also indicated.

3Note that on the right of A1, the computation of the negative
modes according to Eq. (24) becomes inconsistent, as the Q
function appearing in the perturbation potential becomes nega-
tive in a finite range of values of �. How to consistently work out
the perturbation modes in this case is currently an open problem.
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solutions, which are therefore not directly relevant for
tunneling from de Sitter to de Sitter/Minkowski space.

At this point, it is worth stressing that the structure of
the space of solutions would be considerably harder to
understand without the use of instanton diagrams. As we
explained above, the standard method consists in choosing
a particular theory (in this case the value of Vtop) and

looking for the values of ’0 across which nð’0Þ is discon-
tinuous. This corresponds to analyzing the behavior of
nð’0Þ on horizontal slices of the plot in the left panel of
Fig. 3. It is evident that the pattern of discontinuities
depends in a nontrivial way on the slice one chooses, i.e.
on the particular value of Vtop under consideration, so that

the appearance and properties of different solutions may
look entirely uncorrelated.

V. INTERMEDIATE CASE: V ¼ Vtop��2

2 ’2� 1
4’

4

In the previous section, we have seen that the flatness of
the potential at ’top allows the existence of critical instan-

tons with a nontrivial scalar field and, correspondingly, the
presence of new instanton branches with additional nega-
tive modes. It is then natural to ask how this picture evolves
to the standard one when the curvature of the potential is
increased from zero.

To address this question, we consider the potential

V ¼ Vtop ��2

2
’2 � �

4
’4: (38)

As in the previous case, by an appropriate choice of units
we may set � ¼ � ¼ 1:

V ¼ �V top � ��2

2
’2 � 1

4
’4: (39)

The rescaled parameters appearing in Eq. (38) are related
to the original parameters by

�Vtop ¼
�2Vtop

�
; (40)

��2 ¼ ��2

�
: (41)

Using the same argument as for the �2 ¼ 0 case, one
can easily prove that all Oð4Þ-invariant solutions of
the field equations with the potential in Eq. (38) are
compact.
In Fig. 5, we present several instanton diagrams

corresponding to different values of �2. The presence of
a mass term allows nð’top þ �Þ to take values greater than

1 for sufficiently small Vtop, in agreement with Eq. (19).

In the instanton diagrams, this is related to the fact that the
instanton curves now join the ’ ¼ 0 axis, and thus they are
continuously related to the HM critical solutions, like in
the standard case depicted in Fig. 2.
For small values of �2, the bifurcation corresponding

to the critical point along the n ¼ 1 curve is now asso-
ciated with a second bifurcation at smaller values of Vtop,

giving rise to a ringlike structure (see also Fig. 6). The
same structure appears on all the n > 1 branches we were
able to explore, suggesting that a single bifurcation
should also be present, at values of Vtop below our nu-

merical limitations, in the �2 ¼ 0 case. In going through
the ring in the direction of decreasing Vtop, the symmetric

branches acquire an additional negative mode and, corre-
spondingly, their Euclidean action is greater than that of
the corresponding nonsymmetric branches (Fig. 6, center
panel). The eigenvalue associated with this mode turns
positive again across the new bifurcation point, close to
the critical HM solution (Fig. 6, right panel). For these
small values of �2, the properties of the solutions located
at larger ’0 remain the same as in the �2 ¼ 0 case,
discussed in the previous section. Moreover, also like in
the massless case, the nonstandard solutions appearing on
the left of the critical points A1; A2; . . . always have
greater Euclidean action than the corresponding HM
instantons.
When �2 is increased, the ringlike structures gradually

shrink and disappear, starting from the one located on
the n ¼ 1 branch. Moreover, at the critical values
�c;1; �c;2; . . . , the critical instantons located at A1; A2; . . .
approach the ’0 ¼ 0 axis and ‘‘disappear’’ by joining the
critical HM solutions. For this reason, when �>�c;n, the

nonstandard branches are no longer present and only
‘‘standard’’ n-oscillating instantons with k ¼ n negative
modes survive: ntop > 1 is again a necessary condition for

the existence of solutions. In this regime, except for the
different behavior at large ’0 due to the unboundedness
of the potential, the instanton diagrams are qualitatively
similar to the one presented in Fig. 2.

