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Abstract

In precision interferometry, the cross coupling of angular beam jitter into the path-
length readout can be an important effect. One possibility to minimize the resulting
noise is to use imaging optics systems. The simplest imaging optics system that can
be used for this purpose consists of two spherical lenses. In the process of investigating
such systems it was found that they can transform Gaussian beams in fundamental
mode from stigmatic into simple and even general astigmatic. Effectively, it means
that, for instance, the spot shape of a Gaussian beam can change from circular (stig-
matic) to elliptical (astigmatic) after transmission through a lens system, and the
spot ellipse might even rotate (general astigmatic) along the beam path.

This thesis provides a study of the stigmatic, simple astigmatic and general astig-
matic models of a Gaussian beam in fundamental mode. Each model is suitable for
the procedure of simulating interferometer signals, which is also described in this
thesis. The most general, and thus the most accurate model of a Gaussian beam in
fundamental mode is the general astigmatic beam model. However, this model is also
the most complex, and to the author’s knowledge the least discussed in literature.
The general astigmatic model presented in this thesis comprises the previously avail-
able information from different sources, together with a derivation of the equations
that allow beam transformation at a surface.
In order to prove reliability of the general astigmatic beam model an experimental

verification has been performed. Within this verification the evolution of the intensity
ellipse of a general astigmatic beam has been studied. This general astigmatic beam
was obtained by transmitting a simple astigmatic beam through an optical system
consisting of two cylindrical lenses, both experimentally and in a simulation. The
results obtained were compared and showed very good agreement.
In this thesis the impact of the beam model choice on the pathlength readout has

been studied using the designs of imaging optics systems for the test mass interferom-
eter in a LISA-like mission. In order to estimate the impact of the use of simplified
beam models, a set of realistically misaligned setups was analyzed, and the results ob-
tained with different models were compared. This investigation has shown that within
the current measurement uncertainties of the parameters of the lens system, and of
the initial beams, the choice of model does not affect the range of the possible cross
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coupling. However, for each particular misaligned two lens system with well-known
parameters the results obtained with the different models can vary considerably.

Keywords: interferometry, Gaussian beams, general astigmatism
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Kurzzusammenfassung

In Präzisionsinterferometern kann die Kreuzkopplung von Laserstrahl-Winkelrau-
schen in das Pfadlängensignal ein wichtiger Effekt sein. Eine Möglichkeit, um das
resultierende Rauschen zu minimieren, ist, optische Abbildungssysteme zu verwen-
den. Das einfachste System für einen solchen Zweck besteht aus zwei sphärischen
Linsen. Im Laufe der Untersuchungen solcher Abbildungssysteme stellte sich heraus,
dass diese Systeme Gauß-Strahlen in fundamentaler Mode von stigmatisch zu einfach
astigmatisch und sogar allgemein astigmatisch transformieren können. Das bedeutet
beispielsweise, dass sich die Intensitätsverteilung des Strahls von rund (stigmatisch)
zu elliptisch (astigmatisch) nach Transmission durch ein Linsensystem verändert und
dass die Intensitätsellipse sogar während der Propagation rotieren kann (allgemein
astigmatisch).

In dieser Arbeit wurden Modelle stigmatischer, einfach und allgemein astigma-
tischer Gauß-Strahlen in fundamenaler Mode untersucht. Alle Modelle können zur
Simulation von Interferometersignalen verwendet werden, wie ebenfalls in dieser Ar-
beit beschrieben ist. Das allgemeinste und damit exakteste Modell zur Beschreibung
Gaußscher Strahlen in fundamentaler Mode, ist das Modell allgemein astigmatischer
Strahlen. Dieses Modell ist jedoch auch das komplexeste sowie das am wenigsten in
der Literatur diskutierte, soweit die Autorin weiß. Das in dieser Arbeit beschriebe-
ne allgemein astigmatische Modell umfasst die vorher in der Literatur vorhandenen
Informationen zusammen mit einer Herleitung der Gleichungen, die Strahltransfor-
mationen an einer Grenzfläche ermöglichen.
Um die Zuverlässigkeit des allgemein astigmatischen Strahlmodells zu zeigen, wur-

de eine experimentelle Verifizierung durchgeführt. In dieser Verifizierung wurde die
Entwicklung der Intensitäts-Ellipse eines allgemein astigmatischen Strahls studiert.
Dieser allgemein astigmatische Strahl wurde durch Transmission eines einfach astig-
matischen Strahls durch ein optisches System bestehend aus zwei Zylinder-Linsen
experimentell wie auch in einer Simulation erzeugt. Die resultierenden Ergebnisse
wurden verglichen und zeigten gute Übereinstimmung.
In dieser Arbeit wurde der Einfluss der Wahl des Strahlmodells auf die Pfadlängen-

Auslesung untersucht anhand von Designs von optischen Abbildungssystemen für das
Testmassen-Interferometer einer LISA-ähnlichen Mission. Um den Einfluss vereinfach-
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ter Strahlmodelle abzuschätzen, wurde eine Auswahl realistisch ausgerichteter Auf-
bauten analysiert und die Ergebnisse verglichen, die mit verschiedenen Strahlmodellen
erzeugt worden waren. Diese Untersuchung hat gezeigt, dass mit den aktuellen Mes-
sungenauigkeiten der Strahl- und Linsen-Parameter, die Wahl des Strahlmodells nicht
den Bereich der möglichen Kreuzkopplung verändert. Hingegen können die Ergebnisse
für jedes einzelne imperfekt ausgerichtete System mit wohlbekannten Parametern mit
den verschiedenen Modellen erhebliche Abweichungen zeigen.

Schlüsselwörter: Interferometrie, Gauß-Strahlen, allgemein Astigmatism
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(x̂t, ŷt, ẑt) beam-fixed coordinate system of the refracted (transmitted) beam
A(r, z) real valued amplitude of the electric field
C complex amplitude of the heterodyne power
C(z) matrix that represents the phase ellipse
Cs curvature matrix of a surface
E(r, z) complex amplitude of electric field
E(r, z, t) complex wavefunction or electric field
E0(z) normalisation constant of electric field
F ellipse flattening
I(r, z) optical intensity
J(t) photocurrent
Ki, Kr, Kt coordinate transformation matrices between the beam-fixed coordinate

systems of incident, reflected and transmitted beams and the local co-
ordinate system of a surface

M2 beam propagation factor
O′ point of incidence
P beam power
P0 beam position
PS power on a detector surface
Pm sensed power of the measurement beam on photodiode
Pr sensed power of the reference beam on photodiode
Q(z) complex radius of curvature tensor for generalized Gaussian beams
Qi, Qr, Qt complex radius of curvature tensors of incident, reflected and transmit-

ted beams

xvii



List of Symbols

R(z) radius of curvature of a wavefront
RI radius of curvature of the surface in the plane of incidence
RS radius of curvature of the surface in the sagittal plane
S(θ) rotation matrix
W (z) matrix that represents the intensity ellipse
Z impedance of the medium
∆sm measured pathlength difference
∆z propagation distance
∆fitted fitted normalized sums of the average differences between measured and

simulated values of both intensity ellipse semi-axes and orientation
∆ϕ

fitted fitted average difference of the angles of the intensity ellipse obtained
in experiment and in simulation

∆nominal initial normalized sums of the average differences between measured
and simulated values of both intensity ellipse semi-axes and orientation

∆ϕ
nominal initial average difference of the angles of the intensity ellipse obtained

in experiment and in simulation
= imaginary part of the complex number
Φ(r, z) phase of the electric field
Ψ(r, z) complex envelope
< real part of the complex number
Θ divergence of stigmatic Gaussian beam
α angle of orientation of cylindrical lens in plane, orthogonal to the beam

axis
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CHAPTER 1

Introduction

M odelling is an essential part of science. To study the universe and its parts
one needs an idea of how these parts work, and such an idea is already a model.

Since early days people tried to represent the reality using their imagination. The
whole mathematical science was invented to create better representations. With time
they got more and more sophisticated and more and more comprehensive. But still
new challenges and new requirements often motivate scientists to enhance existing
models or even to develop entirely new ones. We will probably never be capable of
representing the reality in its full glory. However, each particular study requires not
a perfect model, but a model that represents reality sufficiently good to study specific
effects and properties [1].
While models provide descriptions of real-world objects, simulations use models to

predict the behavior of those objects [2]. Therefore, these two notions are closely
related. Both simulations and models play a great role in modern science and, in
particular, physics [3]. When the studied phenomena cannot be observed directly in
the experiment, simulations can help to investigate it and predict its behavior and
properties. For example, a large variety of astrophysical objects such as binary black
holes and neutron stars have not been directly observed so far, but were intensely
studied in the past decades with the help of analytical models and computational
numerical simulations (see for example [4]). Simulations and models can also ease the
experiment design. Before building complex and often expensive setups scientists can
try various possibilities in a simulation and come up with the best layout at lower
cost. But even when an experiment is already set up and the laboratory investigations
are ongoing, simulations and models can help to enhance the understanding of the
observations or explain unpredicted effects.
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1.1. Gaussian beams in fundamental mode Chapter 1. Introduction

Figure 1.1.: LISA constellation. Credit:
AEI, NASA, ESA, SSC, CXC and STScl.

In the field of space interferometry we
deal with complex optical setups and high-
precision measurements. The LISA mis-
sion [5] (see Figure 1.1) aims to detect gravi-
tational waves, predicted by Albert Einstein.
Such a detection will not only prove one more
aspect of general relativity, but also give an
entirely new way of "listening to the Uni-
verse" and observing various astrophysical
objects. The signals produced by gravita-
tional waves are weak. Thus, their direct
detection is a big challenge. Building an in-
strument capable of measuring gravitational
waves requires both comprehensive experi-
ments and theoretical investigations. The
latter can only be possible together with ac-

curate simulations and models.
The LISA optical bench (the so called LISA OB [P1], [P3]) is one of the key

elements of the LISA mission. While performing optical simulations for the LISA
OB [6, chapter 10], we realized that using a simplified model of the Gaussian beam in
the fundamental mode (TEM00) impacts the signal read-out. One way to study the
significance of this impact is to develop a model of Gaussian beam in the fundamental
mode without known simplifications and to compare the signals computed using new
and old models.

1.1. Gaussian beams in fundamental mode

When talking about Gaussian beams in the fundamental mode often the stigmatic
(or circular) Gaussian beams are assumed. Such beams have circular light spots
and spherical (or flat) wavefronts at every point along the optical path. However,
this is not the only possible configuration of Gaussian beams in the fundamental
mode. They can also be simple (or orthogonal) and general astigmatic. Both
types of astigmatic beams have elliptical light spots and ellipsoidal (or hyperboloidal)
wavefronts [7]. For brevity we will denote all non-spherical wavefronts as ellipsoidal
(or elliptical) within this thesis. For simple astigmatic beams the ellipses of constant
intensity and ellipses of constant phase are aligned at every point along the beam path.
These ellipses can be tilted around the beam axis, but this angle remains unchanged
along the propagation. Therefore, each simple astigmatic Gaussian beam has two
principal directions in the transversal plane and can thus be called elliptical. For
general astigmatic beams [8] in contrary the ellipses of constant intensity and ellipses
of constant phase are oriented at an oblique angle with respect to each other at every
point along the beam path. Moreover, the orientations of both ellipses as well as their
relative orientation change along the propagation (see example of rotating light spots
in Figure 1.2).
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Figure 1.2.: The example of color-coded inten-
sity ellipses of a general astigmatic Gaussian
beam at different positions along the beam
axis. The white lines show the orientations
of major and minor semi-axes of ellipses.

