Available online at www.sciencedirect.com

ScienceDirect NUCLEAR[Z]
PHYSICS

CrossMark

ELSEVIER Nuclear Physics B 883 (2014) 373-424 _—
www.elsevier.com/locate/nuclphysb

Bethe ansatz for Yangian invariants:
Towards super Yang—Mills scattering amplitudes

Rouven Frassek “™¢, Nils Kanning "“*, Yumi Ko "¢,
Matthias Staudacher ™*

& Department of Mathematical Sciences, Durham University, South Road, Durham DHI 3LE, United Kingdom
b Institut fiir Mathematik, Institut fiir Physik, Humboldt-Universitdt zu Berlin, IRIS-Adlershof,
Zum Grofsen Windkanal 6, 12489 Berlin, Germany
¢ Max-Planck-Institut fiir Gravitationsphysik, Albert-Einstein-Institut, Am Miihlenberg 1, 14476 Potsdam, Germany
d Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk 790-784, Republic of Korea

Received 30 December 2013; accepted 18 March 2014
Available online 25 March 2014

Editor: Stephan Stieberger

Abstract

We propose that Baxter’s Z-invariant six-vertex model at the rational gl(2) point on a planar but in general
not rectangular lattice provides a way to study Yangian invariants. These are identified with eigenfunctions
of certain monodromies of an auxiliary inhomogeneous spin chain. As a consequence they are special solu-
tions to the eigenvalue problem of the associated transfer matrix. Excitingly, this allows to construct them
using Bethe ansatz techniques. Conceptually, our construction generalizes to general (super) Lie algebras
and general representations. Here we present the explicit form of sample invariants for totally symmetric,
finite-dimensional representations of gl(n) in terms of oscillator algebras. In particular, we discuss invari-
ants of three- and four-site monodromies that can be understood respectively as intertwiners of the bootstrap
and Yang—Baxter equation. We state a set of functional relations significant for these representations of the
Yangian and discuss their solutions in terms of Bethe roots. They arrange themselves into exact strings in
the complex plane. In addition, it is shown that the sample invariants can be expressed analogously to Gra$3-
mannian integrals. This aspect is closely related to a recent on-shell formulation of scattering amplitudes in
planar A/ = 4 super Yang-Mills theory.
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1. Introduction and overview

Some time ago, a remarkable observation has been made in the field of scattering ampli-
tudes of planar N' = 4 super Yang-Mills theory, namely their Yangian structure [1]. It was
obtained by combining superconformal symmetry and a hidden dual superconformal symme-
try [2]. It holds for planar tree-level scattering amplitudes, and there are indications that it also
plays a role at loop-level. Originally the Yangian algebra, commonly abbreviated to “Yangian”,
was defined by Drinfeld as the algebraic consequence of the Yang—Baxter equation underly-
ing one-dimensional quantum integrable models in the so-called rational case. It is an infinite
generalization of finite-dimensional Lie algebras. Thus the Yangian structure appearing in the
four-dimensional scattering amplitudes naturally suggests the existence of a hidden quantum
integrability. Such a structure has already been unearthed in the last 11 years for the spectral
problem of anomalous dimensions in A/ = 4 theory, where it has led to spectacular progress.
See [3] for a recent, fairly up-to-date multi-author review series, and specifically [4] for a jux-
taposition of the Yangian symmetry in the scattering and spectral problems. However, while
integrability has been essential for the (conjectured) solution of the spectral problem, in the scat-
tering problem it has not yet directly led to any practical advantages in computations, with the
notable exception of the recent, very promising conjectural approach of [5-7], see also [8,9]. The
reason is that the associated large integrability toolbox, the quantum inverse scattering method
(QISM), is so far available only for the calculation of anomalous dimensions. Its application usu-
ally leads to powerful Bethe ansatz methods. In contradistinction, apparently no such methods
exist to-date for directly exploiting Yangian invariance.

Our question starts here. What is the nature of Yangian symmetry, as it appears in the scat-
tering amplitudes, from the view point of integrability and the QISM? In order to answer this
question, we focus on Yangian invariants |¥ ), which are defined in the following way,

Map()|¥) = 8ap|¥), (1.1)

as a key to connect the scattering amplitudes and the Bethe ansatz. Here M (1) is a monodromy
matrix, given by a product of suitable R-matrices, u is a spectral parameter, and a, b are in-
dices in an auxiliary space, taking values in the fundamental representation of the underlying
symmetry algebra. The generators of the Yangian algebra are obtained as the coefficients Mé;,)
of an expansion of the monodromy matrix M (1) in powers r of the inverse spectral parameter
u~!. From (1.1) with M;(,),) = §,4p one then sees that |¥) is annihilated by all Yangian generators.
By definition, |¥) is thus a Yangian invariant. Furthermore, finding all solutions of (1.1) for all
suitable M (1) should then lead to the complete set of such invariants.

The first main observation we would like to present in this paper is the following. In the sim-
plest case of gl(2) Eq. (1.1) can be derived from the rational limit of a two-dimensional integrable
model, the so-called Z-invariant vertex model introduced by Baxter. It has a description as an
inhomogeneous spin chain [10]. Introducing a certain oscillator formalism, and thereby consider-
ing more general representations, one can then obtain gl(2) Yangian generators. Excitingly, they
take forms analogous to the ones acting on the scattering amplitudes in A/ = 4 super Yang—Mills
theory [1]. Furthermore, the procedure readily generalizes to higher rank cases. Supersymmetry
should also pose no obstacles.
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A further interesting aspect of (1.1) is that it allows one to consider the Bethe ansatz for
the spin chain, which is the second main point of this paper. Eq. (1.1) represents a system of
eigenvalue problems for the matrix elements M, (#) of the monodromy matrix M (u), with rather
trivial eigenvalues O or 1 for a common eigenvector |¥). In addition, by taking a trace on both
sides, (1.1) becomes an eigenvalue problem for the transfer matrix 7'(u) of the spin chain,

Twy=ttMw), TwW|¥)=n|¥), (1.2)

where we already generalized from gl(2) to gl(n), hence M () is an n X n matrix in the auxiliary
space. We conclude that any such Yangian invariant |¥) must then be a special eigenvector of
the transfer matrix 7' () with prescribed eigenvalue n. It is important to stress that the Yangian
invariant |¥) in (1.2) and thus also in (1.1) does not depend on the spectral parameter u. This is a
key feature of the QISM: The diagonalization of 7 (1) involves an u-independent change of basis.

In this study we will content ourselves with compact representations of gl(n). This should
play the role of a toy model of the A/ = 4 scattering amplitudes, where suitable non-compact
representations of gl(4|4) are needed instead. The latter are built from continuous generaliza-
tions of the oscillators mentioned above, which are essentially the spinor-helicity variables and
their derivatives. The basic philosophy based on (1.1) should nevertheless remain applicable,
at least in the case of the tree-level amplitudes, where Yangian invariance is unequivocal. Each
L-particle tree-level amplitude should then be identical to an invariant [¥) solving (1.1) with
a monodromy of “length” L, and thus amenable to analysis by the QISM. The monodromy is
built from L suitable R-matrices, just as in the case of integrable spin chains. Thus amplitudes
should turn into “special” spin chain states, similar, as we shall see, to gl(n) symmetric anti-
ferromagnetic ground states of the chain. The spin chain monodromy is again inhomogeneous,
and the external scattering data is encoded in the representing “oscillators” = spinor-helicity
variables. Alternatively, we can think of the tree-level amplitudes as appropriately generalized
Baxter lattices, i.e. special vertex models.

Just like in the toy model, it is imperative that the Yangian invariants and therefore the tree-
level amplitudes do not depend on the spectral parameter u. The latter merely serves as a suitable
device for applying the QISM and for employing (an adequate generalization of) the Bethe ansatz
to the problem. On the other hand, spectral parameters were recently introduced as certain natural
“helicity” deformations of N/ = 4 scattering amplitudes in [11,12]. This is not a contradiction.
In the present framework, these parameters simply correspond to a freedom in the choice of the
inhomogeneities of the monodromy in (1.1). In the gl(n) toy model, the representation labels in
general do not fix the inhomogeneities completely. The same holds true in the ' =4 case. In
fact, R-matrices of rational models in arbitrary representations are also Yangian invariants. They
may therefore be found from special solutions of (1.1). For instance, a standard four-legged
gl(n) R-matrix acting on the tensor product of two arbitrary compact representations may be
deduced from the eigenvector |¥) of a length-four monodromy M (1). Here a difference of inho-
mogeneities, denoted by z, in the monodromy M (u) is to be interpreted as a spectral parameter
of the R-matrix R(z). But z is not the spectral parameter u used to solve the spectral problem
(1.1) for Yangian invariants.

This paper is organized as follows. In Section 2 we review Baxter’s Z-invariant six-vertex
model in the gl(2) limit, as well as its remarkable solution through the little-known perimeter
Bethe ansatz [10]. Its key feature is, rather unusually, that the Bethe equations may be explicitly
solved with comparative ease. In Section 3 we show that Baxter’s approach may be generalized
to an important class of compact representations of gl(n), and reinterpreted as a systematic way
to define and derive Yangian invariants. This opens the way to derive a perimeter Bethe ansatz
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for the latter. In Section 4 we illustrate the method for the case of compact oscillator represen-
tations of gl(n) by presenting explicit Yangian invariants for three specific examples. Pictorially
they correspond to a line, a three-vertex and a four-vertex. The invariants are expressed in os-
cillator notation. They look somewhat different from the Yangian-invariant tree-level scattering
amplitudes, which is surely due to the different nature of the representations under investiga-
tion. However, in Section 5 we demonstrate that our examples may be rewritten as GraBmannian
contour integrals. Interestingly, this manifestly turns them into close analogues of the scattering
amplitudes, see [13]. An added benefit of our approach is that the (multi)-contours are precisely
defined by the construction. In Section 6 we then discuss the perimeter Bethe ansatz for the Yan-
gian invariants of our toy model. We illustrate it for gl(2) for the sample invariants of Section 4
and Section 5. Remarkably, the Bethe roots assemble into exact strings in the complex spectral
parameter plane, and are thus explicitly determined. We also sketch the generalization to gl(n),
where a nested perimeter Bethe ansatz is required. Finally Section 7 provides conclusions and an
outlook on the application of our novel approach to the computation of actual scattering ampli-
tudes of N'=4 Yang-Mills theory. Some facts useful in Section 5 on the connections between
oscillators and the well-known Bargmann representations as well as the less-known conjugate
Bargmann representations are deferred to Appendix A.

2. Perimeter Bethe ansatz

We begin our discussion with the six-vertex model, an important example of an exactly solv-
able lattice model in two-dimensional statistical mechanics, see e.g. [14]. This model is usually
studied on a regular square lattice with periodic boundary conditions. Its exact solution for the
partition function of finite size lattices is well known [15-17], albeit in an implicit form requiring
the solution of Bethe ansatz equations. The six-vertex model has also been studied on more gen-
eral planar lattices [18], the so-called Baxter lattices, which are typically non-rectangular. It is
probably less known that the partition function on such lattices for fixed boundary conditions was
also obtained using a perimeter Bethe ansatz by Baxter [10]. In this construction a Bethe wave
function is identified with the partition function. Remarkably, in this case the solutions of the
Bethe equations are given explicitly, in difference to most other applications of the Bethe ansatz.

Here we review the perimeter Bethe ansatz of the six-vertex model in the rational limit, which
has su(2) symmetry in the spin % representation. However, our notation differs considerably
from the original work [10]. In Section 2.1 we introduce the Baxter lattice along with the model
defined on it. Its solution in terms of the perimeter Bethe ansatz is discussed in Section 2.2. For
brevity we refrain from repeating Baxter’s proof of this result here. Instead, we will understand
it later in Section 6.4 as a special case of a more general connection between partition functions
of vertex models and Bethe vectors.

2.1. Rational six-vertex model on Baxter lattices

The lattice is defined by N straight lines in the interior of a circle which start and end at points
on the perimeter. The lines can be arranged in an arbitrary way. The intersection points of the
lines divide each line into a number of edges. However, only two lines are allowed to intersect at
a point. An example is shown in Fig. 2.1, where the perimeter is represented by a dotted circle.
The N lines and their 2N endpoints are labeled counterclockwise starting at a reference point
B on the perimeter. Each line has an orientation, which for the k-th line with endpoints (i, ji)
obeying 1 < iy < jir < 2N is given by an arrow pointing from j; towards ix. In addition, we
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=11 __...2=10

e, J1=9

Fig. 2.1. Sample Baxter lattice with N = 6 lines whose configuration is given by the endpoints G = ((1,9), (2, 10),
(3,8), (4,12),(5,6), (7,11)). Each line k has endpoints (i, jr), an orientation indicated by an arrow and carries a
rapidity 6, which is not shown in this figure.

assign a rapidity 6, to the k-th line. We refer to this configuration of lines as a Baxter lattice. It
is specified by the ordered sets
G =((i1, j), ... (N, ), 0=1,...,0n). (2.1)

To each vertex, i.e. intersection of two lines, we associate the Boltzmann weights of the
six-vertex model in the rational limit, which may be conveniently expressed as elements of an
R-matrix. They depend on the rapidities of the lines and state labels 1 or 2 which are assigned to
the adjacent edges of the vertex:

8

(. yIR(0 —6)1B.8)= 0 « + B 2.2)

14
9/

These weights are defined as elements of an su(2) spin % R-matrix

0—06"+1 0 0 0
1 0 0—06 1 0
R(O—-0)= —— . 23
( ) 0—0"+1 0 1 0—06 0 3)
0 0 0 0—6"+1

The Greek indices «, 8, y, § assigned to the edges take the values 1 or 2. These correspond to
the states |1) = ( (1)) or |2) = ((1)), or the respective bras. The R-matrix acts on the tensor product
of two states |8, 8) := |8) ® |6) and the matrix element is built with («, y| := (@¢| ® (y|. The six
non-zero elements of the matrix denote the six configurations of a vertex for which the number
of incoming states |1), |2) and outgoing states (1|, (2| are equal, respectively. This “conservation
law” is the so-called ice rule.

The boundary conditions of this vertex model are given by labels «;, and «j, that can take the
values 1 or 2 and are assigned to the endpoints (ix, ji) of the lines, see Fig. 2.2. We denote them
by

o= (x1,...,000N). 24
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Fig. 2.2. The sample Baxter lattice of Fig. 2.1 with a certain assignment of states, labeled by «, to the endpoints. Note
that the number of endpoints iy with a state labeled o;, = 1 and that of endpoints j; with o;, =1 agrees, i.e. the ice
rule (2.6) is satisfied. In this case a gives rise to x = (1,4, 6,9, 11, 12), see (2.12), which is used to express the partition
function Z(G, 0, &) in terms of a Bethe wave function @ (w, u, x) in (2.14).

These labels correspond to the states at the boundary edges of the lattice.
The partition function of a Baxter lattice is defined as

Z(G,0,0) = Z ]_[ Boltzmann weight. (2.5)
internal vertices
state
config.
The sum runs over all possible state configurations of the internal edges. We have to add an
additional prescription for lines not containing any vertex, see e.g. the line with endpoints (5, 6)
in Fig. 2.2. If such a line k has equal state labels o;, = «j, at the endpoints, it contributes a factor
of unity to the partition function. In case of differing labels o;, # «,, the partition function is set
to zero.
As a consequence of the ice rule at each vertex, the partition function can only be non-zero if
the number of endpoints i at outward pointing boundary edges with «;, =1 is equal to that of
endpoints ji at inward pointing edges with o j, =1,

ik | @i, = 13| = | | e = 1} (2.6)

The same condition then also holds for endpoints with state labels 2.

The R-matrix (2.3) and thus the Boltzmann weights at the vertices satisfy a Yang—Baxter
equation, see Section 3 below. This means that the partition function does not change if a line of
the lattice is moved through a vertex without changing the order of the endpoints in G. This is
usually referred to as Z-invariance.