7 6 5 4 3 2 1 0
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ln Vtop
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FIG. 4 (color online). Behavior of the lowest three eigenvalues
� of Eq. (24) for Oð4Þ-invariant perturbations, for the n ¼ 1
instanton backgrounds. Dashed lines correspond to the solutions
plotted as dashed lines in the left panel of Fig. 3. The two lowest
eigenvalues along the symmetric branch are almost coincident,
except near the point A1, where the second eigenvalue ap-
proaches zero.
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The critical values �c
n can be determined by analyzing

the perturbations of the critical HM solutions. Indeed, as
one can clearly see in Fig. 5, a small perturbation of the
n-critical HM instanton will result in a singular nþ 1 (n)

solution if �<�c;n (�>�c;n). More precisely, the

behavior of the curve of n-oscillating instantons at small
(’0 � ’top) is determined by the number of oscillations of

the solutions
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’ ¼ ’ð�;’0Þ; (42)

� ¼ �ð�;’0Þ (43)

in the theory admitting the n-critical HM solution

nðnþ 3Þ ¼ 3�2

�Vn

: (44)

For small ’0, the solutions in Eqs. (42) and (43) can be
written as an expansion in the value of (’0 � ’top):

’ð�;’0Þ ¼ ’top þ ð’0 � ’topÞ’ð1Þð�Þ
þ ð’0 � ’topÞ2’ð2Þð�Þ þ 
 
 
 ; (45)

�ð�;’0Þ ¼ �HM þ ð’0 � ’topÞ�ð1Þð�Þ
þ ð’0 � ’topÞ2�ð2Þð�Þ þ 
 
 
 : (46)

The functional coefficients ð’ðkÞ; �ðkÞÞk�1 are the kth-order
Oð4Þ-invariant perturbations of the background critical
HM solution:

�HM ¼ Hn sin ðHn�Þ; Hn ¼
�

�2

nðnþ 3Þ
�
1=2

: (47)

The boundary conditions specifying these perturbation
modes follow from those for the full solution:

’ð� ¼ 0; ’0Þ ¼ ’0 )
(
’ð1Þð0Þ ¼ 1;

’ðkÞð0Þ ¼ 0; k > 1;
(48)

�ð� ¼ 0; ’0Þ ¼ 0 ) �ðkÞð0Þ ¼ 0; (49)

�0ð� ¼ 0; ’0Þ ¼ 1 ) �0
ðkÞð0Þ ¼ 0: (50)

For general values of ’0, we expect the solution in Eq. (42)
to be singular. This singularity is reflected in the singular
behavior of the perturbation modes ’ðnÞ near the south

pole of the HM instanton �� ¼ �=Hn. Even though the
unbounded growth of the perturbation modes signals the
breakup of perturbation theory, the behavior of the lowest-
order singular mode is likely to determine the singular
behavior of the full solution. In the case of n ¼ 1 solutions,
the third mode, ’ð3Þ, is the lowest-order singular mode [38]:

’ð3Þ /�! �� � 32þ 	2 þ 18�

ð ��� �Þ2 ; (51)

	 � 2Vð3Þ
top

�1=2�2
; (52)

� � 2Vð4Þ
top

3��2
: (53)

The transition between the overshooting (n ¼ 1) and under-
shooting (n ¼ 2) behaviors corresponds to change in the
sign of the divergence of ’ð3Þ:

8��4
c;1 þ 3Vð4Þ

top�
2
c;1 þ ðVð3Þ

topÞ2 ¼ 0: (54)

In our case, where � ¼ 1, Vð4Þ
top ¼ �6 and Vð3Þ ¼ 0,

�2
c;1 ¼

9

4
: (55)

This result can be stated differently, saying that when the
fourth derivative of the potential ’top is more negative than

the critical value,

Vð4Þ
c ¼ � 8��2

c;1

3
� ðVð3Þ

topÞ2
3�2

c;1

; (56)

new n ¼ 1 instanton solutions appear in a class of theories
with ntop & 1. The critical value in Eq. (54) can be derived

in a more rigorous way by studying the properties of the
action functional in the vicinity of the critical HM solution
[39]. Using similar techniques, one can prove analytically
that n ¼ 1 istantons appearing at small (’0 � ’top) when

�2 & �2
c;1 always have greater Euclidean action than the

corresponding HM solutions [40], which we numerically
verified (see Fig. 6, center panel).
In conclusion, when the curvature �2 of the potential at

its top is nonzero, the small–(’0 � ’top) solutions can be

studied as small perturbations of the critical HM solution.
However, focusing on the n ¼ 1 solutions, when �2 �
�c;1, the position of the critical point A1 remains approxi-

mately fixed (see Fig. 5) and, over a wide range of values for
Vtop, nonstandard n ¼ 1 solutions are found which cannot

be described as perturbations of HM. The existence of the
ringlike structure and the nonsymmetric branch therein are a
striking manifestation of this fact. This suggests, in agree-
ment with the expectation expressed in Ref. [7], that the
existence of these nonstandard branches cannot be directly
related to the shape of the potential at’ ¼ ’top, but is rather

determined by the full structure of the potential.