Often circular Gaussian beams are
used in optical simulations. However, in
many cases astigmatic Gaussian beams
are produced in the experiment. Some
laser sources produce non-rotationally
symmetric beams [7], which can be rep-
resented with simple astigmatic Gaus-
sian beam model. And even if the ini-
tial beam is stigmatic, it can be trans-
formed into a simple astigmatic for ex-
ample via reflection or refraction at a
spherical lens if the incidence is non-
normal [9]. To transform simple astig-
matic beam into general astigmatic it is
again sufficient to propagate it through
a spherical lens. The beam becomes gen-
eral astigmatic for example when none of
the two principal directions of the simple
astigmatic beam in its transversal plane
lies in the plane of incidence, defined
by the beam direction and the surface
normal at the point of incidence. Since any optical system in reality is slightly mis-
aligned, simple and general astigmatic beams can appear almost in every optical
system. However, in many cases the intensity and phase ellipses of these beams have
a small ellipticity and thus the stigmatic approximation is good enough for many
purposes. In the LISA OB the picometer sensitivity is required and therefore we need
to investigate the impact of the beam model on the main science signal.

1.2. This thesis

While working on LISA Pathfinder it was found [6, p. 93] that angular beam jitter
in the order of hundreds of µrad can influence the main science signal, namely the
longitudinal pathlength signal (signal definition will follow in Chapter 2). This effect
was evaluated using a software tool called OptoCad [10] that traces simple astigmatic
Gaussian beams through 2D optical setups. The signals for the resulting beams
interfering on the detector were computed by an in-house software called QPD.c [6,
p. 26] that used circular beam approximation at that time.
For the LISA OB similar investigations of the angular beam jitter need to be per-

formed. Some subsystems of the LISA OB include curved surfaces. Since these
surfaces can be misaligned, general astigmatic beams can appear. The evaluation of
the impact of general astigmatism on interferometer signals requires development and
implementation of a general astigmatic beam model.
In this thesis the complete models for stigmatic, simple and general astigmatic

Gaussian beams will be presented. Each can be used to compute interferometer
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signals. In the end the interferometer signals produced by each model for the same
setup will be compared and the significance of using the accurate beam model will be
investigated.
The models for stigmatic and simple astigmatic beams are relatively well-known

(even though the concrete realizations may vary). Circular Gaussian beam approxi-
mation often implies the assumption of normal incidence in all beam transformations.
Therefore it does not allow a precise evaluation of the effect of angular beam jitter
even in simple optical systems, involving only flat and spherical surfaces. Simple
astigmatic beams can be used in beam jitter simulations in orthogonal optical sys-
tems. In 3D it means that for their correct implementation one has to keep track
of the planes of symmetry and forbid any transformations that break this symme-
try. General astigmatic beams do not have these limitations. Unfortunately, we have
found the least number of publications regarding general astigmatic beams and had
to develop our own general astigmatic Gaussian beam model that includes all aspects
that are necessary to simulate beam propagation in an arbitrary optical system, in-
cluding non-normal incidence at curved surfaces. The general astigmatic Gaussian
beam model suggested in this thesis does not only combine the previously available
investigations, but also corrects the errors and generalizes the beam transformation
equations from [11] to avoid restrictions in the choice of beam-fixed and surface-fixed
coordinate systems. The important advantage of the model suggested here is that it
allows to study the impact of simple and general astigmatism on the interferometer
signals even when the ellipticity of both light spots and wavefronts is small along the
propagation and thus considered to be negligible in many other models. All three
models are implemented in the software tool IfoCad [P4] that is capable of computing
interferometer signals as described in [P2].
I will start with an overview of the procedure of simulating laser interferometers

given in Chapter 2. Its main principals are identical for all types of beams. They
include beam tracing through optical systems and computation of interferometer sig-
nals on photodiodes. In this chapter I will also show how the beam model couples into
the process of simulating laser interferometers. In the next three chapters (Chapter 3,
chapter 4 and Chapter 5) I will present the mathematical descriptions of stigmatic,
simple and general astigmatic Gaussian beams correspondingly. All three beam de-
scriptions are ready to use in the simulation procedure described in Chapter 2. The
general astigmatic beam model is the most general and also the most complex of the
three models of Gaussian beams in fundamental mode. Since the model presented in
this thesis is new, we have performed an experiment in order to prove its trustwor-
thiness. The results of such verification will be presented in Chapter 6. In Chapter 7
I will present the study of the imaging optics systems for the test mass interferom-
eter of a LISA-like mission, concentrating on the impact of the beam model on the
longitudinal pathlength signal. With this I will compare the performance of all three
models and show the consequences of simplifications.
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CHAPTER 2

Simulating laser interferometers

I n experiments interferometer signals are usually obtained using a phasemeter
(see [12–14]). It converts the photocurrent recorded on a photodiode into mean-

ingful signals. Usually the photocurrent results from the interference of two beams
impinging on the photodiode. The interferometers are used for precision length mea-
surements. Therefore, the main science interferometer signal measures the pathlength
difference between the two interfering beams. It is called longitudinal pathlength
signal (LPS). The contrast or fringe visibility of the interference pattern is another
interferometer signal that provides the general information of alignment status of the
interferometer. On quadrant photodiode (QPD) additionally two alignment sig-
nals are available to characterize the interferometer: differential wavefront sensing
(DWS) and differential power sensing (DPS) signals. Both make use of the four
element spatial distribution, resulting from separate recordings of the photocurrent
on each quadrant. The DPS (or ratiometric) signal measures the beam centroid on
the photodiode [12], while DWS senses the relative beam tilt [15]. In case when only
one beam impinges on the photodiode, DPS signal still shows its shift from the center
of the photodiode. DWS signal only makes sense when two beams are interfering.
In order to simulate the interferometer signals one needs the complete information

about both beams impinging on the photodiode. To obtain this information the beams
must first be traced through the optical system from some reference point, where the
beam parameters are defined. Beam tracing includes a sequence of beam propa-
gations and transformations via reflection and refraction on surfaces of the optical
system.
Both beam tracing and signal computation are very similar for different beam

models. In this chapter I will introduce the concepts that are identical for all kinds
of beams, leaving the components that differ for the next chapters. The concepts
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of laser interferometer simulations will be presented in this chapter in the same way
as they are implemented in IfoCad [P4]. Since the beam tracing prefaces the signal
computation, I will start with its main concepts in Section 2.1. Then I will introduce
the process of simulating interferometer signals (Section 2.2). In Section 2.3 I will
give an overview of the impact of the choice of the beam model on the procedure
of simulating laser interferometers. I will discuss the remaining physical parameters
that depend on a choice of the beam model and are not discussed in this chapter. I
will also describe the conditions, in which one type of Gaussian beams in fundamental
model can be transformed into another.

2.1. Beam tracing

The procedure of beam tracing through the optical system is a sequence of beam prop-
agations and transformations via reflection and refraction on surfaces of the system.
Therefore, it requires representations of beams and surfaces together with the laws
of propagation, reflection and refraction. Beam representation as well as all three
laws depend on the choice of the beam model. Surface representation is generally
independent of the beam model. It should be mentioned, however, that the beam
transformations on some types of surfaces can only be simplified when using circular
or simple astigmatic beam model.
The beam-tracing can be split up into so-called geometrical and physical parts

with the geometrical part being identical for all types of beams. The physical part
is different for each of the beam models and will be presented in the corresponding
Chapters (3, 4 and 5). This section is dedicated to the geometrical part of the beam
tracing.
The geometrical part of the light beam representation is a ray, which consists of

the current position P and the beam-fixed coordinate system (x̂, ŷ, ẑ). Vectors
x̂, ŷ, ẑ are the unity vectors that form orthonormal basis such that vector ẑ shows
the beam direction and the transversal coordinate vectors x̂ and ŷ can be chosen
arbitrarily. For simple astigmatic beams, however, it is convenient to choose the
beam-fixed coordinate system to be the beam principal coordinate system. In
such coordinate system the transversal vectors are oriented along the principal axes
of the beam ellipse. In case if other coordinate system is chosen, the angle between
the principal axes of the beam ellipse and the transversal vectors of the beam-fixed
coordinate system has to be introduced. The position P indicates the current point
of interest, where all physical beam parameters are given.
The geometrical part of the surface representation consists of the point of incidence

O′ and the normal to the surface at the point of incidence n̂.
As the beam propagates over a distance ∆z its position changes as

P ′0 = P0 + ∆zẑ. (2.1)

Here P ′0 is the new beam position. The beam-fixed coordinate system remains
unaffected along the propagation. It changes via reflection and refraction following
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the corresponding laws from geometrical optics [16, chapter 4]: the law of reflection

θr = θi,

ẑr = ẑi − 2(ẑi · n̂)n̂,
(2.2)

and the law of refraction (Snell’s law)

cos θi = ẑin̂,

ni sin θi = nt sin θt,

cos θt =

√
1− sin2 θt,

ẑt =
ni
nt
ẑi + (cos θt −

ni
nt

cos θi)n̂.

(2.3)

Figure 2.1.: The transformation of the
beam-fixed coordinate system of the inci-
dent beam into the beam-fixed coordinate
systems of the reflected and the refracted
beams.

Here ẑi, ẑr and ẑt are the directions of
the incident, reflected and refracted (trans-
mitted) beams correspondingly, ni and nt
are the refractive indices of the media be-
fore and after the refraction, θi is the angle
of incidence, θr and θt are the angles be-
tween the surface normal and the reflected
and transmitted beams correspondingly (see
Figure 2.1).
Both the reflected and the refracted beam

directions (ẑr and ẑt) lie in the plane of inci-
dence [17, chapter 1].
There are many possible ways to transform

the transversal vectors via reflection or re-
fraction. The natural way is to use the fol-
lowing approach:

x̂r = (x̂i · p̂inc)p̂inc + (x̂i · t̂i)t̂r,
x̂t = (x̂i · p̂inc)p̂inc + (x̂i · t̂i)t̂t,
ŷr = (ŷi · p̂inc)p̂inc + (ŷi · t̂i)t̂r,
ŷt = (ŷi · p̂inc)p̂inc + (ŷi · t̂i)t̂t,

(2.4)

where

p̂inc =
ẑi × n̂
|ẑi × n̂|

,

t̂i = ẑi × p̂inc, t̂r = −ẑr × p̂inc, t̂t = ẑt × p̂inc.