2.2. Solution by Baxter

An exact expression for the partition function (2.5) was obtained in terms of a Bethe wave
function in [10]. The wave function of the Heisenberg spin chain with su(2) spin % symmetry
can be derived from a coordinate Bethe ansatz [19], as nicely explained e.g. in [20,21]. This was
generalized to a spin chain with inhomogeneities in [22,23], which is the case needed here. For
a spin chain of length L with P excitations (“magnons”) the wave function is parametrized by

w=(wy,...,wr), u=(1,...,up), X=(x1,...,xp), 2.7
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denoting respectively the inhomogeneities, Bethe roots and positions of the magnons with 1 <
X1 <--- < xp < L. The wave function takes the form

P
P (W, u,x) = ZA(Mp(l), ey Up(P)) 1_[ Ox, Upw), W), (2.8)
P k=1

where the sum is over all permutations p of P elements. The inhomogeneity-independent part is
given by

Upk) — Upq) + 1
Altpty. .. upe) = || % (2.9)
1<k<I<P p(k) p)

and the single particle wave function reads

x—1 L
g, w)=[Jw—wi+1 [] @—wp, (2.10)

j=1 j=x+1

see also [24].! Imposing periodicity of (2.8) in the magnon positions, one obtains the Bethe
equations
ﬁuk—wi—i—l:_Puk—ul—l-l @.11)
il Up — wj =1 uk—ul—l
with 1 < k < P. They guarantee that the wave functions (2.8) for different magnon configurations
x build up a transfer matrix eigenvector of the closed inhomogeneous Heisenberg spin chain. See
also Section 6.1 below for a recap of the Bethe ansatz in the algebraic formulation. Often (2.8)
for generic Bethe roots u is referred to as “off-shell” Bethe wave-function, while it is “on-shell”
in case the Bethe roots satisfy (2.11).

Now, we are ready to express the partition function (2.5) in terms of the Bethe wave function
(2.8). It is only non-trivial if the ice rule (2.6) applies, hence we restrict to these cases. We stress
again that our notation differs from [10]. The relation is established by the following procedure,
where in particular the parameters w, u and x of (2.8) are related to the variables G, 6 and o of
(2.5):

1. For a Baxter lattice with N lines, we employ a wave function with length L =2N and P = N
excitations, a situation usually termed “half-filling”.

2. The magnon coordinates x are related to e and G. They are given by the endpoint positions
ix at outward pointing edges with o;;, =1 and ji at edges directed inwards with o, = 2:

(i} = {ix Loy = DU {ji |, =2} (2.12)

These xj are then ordered as 1 < x] <--- < xy < 2N. See the example in Fig. 2.2.
3. Most importantly, the inhomogeneities w and the Bethe roots u are given in terms of the
rapidities # and G. For each line k£ with endpoints (ix, jx) we set

wi =0 + 1, wj, =0k +2, up =0k + 1. (2.13)

1 In the homogeneous case, i.e. w; =0, the wave function (2.8) can be recast into a more familiar form containing the
uk+1
up

S-matrix by dividing (2.8) by A(uy,...,u p) and changing variables to py = —i log
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Remarkably, this is an explicit solution of the Bethe equations (2.11). It is easily seen after
writing the Bethe equations in polynomial form in order to avoid divergencies, cf. Sec-
tion 6.1. Note also that the wave function (2.8) is invariant under a permutation of the Bethe
roots.

Under these identifications, we finally obtain the desired expression for the partition function
(2.5) in terms of the Bethe wave function (2.8):

2(G,0,0) =C(G,0) ' (=)H’*CDp(w, u, x). (2.14)
The exponent (G, a) is the number of endpoints iy with state label o, =2,

K(G, @) = |{ix | iy =2}|. (2.15)
The a-independent normalization is given by

C(G,0)=D(w,u,xp), (2.16)
where xo = (i1, ...,iy) is obtained from (2.12) with eg = (1, ..., 1), which means the state

labels are 1 at all 2N endpoints. Expression (2.14) is the perimeter Bethe ansatz solution of the
six-vertex model on a Baxter lattice in the rational limit. A derivation of this solution, different
from the original one in [10], will be presented in Section 6.4 as a special case of a more general
result.

3. From vertex models to Yangian invariance

In the previous section the computation of the partition function of vertex models on typically
non-rectangular Baxter lattices using the perimeter Bethe ansatz was reviewed. Here we vastly
generalize the class of vertex models, and we establish a new perspective on the computation of
the partition functions Z. This is achieved by connecting the problem to the powerful Quantum
Inverse Scattering Method (QISM) and relating Z to invariants |¥) of Yangian algebras. We
are led to a characterization of invariants |¥), which provides the conceptual basis of all further
studies. In particular, it will enable us later in Section 6 to construct Yangian invariants using a
Bethe ansatz.

In Section 3.1 we generalize the Baxter lattice of Section 2 in two respects. Firstly, we extend
the algebra from su(2) C gl(2) to gl(n). Secondly, we replace the spin % representation of su(2)
carried by every line with a more general representation A of gl(n), which in addition may differ
for each line. The resulting lattices will still be referred to as “Baxter lattices”, and we will
define the partition function of vertex models associated with them. In Section 3.2 we derive
identities satisfied by these partition functions, which are then translated into a set of eigenvalue
equations within the context of the QISM. To this end, the partition function Z is identified
with a component of a simultaneous eigenvector |¥) of all elements M,;(u) of a spin chain
monodromy with specific representations and inhomogeneities. More precisely, the eigenvalue of
this eigenvector |¥) is 1 for all diagonal monodromy elements M, («) and O for the off-diagonal
ones. In Section 3.3 we free ourselves from specific representations and inhomogeneities, and
consider the just derived set of eigenvalue equations for general spin chain monodromies. Noting
that such monodromies provide realizations of the Yangian algebra ))(gl(n)), we observe that
the set of eigenvalue equations characterizes vectors |¥) that are Yangian invariant. Later, in
Section 4.2.2, we will come across examples of Yangian invariants that fall outside the framework
of Baxter lattices in the sense of Section 3.2. These require the generalizations of Section 3.3.
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“aq  Aj.63

Z(G,A0,0)

; = D (a1l Ry 4,01 —62)le3, )
:5(13 14

AL 6 (v, aa|Rp, A5 (02 — 03)|as, ag)

Ay, 6

Fig. 3.1. Example of a (generalized) Baxter lattice with N = 3 lines and G = ((1, 3), (2, 5), (4, 6)), left side. Each line
carries a gl(n) representation Ay, a spectral parameter 6, two state labels «;, and «j, at the endpoints iy < ji and
an orientation indicated by an arrow. The dotted circle and the reference point B are not part of the Baxter lattice. The
associated partition function Z(G, A, @, &) is shown on the right, cf. (3.6).

3.1. Vertex models on Baxter lattices

Let us repeat the definition of the Baxter lattice spelled out in Section 2, and extend it by the
generalizations just mentioned. See also the simple example lattice in the left part of Fig. 3.1.

We start with a dotted circle on which we mark a reference point B. Notice that the circle and
the reference point are only used for the construction and will not become part of the Baxter lat-
tice itself. N straight lines, each connecting two points on the dotted circle, are specified in such
a way that in the interior of the circle only two of the lines intersect at a single point. Starting at
the reference point, the N lines and the 2N endpoints of these lines are labeled counterclockwise.
Each line has an orientation, which for the k-th line with endpoints iy < j is given by an arrow
pointing from j; towards i;. The choice of the reference point clearly affects the orientation of
the lines. In addition, we assign a gl(n) representation A, and a complex spectral parameter 6
to the k-th line. To the endpoints of this line we assign states of the representation Ay labeled
by a;, and «j,. A (generalized) Baxter lattice including boundary conditions is defined with this
data by the ordered sets

G:((ilvjl)»"'v(istN))v
A=(Ay, ..., Ay), 0=(6,...,0§), o= (ag,...,aoN). 3.1

In order to introduce a vertex model on such a Baxter lattice we also have to generalize the
Boltzmann weights of Section 2. We introduce them as

8

(@ yIRAn (0 —0)IB,8)= A0 « + B, (3.2)

14
A/,Q/

which are matrix elements of the R-matrix

Raa(0—0")= A0 + (3.3)

A6
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This R-matrix is an operator acting on the tensor product V4 ® V4 of the spaces of the two
gl(n) representations A and A’ with spectral parameters 6 and 6. The Boltzmann weights are
defined using orthonormal basis states of V4 and V4 labeled by Greek indices «, 8 and y, §,
respectively. Graphically each space is associated with one line. The orientation of (i.e. arrow
on) a line specifies the order of multiple R-matrices acting on one space. R-matrices “earlier”
on the line are right of “later” ones in the corresponding formula. In this sense the arrows in
(3.3) point from the “inputs” of the R-matrix towards the “outputs” or, in component language
(3.2), from the kets towards the bras. We will switch between the operator language and the
Boltzmann weights whenever it is convenient. The R-matrix (3.3) is required to be a solution of
the Yang—Baxter equation

Raa(0—0")Raa(0—0")Raan(60 —06")
=Raa(0'=0" YR a7 (0 —0")Raa (0 —0'), (3.4)

which acts in the tensor product V4 ® V4 ® V4~ and reads graphically

A6
A,0 = . (3.5)

A/, 9/ AH, 9// A/, 9/ A”, 0//

Now we can define the partition function of a vertex model on a (generalized) Baxter lattice,
see again the example in Fig. 3.1, employing the component language of Boltzmann weights.
To each internal edge of the lattice we assign a state of the given representation A, while the
states at the boundary edges are naturally fixed by «. Recall that A is associated to the entire
line, and therefore all internal and boundary edges which make up the line carry states in this
representation. Each vertex of the lattice is then translated into a Boltzmann weight as shown in
(3.2). The partition function Z(G, A, @, ) is the sum, ranging over all possible configurations
of states at the internal edges, of the product of all Boltzmann weights of the lattice. As already
in (2.14), we write symbolically

Z(G,A,0,a) = Z 1_[ Boltzmann weight. (3.6)
internal vertices
state
config.
If there is a line consisting of a single edge with differing states at the boundary, the partition
function vanishes.

In the operator description this partition function is a matrix element of a product of
R-matrices. These R-matrices and their order in the product are given by the form of the Bax-
ter lattice. A line with a single edge is translated into an identity operator on the corresponding
representation space. The matrix element is specified by «, and the sum and product in (3.6)
translate into matrix multiplication.

3.2. Partition function as eigenvalue problem
As a first step to understand the partition function of a Baxter lattice as an eigenvalue problem

within the QISM, we derive an identity satisfied by Z(G, A, 0, ). Recall that the construction
of Baxter lattices involves a dotted circle. Here we replace this circle by an arc, which is opened
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Ay, 0)

Fig. 3.2. The Baxter lattice introduced in the example of Fig. 3.1 after the dotted circle has been replaced by a dashed
auxiliary space line in the fundamental representation [J with spectral parameter u and states labeled a, b at the endpoints.
The indices c¢; are assigned to the edges of this auxiliary space. The states at the edges connecting this space with the
Baxter lattice are labeled g;.

at the reference point B and is to represent an actual space called auxiliary space. In addition, the
lines of the Baxter lattice are slightly extended such that they intersect the arc. This is depicted
by the dashed line in Fig. 3.2.

The auxiliary space Vg = C" carries the fundamental representation [J of gl(n) as well as a
spectral parameter u. The orientation is chosen clockwise. The bra and ket states at the endpoints
of the dashed line are labeled by the indices @ and b, respectively, which may take the values
1,...,n. An auxiliary space intersects all other lines twice, it introduces a layer of additional
vertices at the boundary of the Baxter lattice. The Boltzmann weights at these vertices correspond
to elements of R-matrices of the type R 4(u — 6) or R4 (0 — u), which are referred to as Lax
operators. These Lax operators also satisfy a Yang—Baxter equation of the form

O,y —=--NcFA-—-

Oou---/~-=- = , 3.7
A,0 ALY A0 A6

which is a special case of (3.5). In addition, we demand the unitarity condition
Oou --------- —--
Roou—0)R,g@@ —u)=1, ie. =
A0
(3.8)

using the graphical notation.

Making use of the Yang—Baxter equation (3.7) and the unitarity condition (3.8) we can com-
pletely disentangle the auxiliary space (dashed line) from the N spaces defining the Baxter lattice
(solid lines). Graphically one easily sees that this leads to a non-trivial identity for the partition
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Ou a=-=-=-===-mmmmmm o m = - < )
A2, 0 A2, 0

A1, 0 Ay, 0

= A3, 63

o] oy Q3 o4 o5 Qg o] o) Q3 o4 o5 Qg

Fig. 3.3. An identity for Z(G, A, @, «) of the sample Baxter lattice in Fig. 3.1 is derived by disentangling the dashed
auxiliary line from the solid lines using (3.7) and (3.8). The lattice has been deformed to emphasize that the row of
vertices involving the auxiliary line will be written as a monodromy shortly, cf. Fig. 3.4.

function Z(G, A, 0, o) of a Baxter lattice, see the example in Fig. 3.3. To obtain this identity
for a general Baxter lattice, we start by denoting the Boltzmann weights involving the auxiliary
space by

Mab(u’ Gv Aa 07 a’ ﬂ)
n N

= Y| [teir cilRos @ —60lci. Bi)

ClyescaN—1=1 \k=1

“(Bj» Cx—11R 2,006k — M)Iajk,c‘m) . (3.9

where each of the N lines of the lattice contributes two weights. In Fig. 3.2 we see an example for
the assignment of the indices ¢; and §; to the edges. Also, recall from (3.1) that the k-th line of
a Baxter lattice has the endpoints iy < ji. The states labeled ¢; withi =0, ..., 2N are assigned
to the edges of the auxiliary space. The state labels 8 = (By, ..., f2n) are placed at the edges
that connect the layer of vertices involving the auxiliary space to the Baxter lattice on which the
partition function is defined. Equating the Baxter lattice entangled with the auxiliary space to the
disentangled situation, we find

ZMub(u, G, A0,a,8)Z(G,A,0,B)=084. Z2(G,A,0,a). (3.10)
B
We see that the unraveled auxiliary line simply translates into §,, on the r.h.s. of (3.10). The
entire equation is depicted for an example in Fig. 3.3.
As will be shown next, the summed-over Boltzmann weights in Mg, (u, G, A, 0, o, B) can
be rewritten as matrix elements of an inhomogeneous spin chain monodromy M (1) with L sites.
This allows us to link with the QISM. The monodromy is introduced as

M) =Rz,(— v ROz, (0 —v) = O, T ----- . -_-_----F : (3.11)

Z1,v1 Er,vL

The j-th site carries a gl(n) representation Z; acting on the local quantum space V; and it
has an inhomogeneity v; € C. The total quantum space of the spin chain is the tensor product
V1 ® --- ® V. The auxiliary space carries the fundamental representation L] and the matrix
elements of the monodromy with respect to this space are denoted by

Map(u) := (a|M (u)|b). (3.12)
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Bi B2 B3 Ba Bs Be Bi Be
- T ...... ¥ ..... i ..... T ...... l ..... } <b O T ........ Tﬂ,

o] o) a3 oy o5 73 o 73

A0y A0 A0 A3,03 Ap,00 A3,03 E1.v) E6, V6

Fig. 3.4. Rewriting of the summed Boltzmann weights in M, (u, G, A, 0, «, ) on the Lh.s. as a matrix element
(| Mpq (n)|B) of a monodromy on the r.h.s. for the example discussed in Fig. 3.3. After applying (3.15) to the Lh.s.
all vertical lines have the same orientation. =; and v; of the resulting monodromy are given by (3.18) with G specified
in the caption of Fig. 3.1.