VI. MORE REALISTIC FLAT POTENTIALS

A. Positive potentials

In the previous two sections, we studied the existence of
instanton solutions connecting vacua separated by flat and
nearly flat potential barriers. However, as illustrated in
Figs. 3 and 5, most of these solutions extend to ranges of
field space in which V < 0. In order to clarify the role of
these negative values of V in the existence of nonstandard
ntop < 1 solutions, we consider a regularized version of

the scalar potential in Eq. (30):

V ¼ Vtop � �

4
’4 þ t

6
’6: (57)

Via the rescalings in Eq. (33) we again set � ¼ � ¼ 1. In
order to consider a class of theories with V > 0 and let Vtop

vary, we parametrically fix t so as to keep the ratio between
the vacuum energy densities at the degenerate vacua ’�
and at ’top constant:
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r ¼ V�=Vtop: (58)

When r < 0, one has V� < 0, and noncompact solutions
could exist for which the scalar field approaches ’þ or ’�
asymptotically. However, for such a noncompact solution,
the quantity 1

2’
02 � V is decreasing, and its asymptotic

value Vþ ¼ V� is necessarily smaller than its initial value
V0. In the case of our potential, V � V�, and the only
noncompact solutions are the Euclidean-AdS ’ð�Þ ¼ ’�
solutions.

In Fig. 7, we present instanton diagrams for several
values of r. The reduced field variable x already introduced
in Sec. III is used in order to visualize solutions which have
’0 very close to the true vacuum value ’þ:

’0 � ’þð1� e�x2Þ: (59)

The left part of the diagrams shows a clear resemblance
with the one describing the V ¼ Vtop � ’4=4 case. In

particular, the bifurcation along the n ¼ 1 branch remains
visible. We also checked that, by adding a small mass term,
the ring structure described in the previous section appears
at least along the n ¼ 1 branch. This suggests that the
features of the nonstandard branches are not related to

negative values of the potential. Indeed, the appearance
of a bifurcation point had first been noticed in the case of a
positive potential [7]. At the same time, as expected from
the overshooting argument, when r > 0, all the instanton
curves bend down as x increases, in such a way that
nð’þ � �; VtopÞ ¼ 1 for any value of Vtop. In this respect,

the large-x part of these instanton diagrams is analogous to
the one for the standard CdL case (see Fig. 2). On the other
hand, when r < 0, the curves appear again to approach
constant values of Vtop as in Fig. 3, which described the

r ¼ �1 case.
Focusing on the r > 0 case, we stress again that in the

presence of a flat potential barrier, for sufficiently small
Vtop, nonstandard solutions coexist with standard CdL-type

solutions with ’0 very close to ’þ. The existence of both
types of solutions in spite of the flatness of the potential
barrier (ntop ¼ 0 in the present case) can be related to the

presence of the critical solution sitting at the top of each
instanton curve. The Euclidean action and the number of
negative modes of these solutions follow the behaviors
already described in Sec. IV. In particular, as already
noticed in Ref. [40] for a potential with ntop & 1,

‘‘standard’’ n ¼ 1 solutions located sufficiently to the right
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FIG. 7 (color online). Instanton diagrams for the potential in Eq. (57) and different values of the ratio in Eq. (58). The dotted lines
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of the critical points have more negative Euclidean action
than the corresponding HM solutions. Possessing a single
negative mode, these solutions are the dominant tunneling
channel for this class of theories.

As expected from the results of the previous section, this
qualitative picture remains valid even if the potential is not
exactly flat at ’ ¼ ’top, e.g.