(2.5)
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The above equations imply that the projections of each of the transversal vectors
(x̂l, ŷl, where l = i, r, t) onto the normal to the plane of incidence p̂inc and on the
corresponding vector t̂l, l = i, r, t, lying in the plane of incidence, remain unchanged
after the beam transformations. Then if the incoming beam tilts in, say, the (x̂i, ẑi)
plane, the reflected and the refracted beams will tilt in corresponding (x̂l, ẑl), l = r, t
planes. This approach to the transformation of the transversal vectors can also be
used to represent the beam polarization. Alternatively any orthonormal coordinate
system with the ẑ vector representing beam direction can be chosen. The coordinate
transformation completes the description of the geometrical part of the beam-tracing.

2.2. Interferometer signals
After the beam-tracing is completed and the parameters of the two beams impinging
on the photodiode are obtained the interferometer signals can be computed. The sig-
nal computation procedure has peculiar properties for homodyne and heterodyne
interferometers. By definition, in homodyne interferometers interfering beams have
identical frequencies, while in heterodyne interferometers they are frequency shifted.
In the LISA mission interferometers are heterodyne. However, homodyne interferom-
eters are involved in some of the dedicated experiments. Therefore, it is important to
have the possibility to simulate both kinds of interferometers.
The signal computation procedure depends on the choice of the photodetector

(single element photodiode (SEPD) or quadrant photodiode (QPD)). In
this section I will talk about both possibilities.
When interferometers are used for length measurements one of the interfering beams

is usually called reference beam, the other one called measurement beam [P2].
I will follow this notation here.

2.2.1. Photocurrent on the detector
The reference and measurement beams interfere on the detector, which results in
time-varying photocurrent J(t) proportional to the beam power PS on a detector
surface [17, p. 754]:

J(t) = ρPS(t). (2.6)

Here ρ is the photodiode responsivity.
The sensed beam power on the photodiode can be computed as the integral of

the optical intensity of the interference pattern over the detector surface:

PS(t) =

∫
I(r, z, t) dS, (2.7)

where r = (x, y) is a vector of transversal coordinates. The optical intensity is
defined as

I(r, z, t) =
1

2Z
|Er(r, z, t) + Em(r, z, t)|2, (2.8)
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where Z is the impedance of the medium, Er(r, z, t) and Em(r, z, t) are the
electric fields of the two interfering beams. Neither the photodiode responsivity ρ,
nor the impedance of the medium Z are needed for the signal computation. They can
be set to ρ = 2Z = 1 in the simulation. However, I will leave them in for completeness.
The representation of the electric fields depends on the choice of the beam model.

However, it is always possible to represent it as

E(r, z, t) = E(r, z) exp(iωt), (2.9)

where ω is the angular beam frequency. The time-dependent component
exp(iωt) is identical for all types of beams, while the complex amplitude of elec-
tric field E(r, z) differs. However, its concrete representation does not affect the
general signal computation procedure. Therefore, in this chapter I will leave the ex-
pression for the complex amplitude of electric field undefined. It will be obtained in
the subsequent chapters for each of the beam models and can be substituted in the
general signal computation procedure presented here.
Let me first rewrite the complex amplitude of the electric field using the real-valued

amplitude A(r, z) and phase Φ(r, z):

E(r, z) = A(r, z) exp(−iΦ(r, z)). (2.10)

Then the expression for electric field (equation (2.9)) changes to

E(r, z, t) = A(r, z) exp(iωt− iΦ(r, z)). (2.11)

Using this notation the optical intensity (equation (2.8)) becomes:

I =
1

2Z
|Ar exp(iωrt− iΦr) +Am exp(iωmt− iΦm)|2

=
1

2Z
{A2

r +A2
m + 2ArAm cos[(ωm − ωr)t− (Φm − Φr)]}

=
1

2Z
(A2

r +A2
m)

[
1 +

2ArAm

A2
r +A2

m

cos(ωhett−∆Φ)

]
.

(2.12)

In heterodyne interferometers the angular heterodyne frequency is defined as

ωhet = ωm − ωr. (2.13)

In homodyne interferometers both beams have identical frequencies and thus ωm−
ωr = 0.
For the infinitesimal photodetecor ∆Φ is constant on its surface and can be con-

verted into the difference between the optical pathlengths of the interfering beams:

∆Φ = kv∆sm =
2π

λv
∆sm, (2.14)

where kv is the wavenumber and λv is the optical wavelength in vacuum, ∆sm is
the measured pathlength change between the two interfering beams. Unfortunately,
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∆sm is only an approximation of the real optical pathlength difference ∆s, since it
depends on a beam curvature, relative angle of the interfering beams and many other
parameters.
The optical intensity in a homodyne interferometer is constant with time and de-

pends only on the phase difference ∆Φ and thus (see equation (2.14)) the differential
arm length changes of the interferometer. In heterodyne interferometer (ωhet 6= 0)
the interference pattern oscillates with time even if the phase difference is constant.
Due to the sinusoidal shape of the intensity pattern the average intensity is reached

if the cosine is zero:

Ī = A2
r +A2

m. (2.15)

The maximum and minimum values are reached when cosine is equal to 1 or -1.
Then the contrast cI of the intensity is

cI =
Imax − Imin

Imax + Imin
=

2ArAm

A2
r +A2

m

(2.16)

and the intensity can be expressed as

I = Ī[1 + cI cos(ωhett−∆Φ)]. (2.17)

Substituting this equation into the definition of power (2.7) and using the fact
that the superposition of sinusoids with equal frequency is a sinusoid with the same
frequency, we obtain:

PS = P̄ [1 + c cos(ωhett− φ)]. (2.18)

Here P̄ is the average power on the photodiode, c is the contrast and φ is the
phase.
The mean intensity Ī, intensity contrast cI and phase difference ∆Φ are different

at any point on a detector surface, while mean power P̄ , contrast c and phase φ are
integrated over detector surface and therefore defined for the entire surface. Equa-
tion (2.14) is given on the infinitesimal photodetector. For the phase φ we can write
down the corresponding equation for the arbitrary photodetector:

φ = kv∆sm =
2π

λv
∆sm. (2.19)

In this case the measured optical pathlength difference is again only the approxi-
mation of its real value, depending on many parameters, including the size and shape
of the detector.
Equation (2.18) gives the interpretation of the sensed beam power on the photodi-

ode. In the next step I will show how to extract the mean power P̄ , contrast c and
phase φ from the known sensed beam power PS . Then these values can be combined
into meaningful interferometer signals.
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2.2.2. Signal computation on a single element photodiode
Single element photodiode (SEPD) has single surface, usually circular, and therefore
records single photocurrent, from which the interferometer signals can be extracted.

The sensed power of each individual beam on the photodiode can be found via
integration of its optical intensity over the photodiode surface:

Pr =
1

2Z

∫
|Er(r, z, t)|2 dS =

1

2Z

∫
|Er(r, z)|2 dS =

1

2Z

∫
Ar(r, z)

2 dS, (2.20)

Pm =
1

2Z

∫
|Em(r, z, t)|2 dS =

1

2Z

∫
|Em(r, z)|2 dS =

1

2Z

∫
Am(r, z)2 dS. (2.21)

The mean power on the photodiode is defined as

P̄ =

∫
Ī dS. (2.22)

Using equation (2.15), it transforms into

P̄ = Pr + Pm. (2.23)

Additionally we can compute the following complex-valued integral:

C =
1

2Z

∫
2Em(r, z)E∗r (r, z) dS =

∫
cI Ī exp(i∆Φ) dS = cP̄ exp(iφ). (2.24)

We call the obtained value the complex amplitude of the heterodyne power
C. Contrast c and phase φ can then be computed from the complex amplitude of the
heterodyne power C and mean power P̄ as

c = |C|/P̄ , (2.25)
φ = argC. (2.26)

Knowing beam parameters on the photodiode and the expression for the complex
amplitude of the electric field, we can compute three integrals given in equations
(2.20), (2.21) and (2.24). From the obtained values we can extract the mean power,
contrast and phase using equations (2.23), (2.25) and (2.26). Phase φ can be trans-
formed into the optical pathlength difference ∆sm using equation (2.19). The ob-
tained value is nothing else but the main science signal or longitudinal pathlength
signal (LPS):

LPS = φ/kv. (2.27)

It is easy to see that heterodyne angular frequency ωhet was not involved in the
procedure of extracting the interferometer signals on the single element photodiode.
Therefore, this procedure can be used equally well for heterodyne and homodyne
interferometers.

11
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2.2.3. Signal computation on a quadrant photodiode

Figure 2.2.: Quadrant photodiode (QPD)
with four quadrants, separated by the in-
sensitive slit.

Quadrant photodiode consists of four
quadrants, separated by the insensitive slit
(see Figure 2.2). The photocurrent is
recorded separately for each quadrant. It
means that integration in equations (2.20),
(2.21) and (2.24) should also be performed
separately for each quadrant. Within this
section we will name the quadrants A, B, C
and D as shown in Figure 2.2. Indices l, r,
t, b will stand for left, right, top and bottom

parts of the photodiode correspondingly.

Heterodyne interferometers

Using the procedure of signal computation on the single element photodiode we can
find average power P̄ and contrast c and phase φ on each of the four quadrants. These
four sets of values can be combined into meaningful interferometer signals.
In order to measure the position of the beam centroid we can compare the average

powers on different quadrants. It will give us the horizontal and vertical differential
power sensing (DPS) signals:

DPSh =
P̄l − P̄r

P̄l + P̄r
=

(P̄A + P̄C)− (P̄B + P̄D)

P̄A + P̄B + P̄C + P̄D
, (2.28)

DPSv =
P̄t − P̄b

P̄t + P̄b
=

(P̄A + P̄B)− (P̄C + P̄D)

P̄A + P̄B + P̄C + P̄D
. (2.29)

A similar comparison of the phase signals of the four quadrants can be used to
measure the wavefront tilt between the two interfering beams. It results in horizontal
and vertical differential wavefront sensing (DWS) signals:

DWSh = φl − φr = arg(CA + CC)− arg(CB + CD) = arg

(
CA + CC

CB + CD

)
, (2.30)

DWSv = φt − φb = arg(CA + CB)− arg(CC + CD) = arg

(
CA + CB

CC + CD

)
. (2.31)

The longitudinal pathlength signal (LPS) on a QPD can be defined in various ways.
For example in the LISA Pathfinder mission [12] it is obtained as the argument of a
sum of complex amplitudes of the quadrants [P2]:

LPSLPF =
1

kv
arg(CA + CB + CC + CD). (2.32)
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However, there are several other possibilities to define an LPS. Finding the def-
inition that gives the most accurate estimate for the optical pathlength difference
between the two interfering beams is the work in progress.
The contrast for a QPD is defined as

c =
|CA|+ |CB|+ |CC|+ |CD|
P̄A + P̄B + P̄C + P̄D

. (2.33)

The last two signals (LPS and contrast) for a QPD are the closest known approxi-
mations of the same signals sensed by a SEPD with the same diameter.