They are still operators in the total quantum space. In what follows, we require the Lax operators
associated with the Boltzmann weights in (3.9) to satisfy the crossing relation

R j(u—60+4ka)=Rag@ —u), (3.13)

where k4 is a representation-dependent crossing parameter, and the conjugation only acts on
the space V4. For a representation A realized by gl(n) generators J,; on V4, the conjugate
representation A appearing in (3.13) is defined by the generators

Jap=—J,. (3.14)

Assuming the matrix elements («|J;p|B) of the generators to be real, we obtain from (3.13)

o o
,BIRH x(u—0 d, .
“r |<aDc|A1$u<9+—';A)|);|3 d0§> ve. Dhu c___T_<_d - cml«_d’ o
B B
/LQ_KA A,@

where we have given both the equation and its graphic representation. Applying (3.15) to the
weights in the second line of (3.9) yields

n N
Map(W, G, A, 0,0,8)= (1‘[<c,~k_1,a,~k|Rmk<u—ek>|c,~k,ﬂik>

Cly.CON—1=1 \k=1

'<Cjk—1,ajk|R[|/ik(u_9k+KAk)|Cjks,3jk>> . (3.16)

In this form the index structure is such that all weights combine into matrix elements of the
monodromy (3.11) with L = 2N sites,

Map(u, G, A, 0, 0, B) = (| Map ()| B). (3.17)

As is usual for a monodromy, the labels of the total quantum space are hidden. Thus there is no
analogue of the labels G, A, 0 on the r.h.s. of (3.17). Here we use the notation |8) :=|8])® - ®
|Bon) € VI ® --- ® Von. For each line k of the Baxter lattice with endpoints iy < ji specified
in G, see (3.1), we obtain two spin chain sites with representations and inhomogeneities

By = Ay, vi, =6 and &, = Ay, Vi, =0k — ka,- (3.18)
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See also the example in Fig. 3.4. In addition, the partition function of the vertex model defines a
vector |¥) in the total quantum space of the spin chain via

(@|¥) = 2(G, A, 0, a). (3.19)

With (3.12), (3.19) and the orthonormality of the states |B) the identity (3.10) for the partition
function translates into

(0| Map ()W) = Sap(e|¥). (3.20)

Dropping the bra («|, (3.20) is the sought-for set of eigenvalue equations. These equations char-
acterize the vector |¥), which, according to (3.19), is built out of the partition functions of a
Baxter lattice for all possible boundary configurations «. Eq. (3.20) tells us that |¥) is a special
simultaneous eigenvector of all matrix elements of the specific monodromy defined by (3.11)
with (3.18). The eigenvector |¥) is special because its eigenvalues are fixed to be 1 for diagonal
monodromy elements and O for off-diagonal ones. Remarkably, (3.20) is an eigenvalue problem
within the realm of the QISM.

3.3. Yangian algebra and invariants

In this section we will analyze (3.20) in the context of Yangians. We will continue to employ
the monodromy (3.11). However, we shall allow for general representations &; and inhomo-
geneities v;, which in general do not have to obey the restrictions (3.18). Furthermore, an odd
number of sites L is now also permitted. This was not meaningful in the context of Section 3.2,
where each line of the Baxter lattice gave rise to exactly two sites.

Let us use the well-known explicit expression for the Lax operators at the sites of the mon-
odromy,

n
RDE(M—v)=f5(u—v)(l+(u—v)_1 > eabea> = O,u T< (3.21)
a,b=1
E,v

where the generators J,;;, of the representation & satisfy the gl(n) algebra

[Jab, Jeal = 8cvJad — SaaJeh- (3.22)

The n x n matrices e, are generators of the fundamental representation [J of gl(r). Their com-
ponents are (clegp|d) = 84¢0p4, Where |a) with a = 1, ..., n are the standard basis vectors of
Vo = C". Hence, egpecq = Spceaq. Moreover, fz(u — v) is a scalar normalization factor and 1
stands for the appropriate identity operator. Here it is that in C" @ Vz. The monodromy (3.11)
built out of these Lax operators satisfies the RTT-relation”

Rooy(u—u)M@)M'(u') =M (u')M@)Ro o (u — u'). (3.23)

This is proven with the so-called “train argument”, see e.g. [25], making use of the Yang—Baxter
equations for the individual Lax operators. The RTT-relation is an equation in the tensor product
of two fundamental auxiliary spaces Vg = C" and V7y = C", and the total quantum space of the

2 The name stems from the frequent use of the symbol “T (u)” for the monodromy M (u) in the literature.
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spin chain V; ® - - ® V. The monodromies M («) and M’ (u’) act respectively on the auxiliary
spaces Vg and V77, and on the same total quantum space. The remaining R-matrix in (3.23) is

n
Rop(u—u) =1+ (u—u)"" > eapey (3.24)
a,b=1

where the sum in the last term is the permutation operator on C" @ C". Written in terms of the
monodromy elements (3.12), the RTT-relation (3.23) becomes

(u" — u)[Map (), Meq (') ] = My () Maa (") — Mep (') Maa (). (3.25)

Importantly, the RTT-relation (3.23) is the defining relation of the Yangian algebra Y (gl(n))
in the QISM language, see e.g. [26]. A formal Laurent expansion of the monodromy elements
(3.12) in inverse powers of the spectral parameter u,

M) =M + MPDu™ 4 MPu™? .. (3.26)
yields the generators MH(Z) of the Yangian, where one demands

MY =5, (3.27)

Inserting the expansion (3.26) into (3.25), one obtains the commutation relations for these gen-
erators

min(r,s)
(r) (s) (r+s—q) 5 s(g—1) (q—1) 5 ,(r+s—q)
[Mab ’ Mcd] = Z (Mcb Mad - Mcb Mad ) (3.28)
g=1

The formulation of the algebra in terms of M(EZ) satisfying (3.28) is closely related to Drinfeld’s
first realization of the Yangian [27,28]. See also [29,30] for further reviews. Setting r = s =1
in (3.28) shows that the —Mi}j) generate the gl(n) symmetry, and the generators with r > 2
correspond to its Yangian extension. We also note that the monodromy elements transform in the
adjoint representation of this gl(n) symmetry,

(M), Mea(u)] = Moty )80 — Mag ()8, (3.29)

as may be seen by expanding (3.25) in only one of the two spectral parameters. Condition (3.27)
is satisfied up to a scalar factor by the monodromy (3.11) built out of the Lax operators (3.21).
We use a normalization of the Lax operators for which (3.27) holds.

Finally, we come to the primary objective of this section, the role of the main equation (3.20)
of Section 3.2 from a Yangian perspective. Let us recall (3.20) in the more general context of the
current section. Omitting the bra (a|, the set of eigenvalue equations’

Map(W)|¥) = bap|¥) (3.30)

may be graphically represented with the help of (3.11) as

3 In[31,32] such a set of equations is shown to be satisfied by the physical vacuum state of integrable two-dimensional
quantum field theories.
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= . (3.31)

E1, v Er, v E1, Er,vg

1

Expanding in u™ ", we see that (3.30) is equivalent to

MDDy =0 (3.32)

for » > 1. This means that |[¥) forms a one-dimensional representation of the Yangian as it
is annihilated by all generators M(EZ)~ Hence we call |¥) Yangian invariant. The observation
that (3.30) characterizes Yangian invariants is the main result of this section. Compared to the
expanded version (3.32), which is on the level of Drinfeld’s first realization, Eq. (3.30) has the
advantage that it may be understood within the QISM. As a result, powerful mathematical tools
become applicable. In particular, the formulation (3.30) will be exploited in Section 6, where this
equation is solved using an algebraic Bethe ansatz.

With this interpretation of (3.30) the partition function Z of a vertex model on a Baxter lattice
discussed in Section 3.2 is a component of a Yangian invariant vector |¥), cf. (3.19). However,
a generic solution |¥) of (3.30) with a more general monodromy M (u) built from representa-
tions &; and inhomogeneities v; not obeying (3.18) and possibly containing an odd number of
sites L does not correspond to a partition function in the sense of Section 3.2. Hence |¥) is
symbolized in (3.31) by a dotted “black box” without specifying the interior. In Section 4.2.2 we
will indeed find solutions of the Yangian invariance condition (3.30) that go beyond the Baxter
lattices of Section 3.2. The graphical representation of these solutions not only contains lines
and four-valent vertices, i.e. R-matrices, but also trivalent-vertices, which are associated with
solutions of bootstrap equations, see [33] and e.g. [34,35].

We end this section with a remark on a reformulation of Yangian invariance. The condition in
the form (3.30) can naturally be understood as an intertwining relation of the tensor product of
the first K with the remaining L—K spaces of the total quantum space. For this purpose we split
the monodromy (3.11) as

M@u)=Roz (u—v1) - Rogyw—vk) Rogy, w—vky1) - Rog, (u—vL).
(3.33)

Conjugating (3.30) in the first K spaces and using (3.8) and (3.13) for these spaces yields the
intertwining relation

Rogye,,(u—vk41) - Rog, (u—vp)Oy

:OWRDEK(u—vK —i—KEK)”-RDE‘-I(u—v]—I-KEI), (3.34)

where Oy := |@)T1" Tk This is depicted graphically as
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O - O . (3.35)

TT* T ________ T

EK4+1, VK1 Er,vL EK41, VK41 Er,vL

In case Oy corresponds to the partition function Z of a vertex model, this equation is nothing
but a consequence of Z-invariance, cf. [18] and also Section 2.1: The (dashed) fundamental
auxiliary line is moved through the entire Baxter lattice. An equation of the type (3.34) also
appeared recently in [12] in the context of a spectral parameter deformation of planar N = 4
super Yang—Mills scattering amplitudes. There it was referred to as “generalized Yang—Baxter
equation”. In the scattering problem, Yangian invariance of undeformed tree-level amplitudes is
usually formulated in the sense of (3.32), see [1] and e.g. [4]. Bearing in mind our ambitions to
construct Yangian invariants using a Bethe ansatz in Section 6, we focus in this paper on (3.30)
instead of (3.32) or (3.34).

4. Yangian invariants in oscillator formalism

In Section 3.3 we characterized Yangian invariants by the (system of) eigenvalue equations
(3.30) for matrix elements of a monodromy and equivalently by the associated intertwining re-
lation (3.34). Here we will begin our study of (3.30) by working out explicit solutions [¥) in a
number of concrete examples. We restrict our analysis to monodromies M (1), where the total
quantum space is built by tensoring finite-dimensional totally symmetric representations s and
their conjugates s, i.e. =Z; =s; or &; =§; foralli =1,..., L in (3.11). We need these conjugate
representations to make sure that the total quantum space contains a gl(n) singlet, which is a
necessary criterion for Yangian invariants, see (3.32) for the case r = 1.

The representations s and § are realized in terms of oscillator algebras, see Section 4.1. Since
the non-zero eigenvalues appearing in (3.30) are identical to 1, the normalization of the Lax op-
erators used in the construction is clearly important and will be discussed in some detail. After
that we are in place to construct the sought solutions in Section 4.2. Our first and simplest exam-
ples are the two-site monodromies of Section 4.2.1, where the representations of the two sites are
necessarily conjugate to each other. The inhomogeneities are then fixed by demanding Yangian
invariance, i.e. (3.30). This solution |¥) is graphically represented by a Baxter lattice consisting
of a single line. In Section 4.2.2 we construct three-site invariants. The corresponding intertwiner
Oy satisfying (3.34) is to be interpreted as a solution of a bootstrap equation in analogy with
[33]. Although these invariants leave the framework of Section 3.2, they are naturally included
in our definition of Yangian invariants. Finally, in Section 4.2.3 we study the Yangian invariant
related to the first non-trivial Baxter lattice consisting of two intersecting lines. The associated
intertwiner Oy contains a free parameter z and actually turns out to be the gl(n) symmetric
R-matrix Rgy (z) for arbitrary totally symmetric representations s, s’. We obtain a compact ex-
pression for this R-matrix in a certain oscillator basis. The spectral parameter z of the R-matrix
should not be confused with that of the auxiliary space in Section 3 denoted by u.
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4.1. Oscillators, Lax operators and monodromies

We start by specifying the two types of oscillator representations s and s of the gl(n) algebra
(3.22), which will be used for the local quantum spaces of the monodromy (3.11). These rep-
resentations are labeled by their highest weight. Consider the totally symmetric representation
of gl(n) with highest weight s = (s, 0, ..., 0), where s is a non-negative integer. We build these
representations from a single family of oscillators a, with a =1, ..., n. Furthermore, consider
the gl(n) representation with highest weight s = (0, ..., 0, —s), and construct it using a second
family of n oscillators b, . The n? generators J,; of the representation s and the second set of 1>
generators J,;, of § are given by

Jop=+aqay with [a5, 8] =6,  8,[0)=0, &, =a],

Jab=—bpb, with [bs, byl =845,  bal0)=0,  b,=b. .1
Commutators of oscillators that are not specified by these relations vanish. See e.g. [36] for a
review of such Jordan—Schwinger-type realizations of the gl(n) algebra. The generators (4.1)
act on the representation spaces Vs and V5. These spaces consist of homogeneous polynomials
of degree s in, respectively, the creation operators a, and b, acting on the Fock vacuum |0).
Therefore the number operators y »_, aa, and Y _, bsb, both take the value s. The highest
weight states in Vs and Vj are, respectively,

lo) = (a1)’10)  with Jualo) = s5814]0), Japlo) =0 fora <b,

15) = (b,)*|0)  with Ju4|5) = —$84416),  JaplG) =0 fora <b. 4.2)

The representation § is conjugate to s in the sense of (3.14),

Jablbysa, = — 1. (4.3)
The Lax operators (3.21) for the two representations defined in (4.1) read
n
Rog(u —v) = folu — v><1 +u—v" Y eabﬁhaa) = O,u T< @4
a,b=1
S, v
n
Ros(u —v) = fa(u — v>(1 —w—-v)" Y eabbubb> = O,u T< 4.5)
a,b=1
S, v

As discussed in Section 3.2, we require these Lax operators to possess the properties of unitarity
(3.8) and crossing (3.13), which will impose constraints on the normalizations fs(u) and f5(u).
The first property (3.8) yields

Ros(u —v)Rso(v—u) =1, Ros(u —v)Rso(v—u)=1. 4.6)

These equations contain the two additional Lax operators

Riso(v —u)= s,v , Rsg(v—u)= 5,0 — = “4.7)

-]
-]

O, u O, u
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with exchanged order of auxiliary and quantum space. These are obtained as solutions of the
Yang—Baxter equation in Vo ® Vs ® Vg and Vo ® V5 ® Vg, respectively, where they are the
only unknowns, cf. (3.4). The Lax operators (4.7) are symmetric in the sense that, up to a shift
of the spectral parameter, they can be expressed in terms of (4.4) and (4.5),

Rio(v—u)=Ros(v—u—s+1), Rsp(v—u)=Rosv—u+n+s—1). (4.8)
Then the unitarity conditions in (4.6) turn into constraints on the normalization of the Lax oper-
ators,

uu+s—1)
fs@) fs(—u—s+1) = ———, fs@) fs(-u+s—1+n)=1 (4.9)
uu+s—1)—s

The other condition, the crossing relation (3.13), reads for the representations s and S, respec-
tively,

ROs(t + k)b, oa, = Rso(—u)", RO +k5) = Rs(—=1) b, » (4.10)

where kg and kg are the crossing parameters. These conditions imply

ks=s—1, ks=—s+1—n, fs(w) = fs(—u). “4.11)

Notice that the two equations in (4.10) lead to only one constraint on the normalizations. Rela-
tions (4.9) and (4.11) are solved by the well-known normalization

rAgresE
F(l—i—b{)r(ﬂ"‘iﬁ'b{) :

fs(u) = (4.12)

For s = 1 this solution was obtained in [37]. The solution for higher integer values of s can be
constructed using the additional recursion relation

Fs) fs (u+5) = fors (W), (4.13)
where s +s' = (s + 5/, 0, ..., 0) denotes the addition of weights. Note that the solution (4.12) is
not unique.