V ¼ Vtop ��2

2
� �

4
’4 þ t

6
’6: (60)

Once again, t can be parametrically fixed in terms of� and
� so as to keep the ratio r ¼ Vþ=Vtop constant. For �<

�c;1 [Eq. (54)], standard n ¼ 1 instantons still exist when

ntop < 1. Moreover, sufficiently far from the critical point,

these solutions start having more negative Euclidean action
than HM (see Fig. 8, left panel) and give the dominant
contribution to the tunneling rate. The phase diagram on
the right panel of Fig. 8 describes the dominant decay
channel for the class of theories in Eq. (60). CdL instantons
exist and dominate the decay rate not only when ntop > 1,

but also for flatter barriers, provided the fourth derivative
of the potential at ’top is sufficiently negative to allow the

presence of a new critical instanton. As we will show in
Sec. VII, such critical solutions are present also for flatter

potentials for which Vð4Þð’topÞ ¼ 0: therefore, the persis-

tence and dominance of CdL solutions below ntop ¼ 1

illustrated in Fig. 8 should not be regarded as a conse-

quence of the large, negative values of Vð4Þð’topÞ.

B. Asymmetric potentials

The flat or approximately flat potentials considered so
far were taken to be symmetric under ’ ! ’top � ’. In

this section, we briefly highlight the changes to the pre-
vious pictures when a small asymmetry is added. We
consider the potential

V ¼ Vtop ��2

2
’2 � �

4
’4 � �t1=2

5
’5 þ t

6
’6 (61)

and once again fix t parametrically so as to keep the ratio
r ¼ Vþ=Vtop fixed. The left panel of Fig. 9 represents the

instanton diagram for the class of theories with � ¼ 1=200
and r ¼ 9=10. The reduced variable x was defined in
Eq. (21) in Sec. III. Interestingly, the addition of a small
asymmetry causes the disappearance of the bifurcation
point, which transforms into a simple critical point.
Because of the asymmetry, none of the instanton profiles
is exactly symmetric under � ! ��� �. This explains how
the previously symmetric branch lying above the bifurca-
tion point now extends smoothly into the previously asym-
metric branch. As the asymmetry is increased, the critical
point moves further away from the n ¼ 1 branch con-
nected to the CdL-type solutions. The number of negative
modes along each of the branches is the same as in the
� ¼ 0 case.
When a small mass term is added, the second bifurcation

point presented in Fig. 6 also appears as a simple critical
point, and an ‘‘island’’ replaces the ringlike structure ob-
served in the symmetric case (compare the right panel of
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FIG. 8 (color online). Left panel: Instanton diagram for the theory in Eq. (60) with r ¼ 1=4, � ¼ 0:5 and the choice of units
� ¼ � ¼ 1. The part of the curve on the right of the highlighted point represents n ¼ 1 solutions with more negative Euclidean action
than the HM solution at equal Vtop. Right panel: Phase diagram for the dominant tunneling channel for the potential in Eq. (60) with

r ¼ 1=4. For �<�c;1 ¼ 3=2 [Eq. (55)], n ¼ 1 instantons with ntop < 1 persist, which dominate the decay rate. The highlighted point

corresponds to the solution depicted in the left panel.
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Fig. 9 with the left panel of Fig. 6). As the coefficient of the
mass term is increased, the size of these islands shrinks
progressively until their complete disappearance.

VII. HIGHER-ORDER FLATNESS: V ¼ Vtop� 1
6’

6

As we have seen, the existence of instantons for
potentials with ntop < 1 can be related, in the vicinity of

the critical HM solutions, to the presence of a large and
negative fourth-derivative term in the expansion of the
potential near ’top. To complete our overview of instanton

solutions in the presence of flat potential barriers, we

studied a class of potentials for which Vð4Þ
top vanishes, and

the potential barrier is even flatter:

V ¼ Vtop � �

6
’6: (62)

By an appropriate choice of units, one may again set
� ¼ � ¼ 1. Figs. 10 and 11 present different regions of
the instanton diagram corresponding to the family of
theories in Eq. (62).

From the very rich structure of the diagram we can
extract the following observations:

(1) At large ’0, the approximately shift-symmetric
pseudoinflationary solutions in the Euclidean
potential �V are again present. These solutions
are exactly symmetric across ’ ¼ 0, and have as
many negative modes as oscillations (k ¼ n).

(2) Many additional critical instantons appear.
Correspondingly, new branches at smaller ’0 are

present for every visible value of n. Most of these
branches, just as in the case of a �’4 potential,
correspond to asymmetric solutions. For example,
the n ¼ 1 solutions A1 and B1 correspond to �A1 and
�B1 under the transformation ’ð�Þ ! �’ð ��� �Þ.