Homodyne interferometers

In theory nothing stops us from repeating the same procedure for the homodyne
interferometers: we can find the mean power P̄ , contrast c and phase φ for each of
the four quadrants and combine them into LPS, DWS, DPS and contrast of the QPD.
However, in reality we don’t have a phasemeter that could repeat this procedure in the
experiment. Therefore, we can add up the four photocurrents and obtain the contrast
and the LPS signal in the same as it was done for the single element photodiode. The
only possibility to define the DPS signal without finding mean powers on each of the
quadrants is to use the sensed powers on the quadrants:

DPSh =
Pl − Pr

Pl + Pr
=

(PA + PC)− (PB + PD)

PA + PB + PC + PD
, (2.34)

DPSv =
Pt − Pb

Pt + Pb
=

(PA + PB)− (PC + PD)

PA + PB + PC + PD
. (2.35)

However, the sensed power is directly connected to the phase as shown in equa-
tion (2.18). Thus the DPS signal defined in such a way will not only measure the
imbalance of the mean powers P̄ on different quadrants, but also the imbalance of
phases. It means that both beam offset from the center of the photodiode and relative
beam tilt between the two interfering beams will result in the changes of DPS signal.
Therefore, the homodyne DPS signal is not a dedicated signal to sense a beam walk,
and it gives little information about the interferometer alignment.

2.2.4. Interferometer signals outlook

This section was dedicated to an overview of a procedure that allows to compute
interferometer signals in the simulation. I did not include all the technical details. For
instance, I did not mention the separation of macroscopic and microscopic phase and
the coordinate transformation in complex amplitude for the integration over detector
surface. These are not necessary in the following discussion. Interested reader can
find this additional information in [P2]. With this section I have shown that the
procedure of the signal computation is identical for all kinds of beams, and the choice
of the beam model only couples into the expression of the complex amplitude.

13
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2.3. Choice of the beam model

In this chapter I have not included any description of the beam configuration. As we
will see in the next three chapters, it is not identical for different types of Gaussian
beam in the fundamental mode. They also obey different laws of propagation and
transformation on the surfaces. In Section 2.2 it was shown that in order to compute
the interferometer signals we need to know the expression for the complex amplitude
of both beams impinging on photodiode. This expression depends on the type of
beam and therefore the value of the complex amplitude will be different for different
beam models. This, in turn, means that the signal values will differ depending on the
choice of model.
In the next three chapters three models of the Gaussian beam in fundamental

mode will be introduced: stigmatic, simple astigmatic and general astigmatic Gaus-
sian beams. The propagation of stigmatic Gaussian beams through rotationally
symmetric optical systems can be described by well-known laws [18]. In such
optical systems the axis of symmetry of each surface coincides with the principal axis
of each beam that is transformed on this surface. Then it is sufficient to consider
beam propagation in 2D and assume that the behavior of the beam is identical in
any plane containing the beam axis. The symmetry might be broken, for example,
when a Gaussian beam impinges on a curved surface at an oblique angle. After such
a transformation the beam becomes simple astigmatic [9]. The representation of the
simple astigmatic beam can be split into two independent circular Gaussian beam
representations [19], which means that the conventional laws [18] are still applicable
in this case. The Gaussian beam in the fundamental mode will stay stigmatic or
simple astigmatic as long as the optical system it passes through is orthogonal. In
Orthogonal optical system every beam transformation at a surface has to satisfy
the following restrictions: one of the principal directions of the beam and one of the
axes of symmetry of the surface must lie in the plane of incidence. In the case of
planar or spherical surfaces their axis of symmetry always lies in plane of incidence.
However, if none of the principal axes of the simple astigmatic beam lie in the plane
of incidence, the outgoing beam becomes general astigmatic even when the spherical
surface is used. The example of an optical system that can transform stigmatic Gaus-
sian beam into general astigmatic is shown in Figure 2.3. This system contains two
spherical lenses. Since the plane of incidence on the second surface is not equal or
orthogonal to the plane of incidence on the first surface, at the second transformation
it is impossible to decompose the behavior of the resulting beam into two orthogonal
planes. Such an optical system is non-orthogonal and thus the outgoing beam is
general astigmatic. In many cases if only spherical lenses are used to produce general
astigmatic beams both ellipses of constant intensity and of constant phase have small
ellipticity, which allows to use simple astigmatic or even circular Gaussian beam ap-
proximation. However, we do stress that even optical systems consisting exclusively
of rotationally-symmetric components can transform stigmatic Gaussian beams into
general astigmatic. When designing high-precision instruments the difference between
stigmatic or simple astigmatic approximation and the real general astigmatic beam
might not be negligible.
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Figure 2.3.: A non-orthogonal optical system consisting of two spherical lenses. The plane
of incidence for the beam transformation by the first lens and the plane of incidence for the
beam transformation by the second lens are aligned at an oblique angle with respect to one
other.

A strongly elliptical simple astigmatic beam can be obtained, for example, via
transformation of stigmatic beam on a cylindrical surface. Then it can be transformed
into a general astigmatic beam by another cylindrical surface, oriented in the plane,
orthogonal to the beam axis, such that it has an oblique angle with respect to the
first surface.
A general astigmatic Gaussian beam is the most general case of the Gaussian beam

in fundamental mode. Simple astigmatic and circular beams can be treated as special
cases of the general astigmatic beam. Therefore any general astigmatic Gaussian beam
model can be thought of as a model of an arbitrary Gaussian beam in the fundamental
mode. The conventional laws [18] are not applicable to general astigmatic Gaussian
beams. The complete description of their propagation in free space is given in [8].
Unfortunately, this study provides limited possibilities for beam transformation and
does not include the case of non-normal incidence. To our knowledge, the only work so
far that deals with the transformation of astigmatic beams incident at some angle on
arbitrary second order surfaces (for example spheres, ellipsoids or cylinders), is [11].
Unfortunately, this paper contains typos, which implies that one needs to re-derive
the formulas from this paper in order to use them. In the end, we don’t know of any
readily-available complete general astigmatic Gaussian beam model that we could use
in laser interferometer simulations.
The discussion of complex amplitude, intensity and phase distributions and laws

of propagation, reflection and refraction will be presented in the next three chapters.
Otherwise the optical simulations of interferometers follow the procedure, explained
in this chapter, for every model of the laser beam.
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CHAPTER 3

Stigmatic Gaussian beam

I n chapter 2 we have discussed the aspects of the laser interferometer simulations
that are independent on the choice of a laser beam model. They include the

geometrical part of the beam tracing through the optical system and the procedure
of simulating interferometer signals.

In this chapter I will introduce the stigmatic model of the Gaussian beam in the
fundamental mode. This model is the simplest and the most commonly used in laser
interferometer simulations. It assumes the beam with circular intensity pattern and
spherical or flat wavefront at every point along the propagation. Within this model
only the normal incidence on a flat or spherical surface is possible without simplifi-
cations. Since in this case both the beam and the optical system are rotationally
symmetric around the beam axis, the 2D representation is sufficient to fully describe
the interferometer. The third dimension can be obtained by assuming that the beam
behavior is identical in any meridional plane containing the beam axis.
In order to be used in laser interferometer simulations the beam model has to

include four main aspects:

• the expression of the complex amplitude of the electric field, which is
required in interferometer signals simulation;

• intensity and phase distributions that provide the beam description and
its physical properties at every point along the beam path;

• the beam propagation that allows to transform the beam parameters as the
beam propagates in some medium;

• the laws of beam transformation or the laws of reflection and refraction of
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3.1. Complex amplitude of the electric field Chapter 3: Stigmatic GB

the beam at a surface that are necessary to trace the beam through the optical
system.

In this chapter we will discuss each of these aspects in the stigmatic (or circular)
Gaussian beam model.

3.1. Complex amplitude of the electric field

The complex amplitude E(r, z) of an electric field (see equation (2.9)) of any possible
optical wave should satisfy the Helmholz equation:

∇2E + k2E = 0, (3.1)

where k is a wavenumber in the medium where the optical wave is propagating, ∇2

is a Laplacian operator, defined as

∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 (3.2)

in Cartesian coordinates [17, p. 43].
Essentially every laser beam is well collimated and thus it’s complex amplitude can

be represented as the complex amplitude of a paraxial optical wave [17, chapter 2]:

E(r, z) = Ψ(r, z) exp(−iφac(z) + iη(z)), (3.3)

where the complex envelope Ψ(r, z) is the function of transversal coordinates
r = (x, y) that varies slowly with z. The accumulated phase φac(z) and the Gouy
phase shift η(z) will be discussed in details in Section 3.3.
The variation of the complex envelope Ψ(r, z) and its derivative with position z must

be slow within the distance of a wavelength λ so that the paraxial wave approximately
maintains the plane-wave nature. The complex envelope Ψ(r, z) of any paraxial wave
has to satisfy the paraxial Helmholz equation [17, chapter 2]:

∇2
T Ψ− i 2k

∂Ψ

∂z
= 0, (3.4)

where ∇2
T = ∂2/∂x2 + ∂2/∂y2 is the transverse Laplacian operator.

The complex envelope of the stigmatic Gaussian beam in the fundamental mode is
the solution of the paraxial Helmholz equation (3.4) [17, chapter 3] given by:

Ψ(r, z) = E0(z) exp

(
−i k

r2

2q

)
, (3.5)

where

r =
√
x2 + y2 (3.6)
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is the transversal distance to the point of interest. The complex-valued q-para-
meter can be represented as

1

q(z)
=

1

R(z)
− i

λ

πw2(z)
. (3.7)

It will be shown in the next sections that R is the radius of curvature of the
wavefront and w is the beam radius at the position z along the beam axis. The
q-parameter is also called the complex radius of curvature.
Using equations (3.3), (3.5) and (3.7), we obtain the expression for the complex

amplitude E(r, z) of the stigmatic Gaussian beam:

E(r, z) =E0(z) exp

(
−iφac + i η(z)− i k

r2

2q(z)

)
=

E0(z) exp

(
− r2

w2(z)
− iφac + i η(z)− i k

r2

2R(z)

)
.

(3.8)

The optical intensity is then

I(r, z) = |E(r, z)|2 = E2
0(z) exp

(
− 2r2

w2(z)

)
, (3.9)

and the total optical power carried by the beam is the integral of the optical intensity
over the transverse plane:

P =

∫ ∞
0

I(r, z)2πr dr =

π

2
E2

0(z)w2(z)

∫ ∞
0

exp

(
− 2r2

w2(z)

)
d

2r2

w2(z)
=

π

2
E2

0(z)w2(z).

(3.10)

Given the optical power P , this equation allows to compute the normalization
constant E0(z):

E0(z) =
1

w(z)

√
2P

π
. (3.11)

Substituting this value into equation (3.8), we obtain the complex amplitude of the
electric field of stigmatic Gaussian beam:

E(r, z) =
1

w(z)

√
2P

π
exp

(
−iφac + i η(z)− i k

r2

2q(z)

)
=

1

w(z)

√
2P

π
exp

(
− r2

w2(z)
− iφac + i η(z)− i kn

r2

2R(z)

)
.