Now, we concentrate on monodromies M (u) of the form (3.11), which are built entirely out
of the two types of Lax operators (4.4) and (4.5) with the proper normalization (4.12). Con-
sequently, at the i-th site of the monodromy the representation of the local quantum space is
E; =s; or &; =§; and the oscillator families building these representations are labeled afl or
bil, respectively. Further restricting to monodromies that allow for solutions |¥) of the Yan-
gian invariance condition (3.30), one finds severe constraints on the representation labels s; and
inhomogeneities v; .

One large class of such monodromies is obtained by considering Baxter lattices in the sense
of Section 3.2, where each line carries either a symmetric representation or a conjugate one.
If the k-th line of the Baxter lattice with endpoints iy < j; and spectral parameter ) carries
a symmetric representation labeled by A =s;,, then according to (3.18) and using (4.11) the
monodromy M (u) contains two sites

Eik:Sik, Uik=9k and Ejk=§jk, Ujk=9k—sik+1 WithsikZSjk. 4.14)

As a consequence, in M (u) the Lax operator R Siy (# — v;,) with the symmetric representation
is placed left of R 5, (u — vj,) with the conjugate representation. If instead the k-th line carries
the conjugate representation Ay =§;,, we obtain from (3.18) with (4.11)
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S1,v1

o] @)

Fig. 4.1. A Baxter lattice with one line specified by G = ((1,2)), A = (51), 0 = (v1), @ = (ay,«p), cf. (3.1), and
intersected by a dashed auxiliary space, left part. This arrangement of Boltzmann weights corresponds to the 1.h.s. of the
invariance condition (3.30) for [¥5 1), i.e. to My 1(u)|¥; 1). The elements of the monodromy M5 1 (u) in the right part of
the figure are obtained from the Boltzmann weights on the left side using the crossing relation (3.15). The representation
labels and inhomogeneities of this monodromy obey (4.17).

&)

iv = Sips vy, =0k and & =s;, Vi =0 +s; —1+n
with s;, =5, (4.15)

In this case the Lax operator with the conjugate representation is to the left of the one with the
symmetric representation. In the following, we will also study solutions |¥) of (3.30) where the
representation labels and inhomogeneities do not obey (4.14) or (4.15). These do not correspond
to a Baxter lattice in the sense of Section 3.2.

Let us comment on the normalization of the monodromies considered in the remainder of
Section 4. The constraints on their representation labels and inhomogeneities guarantee that the
gamma functions in the normalizations of the different Lax operators cancel and only a rational
function in # remains.

4.2. Sample invariants

After these preparations, we are in a position to actually solve (3.30) in a number of sim-
ple examples. From now on, we label the monodromies M g (u) and the Yangian invariants
|¥L k) by the total number of sites L and the number K of sites carrying a conjugate represen-
tation of type S. This is motivated by Section 5, where the invariant |¥ k) is compared with the
L-particle NK~2MHV tree-level scattering amplitude of planar " = 4 super Yang—Mills theory.
In addition, we focus on monodromies My, g (#) whose sites with conjugate representations of
type s are all to the left of the sites with s. This order corresponds to the gauge fixing used in the
Gramannian integral formulation in Section 5.

4.2.1. Line and identity operator

The simplest Yangian invariant [¥> 1) solving (3.30) corresponds to a Baxter lattice consisting
of a single line. In order to obtain the associated monodromy M> (u) where the site with the
conjugate representation is situated to the left of the symmetric one, we choose the line in the
Baxter lattice to carry a conjugate representation, cf. (4.15) and see Fig. 4.1.

This leads to the length-two monodromy

Mp 1 (u) = Rgs, (u — vi) RO, (4 — v2) (4.16)

with the following constraints on the representation labels and inhomogeneities:

vi=vy—n—sy+1, S1=52. “4.17)
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Recalling the Baxter lattice associated with this particular monodromy, we happily notice that
(4.17) agrees with (4.15). The overall normalization of the monodromy (4.16) originating from
those of the Lax operators (4.4) and (4.5) trivializes,

fs(u—v)fs,(u—v2)=1, (4.18)

where we used (4.17) and subsequently the unitarity condition for f5(u) in (4.9) and the relation
between the two normalizations fs(u) and fs(u) in (4.11). We can now easily solve (3.30) to
obtain the explicit form of the invariant,

n
W51) = (b -2%)™|0) with b’ &/ := ZB;:::{,, (4.19)
a=1
where we recall that the upper indices on the oscillators refer to the sites of the monodromy.
This solution is unique up to a scalar factor, which clearly drops out of (3.30). To obtain the
intertwiner associated to the invariant |¥; 1) we employ (3.34) with K =1 and use the value of
the crossing parameter «3, given in (4.11). This leads to

RD S (M - UZ)OWZJ = Ollfzyl RD S1 (Lt - UZ) (420)
with
n
Oy, , =¥ 1)1 = Z a, .--sﬁxz 10)(0[by, '--b}%. (4.21)
ai,..., asvzfl

After identifying the representation spaces Vs, and Vs,, which is possible because of s; = 52 in
(4.17), we see that O‘I’Zl reduces to s»! times the identity operator.

4.2.2. Three-vertices and bootstrap equations

The next simplest Yangian invariants are characterized by monodromies with three sites and
are of the type |¥3 1) or |¥32). We restrict once more to the case where the sites with conjugate
representations are to the left of those with symmetric ones. These three-site invariants clearly
leave the framework of Section 3.2. We represent them graphically by an extension of the Baxter
lattice, which in this case consists of a trivalent vertex. See Figs. 4.2 and 4.3 for the invariants
|¥3.1) and |¥32), respectively.

We start with a monodromy containing one conjugate site,

M3,1(u) = Ros, (u — vi) RO, (4 — v2) Ros; (u — v3), (4.22)

see also the right part of Fig. 4.2. Now the Yangian invariance condition (3.30) can be easily
solved if the parameters obey

w=vi+n+sy+s3—1, vs=vi+n+s3—1, S1 =82 + 53. (4.23)

In this case the normalizations of the Lax operators of types (4.4) and (4.5) appearing in (4.22)
trivializes using the relation (4.13) for f5(u), the unitarity condition for f5(u) and finally express-
ing f5(u) in terms of f(u) with the help of (4.11):

Jsi (w — 1) fo, (u — v2) foy (u —v3) = 1. (4.24)
Then one immediately checks that the solution of (3.30) is given by

w31) = (b -a%)™(b' -2%)"|0), (4.25)
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Sy + 83, U1

Fig. 4.2. The left part corresponds to the Lh.s. of (3.30) for [¥3 1),i.e. M3 | (u)|¥3,1). It contains a (solid) trivalent vertex,
which is an extension of the usual Baxter lattice, and a dashed auxiliary line. Using the crossing relation (3.15) and the
crossing parameters in (4.11), the Boltzmann weights involving the auxiliary line can be reformulated as elements of
the monodromy M3 1(u), as is shown on the right side. The necessary constraints on the representation labels and
inhomogeneities of the monodromy may be found in (4.23).

S| +82,
vii=v3—s —sp+1—n

Fig. 4.3. The Lh.s. M3 5 (u)|¥3 2) of (3.30) for [¥3 ») corresponds to the lattice in the left part. It consists of an extended
Baxter lattice in form of a trivalent vertex and a dashed auxiliary space. The Boltzmann weights containing the auxiliary
space can be formulated as elements of a monodromy M3 (u) using the crossing relation (3.15) with (4.11). This
monodromy is shown in the right part and the parameters of the monodromy obey the constraints (4.29).

where we fixed a possible scalar prefactor. We once again proceed to the corresponding inter-
twining relation. From its general form in (3.34) we obtain for K = 1 and 5, given by (4.11) the
relation

RD S (M - UZ)RD S3 (M — v+ SZ)OWl] = 0‘1/3_1 RD S (l/l - UZ) (426)
with
OW3~' = |.1/3’1>Tl = Z 531 o 5352 2—_iil o 52&'3 |0> <Olbél o bLllxz b1171 o b117,r3 ) (427)
ap,...,ds )
bron by

The intertwining relation (4.26) is known as bootstrap equation.
We move on to a monodromy with two conjugate sites on the left,

M32(u) = Rog, (u — vi)ROs, (4 — v2) ROy (u — v3), (4.28)

see also the right part of Fig. 4.3. Looking for solutions |¥32) of (3.30) with this monodromy
again leads to constraints on the representation labels and inhomogeneities,

vi=v3—n—s+1, vw=v3—n—s3+1, §3 =151 + 52. 4.29)
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Analogously to the discussion of the other three-site invariant, the normalization of the mon-
odromy (4.28) trivializes using (4.29):

S, (u—v1) fo,(u —v2) fo; (u —v3) =1. (4.30)

The explicit expression for the solution of (3.30) turns out to be
W3,) = (b'-a%)™ (b?-2%)™|0). 4.31)

Again we fixed a scalar prefactor. We employ the intertwining relation (3.34) in this case with
K =2 and «3,, ks, specified in (4.11) to derive the bootstrap equation

RO, (u — v3) Oy, = Oys, Ry, (u — v3 + 51) RO, (w0 — v3) (4.32)

with the solution

Oy, = |W3,) 1172 = Z a, ---a; abl 5,3%2|0)(0|b;1--~b3ls1bil~~-b,2,52. (4.33)
-ds
b1 bvi

4.2.3. Four-vertex and Yang—Baxter equation

Let us proceed to Yangian invariants associated with four-site monodromies. As an important
check of our formalism we will rederive the well-known gl(n) invariant R-matrix [38]. We there-
fore leave aside the rather trivial cases where the Baxter lattice consists of two non-intersecting
lines, and focus on the invariants of type |¥4 ), where the Baxter lattice is a four-vertex. Once
again, we may a priori vary the positions of the conjugate sites within the monodromy. We picked
a particular assignment, where all sites with conjugate representations are left of those with sym-
metric representations, see Fig. 4.4.

We use the four-site monodromy

My 2 (u) = Rgs, (u — v1) RO, (u — v2) RO, (u — v3) RO, (v — v4) (4.34)
with

vi=v3—n—s;+1, vw=v4—n—sy+1, $1 =353, §) = S54. (4.35)

This identification of the inhomogeneities and representation labels corresponds to a Baxter lat-
tice with two lines of type (4.15). In order to simplify the normalizations of the Lax operators in
(4.34), we note that the relations in (4.35) are two sets of conditions of the form appearing for
the two site-invariant in (4.17). Hence the normalization factors are simplified analogously to the
discussion in Section 6.3.1, which leads to

Joi w — 1) fo, (u — v2) foy (w0 — v3) fs, (4 —v4) = 1. (4.36)
For the solution of the eigenvalue equation (3.30) with this monodromy we make the gl(n) in-
variant ansatz

min(s3,54)

[Wao(vs —va))i=Wan) = > di(v3—va)|Ti) (4.37)
k=0

with

1) = (B! &) (67 %) (B &) (b -a%)0). (438)
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S1,v1 $2,v2

o] ap a3 oy

Fig. 4.4. The left part shows a Baxter lattice with two lines specified by G = ((1, 3), (2,4)), A = (51,52), 0 = (v{, v2),
a = (a1, 02, 3,04) and a dashed auxiliary space. It corresponds to My »(u)|¥4 ) as the Lh.s. of (3.30). The right
part contains the monodromy My (), which is associated with this Baxter lattice. The necessary identifications of the
representation labels and the inhomogeneities are written in (4.35).

In our formalism, the spectral parameter dependence of this four-site invariant emerges in a
natural fashion as the difference of two inhomogeneities which from now on is denoted by

Z:1=1V3 — V4. (4.39)

‘We have made this manifest by using the notation |¥4 2(z)). Substituting (4.37) into (3.30) yields
a recursion relation for the coefficients dj,

d(x) _ (k+D@E—-s3+k+1)

= (4.40)
di+1(2) (s3 —k)(s4 — k)
It is solved, up to a function periodic in the index k with period 1, by
1 k!
di(2) = (4.41)

(53 —k)(sa — kK2 T (z—s3+k+1)

Following the same logic as before we obtain the equation, which determines the intertwiner
corresponding to |¥42(2)), from (3.34) with K =2 and «3,, ks, found in (4.11). This yields the
Yang—Baxter equation in the form

Ry (u — v3) RO, (4 — v4) Owy 5 (2) = Owy (o) ROs, (4 — v4) RO, (u — v3), (4.42)
where
. min(s3,s4)
Owys(0) = }‘1’4,2(1))TI 2 = Z dk(2)Ox,, (4.43)
k=0
with
) 19 =3 =3 =4 =4 1 1 1 1
Or, = 1) 1T = Z a, ---a, ) ---a) [0)- (Ol '..bax3—kbb.v4—k+l by,
Al yuuny dyg
bro., bsi
2 2 2 2
bP bR BE bl (4.44)

In order to rewrite this form of the Yang—Baxter equation in a more standard way, we identify
space Vs, with Vg, and Vs, with Vg, , and simultaneously Oy, ,(;) with Rs; s, (z). This then yields

RO, (u — v3) RO, (u — v4) Ry 5, (2) = Ry, (2) RO, (4 — va) RO, (10 — 03). (4.45)

Indeed, (4.45) establishes that Rg; s, (z) must be the gl(n) invariant R-matrix [38] for symmetric
representations.
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In our approach R, s, () is expressed in an oscillator basis. To be as explicit as possible, it is
convenient to introduce the hopping operators*

1
_ =3 =3 4 =4 3 3,4 4
Hop, = 2 E a, ---agay ccagap -o-apa; c-a. (4.46)
Toa,..a
by,....by

On Vi, ® Vs, the operator Hopy, agrees with Or,, after the said identification of spaces, up to a
trivial combinatorial factor. This hopping basis allows us to express the R-matrix in the form

min(s3,s4) k!
R ) = . Hop;,. 4.47
s354(2) é FG—ss+k+1) OPyg ( )

The operator Hop,, produces a sum of states containing all possibilities to exchange k of the
oscillators in space Vs, with k of the oscillators in space Vg,, i.e. it “hops” k oscillators between
the two spaces. See also [12] for its supersymmetric and non-compact version. Note that we can
extend the summation range in (4.47) to infinity as Hop, with k£ > min(s3, s4) will annihilate any
state. Note also that in (4.47) the dependence on the representation labels of the coefficients can
be absorbed by a shift of the spectral parameter. Taken in conjunction, these two observations
allow to interpret the expression (4.47) in a way that does not depend on a specific symmetric
representation s.

Apart from the invariant (4.37) discussed so far, which corresponds to the R-matrix, there
exists another class of invariants based on the monodromy (4.34). Relaxing the conditions in
(4.35) one finds further solutions with s1 + s2 = s3 + s4. However, in the general case with
s1 7 s3 these invariants do not depend on a free complex spectral parameter.

5. Toy model for super Yang—Mills scattering amplitudes

The main result of Section 4 is summarized by explicit formulas for the sample invariants
(4.19), (4.25), (4.31) and (4.37) of the Yangian Y (gl(n)). The aim of this section is to establish
a relation between these expressions and tree-level scattering amplitudes of planar A = 4 super
Yang-Mills theory, which will often simply be referred to as “scattering amplitudes”. See e.g.
[39] for a recent review of the latter.

The essential connection between the expressions of Section 4, which are formulated using os-
cillator algebras, and these amplitudes is Yangian invariance. For the amplitudes this was shown
in [1] employing spinor-helicity variables.” A formal relation between these variables and cer-
tain oscillators was indicated in [4]. Nevertheless, the Yangian is different in both cases. In the
present paper we are focusing on finite-dimensional representations of ) (gl(n)) and not on the
infinite-dimensional representation of the Yangian of psu(2, 2|4) C gl(4|4), which is the one rel-
evant for amplitudes. Furthermore, at first sight the said formulas of Section 4 look somewhat
different from known expressions for super Yang—Mills scattering amplitudes.