(3) Several bifurcation points are visible on the n ¼ 3
and n ¼ 5 curves in the top panel of Fig. 10.

The most surprising feature emerging from the instanton
diagrams is the chaotic character of the landscape of
solutions: for example, the solutions corresponding to the
rather separated points A1 and B1 end on the field values
corresponding to �A1 and �B1. Furthermore, as Vtop de-

creases, the distance in field space between A1 and B1

remains approximately constant, while �A1 and �B1 approach
each other. The chaotic behavior is displayed even more
clearly by the n ¼ 2 solutions A2, B2, C2 and D2. These
represent further asymmetric solutions, and their conju-
gated points lie on the very small structure depicted in the
left panel of Fig. 11. A similar structure appears for the
n ¼ 3 solutions (Fig. 11, right panel).
These results indicate that a rich structure of instanton

solutions in theories with ntop < 1 can be found without the

presence of a large fourth-derivative term at ’ ¼ ’top.

Moreover, when the potential is dominated by a �’6

term around the top of the barrier, the nonlinearity of the
field equations allows a very complicated landscape of
solutions which, however, are not directly relevant for
vacuum decay, having more than one negative mode and
larger Euclidean action than HM. As a final application and
in the same spirit as in Sec. VI, we checked that if a
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FIG. 9 (color online). Left panel: Instanton diagram for the potential in Eq. (61), with r ¼ 9=10, �2 ¼ 0 and � ¼ 1=200. For the
n ¼ 1 solutions, the scalar field varies between the values at x > 0 and the corresponding values at x < 0: different dashings represent
the correspondence between the various branches. Right panel: Detail of the instanton diagram for r ¼ 1=8,�2 ¼ e�9 and � ¼ 1=200.
The second bifurcation point also becomes a simple critical point, and an ‘‘island’’ forms in the ðx; VtopÞ plane.

BATTARRA, LAVRELASHVILI, AND LEHNERS PHYSICAL REVIEW D 88, 104012 (2013)

104012-14



1

2

3

0 2 4 6 8 10
10

8

6

4

2

0

0

ln
V

to
p

A1

k 2

B1

k 3

C1

k 2

k 1

A2

k 3

B2

k 4

C2

k 5

D2

k 4

B1 A1

1

2

3

4

0 1 2 3 4 5 6
10

8

6

4

2

0

0

ln
V

to
p

FIG. 10 (color online). Two views of the instanton diagram for the potential in Eq. (62), � ¼ � ¼ 1. The two regions highlighted in
the top panel correspond to the diagrams in Fig. 11. The highlighted points and the dashings in the bottom panel correspond to the
same elements in the left panel of Fig. 11. The number of negative modes for some branches is also indicated.

ZOOLOGY OF INSTANTON SOLUTIONS IN FLAT . . . PHYSICAL REVIEW D 88, 104012 (2013)

104012-15



regularization is added so as to make the potential positive
definite,

V ¼ Vtop � �

6
’6 þ t

8
’8; (63)

the complex structure of the instanton diagram in Fig. 10
does not disappear.

VIII. CONCLUDING REMARKS

Our systematic investigation of instantons in Einstein
gravity coupled to a single self-interacting scalar field
theory with relatively flat potentials shows the existence
of a very complex landscape of solutions. We studied in
detail the solutions appearing with quartic and higher-order
potentials, with and without mass terms, and investigated
the influence of potential regularizations and asymmetries
on the instantons’ properties.

Our study highlights the role of critical instantons as
keystones for the existence of nonstandard branches of
solutions. The existence of one or more critical instantons
appears as a general feature of flat or almost flat potentials
and, as our results for the sextic potential illustrate, does
not depend on a large negative value of the fourth deriva-
tive of the potential at the top. The new branches that
emanate from these critical points typically contain more
than one negative mode in their spectrum of fluctuations,
indicating that one may expect solutions with fewer nega-
tive modes and lower action nearby. We have found that, in
the case that the potential is regularized so as to contain a
minimum at positive values of the potential, ordinary CdL
instantons always persist near these minima, and they

typically provide the dominant contribution to the decay
rate out of these vacua.
Close to the top of the potential barrier, critical instan-

tons are also associated with new instanton branches with a
small field excursion and additional negative modes, which
connect to the critical HM solution when a small curvature
term is added to the potential. The nonlinear character of
these new branches is indicated by the presence of bifur-
cation points, which we showed to be related to the exact
symmetry of the potential, and of a very complex space of
solutions in the V ¼ Vtop � 1

6’
6 case. We showed that

these features appear regardless of the positive definiteness
of the scalar potential.
There are several open questions related to our research.