(3.12)

This equation can be used in signal computation.
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3.2. Intensity distribution
The exponential term in equation (3.12) can be split up into real and imaginary
parts. The imaginary part corresponds to the phase of the beam, while the real part
represents its irradiance distribution. From equation (3.9) it follows that the optical
intensity can be defined as

I(r, z) =
2P

πw2(z)
exp

(
− 2r2

w2(z)

)
, (3.13)

At every point z along the beam axis the circle of radius r0 contains a certain
fraction of the overall beam power:

1

P

∫ r0

0

I(r, z)2πr dr = 1− exp

[
− 2r2

0

w2(z)

]
. (3.14)

Thus, within the circle with the radius r0 = w(z) beam carries (1 − 1/e2) or
approximately 86% of its total power at any beam cross section. This allows to call
the function w(z) the beam radius or the spot radius.
By separating real and imaginary part of the complex-valued q-parameter, we ob-

tain the following expression:

q(z) = z − z0 + i zR. (3.15)

Combining this representation with the previously given in equation (3.7), we can
derive the expression for the beam radius evolution [18]:

w(z) = w0

√
1 +

(
z − z0

zR

)2

, (3.16)

where

w0 =

√
λzR
π
. (3.17)

We can see that w0 is the minimum value of the beam radius that is reached when
z = z0. Therefore the parameter w0 is called the waist radius and z0 is called waist
position. The beam radius increases monotonously with the increase of the distance
from waist |z − z0|. The value zR is called the Rayleigh range. It is the distance
from waist along the beam axis where the beam width increases by a factor of

√
2 with

respect to the waist. The evolution of the beam width is illustrated in Figure 3.1.
As z approaches infinity the first term of equation (3.16) may be neglected. Then

this equation transforms into the linear relation

w(z) ≈ w0

zR
(z − z0) (3.18)

and the beam diverges as a cone of half angle

Θ =
w0

zR
. (3.19)
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Figure 3.1.: The evolution of beam radius of a stigmatic Gaussian beam. The waist is reached
at the point z0 and has the radius of w0. At distance zR from the beam waist the beam
radius increases by a factor of

√
2. The beam divergence in the far field is illustrated with the

grey lines and has the half-angle Θ. The irradiance distribution of the stigmatic Gaussian
beam is shown with the points of corresponding brightness of red color.

This angle is often called the beam divergence and it is the far field diffraction
angle of the stigmatic Gaussian beam (see Figure 3.1). From equation (3.17) it follows
that

zR =
w2

0π

λ
. (3.20)

Then the divergence can be expressed as

Θ =
λ

w0π
. (3.21)

Equation (3.21) implies that the beams with larger waist radius have smaller di-
vergence and vice versa. Therefore the good collimation (small divergence) can only
be reached with wide beams.
On the beam axis intensity reduces to:

I(0, z) =
2P

πw2
, (3.22)

which is the maximum value of the intensity in each of the transversal planes. When
additionally z = z0, we are at the location of greatest intensity, where

I(0, 0) = 2P/(πw2
0). (3.23)

The intensity distribution is illustrated in Figure 3.1.
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3.3. Phase distribution

According to equation (3.12) the phase of stigmatic Gaussian beam is

φ(r, z) = φac − η(z) +
kr2

2R(z)
. (3.24)

The first term, accumulated phase φac, is the phase of the plane wave. As beam
propagates through the optical system from the chosen reference point, it accumulates
phase as

φac =
∑
i

kili, (3.25)

where ki and is the wavenumber and li is the geometrical propagation distance in
each of the media that the beam is propagated through. The accumulated optical
pathlength is computed as

sac =
∑
i

nili, (3.26)

where ni is the refractive index of each of the media that the beam went through.
Since the wavenumber in the medium k and wavenumber in vacuum kv are connected
as

k = nkv, (3.27)

the accumulated phase and the accumulated optical pathlength can be transformed
into each other using the following equation:

φac = kvsac. (3.28)

Thus accumulated phase in equation (3.24) can be replaced by the term kvsac.
Often the term k(z− z0) with the distance from waist is used instead. However, such
a notation takes into account only the local beam segment and neglects the rest of
the beam path.
The second term of the phase is a Gouy phase shift (see for example [20, p. 682])

with the value of

η(z) = arctan

(
z − z0

zR

)
. (3.29)

It gives an additional cumulative phase shift of ±π/2 on either side of the waist with
most of this shift occurring within one or two Rayleigh ranges from the waist. This
added phase shift can be interpreted as the small decrease of the effective wavenumber
in the waist region:

keq(z) = k −∆k, (3.30)
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Figure 3.2.: Gouy phase jumps at the interface. Credit: IfoCad manual [21]

or the increase of spacing between the wavefronts with respect to the ideal plane
wave.
Beam transformations on surfaces can result in unphysical jumps in the phase shift

η(z). In order to avoid those the Gouy phase can be computed as

ηsum(z) = η(z) + ηac, (3.31)

where η(z) is the Gouy phase of the local beam segment (see equation (3.29)) and
ηac is accumulated as the beam propagates through the optical system [P2]. The
latter term can be found by adding up the Gouy phase jumps ηjump at each beam
transformation:

ηjump = ηi − ηt, (3.32)

where ηi and ηt are the Gouy phases of the incident beam and the refracted beams
at the surface (see Figure 3.2).
The third phase contribution is responsible for the wavefront bending [17]. The

value R(z) is the radius of curvature of the wavefront. Equations (3.7) and (3.15)
imply that its evolution can be represented as

R(z) = z − z0 +
z2
R

z − z0
. (3.33)

At waist (z = z0) the radius of curvature of the wavefront is infinite and the
wavefront is planar. The maximum curvature of the wavefront (1/R(z)) is reached
at the Rayleigh range and is equal to 1/(2zR). As z approaches infinity the radius
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z

Figure 3.3.: The evolution of radius of curvature of wavefront of a stigmatic Gaussian beam.
It reaches its minimum of absolute value at the Rayleigh range (z0 ± zR). At waist the
wavefront is planar. The grey line is a radius of curvature of a spherical wave.

of curvature of the wavefront R(z) becomes close to its linear term (the distance
from waist z − z0) and the wavefronts become approximately the same as those of a
spherical wave.

3.4. Beam propagation
The propagation of the stigmatic Gaussian beam has already been described in the
expression for the complex amplitude given in equation (3.8). However, in simula-
tions we are not interested in the entire beam evolution as z goes from −∞ to +∞.
Normally we have the beam that propagates through the optical setup and we are
interested in beam parameters at different points along the beam path. The beam
traveling from the reference point to the photodiode usually consists of several beam
segments with different beam parameters. Thus, when we talk about beam prop-
agation through the optical system we talk about set of transformations of beam
parameters. If the beam parameters are known at a specific point on a beam path
and then the beam propagates through a homogeneous medium by a distance ∆z to
the next point of interest, the q-parameter of the beam transforms as

q′ = q + ∆z. (3.34)

The accumulated optical pathlength is then increased by the geometrical propaga-
tion distance ∆z multiplied by the refractive index of the medium n

s′ac = sac + n∆z. (3.35)

The accumulated phase is incremented as

φ′ac = φac + k∆z, (3.36)
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where k is the wavenumber in the medium.
Other parameters of the beam, such as beam radius w(z), radius of curvature of

the wavefront R(z) and the Gouy phase η(z) should then be recomputed according
to the new value of q-parameter using equations (3.16), (3.33), (3.29).

3.5. Beam transformation
The beam transformation on a surface via reflection and refraction includes the trans-
formation of q-parameter. The phase and optical pathlength are not accumulated in
this case. The Gouy phase accumulates a jump as explained in Section 3.3.

The stigmatic beam remains stigmatic only in case of normal incidence on a flat
or spherical surface. Therefore within this model we assume that any surface can be
described by a single curvature cS . Then the required expressions for transformation
of q parameters as the stigmatic beam is reflected or refracted at some interface can
be obtained from the formulas suggested in [9] by considering normal incidence on a
spherical surface:

qr =
qi

2cSqi + 1
, (3.37)

qt =
qnt

(ni − nt)cSqi + ni
. (3.38)

Here qr and qt are the q-parameters of reflected and refracted (transmitted) beams,
ni and nt are the refractive indices of the mediums before and after refraction. The
beam transmission though a dual surface optical component (such as thick lens or
beamsplitter) can be split up into two refractions on each of the surfaces of the
component. Between these two refractions beam propagates inside the component
and it’s parameters are changed as described in the previous section. This approach
is particularly useful for the thick lenses. It also allows to be more flexible and look
at beam parameters not only before or after the beam enters the lens or beamsplitter,
but also inside.
The formulae that allow to transform the stigmatic beam on a surface provided in

this section complete the description of the stigmatic Gaussian beam model. Together
with the description of beam tracing and signal computation provided in chapter 2
suggested model allows to simulate laser interferometers with the assumption that all
surfaces in the optical system are planar or spherical and the beam incidence on a
surface is always close to normal.
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CHAPTER 4

Simple astigmatic Gaussian beam

T his chapter is dedicated to simple astigmatic Gaussian beams. The other name
that can be found in literature is orthogonal astigmatic beams [7]. Such beams

have elliptical light spots and ellipsoidal wavefronts at every point along the propaga-
tion. Circular light spots as well as spherical wavefronts are only achieved in few spe-
cific points. The orientation of light spot coincides with the orientation of wavefronts,
and both orientations remain unchanged as the beam propagates through a homoge-
neous medium. Therefore, such beams have two planes of symmetry, corresponding
to the principal semi-axes of the light spot or the wavefront. Simple astigmatic beams
can be modeled by introducing two independent stigmatic Gaussian beam representa-
tions – one for each plane of symmetry of the beam [22]. Therefore, a significant part
of the description of these beams is connected to the description of circular Gaussian
beams provided in Chapter 3. The beam-fixed coordinate system (see Chapter 2)
does not necessarily coincide with the beam principal coordinate system, given by the
beam direction and the two planes of symmetry of the beam. Then additionally the
angle between these coordinate systems has to be introduced.
The simple astigmatic Gaussian beam model (unlike the stigmatic model) allows

non-normal incidence on a surface. However, this model is also not general. It is
limited to a propagation through the orthogonal optical system. In such an optical
system for every transformation of the simple astigmatic beam at a surface the plane
of incidence has to include one of the axes of symmetry of both the beam and the
surface. Otherwise the transformation cannot be decoupled into two orthogonal planes
and the simple astigmatic model can only be used as a simplification.
The description of the simple astigmatic Gaussian beam model will include the

same four aspects as the description of circular Gaussian beam model, namely the
complex amplitude of the electric field, intensity and phase distributions, the law of
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propagation and the laws of beam transformation via reflection and refraction.