In order to compare and relate these two different types of Yangian invariants, it turns out to
be most appropriate to formulate the scattering amplitudes as Graimannian integrals in terms of

4 This formalism has been developed in joint discussions with Tomek Lukowski. See [12], where these hopping oper-
ators are also employed.

5 Special diligence is required if the particle momenta are not in generic position, but there are collinear particles [40],
see also [41].
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super twistors [42]. In these variables the generators of the superconformal algebra, i.e. the low-
est level Yangian generators, are realized as first order differential operators [43]. The Yangian
invariance of these integrals was proven in [44], see also [45-47]. Furthermore, the super twistor
variables together with the associated differential operators obey the commutation relations of
the oscillator algebra. In the way the invariants of Section 4 are formulated within the framework
of the QISM, they naturally contain spectral parameters in the form of inhomogeneities. Hence,
we are led to compare these invariants to a recent spectral parameter deformation [11,12] of these
amplitudes.

Those aspects of the GraBmannian integral for undeformed and deformed scattering ampli-
tudes which are important for our discussion are briefly summarized in Section 5.1. In Section 5.2
we reformulate the invariants obtained in Section 4 with the aim of comparing them to the de-
formed amplitudes. As a first step, the invariants are expressed as multi-dimensional contour
integrals over exponential functions of creation operators. Next, the oscillator algebras are re-
alized in terms of multiplication and differentiation operators, see Appendix A for details. This
turns the exponential functions into certain delta functions, which are characteristic of Graiman-
nian integrals.

Rewritten in this way, the Yangian invariants of Section 4 are essentially gl(n) analogues of
the deformed tree-level scattering amplitudes of planar N = 4 super Yang—Mills theory. Hence,
we may think of them as a “toy model” for scattering amplitudes. Note that we will be able to
explicitly specify the multi-dimensional integration contour for the sample invariants at hand.

5.1. Grafimannian integral for (deformed) scattering amplitudes

All tree-level scattering amplitudes of planar A = 4 super Yang—Mills theory can be packaged
into a single compact Gramannian integral formula using super twistor variables, see [42] for a
recent formulation, and [13] for the original proposal. In this formalism the undeformed L-point
NK=2MHV amplitude is given by

A _/ [Tis [Tz dewa 15[54|4 Wk 4 XL: W
LE= ] 0. K. K+D)--(L..L+K—1) AR &

k=1 i=K+1

5.

These amplitudes are organized by the deviation K — 2 from the maximally helicity violating
(MHV) configuration. The minor (i ...i + K), i.e. the K x K subdeterminant, is built from the
columns i,...,i + K of the K x L matrix

1 0 Cl K+1 ClL
(5.2)

0 1 CK K+1 ... CKL

A gl(K) gauge symmetry of the GraBmannian integral (5.1) has already been fixed by the choice
of the first K columns in (5.2). The delta functions §** in (5.1) are given by the product of four
bosonic and four fermionic delta functions depending on the super twistor variables W,’l with a
point index i and a fundamental gl(4|4) index a,

L 444 L
644<W"+ > ckiW’) :=]‘[5(W{;+ > ck,-W[i). (5.3)
a=1

i=K+1 i=K+1
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The Gralmannian integral (5.1) is often treated in a formal sense, neither explicitly specifying the
domain of integration nor the meaning of the delta functions of complex variables. See, however,
e.g. [48] for a mathematically more rigorous approach.

Recently, a spectral parameter deformation of the GraBmannian integral for scattering ampli-
tudes has been introduced [11,12] in order to establish connections with the common language of
quantum integrable systems. Here we consider the deformations of the 3-point MHV amplitude
A3, 1, the 3-point MHV amplitude A3 », and the 4-point MHV amplitude A4 ». These will shortly
be compared with the Yangian invariants constructed in Section 4. The two 3-point amplitudes
are of special importance as they provide the building blocks for general L-point amplitudes.
The 4-point MHV amplitude is the first non-trivial example that can be constructed using these
building block. The deformations of these amplitudes read [12]

~ dcipders
A3,1 = / mtgn‘m(wl +012W2 +Cl3W3), (5.4)
c foly

12 13

~ dcizdeas
Ay = f S W W) (W 4 W), (5.5

13 23
~ dcizderaderz depg C13€24 ¢ oy
A4,2(Z) = - s
c13¢24(C13C24 — €23€14) \ C€13€24 — €23C14 ) (—C13C24 + €23C14)%3
. §nim (W1 +ei3W? + a8 (W2 + cosW? + caaW?), (5.6)

where the deformation parameters s; € C can be understood as representation labels. For these
low values of L and K a spectral parameter z appears only in the last expression (5.6). In addition,
in these deformations the super twistors are generalized to variables WW! with a fundamental
gl(n|m) index a and the delta functions are to be understood as the corresponding extension of
(5.3). In case of n|m = 4|4, s; = 0 and z = 0 the deformations AL,K reduce to the undeformed
scattering amplitudes .A;, g obtained from the GraBmannian integral (5.1). For our comparison
in the next section we will need the case n|0 with positive integer values of s;, because we will
be dealing with finite-dimensional, purely bosonic representations, and generic complex z.

5.2. Sample invariants as Grafimannian-like integrals

Let us collect the invariants (4.19), (4.25), (4.31), (4.37) of the Yangian ) (gl(n)) constructed
in Section 4 in terms of oscillators:

[¥2.1) = (b' -a%)”|0), (5.7)
ws,1) = (b'-a%)”(b' -a%)"|0), (5.8)
¥52) = (b -&)" (b?-a°)"|0), (5.9)
min(s3,s4)
1 k!
#420) = ,; (53 = )l(ss =)W Tz =53+ k+ 1)
(b 2% (b2 &%) (b2 - 2%) (B! -a%)"|0). (5.10)

At first sight there seems to be little resemblance between these formulas and the deformed
amplitudes (5.4), (5.5) and (5.6). Nevertheless, in this section we will reformulate these sa~mple
Y(gl(n)) invariants |¥;, k) and compare to the gl(n) version of the deformed amplitudes Ay k.
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We start by introducing complex contour integrals in some auxiliary variables ci;. In case of
the simplest two-site invariant (5.7) this is particularly easy and we write

— s21(—=1)%2 dcip _ . p1:2
|92,1) = (b -2%)10) = = — jgcsm" b 0), 5.11)
12

where the closed contour encircles the pole at the origin of the complex cj2-plane counterclock-
wise. In the same way each product b* - @’ of oscillators appearing in the further invariants (5.8),
(5.9) and (5.10) is translated into one complex contour integral in the variable cy;,

W5 1) = 52!53!(_'1)s2+s3 % dcipdeys —6125152—61351-53'0)’ (5.12)
I
s 2):S1!S2!(—.1)S‘“27§ dei3dens —ci3ba’—eb’ @’ ) (5.13)
BRI s
W42(0)) = (—1)s.3:S4 yg der3 d01'4 des degy MR k! (613624>k
Q2wi) c‘i33+lc;i+lc14cz3 i T@—=s3+k+1)\claex
. efc13l3'~537c14f)'~547c23l_)2~é37c24l_)2‘54|O)’ (5.14)

where the contour in each of the variables c; is again a closed counterclockwise circle around
the origin. The four-site invariant (5.14) can also be expressed in a slightly more compact form.
We notice that the range of the summation in (5.14) can be extended to infinity without changing
the value of the integral because the additional terms have a vanishing residue. Furthermore,
choosing a contour that satisfies |c13c24| < |c14¢23], the infinite sum is a series expansion of a
hypergeometric function leading to®

|l1/4 2(Z)) _ (—1)%3ts4 f dcyizdcig depz depg 2F1(1, 15z —s3+ 1, %)
' (27Ti)4 ci?r]c;‘ﬁlcmc% I'(z—s3+1)

. e—L‘13l_)I ~53—Cl4l_)1 -54—62352-53—62462-54 |0> ) (5 15)
After these reformulations the integral structure of the invariants ¥ k) already matches the one
of the deformed amplitudes flL, K , in the sense that in both cases there are L - K integration vari-
ables. The exponential functions of creation operators in the integrands of the sample invariants
|¥r. k) are reminiscent of the link representation of scattering amplitudes [13,50].

Next, we turn to the form of the integrand with the aim to express the exponential functions
of creation operators as appropriate delta functions like those in (5.4), (5.5) and (5.6). For this
purpose we employ different representations of the oscillator algebras at sites carrying symmetric
representations of type s and at sites with conjugate representations of type S, respectively:

1

W, |0y =1

|0y =8(W) for sites with S.

a= oy, for sites with s,

b=W,

[

I}

b= —dyy, (5.16)

6 Naively this expression does not seem to be valid at the special points s3 —z =1,2, 3, ... because in this case the
series expansion of the hypergeometric function is not defined. However, the divergence of the expansion is regularized
by the gamma function, see e.g. [49], and (5.15) is also valid at these points.
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The oscillators are realized as multiplication and differentiation operators in a complex vari-
able W. Consequently, as we already stressed above, §(WV) is a delta function of a complex
variable. These representations of the oscillator algebra are discussed in detail in Appendix A.

Before we apply (5.16) to the integral expressions of the invariants [, g) given in (5.11),
(5.12), (5.13) and (5.15), it is instructive to first look at the form of the Yangian generators
annihilating these invariants, recall (3.32). The corresponding monodromies all have a trivial
overall normalization factor, cf. (4.18), (4.24), (4.30) and (4.36). Hence, their expansion (3.26)
leads to the common Yangian generators

L L n L
) ' @ o .
Moy —ZJ;;C,, Mgy =" D Tidie+ Y vidh,, (5.17)
=1 i,j=1 c=I i=1
i<j

where the gl(n) generators at the sites are

i

ab =

: alal = Wi aW;; for sites with s;, (5.18)

—bib, =W dyyi +8ap  for sites with §;.

The inhomogeneities v; depend on the chosen invariant and are specified in Section 4. In this for-
mulation, the variables W,’l can be thought of as analogous to the super twistors used in scattering
amplitudes, where in case of the latter a is a fundamental gl(4|4) index. While the oscillator form
of the gl(n) generators in (5.18) has a different structure at the two distinct types of sites, the gen-
erators are, up to the shift 8,5, identical when written in terms of W:. The two distinct types of
representations, s; and §;, nevertheless manifest themselves in the structure of the states: The
invariants are polynomials in Wg if the i-th site carries a representation s;, and they contain delta
functions with argument W! and derivatives thereof for a site with §;. In discussions of the Yan-
gian invariance of scattering amplitudes the gl(4|4) generators also take an identical form for all
points of the amplitude, see e.g. [45].

Let us return to our main goal of applying (5.16) to the sample invariants |¥7, x) in the form
(5.11), (5.12), (5.13) and (5.15). Note that with (5.16) an exponential of creation operators be-
comes

—cral bk oy = WVadypk ¢k o ak i
e k%P )0) S e b 8(Wy) =8(Wy + ciW). (5.19)
Here |0) denotes the tensor product of the Fock vacua of the two oscillator algebras. The vacuum
of the oscillators aé is realized as 1 and that of b]g as a delta function. For the invariants |¥, k),
the symbol |0) stands more generally for the tensor product of the Fock vacua of all involved
oscillator algebras. This means, using (5.16), that

o= J] & W) withs"(W): ]‘[5 WE), (5.20)
ke{sites with s}

where the range of the first product extends over all sites carrying a conjugate representation of
type . Using (5.16), (5.19) and (5.20) the two-site invariant (5.11) is expressed as

(=1 [ d
W) = ( ZW awl) 3"(W1)=32( .) 7€ ijla"(whrcuwz). (5.21)

2mi
S p)

a=1

To show the equality of the middle and the right expression in this formula explicitly, we have
to evaluate a contour integral where the integrand contains a delta function. This is done by
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first acting on a holomorphic test function depending only on the variables Wé of the conjugate
site and subsequently evaluating a standard contour integral. Such test functions are discussed
in more detail in Appendix A. Note that such test functions do not introduce new poles in the
c12-plane. Proceeding analogously in the cases of the invariants (5.12), (5.13), (5.15) we obtain’

_ 2!s3!(=1)%2F3 [ dejaders 1 ’ 3
D e f CCRC 5 W+ eV + W), (5.22)
‘n ‘13
__s1lsl(=1)s1ts2 dcizders 1 3 2 3
|¥32) = ny T 0 WV HesW?)8t (W + casW?), (5.23)
€13 23
\‘1/ ( ))A (—1)%3ts4 % dci3dcig depz depg 2Pz —s3+1; %
42(2)) = -
@iyt S et e een Fz—s3+1)
W+ cisW? 4 a8 (W2 + coaW? + coaW?). (5.24)

Recall that for these invariants the integrations in all variables cg; are closed counterclockwise
contours encircling the origin and for (5.24) we have to assume in addition |c13¢24| < |c14€23].

Finally, we want to compare this version of the invariants to the deformed amplitudes sum-
marized in Section 5.1. The integrations and the delta functions appearing in these deformed
amplitudes are normally only understood in a formal sense, cf. [12]. To be able to make the
comparison, we chose closed counterclockwise circles around the coordinate origins for the in-
tegration contours in (5.4), (5.5) and (5.6). Furthermore, we interpret the delta functions in these
expressions in the sense of Appendix A as for our invariants.

First of all, no deformed amplitude flz, 1 is presented in [12]. However, at least for s, = 0 the
two-site invariant (5.21) is contained up to a normalization factor in the general formula (5.1) for
Ap k after replacing the delta function s44 by §". Both three-site invariants (5.22) and (5.23)
agree (again up to a constant normalization) with the gl(r]|0) version of the deformed amplitudes
provided in (5.4) and (5.5),

1¥3.1) o< A3 110, 1¥3.2) o A3 21uj0- (5.25)

As already mentioned, the 3-point amplitudes can be understood as the basic building blocks for
more general amplitudes. Hence, (5.25) is an important check of our formalism. Interestingly,
however, the integrand of the deformed amplitude A4,2(2) given in (5.6) does not fully agree
with that of |¥4 2(z)) found in (5.24). To relate these two expressions we note that at the special
points s3 — z = 1,2, 3, ... of the spectral parameter the series expansion of the hypergeometric
function in (5.24) simplifies to

_ (1)t deyz deyg ders depg 1 C13¢24 e
|W42(2)) = Pi)E — 53 s\ —
(2mi) €13¢24(C13€24 — €23€C14) €13CH4 \  C13C24 — €23C14
8" (Wl + 013)/\73 + 6‘14W4)8n (W2 + 623W3 + 024W4). (5.26)

This agrees up to a shift of the spectral parameter (and again a normalization factor) with the
deformed amplitude:

|W42(2)) oc Ag2(z — 253) o forss —z=1,2,3,... (5.27)

7" Similar formulas for invariants of the Yangian of gl(n) were also obtained recently in [51]. This was extended in [52]
to gl(n|m), which includes the gl(4|4) case relevant to scattering amplitudes.
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In [12] fl4,2(z) is also used for generic values of z. However, at least for our choice of the in-
tegration contours around zero this is problematic due to the branch cut of the complex power
function in (5.6). We want to stress that in the present formulation (5.26) is only valid at the
special points of the spectral parameter and the full four-site invariant, i.e. the invariant corre-
sponding to the R-matrix, is given by (5.24) involving a hypergeometric function. The interesting
question whether a gl(4|4) version of (5.24) might be a more appropriate deformation of the four-
point MHV amplitude A4 > than (5.6) should definitely be clarified.