An obvious one is to ask whether or not the complexity
remains for potentials with an even higher degree of
flatness—we strongly suspect that it does. Furthermore,
given that our investigation was mainly numerical, it would
be interesting to see if one could obtain some of these
instanton solutions analytically. For instance, it may per-
haps be possible to determine the critical instantons analyti-
cally as fixed points of a corresponding dynamical system.
Instanton diagrams play a central role in our results.

With the more standard techniques, the rich spectrum of
solutions we found would look incoherent and lacking of a
precise structure. The key advantage of instanton diagrams
is to single out critical instantons, whose existence deter-
mines the global structure of the space of solutions. A
natural development of our work will be to attempt a
more systematic analysis of extensions to theories with
additional parameters, as well as extensions to multifield
[41–46] and reduced-symmetry instantons [47].
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FIG. 11 (color online). Two details of the instanton diagrams in Fig. 10. The highlighted points correspond to those in the bottom
panel of Fig. 10 under the transformation ’ð�Þ ! �’ð ��� �Þ.
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The most important question is probably the issue of
what the correct interpretation and physical relevance of
the new branches of solutions that we uncovered are. In
particular, it would be interesting to know whether the new
branches contribute to metastable vacuum decay. There are
two extreme viewpoints on this subject. According to the
‘‘orthodox’’ view [48], Euclidean solutions with more than
one negative mode have nothing to do with tunneling.
However, one should bear in mind that this statement
was only proven in the absence of gravity, which leaves
some room for speculation. Recently, in the context of
oscillating instantons, a more ‘‘heretical’’ viewpoint was
discussed in Ref. [49], where it was conjectured that the
existence of numerous solutions with various numbers of
negative modes might sum up in the functional integral and
give a contribution to decay rates. An interesting challenge
for future investigations will be to clarify these issues, and
to determine the physical role of these intricate solutions.
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APPENDIX A: SINGULARITIES IN
INSTANTON SOLUTIONS

1. No singularities at finite �

First, we prove that, if the potential V is regular every-
where, solutions of Eqs. (7) and (8) cannot become singu-
lar at a finite value of �. This is a slight generalization of
the proof presented in Ref. [18], where the potential was
taken to be bounded. Let nð�Þ � log�ð�Þ be well defined
for �< 0 so that � ¼ 0 is the candidate singular point. To
facilitate reading, we reproduce the field equations in both
their forms:

’00 ¼ �3
�0

�
’0 þ V;’ ¼ �3N0’0 þ V;’; (A1)

�02

�2
¼ 1

�2
þ �

3

�
1

2
’02 � V

�
; (A2)

N02 ¼ e�2N þ �

3

�
1

2
’02 � V

�
; (A3)

N00 ¼ �e�2N � �’02

2
: (A4)

From Eq. (A4), we know that Nð�Þ is a concave function.
Therefore, only two cases are possible:

(1) N0 approaches a finite constant as � ! 0�.
(2) N0 ! �1 as � ! 0�.

In the first case, the singularity must show up in the
behavior of the scalar field ’. However, possible divergen-
ces in V and ’0 are then related by Eq. (A3):

lim
�!0�

�
1

2
’02 � V

�
¼ N02

0 � e�2N0 ; (A5)

where zero indices denote quantities evaluated at � ¼ 0. In
the vicinity of � ¼ 0, the equation for the scalar field is that
of a particle in a potential �V with a friction force propor-
tional to its speed, and constant coefficient 3N0

0. Therefore, a

singularity in the scalar field can only be driven by the
potential diverging as ’ ! �1. However, the divergence
of ’ requires ’0 to diverge at least as ��1. Equation (A4)
then implies that N0 is also divergent near � ¼ 0,

N00 � ��’02

2
/ � 1

�2
; (A6)

which contradicts our initial hypothesis. In other words, if
the scalar field diverges due to an instability of the Euclidean
potential, �V, �0=� also diverges near the singular point.
Now, we want to exclude the possibility that this divergence
could take place at finite �.
Let us suppose now that N ! N0 > 0 while N0 ! �1.