4.1. Complex amplitude of the electric field
The complex amplitude of a simple astigmatic beam (as well as the complex amplitude
of stigmatic beam) can be expressed by the equation for the complex amplitude of a
paraxial wave (equation (3.3)), where the complex envelope Ψ(r, z) is a generalization
of the complex envelope of stigmatic Gaussian beam:

Ψ(r, z) = E0(z) exp

[
−i k

(
x2

2q1(z)
+

y2

2q2(z)

)]
. (4.1)

Such generalization remains the solution of the paraxial Helmholz equation (3.4).
Substituting this expression into equation (3.3), we obtain the complex amplitude of
the electric field of a simple astigmatic beam:

E(r, z) = E0(z) exp

[
−iφac + iη(z)− ik

(
x2

2q1(z)
+

y2

2q2(z)

)]
. (4.2)

Similarly to the stigmatic case, here φac in the phase accumulated from the chosen
reference point, r = (x, y) is a vector of transversal coordinates and the q-parameters
can be interpreted as

1

qi(z)
=

1

Ri(z)
− i

λ

πw2
i (z)

, i = 1, 2, (4.3)

where Ri, i = 1, 2 are the principal radii of curvature of the wavefront and wi are
the principal semi-axes of the light spot ellipse. An alternative representation of the
q-parameters is

qi(z) = z − z0i + izRi, i = 1, 2, (4.4)

where z0i is the waist position and zRi is the Rayleigh range in the corresponding
plane of symmetry.
The Gouy phase η(z) for simple astigmatic beams is the average of the Gouy

phases in two planes of symmetry [8]:

η(z) =
1

2

[
arctan

(
z − z01

zR1

)
+ arctan

(
z − z01

zR1

)]
. (4.5)

In order to keep the Gouy phase continuous the same procedure as described in
Chapter 3 has to be performed to accumulate the Gouy phase jumps as beam prop-
agates through the optical system.
The normalization constant E0(z) can again be computed using the fact that the

integral of optical intensity over the entire transversal plane equals to the beam power:

P =

∫ +∞

−∞

∫ +∞

−∞
I(r, z) dxdy =

∫ +∞

−∞

∫ +∞

−∞
|E(r, z)|2 dx dy. (4.6)
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This integral can be computed using the Euler-Poisson (or Gaussian) integral:∫ ∞
−∞

e−x
2

dx =
√
π. (4.7)

Then the normalization constant can be expressed as

E0(z) =

√
Pk

π

√
zR1zR2

((z − z01)2 + z2
R1)((z − z02)2 + z2

R2)
=

√
Pk
√
zR1zR2

π|q1q2|
(4.8)

The resulting expression for the complex amplitude of the electric field is

E(r, z) =

√
Pk
√
zR1zR2

π|q1q2|
exp

[
−iφac + iη(z)− ik

(
x2

2q1(z)
+

y2

2q2(z)

)]
. (4.9)

!

!

!

!
!

!

Figure 4.1.: The principal coor-
dinate system (x̂′, ŷ′) of a simple
astigmatic Gaussian beam tilted
counter clockwise by an angle θ
with respect to its beam-fixed
coordinate system (x̂, ŷ).

If we compare the last equation to equation (3.12)
when q1 = q2 = q, we will obtain the same re-
sults, which allows considering the stigmatic Gaus-
sian beam to be the special case of simple astigmatic
Gaussian beam.
Let us now consider the case when the princi-

pal coordinate system of the beam (x̂′, ŷ′, ẑ) is
tilted with respect to the chosen beam-fixed coordi-
nate system (x̂, ŷ, ẑ) counter-clockwise by an angle
of θ around the beam axis ẑ. Then the coordinate
transformation from the beam-fixed coordinate sys-
tem into the principal beam coordinate system looks
as (see Figure 4.1)

x′ = x cos θ + y sin θ,

y′ = −x sin θ + y cos θ.
(4.10)

The complex envelope Ψ(x′, y′, z) in the beam principal coordinate system is defined
in equation (4.1). Substituting coordinate transformation given in equation (4.10) into
this equation, we obtain the complex envelope in the beam-fixed coordinate system:

Ψ(r, z) = E0(z) exp

{
−i
k

2

[(
cos2 θ

q1(z)
+

sin2 θ

q2(z)

)
x2 +

(
sin2 θ

q1(z)
+

cos2 θ

q2(z)

)
y2+

sin 2θ

(
1

q1(z)
− 1

q2(z)

)
xy

]}
.

(4.11)
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Using this expression together with equation (3.3) and the value of the normaliza-
tion constant given in equation (4.8), the complex amplitude of the electric field in
the beam-fixed coordinate system is defined as

E(r, z) =

√
Pk
√
zR1zR2

π|q1q2|
exp

{
−iφac + iη(z)− i

k

2

[(
cos2 θ

q1(z)
+

sin2 θ

q2(z)

)
x2+(

sin2 θ

q1(z)
+

cos2 θ

q2(z)

)
y2 + sin 2θ

(
1

q1(z)
− 1

q2(z)

)
xy

]}
.

(4.12)

The terms iφac and iη(z) stay unaffected in this coordinate transformation. The
expression for complex amplitude of electric field on the beam axis (x = y = 0) also
does not depend on value of θ.
The beam-fixed coordinate system can always be chosen such that it coincides with

the beam principal coordinate system and thus it’s transversal axes are aligned with
the principal semi-axes of the beam ellipse. Then equation (4.9) can be used in the
signal computation for laser interferometer simulations. If the other choice of the
beam-fixed coordinate system is necessary for some purposes, the angle θ has to be
introduced and equation (4.12) has to be used as the expression for complex amplitude
of electric field.

4.2. Intensity and phase distribution
Since the representation of simple astigmatic beam can be split into two independent
circular representations, the description of configuration of such beams comprises the
description of the circular beam configuration. Simple astigmatic beam has two waists
– one in each of the planes of symmetry, not necessarily at one point on the beam
axis (see Figure 4.2). Therefore it can be characterized by two independent sets of
parameters, each including waist position, waist radius and Rayleigh range. These
parameters allow to compute two beam radii and two radii of curvature of the
wavefront using equations, identical to those for the stigmatic beam:

wi(z) = w0i

√
1 +

(
z − z0i

zRi

)2

, (4.13)

w0i =

√
λzRi

π
, (4.14)

Ri(z) = z − z0i +
z2
Ri

z − z0i
, i = 1, 2. (4.15)

These dependancies are illustrated in Figure 4.3. In Figure 4.3a we can see that
simple astigmatic beam has elliptic intensity profile at every transversal plane along
the propagation, except for the two planes, where beam radii are the same in XZ and
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Figure 4.2.: Simple astigmatic Gaussian beam. Beam width evolution. Beam principal
planes coincide with the planes XZ and Y Z. Waist in XZ-plane: w0x = 0.15mm z0x = 0m,
represented by blue line. Waist in Y Z-plane: w0y = 0.3mm z0y = 0.5m, represented by
green line. Equivalent q-parameters: q1 = i66mm, q2 = −500 + i266 mm at z = 0. The
wavelength λ = 1064 nm.

Y Z planes. The ellipticity of the irradiance pattern changes along the propagation
and the larger semi-axis switches from one plane to another every time the circular
intensity profile is reached. However, the orientation of the light spot stays the same
as beam propagates in free space.

In Figure 4.3b the evolution of the two principal radii of curvature is presented.
The wavefront of the simple astigmatic beam can be described by a paraboloid having
two planes of symmetry [19]. The exceptions are the two intersection points where
the wavefront is spherical. It is important to note that the points where the irradiance
pattern is circular do not coincide with the positions of spherical wavefront.

4.3. Beam propagation

The propagation of simple astigmatic beams is similar to the propagation of stigmatic
beams. The geometrical propagation distance ∆z should be added to each of the q-
parameters, while the optical pathlength requires multiplication of this distance by
the value of the refractive index:
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(b) Radius of curvature of the wavefront evolution.

Figure 4.3.: Simple astigmatic Gaussian beam. Beam width evolution (a) and radii of cur-
vature of the wavefront evolution (b). Blue line corresponds to XZ plane, green line corre-
sponds to Y Z plane. The intersection points on the left-hand side correspond to the circular
patterns of irradiance. The intersection points on the right-hand side correspond to the
spherical wavefronts. Both conditions are not fulfilled simultaneously.
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q′1 = q1 + ∆z, (4.16)
q′2 = q2 + ∆z, (4.17)
s′ac = sac + n∆z, (4.18)
φ′ac = φac + k∆z. (4.19)

The orientation of the beam θ doesn’t change along the propagation. Other pa-
rameters of the beam have to be recomputed according to the new values of the
q-parameters.

4.4. Beam transformation

Beam transformation within the simple astigmatic model is only possible when it can
be decoupled into two separate transformations: one for each of the circular Gaussian
beam representations that make up the simple astigmatic beam representation. The
laws of reflection and refraction will be obtained in the form of ABCD-law for both
q-parameters:

q′ =
Aq +B

Cq +D
(4.20)

Following the approach suggested in [9], we will use the fact that the arguments
of the complex amplitudes (equation (4.9)) of the incident, reflected and refracted
beams must match exactly on the boundary between the two media. Due to their
complex values, we shall call these arguments the complex phases to distinguish
from the real-valued beam phase:

ψ(x, y, z) = −iφac + iη(z)− ik

(
x2

2q1(z)
+

y2

2q2(z)

)
. (4.21)

In our investigations we will restrict ourselves to the case where a simple astigmatic
beam is incident on an ellipsoidal interface, defined as

(x2 + z2)/A2 + y2/B2 = 1. (4.22)

We will assume that this surface is a boundary between two media with refractive
indices ni and nt. The beam is incident on a surface at an arbitrary angle θi. The re-
flected angle θr is identical to the angle of incidence (following the reflection law (2.2)).
The refracted angle θt is defined according to the Snell’s law given in equation (2.3).
The plane of incidence, as before, is defined by the direction of the incoming beam ẑi
and the surface normal n̂ at the point of incidence. From the reflection and refraction
laws it follows that both directions of the outgoing beams (ẑr and ẑt) also lie in the
plane of incidence.
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Figure 4.4.: Reflection and refraction of a simple astigmatic Gaussian beam at an ellipsoidal
surface. XZ is the plane of incidence. (x̂i, ŷi, ẑi), (x̂r, ŷr, ẑr), (x̂t, ŷt, ẑt) – beam-fixed coor-
dinate systems for incident, reflected and transmitted beams correspondingly. xl, zl lie in
plane of incidence for l = i, r, t.