6. Bethe ansatz for Yangian invariants

In Section 4 we discussed some sample Yangian invariants. Their relation to (deformed) su-
per Yang—Mills scattering amplitudes was then established in Section 5. We will proceed to a
systematic construction of Yangian invariants based on their characterization as solutions of the
set of eigenvalue equation (3.30), which involves the monodromy matrix elements M, (u). This
characterization shows that the invariant |¥) is a special eigenstate of the transfer matrix

Tu)=tr M), (6.1)
where the trace is taken over the auxiliary space V7 = C". Indeed, (3.30) implies
T(w)|¥)=n|¥) (6.2)

with the fixed eigenvalue n. The transfer matrix (6.1) can be diagonalized by means of a Bethe
ansatz, see e.g. the introduction [53] and [54] for the gl(n) case. Therefore a Yangian invariant
|W) is a special Bethe vector. This is the key observation leading to the construction of |¥) by a
Bethe ansatz for Yangian invariants in this section.

For simplicity, we first focus on gl(2) monodromies with finite-dimensional highest weight
representations in the quantum space. After a brief reminder of the general algebraic Bethe ansatz
technique for gl(2) spin chains in Section 6.1, we specialize in Section 6.2 to the case of Yangian
invariant Bethe vectors. This leads to a set of functional relations characterizing Yangian invari-
ants, which are equivalent to a degenerate case of the Baxter equation [55]. These equations
determine the Bethe roots and, in addition, constrain the allowed representation labels and inho-
mogeneities of the monodromy. Remarkably, a large class of explicit solutions of these functional
relations can be obtained. They show an interesting structure which is discussed in Section 6.3.
The Bethe roots form exact strings in the complex plane. The positions of these strings depend
on the inhomogeneities of the monodromy. The length of the strings, i.e. the number of Bethe
roots per string, is determined by the representation labels. We illustrate this structure using the
sample invariants already known from Section 4. We also present solutions to the functional rela-
tions corresponding to Baxter lattices with N lines. In particular, this includes lattices where all
lines carry the spin % representation of su(2). In Section 6.4 this special case is shown to repro-
duce Baxter’s original perimeter Bethe ansatz, cf. Section 2. Finally, in Section 6.5 we sketch the
generalization of the set of functional relations characterizing Yangian invariants from the gl(2)
to the gl(n) case, postponing the details to a future publication [56].

6.1. Algebraic Bethe ansatz for gl(2) spin chains
An extensive review of the algebraic Bethe ansatz for gl(2) invariant spin chains can be found

e.g. in [53]. Here we only recapitulate the essential ideas and highlight those features that are of
importance for the construction of Yangian invariants.
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The algebraic Bethe ansatz allows to diagonalize transfer matrices defined as traces of suitable
monodromies. We begin with a monodromy matrix M (1) satisfying the RTT-relation (3.23). In
the gl(2) case the auxiliary space is Vo = C2. Thus, it is convenient to think about the mon-
odromy as a 2 x 2 matrix with operatorial entries acting on the total quantum space,

(AW B
M _<C(u> D(u))' ¢

We define a transfer matrix 7 (1) as the trace of the monodromy (6.3) over the auxiliary space:
Tu)=A)+ D(u). (6.4)

Its diagonalization can then be achieved in an efficient way using the algebraic relations imposed
on (6.3) by the RTT-equation (3.23).

We assume the existence of a vacuum state |£2) characterized by the action of the monodromy
elements as

A)|$2) = a(u)|£2), D(u)|$2) =8(u)|$2), C)[$2) =0. (6.5)

The operators A(u#) and D(u) act diagonally on the reference state |£2) and hence (1) and
8(u) are scalar functions. The conditions in (6.5) are satisfied for monodromies (3.11) built up
from Lax operators (3.21), where the i-th local quantum space carries a gl(2) representation
g = (Sl.(l), Si(z)) with a highest weight state |o;) defined by

Jioy =10, Jhlo) =£P0i), Tl =0. (6.6)

For such a monodromy the reference state is

[2)=|o1)® - QloL), 6.7)
and we immediately obtain
L )] L )]
u—vi+§ u—vi+§
a@) =[] sz @- e L) =[[fa- W (69

i=1 i=1
However, here and also in Section 6.2 we do not use these explicit expressions for o (¢) and 8 ().
It suffices to demand (6.5). To proceed, we make an ansatz for the eigenstates of the transfer

matrix:
W)= B(u1)---Bup)|$2), (6.9)

where the P complex parameters uy are referred to as Bethe roots. In general the vector (6.9)
is not an eigenvector of the transfer matrix 7'(x). It is, however, if the Bethe roots satisfy a
set of Bethe equations. To derive them, we need some of the commutation relations between
the monodromy elements encoded in (3.25). With the notation introduced in (6.3) the relevant
commutators are

Aw)B(u') = %B(W)A(u) + ﬁB(u)A(u’),
—u' +1 1
D(u)B(u’) = %B(u’)D(u) — mB(u)D(u’),

Bu)B(u") = B(u')B(u). (6.10)
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In the next step we act with the operators A(u) and D () appearing in the transfer matrix (6.4) on
the vector (6.9). Using (6.10) one commutes these operators to the right and obtains after some
algebra, see [53],

Q(u—1) ia(uk)Q(uk— D gy 15[ B(u;)

A(M)W):Ol(u)Ww)—k:l P 1 Mk—bh"‘Q)’
ik
QD TS Qi +1) 1ty Bw)
D)l¥) =3)=go-=I¥) —;ﬁm) ]:[ L (6.11)
ik

Here we introduced Baxter’s Q-function, which is defined as a polynomial of degree P in the
spectral parameter and its zeros are located at the Bethe roots u;,

P
Q) =] [ —up). (6.12)

i=1

For |¥) of (6.9) to be an eigenstate of the transfer matrix we have to impose the Bethe equations

o(up) Qur — 1) +8(ur) Qug +1) =0 (6.13)
for k =1,..., P. These equations assure that the “unwanted terms”, namely the sums on the
right hand sides of each of the two equations in (6.11), cancel each other upon addition of the
equations.

A more common form of (6.13) is achieved by solving for the fraction of the two Q-functions,
and inserting (6.8) and (6.12):

P

L 0
Mk—Ui‘f‘f,‘ Huk_uj+1
| |7:— _— (6.14)

; i up—uj;—1
However, it turns out that for those solutions which are of particular interest in the following
sections we would divide by zero in (6.14). Therefore, we keep the Bethe equations in the original
form (6.13).

The eigenvalue 7 (1) of T (u) corresponding to the eigenstate |¥) is then given by the Baxter
equation

) =) 28D | 5y LUt 6.15)

Q(u) Q(u)

It is important to notice that, assuming the regularity of 7 (), «(u) and §(u) at the Bethe roots
uy, the Bethe equations (6.13) are a consequence of the Baxter equation (6.15). This is easily
seen by taking the residue of (6.15) at u = uy and using the form of the Q-function in (6.12).

With this algebraic Bethe ansatz the problem of diagonalizing the transfer matrix (6.4), i.e.
determining its eigenvalues (6.15) and the corresponding eigenvectors (6.9), is reduced to solving
the Bethe equations (6.13). Although this method is very powerful, it is in general difficult to
obtain solutions of the Bethe equations analytically and often one relies on approximations and
numerical methods. In the case of Yangian invariants the situation will turn out to be much more
favorable.
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6.2. Bethe ansatz for invariants of Yangian Y (gl(2))

Let us explicitly spell out the definition (3.30) of Yangian invariants for the gl(2) case using
the notation (6.3) for the monodromy elements,

Aw)|¥) = |¥), Dw)|¥) =|¥), (6.16)
Bw)|w)=0, C)|¥)=0. 6.17)

Here we separated the equations into (6.16) involving the diagonal monodromy elements and
(6.17) with the off-diagonal elements. To construct Yangian invariants |¥) we first solve (6.16)
by specializing the Bethe ansatz of Section 6.1. In a second step, we show that for finite-
dimensional representations the Bethe vectors |¥) obtained in this way automatically obey also
(6.17). The result of this procedure yields a characterization of Yangian invariants in terms of
functional relations that will be summarized at the end of this section.

Let us first concentrate on the diagonal part (6.16). Usually, cf. Section 6.1, one wants to con-
struct eigenvectors of the transfer matrix, i.e. eigenvectors of the sum A(u) + D(u). However,
here we additionally require that |¥) is a common eigenvector of A(u) and D(u). As in Sec-
tion 6.1 we make the ansatz (6.9) for the eigenvector and use the commutation relations (6.10) to
derive (6.11). However, we now need to demand that the “unwanted terms” are identical to zero
separately for each of the two equations in (6.11). This is guaranteed by

a(up) Qur — 1) =0, 8(ui) Qur +1) =0, (6.18)

which is the degenerate case of the Bethe equations (6.13) where each term vanishes individually.
In order to fix the eigenvalues of A(x) and D (1) tobe 1, Eq. (6.11) implies that we have to require

Qu—-1 OQ(u—+1)
Ou) Qu)
This is the degenerate case of the Baxter equation (6.15) where each term on the r.h.s. is equal
to 1. It leads to the required transfer matrix eigenvalue 7(u) = 2, which is the rank of gl(2).
Assuming the regularity of «(x) and 8(u) at the Bethe roots u = uy, one shows by taking the
residue as in Section 6.1 that (6.19) implies (6.18). Consequently, the problem of constructing

common solutions of the eigenvalue equations in (6.16) has been reduced to solving (6.19).
To address (6.17) involving the off-diagonal monodromy elements, we use (6.16), which we
already solved. We expand (6.17) using (3.26) to obtain

l=0au) , 1=46(u) (6.19)

MPwy=0, MPWw)=o0. (6.20)

As discussed in the context of (3.28), the generators —Mt(l})) (u) form a gl(2) algebra and thus
(6.20) means that |¥) has gl(2) weight (0, 0). The expansion of C(«)|£2) = 0 from (6.5) implies
Mz(}) |£2) = 0. Using the commutation relations (3.29) and (6.11) one shows

B(u;)

U — Ui

P
(0 Cur) @ ux — 1) 4 8(ur) Qg + 1)) ]_[
: ik
where we needed (6.18) for the last equality. As we are dealing with a finite-dimensional gl(2)
representation, (6.20) and (6.21) imply that |¥) is a gl(2) singlet. Hence, also

1
k

P
12) =0, 6.21)

MP 1wy =o. (6.22)
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Finally, we obtain from (3.29) the relations
[M3), Aw) — D@)] =2Bw), [M{), D) — A@w)] = 2C ). (6.23)

Acting with these on [¥) and using (6.16), (6.21) and (6.22), we see that also the off-diagonal
part (6.17) of the Yangian invariance condition is satisfied.

In conclusion, we have reduced the problem of constructing invariants |¥) of the Yan-
gian ) (gl(2)) to the problem of solving the functional relations (6.19). Given a solution
(a(u), 8(m), Q(u)) of (6.19), where the Q-function is of the form (6.12), and both « (1) and
8(u) are regular at the Bethe roots uy, the Bethe vector |¥) given in (6.9) is Yangian invariant. It
is convenient to represent the functional relations (6.19) in a slightly different form. Remarkably,
the system of two equations in (6.19) can be decoupled into an equation that depends only on the
eigenvalues (6.5) of the monodromy acting on the reference state and not on the Bethe roots,

l=a)s(u—1), (6.24)
and a further equation also involving the Bethe roots contained in the Q-function,
Q)
——— =5(u). 6.25
o+ 1) (u) (6.25)

The main task is to understand the solutions of (6.24). As «(x) and §(u) contain the represen-
tation labels and inhomogeneities, cf. (6.8), this equation determines those monodromies that
correspond to a Yangian invariant, i.e. for which (3.30) admits a solution |¥). Once a suitable
solution of (6.24) is found, the difference equation (6.25) can typically be solved with ease for
the Bethe roots uy. This is in stunning contradistinction to the usual situation in most spin chain
spectral problems, where the Bethe equations are very hard to solve. Substituting the Bethe roots
into (6.9) yields the Bethe state, and hence the invariant |¥). We term this construction a Bethe
ansatz for Yangian invariants.

6.3. Sample solutions of gl(2) functional relations

At present, we lack a complete understanding of the set of solutions to the functional relations
(6.24) and (6.25). Gaining it should lead to a classification of invariants of the Yangian Y (g((2)),
clearly an interesting problem for future research. In this paper we take first steps and analyze
a few sample solutions. We show how the gl(2) versions of our favorite invariants in oscillator
form with representations of type s = (s, 0) and s = (0, —s), cf. Section 4, fit into the framework
of the Bethe ansatz for Yangian invariants. In particular, we again discuss the invariant [¥> 1),
which was represented by a Baxter lattice with a single line, the three-vertices |¥3 1) and [¥3 ),
as well as the four-vertex (R-matrix) |¥4 2(z)). We also consider the invariant associated with a
Baxter lattice of N lines. For all these examples the Bethe roots are given explicitly. They arrange
themselves into strings in the complex plane.

6.3.1. Line

Let us recall the representation labels and inhomogeneities for the gl(2) case of the invariant
|¥2.1) discussed in Section 4.2.1 and associated with the spin chain monodromy M> 1(u) with
L =2 sites, cf. (4.16) and (4.17):

M
63)

1 =51, 2 =52,

vi=vy— 1 —s9, S1=52. (6.26)
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sy 41

. .
Usy — Ugy—] u uj

Fig. 6.1. The Bethe roots u associated with the Yangian invariant |¥; ) of Section 4.2.1 arrange into a string between
the two inhomogeneities v and vy, cf. (6.29) in the complex plane. This string consists of s, roots with a uniform real
spacing of 1.

With these relations and the trivial normalization (4.18) of the monodromy, (6.8) simplifies to

- —v+1
a(u)zw’ 5(,4):&_
u—p u—uvr+14+s
In this form one directly sees that the first functional relation (6.24) holds. The remaining relation
(6.25) is solved by

(6.27)

u—va+s2+1)

woT
W) == "0t D)

52
=[Jw—v+n. (6.28)
k=1

where the freedom of multiplying this solution by a function of period 1 in u has been fixed
by imposing the polynomial form (6.12) of the Q-function. Because s is a positive integer, the
gamma functions in (6.28) indeed reduce to a polynomial and we can read off the Bethe roots as
zeros of the Q-function,

ur=vy—k fork=1,...,s. (6.29)

They form a string in the complex plane, see Fig. 6.1. Note that, as is usual for a gl(2) Bethe
ansatz, the labels of the Bethe roots can be permuted because the operators B(u) appearing in
the Bethe vector (6.9) commute for different values of the spectral parameter u, cf. (6.10). Finally,
we want to construct the Yangian invariant Bethe vector (6.9) corresponding to this solution of
the functional relations. For this purpose we need the reference state (6.7) for the representations
specified in (6.26). It is given by a tensor product of the highest weight states (4.2):

12) = (by) ™ (a})™10). (6.30)
Then we can evaluate (6.9) using (6.26), (6.29) and (6.30), where we note that because of (4.18)
also the normalization of the operators B(uy) is trivial. Some details of this straightforward
computation for general s, € N are given in Appendix B. One finds

W) = B(u1) - Bug,)|2) = (=1)2(b' -2%)7|0) oc [¥,1). (6.31)

Thus, our Bethe ansatz for Yangian invariants nicely matches [¥, 1) as given in (4.19).
6.3.2. Three-vertices

In Section 4.2.2 we discussed two different three-site invariants. For the gl(2) case the mon-
odromy M3 1 (u) associated with the first invariant [¥3 1) is defined by, cf. (4.22) and (4.23),

&3]
[
Q)

1 =51, 3 =83,

vy =v1 + 145+ 53, v3=1v1 +1+s3, 1 =52 + 53. (6.32)

2 =82,

With (6.32) and the trivial normalization of the monodromy (4.24), the eigenvalues of the mon-
odromy on the reference state of the Bethe ansatz in (6.8) turn into



R. Frassek et al. / Nuclear Physics B 883 (2014) 373—424 409

52

s34+ 1
I i
V] v3 v2
O . . e . ® . e . . O
uj up Usy Ugz+1  Us3+2 Ugy—1 Us)

Fig. 6.2. The invariant |¥3 1) gives rise to a real string of s; uniformly spaced Bethe roots uy in the complex plane, see
(6.35). They lie in between the inhomogeneities vy, vo and one root coincides with v3.

u—v;—1 u—v—S
aly)y= —, ()= ——. (6.33)
u—vl—sl—l u — v

Obviously, they obey (6.24). The other functional relation (6.25) is uniquely solved by

I'(u

O) = m H(u—vl k), (6.34)

because the Q-function is of the form (6.12). The zeros of (6.34) yield the Bethe roots

up=vi+k fork=1,...,s;. (6.35)

For this invariant the Bethe roots again form a string in the complex plane, see Fig. 6.2. We now
turn to the construction of the associated Bethe vector. With (4.2) the reference state (6.7) for the
Bethe ansatz with the representation labels found in (6.32) becomes

|2) = (b)) (a1)™ (a})"10). (6.36)

Notice that one Bethe root is identical to an inhomogeneity, uy,+1 = v3. Consequently, the Lax
operator Ry, (s;+1 — v3), cf. (4.4), contributing to B(us,+1) in the Bethe vector (6.9) diverges.
Nevertheless, we obtain a finite Bethe vector using an ad hoc prescription, which we verified for
small values of s and s3: First, all non-problematic Bethe roots are inserted into (6.9), while
ug,+1 is kept generic. In the resulting expression the divergence at uy, 11 = v3 disappears. Hence,
in a second step, we can safely insert the last root, leading to

(W) = B(uy) -+ B(uy,)12) = (=113 (b' - 2%)™ (b - 2%)7|0) o |3 1). (6.37)

Therefore, we have obtained also the three-site Yangian invariant |¥3 ;) presented in (4.25) from
a Bethe ansatz. A derivation of (6.37) for general s, s3 € N and a better understanding of the
divergence should be possible, perhaps in generalization of the method detailed in Appendix B.