Because n is a convex function, we can assume the asymp-
totic behavior

N ’ N0 þ 
ð��Þp; 0< p< 1: (A7)

Inserting this behavior in Eq. (A4), we find

j’0j � ð��Þ�1þp=2: (A8)

This can be plugged back into Eq. (A1), resulting in

jV;’j � ð��Þ�2þp=2: (A9)

For a regular potential, this kind of divergence is only
possible as ’ ! �1, which is, however, not attainable
when � ! 0�, because Eq. (A8) implies that the scalar
field ‘‘speed’’ ’0 does not diverge fast enough.

2. Singular instantons and runaway of the scalar field

Following the results of Appendix A 1, only compact
solutions of the equations forOð4Þ-invariant instantons can
be singular. Moreover, the singularities are all character-
ized by

�!�!0�
0; (A10)

taking � to be regular for �< 0. We now show the relation
between the behavior of the scalar field and that of the
metric function � near the point � ¼ 0, in both the singular
and nonsingular cases.
Suppose first that ’ ! ’0 as � ! 0�, where ’0 is some

finite value. In this case, the derivative combination �0
� ’

0

must remain finite; otherwise the asymptotic scalar field
equation [Eq. (A1)] would read
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’00 ’ �3
�0

�
’0 ) ’0 / ��3; (A11)

In this case, the asymptotic form of Eq. (A2) reads

�02 / ��4 ) � / ð��Þ1=3: (A12)

In this case, however, ’0 / ð��Þ�1 and ’ diverges loga-
rithmically, which contradicts our initial hypothesis.
Therefore, if the solution is such that ’ approaches a finite

value, the combination �0
� ’

0 must approach a finite value.

As �0=� is diverging monotonically, this requires ’0 to
approach zero, in which case one also finds from Eq. (A2)

�0 !�!0�
1: (A13)

This means that whenever ’ approaches a finite constant,
the solution is actually fully nonsingular.

The nature of the singularity appearing in compact
solutions with ’ diverging as � ! 0 might depend on
the asymptotics of the scalar field potential. However, for
potentials which are bounded or which diverge (positive or
negative) with a power law, one can easily check that

� / ð ��� �Þ1=3; (A14)

’ / log ð ��� �Þ (A15)

is a an asymptotic solution of the field equations. From the
point of view of the scalar field equation [Eq. (A1)], this
means that, provided the potential is not too steep, the
divergence of ’ is always asymptotically driven by the

antifriction term �3 �0
� ’

0.

APPENDIX B: CONTINUOUS FAMILIES OF
SOLUTIONS AND PERTURBATION MODES

In Sec. III B, we stated that when the instanton curve
Vtopð’0Þ has a stationary point at ’�

0, the solution

corresponding to this value of ’0 possesses a regular

perturbation mode. In this section, we prove this statement
in the simplified context of a theory with no reparametri-
zation invariance.
Let S½’ðxÞ; p� be an action which depends explicitly

on some real parameter p. Let now ’�ðxÞ be a family of
solutions for the family of theories specified by S½’; pð�Þ�.
Finally, let us assume ’�ðxÞ to be a regular function of �.
We prove that, if p0ð��Þ ¼ 0, then

@�’ðxÞj�¼��

is a regular perturbation mode of ’�� . Let �’ be a generic
field variation. We now assume t to be infinitesimal and
consider the quantity

S½’��þ�� þ t�’; pð�� þ ��Þ�
¼ S½’�� þ t�’þ ��ð@�’�Þj�¼�� ; pð��Þ� þOð��2Þ
¼ S½’ ��; pð��Þ� þOðt2; ��2Þ þ t��

�
Z

d4xd4y�’ðxÞ�
2S½’�� ; pð��Þ�
�’ðxÞ�’ðyÞ ð@�’�Þj�¼�� ðyÞ:

Of course, no terms in t and �� are present because of the
field equations for ’�� . On the other hand, the field equa-
tion for ’ ��þ�� implies

dS½’��þ�� þ t�’; pð ��þ ��Þ�
dt

��������t¼0
¼ 0: (B1)

At order ��, this implies

Z
d4xd4y�’ðxÞ�

2S½’�� ; pð��Þ�
�’ðxÞ�’ðyÞ ð@�’�Þj�¼�� ðyÞ ¼ 0:

(B2)

As �’ðxÞ is a generic field variation, this implies that
ð@�’�Þj�¼�� is a regular perturbation of ’�� ,

Z
d4y

�2S½’�� ; pð��Þ�
�’ðxÞ�’ðyÞ ð@�’�Þj�¼�� ðyÞ ¼ 0: (B3)
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