The beam-fixed coordinate systems ((x̂i, ŷi, ẑi) for the incident beam, (x̂t, ŷt, ẑt)
for the refracted (transmitted) beam, (x̂r, ŷr, ẑr) for the reflected beam) must be the
principal coordinate systems of the beams. In our derivations we will assume that
the transversal vector x̂l, l = i, r, t corresponds to the first q-parameter of each pf the
three beams q1l, l = i, r, t. Then the complex amplitude of electric field for each of
three beams is given in a form of equation (4.9). All coordinate systems have their
origins at the point of incidence. The propagation to the point of incidence for the
incident beam and from the point of incidence for reflected and transmitted beams
should be performed separately using the formulas from the previous section.
In order to make sure that both outgoing beams (reflected and refracted) are simple

astigmatic, we have to introduce several restrictions:

1. one of the principal axes of ellipsoidal surface must lie in the plane of inci-
dence; this restriction is not an issue with spherical or planar surfaces; in our
investigations we will assume that the incidence happens in the XZ-plane (see
Figure 4.4);

2. the incident simple astigmatic Gaussian beam must be oriented such that one
of its principal axes lies in the plane of incidence; in our derivations we will
assume that x̂i lies in the plane of incidence; this restriction cannot be violated
if the incident beam is stigmatic;

3. the beam diameter is always small compared to both the radius of curvature
of the optical wavefront and the radius of curvature of the optical surface; we
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consider, at most, quadratic variations of the wavefront phase and amplitude
along the transversal coordinates.

We call any optical system, where each beam transformation satisfies the first two of
the restrictions above, an orthogonal optical system. This definition implies that
in such an optical system each beam transformation can be performed separately for
each of the planes of symmetry of the beam. Therefore, it is identical to the definition
given in [23, p. 234].
If x̂i lies in the plane of incidence, according to the transversal coordinate transfor-

mation (2.4) both ẑr and ẑt also lie in the plane of incidence. An illustration is given
in Figure 4.4.
In the plane of incidence (XZ-plane) the surface given in equation (4.22) is repre-

sented as x2 + z2 = A2, so the radius of curvature of the surface is RI = A. In the
other principal plane of the surface (Y Z-plane), orthogonal to the plane of incidence,
the surface equation reduces to y2/B2 + z2/A2 = 1, which means that the radius of
curvature of the surface in this plane is RS = B2/A for sufficiently small values of
y. We assume that positive radii of curvature of the surface correspond to a convex
surface facing the incident beam.
Matching the complex phases of the incident, reflected and refracted beams on the

interface, we obtain

ψi(xi, yi, zi) = ψr(xr, yr, zr), (reflection) (4.23)
ψi(xi, yi, zi) = ψt(xt, yt, zt). (refraction) (4.24)

In our derivations we will not include the Gouy phase η(z). It is kept continuos
separately by accumulating phase jumps as explained in Chapter 3. The accumulated
phase φac can be represented as

φac(zl) = φ̄ac + klzl, l = i, r, t, (4.25)
where φ̄ac is the phase accumulated before the current transformation. This term

is identical for all three beams. Therefore, only the term klzl will be included in the
comparison.
The complex phases are given in the corresponding beam-fixed coordinate systems

and the surface equation is given in the global coordinate system. In order to ob-
tain the complex phase on the surface, we can rewrite surface equation 4.22 in the
beam fixed coordinate system of the incident beam, using the following coordinate
transformation:

x = xi +A sin θi,

y = yi,

z = zi −A cos θi.

(4.26)

Equation (4.22) becomes

(xi +A sin θi)
2 + (Ay1/B)2 + (zi −A cos θi)

2 = A2. (4.27)
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Solving this equation for zi accurately to second order in transversal variables xi
and yi, we obtain:

zi ≈ xi tan θi +
x2
i

2RI cos3 θi
+

y2
i

2RS cos θi
. (4.28)

Substituting this into the complex phase (equation (4.25)) gives:

ψi(xi, yi) = kixi tan θi +
kix

2
i

2

(
1

q1i
+

1

RI cos3 θi

)
+
kiy

2
i

2

(
1

q2i
+

1

RS cos θi

)
(4.29)

4.4.1. Reflection
In order to compare the complex phases in equation (4.23) we need to rewrite the
complex phase of the reflected beam in the beam-fixed coordinate system of the
incident beam using the following coordinate transformation

xr = −xi cos 2θi − zi sin 2θi,

yr = yi,

zr = xi sin 2θi − zi cos 2θi

(4.30)

and the expression for zi (equation (4.28)). Taking into account that incident and
reflected beams propagate in one medium (ki = kr), the complex phase of the reflected
beam becomes

ψr(xi, yi) = kixi tan θi+
kix

2
i

2

(
1

q1r
+

1− 2 cos2 θi
RI cos3 θi

)
+
kiy

2
i

2

(
1

q2r
+

1− 2 cos2 θi
RS cos θi

)
.

(4.31)

The linear terms in equations (4.29) and (4.31) match. Equating coefficients of x2
i

and y2
i , we obtain the relationship between reflected and incident q-parameters:

1

q1r
=

1

q1i
+

2

RI cos θi
, (plane of incidence) (4.32)

1

q2r
=

1

q2i
+

2 cos θi
RS

. (sagittal plane) (4.33)

From these equations it follows that the spot sizes are identical for incident and
reflected beams on the surface. The wavefront radii of curvature are connected by the
relationship

1

R1r
=

1

R1i
+

2

RI cos θi
1

R2r
=

1

R2i
+

2 cos θi
RS

.

(4.34)
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Rewriting equations (4.32) and (4.33) in the form of ABCD-law (4.20), we get the
following expressions for the ABCD matrices for each of the q-parameters:

ABCD1 =

 1 0
2

RI cos θi
1

 , ABCD2 =

 1 0
2 cos θi
RS

1

 . (4.35)

4.4.2. Refraction
Similarly we can obtain the equations for refracted beam. The beam-fixed coordinate
system of refracted beam can be transformed into the beam-fixed coordinate system
of incident beam as

xt = xi cos(θi − θt) + zi sin(θi − θt),
yt = yi,

zt = −xi sin(θi − θt) + zi cos(θi − θt).
(4.36)

Using this coordinate transformation together with expression for zi given in equa-
tion (4.28), we obtain the expression for complex phase of the refracted beam:

ψt(xi, yi) = ktxi[tan θi cos(θi − θt)− sin(θi − θt)]

+
ktx

2
i

2

(
cos2 θt
cos2 θi

1

q1t
+

cos(θi − θt)
RI cos3 θi

)
+
kty

2
i

2

(
1

q2t
+

cos(θi − θt)
RS cos θi

) (4.37)

The wavenumbers of incident and refracted beams are related as kt/ki = nt/ni = nr.
Equating linear terms of equations (4.29) and (4.37) confirms the Snell’s law (2.3).
Equating coefficients of quadratic terms x2

i and y2
i and using Snell’s law to eliminate

θt, we obtain both q-parameters of the simple astigmatic refracted beam:

1

q1t
=

nr cos2 θi

n2
r − sin2 θi

1

q1i
+
nr
RI

cos θi −
√
n2
r − sin2 θi

n2
r − sin2 θi

(plane of incidence), (4.38)

1

q2t
=

1

nr

1

q2i
+

cos θi −
√
n2
r − sin2 θi

nrRS
(sagittal plane). (4.39)

In this case spot size remains unchanged only in sagittal plane, while for tangential
it changes as

w1t =

√
n2
r − sin2 θi

nr cos θi
w1i. (4.40)
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The radii of curvature of the wavefront are given by the following relations:

1

R1t
=

nr cos2 θi

n2
r − sin2 θi

1

R1i
+
nr
RI

cos θi −
√
n2
r − sin2 θi

n2
r − sin2 θi

,

1

R2t
=

1

nr

1

Ryi
+

cos θi −
√
n2
r − sin2 θi

nrRS
.

(4.41)

Now we can rewrite equations (4.38) and (4.39) in the form of ABCD-law (4.20).
Then the ABCD matrices for each of the q-parameters are given as:

ABCD1 =



√
n2
r − sin2 θi

nr cos θi
0

cos θi −
√
n2
r − sin2 θi

RI cos θi

√
n2
r − sin2 θi

cos θi√
n2
r − sin2 θi

 , (4.42)

ABCD2 =

 1 0

cos θi −
√
n2
r − sin2 θi

RSnr

1

nr

 . (4.43)

With this the description of the simple astigmatic Gaussian beam model is com-
pleted.
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CHAPTER 5

General astigmatic Gaussian beam

I n this chapter I will introduce the most general case of the Gaussian beam in
fundamental mode, namely the general astigmatic Gaussian beam. Understand-

ing simple astigmatism is relatively simple for those who are familiar with stigmatic
Gaussian beam. Single circular beam representation in this case is replaced by the
two circular beam representations, and instead of circular light spots and spherical
wavefronts we get elliptical intensity patterns and ellipsoidal wavefronts. In case of
general astigmatism one will still see elliptical light spots and ellipsoidal wavefronts
as beam propagates in free space. However, both ellipses of constant intensity and
ellipses of constant phase will not preserve their orientation along the propagation.
Moreover, the elliptical light spots will not have the same orientation as the ellip-
soidal wavefront at any point along the beam axis. Their relative orientation will also
change as beam propagates. These physical properties make general astigmatic beam
and its mathematical description significantly more complex than simple astigmatic
beam. The behavior of such beams cannot be decoupled into two (or more) stigmatic
beam representations.

General astigmatic beam model allows arbitrary transformations of Gaussian beam
in the fundamental mode on the second order surface (or the surface that can be locally
approximated with the second order equation at the point of incidence). Therefore, it
allows to study the beam jitter effects in the misaligned optical systems or in optical
systems that contain surfaces other than planar or spherical, for example cylindrical
lenses.
General astigmatic Gaussian beams have been known for decades. They were in-

troduced and described by Arnaud and Kogelnik [8]. However, in the field of optical
simulations they are still rarely used. Many software tools that are used in laser
interferometry simulations assume on-axis beam transformations. In this case the
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majority of optical systems that are of interest for the scientists are orthogonal. The
example of set of on-axis beam transformations that leads to the general astigma-
tism is the optical system that contains two cylinder lenses, oriented at an oblique
angle with respect to each other in the transversal plane. Similar optical systems
are not widely used in laser interferometry. On the other hand, if we allow off-axis
beam transformations and misaligned optical systems, general astigmatic beams can
be produced in many cases. As it was mentioned in Chapter 2, general astigmatic
beams can be produced from stigmatic of simple astigmatic beams even in optical
systems that contain only planar and spherical surfaces. Taking this into account,
the general astigmatic beams become widespread and thus important to study.
The model suggested in this chapter follows the discussion presented in [P5]. It does

not only combine the previously available investigations of general astigmatic Gaus-
sian beams, but also provides a detailed derivations that enable deep understanding
of physical properties and mathematical description of this kind of beams. One of
the key problems in general astigmatic beam model development is to find a way
to correctly transform the beams impinging on a surface at a non-normal incidence.
To the best of our knowledge the only work so far that can handle the transforma-
tion of astigmatic beams incident at some angle on arbitrary second order surfaces
(for example spheres, ellipsoids or cylinders), is the work by Rohani [11]. Unfortu-
nately, this paper (as well as [24] and [25]) contains typos and only briefly explains
the procedure of obtaining the necessary formulae. In this chapter I will re-derive the
formulas suggested by Rohani and generalize them to the case of arbitrary choice of
the beam-fixed and surface-fixed coordinate systems.
As for the stigmatic and simple astigmatic Gaussian beams, the description of the

general astigmatic Gaussian beam will include the four main aspects: the complex
amplitude of the electric field, intensity and phase distributions, the law of propaga-
tion and the laws of beam transformation via reflection and refraction. The general
astigmatic beam model is applicable to the beam jitter simulations in every optical
system, where each surface can be represented with the second order equation at the
point of incidence.