So-called “singular solutions” of the Bethe equations leading naively to divergent Bethe vec-
tors are well known for the homogeneous su(2) spin % chain, see e.g. the recent discussion
[57,58] and the references therein. Such solutions were already known to Bethe himself [19] and
appeared also early on in the planar N = 4 super Yang-Mills spectral problem [59]. There are
several ways to treat them properly, cf. [57], which might also be applicable for the inhomoge-
neous spin chain with mixed representations needed for the three-site invariant [¥3 ).

The gl(2) version of the second three-site invariant discussed in Section 4.2.2, |¥3 ), is char-
acterized by the monodromy M3 () defined in (4.28) and (4.29),

6]
&3]
]

1 =51, 2 =8, 3 =83,
vi=v3—1—ysq, vw=v3—1—51—52, §3 =151 + 52. (6.38)
The trivial normalization of this monodromy, cf. (4.30), together with (6.38) implies that (6.8)

simplifies to
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s1+1

52

° ° . °
Usy  Usy—1 Usi+2  Usp+1  Usy uz uy

Fig. 6.3. The string of Bethe roots u; belonging to the invariant [¥3 7). The roots lie between the inhomogeneities v,
and v3. One of them coincides with vy.

U —v3+ 53 u—v3+1
=— " S(u) = ——M —, 6.39
() U — 3 @) u—v3+1+s3 ( )
which is a solution of the functional relation (6.24). The second relation (6.25) is then solved by

 Tu-vit+sz+1)
Ou) = o Pp— —g(u—vg,—i—k). (6.40)

Demanding this solution to be of the form (6.12) guarantees its uniqueness and allows us to read
off the Bethe roots

ur=v3—k fork=1,...,s3. (6.41)

Once again, they form a string, see Fig. 6.3. To obtain the corresponding Bethe vector, we first
evaluate the reference state (6.7) with (4.2) and the representations labels given in (6.38). This
leads to

12) = (b})" (b3)" (a7)" " 10). (6.42)

Just like the other three-site invariant, the operators B(us,+1) diverges because uy, 11 = vi. With
the same ad hoc prescription as above, we obtain again a finite Bethe vector that, for small values
of s1 and s, has the explicit form

|¥) = B(up)-- B(uy))|22) = (=D ™ (b' - a%)" (b* - 2°)|0) oc |¥3.2). (6.43)
This matches the form of the three-site invariant |¥3 ») given in (4.31).
6.3.3. Four-vertex

The gl(2) version of the four site invariant [¥4 2(v3 — v4)) of Section 4.2.3 is characterized
by a monodromy matrix M4 2(u) that is specified by, cf. (4.34) and (4.35),

8
8
Q)
Q)

1 =Sy, 2 =83, 3 =83, 4 =S4,

vi=v3—1—s3, v=v4—1—34, 1 =153, §2 = S54. (6.44)

For this monodromy the overall normalization (4.36) is once again trivial and with (6.44) the
eigenvalues (6.8) become

a(u):u—v3+S3u—v4+S4’ 5(u) = u—v3+1 u—uvg4+1

u—v3 U — vy T u—wmtl4ssu—va+14ss

(6.45)

They obey the functional relation (6.24). A solution of (6.25) is given by
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Fig. 6.4. The Bethe roots u corresponding to the four site invariant [¥y (2)), i.e. to the R-matrix Rs; s, (z), arrange

into two real strings in the complex plane. The strings consist of s3 and s4 roots, respectively. The difference of their
endpoints z := v3 — vy, cf. (4.39), is the spectral parameter of the R-matrix.

_F(u—v3+33+1)F(u—v4+S4+1)

QW) = i T+l T—vst D)
53 54
=1_[(u—v3+k)1_[(u—v4+k). (6.46)
k=1 k=1

Because of (6.12) this solution is unique. The Bethe roots
uk=v3—k fOI'k:l,...,S3,
Ukys; =V4—k fork=1,..., 54, (6.47)

which we read off as the zeros of (6.46), form two strings, see Fig. 6.4. To construct the Bethe
vector (6.9) we need the reference state (6.7) for the representation labels found in (6.44):

12) = (b3)™ (a7)™ (b3)™ (a1)™'10). (6.48)
Then the explicit evaluation of (6.9) for small values of s3 and s4 yields

W) = B(u1) - - B(usy) B(usy41) - - - BUsy454)182)

min(s3,s4) min(s3,s4) 1

= (—1)% 5 g3154! — —I+D7!

(=D 53184 H (v3—vg+s4—1+1) Z 53— )loa — O

=1 k=0
min(s3,54)
- JT s—vs—ss+0(b!-a%)" 7 (b2 a%)" (b2 2% (b' - a*)"|0)
I=k+1

o |Wa2(v3 — va)), (6.49)

which matches the expression for |Wy 2(z)) from (4.37) with (4.38), (4.39) and (4.41). As the
invariant |¥4 >(z)) can be understood as the R-matrix Rs;s,(z), we might say that this R-matrix
is a special Bethe vector.

6.3.4. Baxter lattice with N lines

We know from Section 4 that the invariants |¥; 1) and |¥4 2(z)) can be understood as a Baxter
lattice with, respectively, one and two lines carrying conjugate symmetric representations. Here
we work out the solution to the functional relations (6.24) and (6.25) for a Baxter lattice consist-
ing of N lines of this type. In this case the monodromy has L = 2N sites. According to the gl(2)
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version of (4.15), the k-th line of the Baxter lattice with endpoints iy < ji, the representation
Ax =S5;, and a spectral parameter 6y gives rise to the two spin chain sites

=
(=73

ir = Si»

Ejp =Sji»
Vi, = O, Vj, = Ok + i, + 1, Siy = Sjy- (6.50)

This turns the monodromy eigenvalues (6.8) into

N
Vj, + 58 U—vj +5j

au) = Hfs,k(u Vi) fs;, (u — vjk)—zl_[i"
k=1 Vi el W TV
Sij, ix)Jsj Jk — U,k - u Vjp +1 +S]k

For the last equahty in both equations we used that each factor of the products corresponds to
one line of the Baxter lattice. Using (6.50) the normalization factors belonging to each of these
lines reduce to 1 analogously to the case of a single line explained before (4.18). Obviously, the
eigenvalues in (6.51) satisfy (6.24). The relation (6.25) is solved by

N N S
_ F(u—vjk—i—sjk DI B

which is the unique solution because we also demand the Q-function to be of the form (6.12).
We read off the Bethe roots as zeros of (6.52),

up=vj —k fork=1,...,s;,
Ukts; =vj, —k fork=1,....5j,
uk+s_/N71=UjN_k fork=1,...,5j. (6.53)

They arrange into N strings. The k-th line of the Baxter lattice with representation Ay =;,
leads to one string of s;, = s, Bethe roots with a uniform real spacing of 1 lying between the
inhomogeneities v;, and v, . The arrangement of these strings in the complex plane is determined
by the spectral parameters 6, = v;, of the lines. Next, we concentrate on the associated Bethe
vector. With the form of the highest weight states (4.2) and (6.50) the reference state (6.7) turns
into

N
]_[ b5 )" (af¥) "¢ |0). (6.54)

The Yangian invariant is then given by the Bethe vector (6.9). Note that as in the special cases of
one- and two-line Baxter lattices discussed, respectively, in Section 6.3.1 and Section 6.3.3, for
generic values of 6; = v;, no Bethe root coincides with an inhomogeneity. Consequently, these
Bethe vectors with an even number of spin chain sites are manifestly non-divergent.

We finish with a remark on the general structure of the set of solutions to the functional
relations (6.24) and (6.25). Notice that the solution of these relations defined by (6.51) and (6.52)
is actually the product of N line solutions of the type discussed in Section 6.3.1. More generally,
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given two solutions (o (), §1(u), Q1(u)) and (a2 (u), 62(u), Q2 (u)) of the functional relations,
a new one is obtained as the product

(1 ez (u), 81)82(w), Q1 () Q2(w)). (6.55)

Using this method one can construct new Yangian invariants by “superposing” known ones. For
example, it should be possible to combine line solutions with the three-vertices discussed in
Section 6.3.2.

6.4. Relation to perimeter Bethe ansatz

In the previous Section 6.3.4 we analyzed the solution to the functional relations (6.24) and
(6.25) that corresponds to a Baxter lattice with N lines. Here we show that a special case of it
reproduces the perimeter Bethe ansatz of Section 2. Therefore, we first use special properties
of the gl(2) Lax operators. Then the Baxter lattice is specialized to the case where all lines
carry the conjugate of the fundamental, i.e. the antifundamental, representation. This allows us
to express the associated Yangian invariant [¥), which was discussed in Section 6.3.4 in the
algebraic formulation of the Bethe ansatz, in terms of a coordinate Bethe ansatz wave function.
The resulting expression matches the perimeter Bethe ansatz formula (2.14) for the partition
function Z(G, 6, a).

In order to obtain the special properties of the Lax operators, we employ a relation between
representations s and s, which is valid in the gl(2) case but not for gl(n) in general. The generators
(4.1) and the highest weight states (4.2) of both representations are linked by

UdapU™" = Jablbyra, +58aps  Ulo) = (=1)°18) Ibira,s (6.56)
where the unitary operator

U=e?@2-3a)  oheys U]0) =10), a,U =Uay, aU =—Ua,. (6.57)
To avoid spurious divergencies in the following, we introduce Lax operators with a different
normalization than before,

2

Ros(u—w) =@ —w)l+ Y ewpdpay. (6.58)
a,b=1

They build up a monodromy with inhomogeneities denoted by wy;,

M(u) = Ros, (u —wi) -+ Rog, (u —wp). (6.59)
Using (6.56), the ordinary Lax operators (4.4) for the representation s and (4.5) for S can be
expressed in terms of (6.58) as

Js(u) = fs(u)
u

RO, ROs0lya, = URps(u —s)U™". (6.60)

Ros(u) =

These properties at hand, any gl(2) monodromy M (u) consisting of R ¢(u) and Rs(¢) can be
reformulated as M () that solely comprises Lax operators of the type Rrjq(ut).

We will apply this observation to the monodromy specified in (6.50) which is associated
with a Baxter lattice with N lines. To connect with the perimeter Bethe ansatz, we first need to
specialize to lattices where each line carries the antifundamental representation,
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A:((I,O),...,(I,O)), (6.61)
cf. (3.1) for the notation. From (6.61) together with (6.50) we have s;, = s, = 1. Hence, the
strings of Bethe roots (6.53) degenerate into individual points in the complex plane,

up=6t+1 fork=1,...,N. (6.62)

This pattern of Bethe roots is identical to that of the perimeter Bethe ansatz in (2.13). Using
(6.60), we express the monodromy defined by (6.50) and (6.61) as

2N N
1 Y —1 : ik
M@l i = ]_[ rviWM(u)W with W = [ [ U, (6.63)
i=1 k=1
where the normalizations of the Lax operators cancel as explained after (6.51). The unitary U ik
acts on site ix. Thus W transforms all conjugate sites. The parameters of M (u) are

si = (1,0), w;, =6 + 1, wj, =6 +2, (6.64)

where the inhomogeneities w;, originating from the conjugate sites of M (u) are shifted by 1 with
respect to the v;, in (6.50). The inhomogeneities in (6.64) agree with those of the perimeter Bethe
ansatz in (2.13). To obtain the highest weight state |£2) in the total quantum space of M (i), we
apply (6.56) to |£2) in (6.54),

12) = (=D W2) i q =21 ---a1|0). (6.65)

Egs. (6.63) and (6.65) allow us to express also the Bethe vector (6.9), i.e. the Yangian invari-
ant ) of the Baxter lattice, as a Bethe vector that is constructed using the matrix elements
Mi2(u) = B(u) of the new monodromy,

N 2N

) g = DV ]

kltl

with &) = B(u1) -~ B(un)|$2). (6.66)

Next, the algebraic Bethe ansatz vector |} is represented by coordinate Bethe ansatz wave
functions. For monodromies M (u) of the type (6.59) with s; = (1, 0) at all sites one has, see e.g.
[60] and Appendix 3.E of [24],°

&) =B@uy)---Bup)|2) = Z D(w,u,x) Jy! - Iy T 1R2), (6.67)

1<y <<xp<L

with generators J i = =a ab and the wave function @ (w, u, x) in (2.8). The arguments w, u and
x denote respectively the inhomogeneities w;, Bethe roots u; and magnon positions x, cf. (2.7).
We apply (6.67) in (6.66) with L =2N sites and P = N Bethe roots.

To obtain a partition function from the Yangian invariant vector |¥), recall (3.19):

Z(G,A,0,a) x (a|¥). (6.68)

For a Baxter lattice with the representations (6.61) the possible states are |&) = |01) ®- - - Q |aan)

with o; = 1, 2. After the replacement |O(>|bik'_>aik , the state at each site is either |1) = ﬁ"l |0) or
a a

8 See [61] for a proof of the corresponding relation in case of more general representations s; = (s, 0) but no inhomo-
geneities, w; = 0.
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|2) = éé|0). The computation of the scalar product (6.68) reduces using (6.66) to that with each
term of the sum in (6.67). This turns out to be only non-zero if the state labels & obey the ice rule
(2.6), and if in addition x is determined in terms of G and « by (2.12). Then we have

(@llyis s Wa - 151'182) = (=6 (6.69)

with (G, &) defined in (2.15). The factors of —1 stem from sites transformed by W.
Finally, the combination of (6.66), (6.67) and (6.69) leads to an expression for the partition
function (6.68). Again, it is only non-zero if the state labels « satisfy (2.6). In this case

N 2N

Z(G,A,0,0) « (a|¥) = (—DV L[l E ﬁ(—l)’c((}'“)@(w, u, X). (6.70)

Here A is fixed in (6.61), and the arguments w, u, x of the wave function are determined by
the variables G, 0, o of the partition function with (2.12) and (2.13). Up to an «-independent
normalization factor, the Lh.s. of (6.70) is the perimeter Bethe ansatz formula (2.14).

However, this factor cannot be directly determined by the Bethe ansatz. To show that its choice
in (2.14) guarantees the agreement with the partition function (2.5), note the following. With the
normalization of the Boltzmann weights in (2.3) it is easy to see that for the particular state
labels a9 = (1, ..., 1) the partition function (2.5) equals Z(G, 0, &¢p) = 1. The a-independent
normalization in (2.14) trivially guarantees that also this expression is equal to 1 for & = ag. As
we already know from (6.70) that the a-dependent part of (2.14) is proportional to the partition
function (2.5), this concludes our derivation of (2.14). It shows that the perimeter Bethe ansatz
as reviewed in Section 2 is a special case of the Bethe ansatz for Yangian invariants.

6.5. Outline of gl(n) functional relations

In Section 6.2 we discussed in detail how the Bethe ansatz for gl(2) spin chains can be spe-
cialized in such a way that the resulting Bethe vector |¥) is Yangian invariant. This leads to
functional relations (6.19) which restrict the allowed representations and inhomogeneities of the
monodromy and determine the Bethe roots. The derivation was based on the observation (6.2)
that a Yangian invariant |¥) is a special eigenvector of a transfer matrix. Of course, this obser-
vation is also valid more generally for invariants of the Yangian of gl(n). In this gl(n) case the
nested algebraic Bethe ansatz for monodromies with a finite-dimensional highest weight repre-
sentation at each site can be found e.g. in [54]. In generalization of the discussion of the gl(2)
situation in Section 6.2, it can be specialized to the case where the Bethe vectors are Yangian
invariant. The details of this calculation will be presented in a separate publication [56].

Here we only state one of the main results, the set of functional relations determining the
representation labels, inhomogeneities and Bethe roots of Yangian invariants in the gl(n) case:

= 28D,
Q1 (u)
Qiu+1) Or(u—1)
Q1)  Oz(u)
Qo(u+1) Q3(u—1)
O2(w)  Q3(u)

1= po(u)

1= p3u)
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On2+1) Qp_1(u—1)

I=pp—1(u)
! On2()  Qn-1(u)
On-1 u+1
1= ) 22T, 6.71)
" Qn—l(u)
Here 1 (), ..., u,(u) are the eigenvalues of the monodromy elements M1 (), ..., My, (1) on

the pseudo vacuum of the Bethe ansatz, cf. (6.5) for the gl(2) case. For a monodromy (3.11),
which is composed out of the Lax operators (3.21) with a finite-dimensional gl(n) representa-
tion of highest weight &; = (Si(l), ...,Si(")) at the local quantum space of the i-th site, these
eigenvalues are given by

L (@)
u—v +§
pa) =[] fz @ —v)——"—"—. (6.72)
i=1 U=
The Bethe roots are encoded into the Q-functions
Pr
k
Q) =] J(u —uf®), (6.73)
i=1
where k = 1,...,n — 1 is the nesting level with P, Bethe roots ul(k). Obviously, for n =2

Eq. (6.71) reduces to the functional relations (6.19). As one can see from the Baxter equation
for gl(n), see e.g. [62], (6.71) is compatible with the fixed eigenvalue in (6.2). More precisely,
each term in the Baxter equation is equal to one.

Interestingly, the functional relations (6.71) can also be written in the form

n
1=][Trat—a+1,. (6.74)
a=1
Qi (u) <
= ]_[ pa(u —a+k+1) (6.75)
ocw+n - L1
for k =1,...,n — 1. The first equation (6.74) does not involve the Bethe roots and only con-

strains the representation labels and inhomogeneities of the monodromy. Each of the remaining
Egs. (6.75) only involves the Bethe roots of one nesting level k. Eqs. (6.74) and (6.75) generalize
(6.24) and (6.25), respectively, to the gl(n) case.

7. Conclusion and outlook

In this paper we have proposed a systematic approach to the construction of Yangian invariants
by means of the quantum inverse scattering method (QISM). Our motivation is two-fold. The first
is mathematical. It appears that the possibility to construct such invariants for a given algebra and
representation in a methodical fashion has not yet been explored. This is clearly a rich field. The
second is physical. Following [1], Yangian invariance appears as the hallmark of integrability
in the form of a hidden symmetry of the tree-level scattering problem of planar N' = 4 super
Yang-Mills theory. This opens the exciting possibility to directly construct such amplitudes by
the techniques of integrability, such as the various versions of the Bethe ansatz.

The present work is complementary to [11,12], where spectral parameter deformations of
Yangian invariants in general, and of scattering amplitudes in particular were proposed. Here we
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can look at the spectral parameters z in [11,12] from a slightly different perspective: In the above,
these appear as (differences of) inhomogeneities of some auxiliary spin chain monodromies. The
latter contain in turn a spectral parameter u, which is a very useful quantity in the QISM. How-
ever, the Yangian invariants and thus the amplitudes do not depend on this spectral parameter.
We should also point the reader to the recent works [51,52], which bear some similarities with
our approach.

There is a large number of open problems. The first concerns completing the exploratory study
of the gl(n) invariants begun in this paper. Clearly it remains to construct the general L-site
invariants, and to analyze the freedom in assigning the inhomogeneities (and thus the spectral
parameters in the sense of [11,12]). Furthermore, the attentive reader will have noticed that we
essentially derived the 2, 3, 4-site invariants directly from (1.1), and subsequently proved that the
Bethe ansatz equations are satisfied. We would really prefer to proceed in the opposite fashion:
First solve the Bethe equations, which should always be fairly trivial, as all roots are expected
to assemble into exact strings. Then construct the invariants as the corresponding on-shell Bethe
states. Bethe wave functions are in general very complicated. However, here it should help that
the roots are so simple.

The second open problem concerns the replacement of compact representations of gl(n) by
the non-compact representations of gl(4|4) appropriate for the study of the N = 4 scattering
amplitudes. The goal would clearly be to derive the Yangian invariant tree-level amplitudes from
an appropriate “Bethe ansatz”. We suspect that functional methods will be important here, as
the solution presumably involves considering infinite sets of Bethe roots. Q-operator methods
[62—65] might be helpful here.

The third and obviously most exciting open problem is the derivation of higher loop correc-
tions to the tree-level amplitudes from a Bethe-like ansatz. Here there is a crucial open conceptual
problem: What is the precise fate of Yangian invariance beyond one loop? See e.g. the discussion
in [4]. The main trouble is that the infrared divergences of loop amplitudes naively break con-
formal symmetry and thus also Yangian symmetry. In [11,12] it was proposed that parametric
deformations of loop-level on-shell diagrams might regulate the divergences. Vexingly, however,
exact Yangian invariance seems to clash with convergence. On the other hand, Yangian invari-
ance appears to be a key feature of the on-shell diagrammatic approach of [42]. If it is true that
the integrands of the higher-loop amplitudes may be constructed in a Yangian-invariant way,
these integrands should definitely be constructible by an extension of the methods proposed in
the present paper.
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Appendix A. Some oscillator algebra representations

In this appendix we substantiate the representations of the oscillator algebra introduced for-
mally in (5.16). It is easily seen that this algebra can be represented on holomorphic functions
of one complex variable. The creation operator is realized as multiplication by this variable and
the annihilation operator corresponds to differentiation. This was made precise by Bargmann
[66] who provided an inner product guaranteeing that both operators are Hermitian conjugates
of each other. We review his construction in Appendix A.1.

In Section 5 we reformulated the Yangian invariants of Section 4 in a way that is reminiscent
of planar N = 4 super Yang-Mills scattering amplitudes. For this we also used a representation
of the oscillator algebra which is “conjugate” to that of Bargmann in the sense that the role of
the operators is exchanged: The creation operator acts by differentiation and the annihilation
operator as multiplication. Furthermore, the Fock vacuum is realized as a delta function of a
complex argument.

Such a representation already appeared previously in rather different contexts, see e.g.
[67—69], and it is even traced back in [70] to work by Dirac [71]. In contrast to these refer-
ences, we explain this conjugate Bargmann representation in Appendix A.2 completely within
the Bargmann framework.

A.l. Bargmann representation

We start by reviewing the Bargmann representation [66], which is also called holomorphic
representation, see e.g. [72,73] for recent expositions. The oscillator algebra, the Hermiticity
condition and the characterization of the Fock vacuum,

T :a, a|0> :O, (Al)

are realized in terms of a complex variable WV by

[a,a] =1, a

a=Ww, a=dyy, |0y =1. (A.2)
In this representation a state translates into a holomorphic function,

|X) =X @][0)=ZWV). (A.3)
The inner product of two states is defined as

AWAW _pp =
©12) = [ S ez, (Ad)
i
C

where the integral is to be understood as a two-dimensional real integral with d/WdW =
2idRe WdImW. Because of the exponential function in the measure, the creation and anni-
hilation operators are indeed related by Hermitian conjugation, i.e. W' = 8yy,. This is easily
verified using partial integration. States with finite norm with respect to the inner product form a
Hilbert space with an orthonormal basis

w (A.5)
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Likewise, one defines an antiholomorphic representation, where a family of oscillators
(b,b] =1, b’ =b, b|0) =0, (A.6)
is realized in terms of a complex conjugate variable V) as
bW, b = ay, 0)=1. (A7)

Here the inner product is

dWwdaw ——
(@|2)=/We_WWQ(W)E(W). (A.8)
C

Let us employ both representations (A.2) and (A.7) in case of a simple example. Consider the
operator

Z O (a |0 (0l(b ) (A.9)

k,1=0

mapping from a Fock space V; with oscillators b, b! into V5 with a2, a%. It should be thought of
as a simple analogue of the Yangian invariants discussed in Section 4, see e.g. (4.21). Of course,
for generic coefficients Oy; and with only one family of oscillators per space, it is not an actual
invariant of the Yangian ) (gl(n)). We use the representation (A.2) for the oscillators in V5 and
(A.7) for those in V1. Then the action of the operator on a “test state” | f) € V| becomes

V¥l 1 _
ow|f>=/%e—w'wlow(wz,wl)f(v_v‘) (A10)
C

with the kernel
o0
Ou (W2 W) = 3 0y (W) (WY (A.11)
k,1=0

In this article we mostly work with the vector version [¥) = OJ&,' of operators like (A.9), see e.g.
(4.19). Written in terms of this vector, (A.10) turns into

Oulf)={f1¥)". (A.12)
Note that the inner product is only in the space V| and not in V;. The complex conjugation affects
also only V.

A.2. Conjugate Bargmann representation

Motivated by (A.12) of this example we employ the representation (A.7) to study the inner
product of two states |X) and | f), where the latter will play the role of a test state. Choosing
| 27) = |0) to be the Fock vacuum we write

- deW 5
(f10) = f(0) = / S JOVISOV) with 6(0) = e W (A.13)
C
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Here we interpreted the exponential function of the measure in (A.8) as a “delta function of a
complex argument”, cf. [73]. This delta function does not coincide with the reproducing kernel,
which usually plays the role of a delta function in the Bargmann representation. However, this
interpretation of the exponential function is essential for our purpose, see below. For a general
state | X') we obtain

deW A
(f|2)=/ - FOMEW), with EOWV) := Z(—apw)s(W). (A.14)

C
The action of the oscillators (A.7) translates into

_ deW
<f|b|2>=/ TN E),

C
dWdw _
(FIbIZ) = / ST oMWEOW). (A.15)
C

Also the inner product (A.8) can be expressed in terms of > (W) and (:)(VV),9
/ dydy [dwdw

2mi 2mi
n=0 C C

©O12) = VO EW). (A.16)

With this one easily verifies (—dyy)" = W after identifying VW <> ). Notice the positive sign in
the exponential function in (A.16), whereas it is negative in the measure of (A.8). In particular,
this leads to a finite norm of X W) =5(W), while that of b3 W) =1 diverges.

In conclusion, (A.13) and (A.15) together with (A.16) constitute a realization of the oscillators
(A.6) which we call conjugate Bargmann representation:

b= —dyy, b=W, 10) =sOW). (A.17)

The fact that we can realize the creation operator as differentiation and the annihilation operator
as multiplication (and not the other way around) depends crucially on the reinterpretation of the
exponential factor in the measure as a delta function, cf. (A.13). In this sense the representation
(A.17) can also be thought of as (A.7) “in disguise”. With (A.17) a general state, cf. (A.14), and
the orthonormal states from above respectively take the form

. _ (=apw)ks(w
1Z) = 20W) = Z(=aw)s W), "‘>=%'

Given a state | X'), the representative X' (}/) in the Bargmann representation (A.2) and b3 W) in
its conjugate (A.17) are formally related by a complex generalization of the Fourier transform.'"

We return to the example from the end of Appendix A.1. Realizing the oscillators in space V;
by (A.17) and those in V; by (A.2), the vector version of the operator (A.9) becomes

(A.18)

= Z O (a )10y = Oy (W2, —dyyn )8 (W), (A.19)
k,1=0

9 As similar inner product was introduced in [68].
10° A definition of a complex Fourier transform can be found e.g. in [74].
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This example illustrates the use of these oscillator algebra representations for the Yangian invari-
ants in Section 5. There the Bargmann representation (A.2) is employed for oscillators at sites
carrying a totally symmetric representation s of gl(n) and the conjugate Bargmann representation
(A.17) appears at sites with a conjugate S of a totally symmetric gl(n) representation. Eq. (A.19)
is also an example of how our expressions for Yangian invariants in terms of delta functions are
related to the kernels, cf. (A.11), of the corresponding intertwiners.

Appendix B. Derivation of two-site invariant

Here we present, by way of example, the derivation of (6.31), i.e. the construction of the
two-site invariant |5, 1) for a spin 5 representation of gl(2) using the algebraic Bethe ansatz,
starting from the reference state |£2). Let s := 51 = s2. The “generalized lowering operators” are

for two sites

B(u) = (1 ! Blbl) ! aa; — <1+ ! 52a2> ! bib,. (B.1)
u — g u—v u— u— v

For convenience we dropped the (in this case) redundant upper site indices. Using the expressions
in Section 6.3.1 for the Bethe roots and inhomogeneities, one finds for k =1, ..., s

B(ug) = ar + Bk, (B.2)
where we have defined the operators

1 - 1_ 1_ 1 -

o 2=—(1 — mb1b1>zazal, ﬁk=—<1 — %azaz> mb]bz. (B.3)

We thus need to calculate
N N
Wo.1) = [ [ Baw)l2) = [ J(ax + B (b2)" @1)*10). (B.4)
k=1 k=1

Let us expand the product [ ];_; (e + Bk), denoting by m the number of times S appears:

N
Do D Bt @1 Bl 1B @ . (BS)

m=01<jj<<jm<s

For fixed m and insertion positions ji, ..., j, the number operators l_)1b1 and aza in (B.3) take
fixed values which are easily read off. Also taking into account the combinatorial factors when
acting with aza; and l_)lbz on the reference state, and canceling all common factors, one easily
obtains, up to a trivial factor of (—1)*, for [¥> 1)

> " Qijx—s+m—k) - _ _
o) o1 @i : (biay)" (byaz)*~"(0). (B.6)
m=0 1< jy << jn <s "

By a curious identity this then simplifies to
s
N - = g— = =
¥,1) = (=1)° Z (m> (b1a)" (b222)" " |0) = (=1)* (b1a; + b2a2)’|0), (B.7)
m=0

and (6.31) is proven. Incidentally, the just mentioned curious identity means that the operator in
(B.5) may be replaced by the ordered expression



422 R. Frassek et al. / Nuclear Physics B 883 (2014) 373424

N
D ar g mBemi1 e By (B.8)
m=0

when acting on the reference state |£2). All other orders of insertions of the f; operators either
yield zero or cancel against another ordering.
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