5.1. Complex amplitude of the electric field
The complex envelope given in equation (4.11) remains the solution of the paraxial
Helmholz equation (3.4) even if the value of angle θ is complex. In this case equa-
tion (4.11) describes the general astigmatic Gaussian beam [8]. Then the complex
amplitude of the electric field can be described by the same expression as the com-
plex amplitude of the electric field of simple astigmatic beam, tilted around the axis
of propagation:

E(r, z) = E0(z) exp

{
−iφac + iη(z)− i

k

2

[(
cos2 θ

q1(z)
+

sin2 θ

q2(z)

)
x2+(

sin2 θ

q1(z)
+

cos2 θ

q2(z)

)
y2 + sin 2θ

(
1

q1(z)
− 1

q2(z)

)
xy

]}
.

(5.1)
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The only difference between this equation and equation (4.12) is that in the first
case angle θ is complex-valued. Seemingly small difference in definitions of simple and
general astigmatic beams results in significant changes in their physical properties.
We will discuss these in details in the next section.

The accumulated phase is defined in the same way as for stigmatic and simple
astigmatic beams (see equation (3.25)). Due to the complex value of angle θ none of
the known physical interpretations of the q-parameters holds (see equations (4.3) and
(4.4)). However, the Gouy phase η(z) can still be defined as

η(z) =
1

2

[
arctan

(
<(q1)

=(q1)

)
+ arctan

(
<(q1)

=(q1)

)]
, (5.2)

where <(q) and =(q) stand for the real and imaginary part of the complex number
q correspondingly [8]. This expression is identical to the expression for Gouy phase
of simple astigmatic beam given in equation (4.5).
Equation (5.1) can we rewritten as

E(r, z) = E0(z) exp

{
−iφac + iη(z)− i

k

2
rTQr

}
, (5.3)

where

Q(z) =


cos2 θ

q1(z)
+

sin2 θ

q2(z)

1

2
sin 2θ

(
1

q1(z)
−

1

q2(z)

)
1

2
sin 2θ

(
1

q1(z)
−

1

q2(z)

)
sin2 θ

q1(z)
+

cos2 θ

q2(z)

 (5.4)

is complex radius of curvature tensor for generalized Gaussian beams [19].
The superscript T means transposed.
The complex radius of curvature tensor given in equation (5.3) can also be used to

represent circular and simple astigmatic Gaussian beams. In these cases it is defined
as

Qstigmatic =

(
1/q 0
0 1/q

)
, (5.5) QSA =

(
1/q1 0

0 1/q2

)
. (5.6)

If the principal coordinate system of the simple astigmatic beam is tilted with
respect to the beam-fixed coordinate system, the complex radius of curvature tensor
in the beam-fixed coordinate system will follow equation (5.4), but angle θ has to
stay real-valued in this case. Therefore, equation (5.3) can be used to represent the
complex amplitude of electric field for all types of Gaussian beams in fundamental
mode.
The complex radius of curvature tensor for general astigmatic or titled simple astig-

matic beams (equation (5.4)) can be obtained from the complex radius of curvature
tensor for simple astigmatic beams (equation (5.6)) by applying rotation matrix:

Q = S(θ)T QSA S(θ), (5.7)
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where

S(θ) =

(
cos θ sin θ
− sin θ cos θ

)
(5.8)

corresponds to the coordinate transformation given in equation (4.10).
The normalization constant E0(z) can be computed using the fact that the total

beam power at the cross-section is the integral of the optical intensity in this cross-
section, as it was done for simple astigmatic beam in equation (4.6). The optical
intensity of the beam can be represented as

I(x, y, z) = |E(x, y, z)|2 = E0(z)2 exp
(
g1(z)x2 + g2(z)y2 + g(z)xy

)
, (5.9)

where

g1(z) = k=(Q11)

g2(z) = k=(Q22)

g(z) = k=(Q12 +Q21)

(5.10)

and Qij stands for the ij-element of the complex radius of curvature tensor Q(z).
Substituting equation (5.9) into equation (4.6) and computing the double integral
using the Euler-Poisson (Gaussian) integral (4.7), we obtain

P =

∫∫
E2

0(z) exp(g1(z)x2 + g2(z)x2 + g(z)xy) dxdy =

E2
0(z)

∫∫
exp

[
g1(z)

(
x+

g(z)

2g1(z)
y

)2

+

(
g2(z)− g2(z)

4g1(z)

)
y2

]
dxdy =

E2
0(z)

√
π

−g1(z)

∫
exp

[(
g2(z)− g2(z)

4g1(z)

)
y2

]
dy =

E2
0(z)

√
π

−g1(z)

√
π

g2(z)/4g1(z)− g2(z)
=

E2
0(z)

2π√
4g1(z)g2(z)− g2(z)

,

(5.11)

which leads to:

E0(z) =

√
P

λ

√
4=(Q11)=(Q22)−=(Q12 +Q21)2. (5.12)

When θ = 0 expressions from (5.10) look as following:

g1 = −k=(q1)

|q1|2
, g2 = −k=(q2)

|q2|2
, g = 0. (5.13)
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Chapter 5: General astigmatic GB 5.2. The law of propagation

Then equation (5.12) gives the same result as equation (4.8), which in turn gives
the same result as equation (3.11) when q1 = q2 = q.
Substituting equation (5.12) into equation (5.3), we get the expression for the com-

plex amplitude of generalized Gaussian beam in fundamental mode:

E(r, z) =

√
P

λ

√
4=(Q11)=(Q22)−=(Q12 +Q21)2 exp

{
−iφac + iη(z)− i

k

2
rTQr

}
.

(5.14)
Depending on the value of the complex radius of curvature tensorQ, it can represent

general astigmatic, simple astigmatic or circular Gaussian beams.
From equations (5.1) and (5.3) it follows that in order to fully describe general

astigmatic Gaussian beam one can choose either of two strategies. The first one is to
use three complex-valued parameters: two q-parameters qi, i = 1, 2, and one complex
angle θ. Another possible strategy is to use the complex radius of curvature tensor
(equation (5.4)). Both strategies are connected: the reciprocals of q1 and q2 are the
eigenvalues of the complex radius of curvature tensor. Complex valued angle θ can
be obtained from Q using the relationship

tan 2θ =
Q12 +Q21

Q11 −Q22
. (5.15)

5.2. The law of propagation

In [26] the simple analytic formula that describes the propagation of a general astig-
matic Gaussian beam in a homogeneous medium is given by:

Q′ =
Q

E + ∆zQ
, (5.16)

where E is the unity matrix, ∆z is the propagation distance. Equation (5.16) is
equivalent to

Q′ =


cos2 θ

q1 + ∆z
+

sin2 θ

q2 + ∆z

1

2
sin 2θ

(
1

q1 + ∆z
−

1

q2 + ∆z

)
1

2
sin 2θ

(
1

q1 + ∆z
−

1

q2 + ∆z

)
sin2 θ

q1 + ∆z
+

cos2 θ

q2 + ∆z

 . (5.17)

Therefore the propagation law for general astigmatic Gaussian beam is identical to
the one for simple astigmatic Gaussian beam:

q′1 = q1 + ∆z,

q′2 = q2 + ∆z.
(5.18)
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The optical pathlength and accumulated phase change as

s′ac = sac + n∆z, (5.19)
φ′ac = φac + k∆z. (5.20)

The complex angle θ remains unaffected along the propagation.

5.3. Intensity and phase distribution
As it was mentioned above, q-parameters do not have a direct physical interpretation
for general astigmatic beams. In this section I will first derive the expressions for the
real-valued parameters of the beam: spot radii, radii of curvature of the wavefronts
and orientations of light spots and wavefronts. Then I will talk about the evolution
of these parameters and, therefore, the behavior of the general astigmatic beam as it
propagates in free space.

5.3.1. Beam parameters
In order to obtain the beam radii and radii of curvature of the wavefront let me first
separate the real and imaginary parts of the complex phase ψ(r, z), which is defined
as the complex-valued argument of exponent in equation (5.3):

ψ(r, z) = −iφac + iη(z)− i
k

2
rTQr. (5.21)

In order to do so I will define the real-valued matrices

W (z) = −(k/2)=(Q), C(z) = <(Q) (5.22)

and rewrite the complex amplitude of the electric field (equation (5.3)) [27] as

E(r, z) = E0(z) exp

{
−iφac + iη(z)− rTW (z)r− i

k

2
rTC(z)r

}
. (5.23)

For circular beams matrices W and C represent the light spots and the wavefronts:

Wcircular(z) =


1

w2(z)
0

0
1

w2(z)

 , Ccircular(z) =


1

R(z)
0

0
1

R(z)

 . (5.24)

Similarly for simple astigmatic beams in their principal coordinate system:

WSA(z) =


1

w2
1(z)

0

0
1

w2
2(z)

 , CSA(z) =


1

R1(z)
0

0
1

R2(z)

 , (5.25)
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For the general astigmatic beam the matrices defined in equation (5.22) still rep-
resent the ellipses of constant intensity and of constant phase. However, in
this case both matrices are non-diagonal. Similarly to the complex radius of curvature
tensor for generalized Gaussian beams (equation (5.7)) they can be obtained as

W = S(ϕw)T WSA S(ϕw), (5.26)

C = S(ϕR)T CSA S(ϕR), (5.27)

or, writing down the result of multiplication,

W (z) =


cos2 ϕw

w2
1(z)

+
sin2 ϕw

w2
2(z)

1

2
sin 2ϕw

(
1

w2
1(z)
−

1

w2
2(z)

)
1

2
sin 2ϕw

(
1

w2
1(z)
−

1

w2
2(z)

)
sin2 ϕw

w2
1(z)

+
cos2 ϕw

w2
2(z)

 ,

C(z) =


cos2 ϕR

R1(z)
+

sin2 ϕR

R2(z)

1

2
sin 2ϕR

(
1

R1(z)
−

1

R2(z)

)
1

2
sin 2ϕR

(
1

R1(z)
−

1

R2(z)

)
sin2 ϕR

R1(z)
+

cos2 ϕR

R2(z)

 .

(5.28)

Note that for simple astigmatic beams tilted by a real-valued angle θ around the
z axis equation (5.28) holds with ϕw = ϕR = θ. The eigenvalues 1/w2

i , i = 1, 2 of
the matrix W (z) are reciprocals of the principal axes of the intensity ellipse squared.
Similarly the eigenvalues 1/Ri, i = 1, 2 of the matrix C(z) are the reciprocals of
the principal radii of curvature of the wavefront. The orientation of ellipses is
described by the angles ϕw and ϕR, which can be obtained in the same way as the
angle θ in equation (5.15):

tan 2ϕw =
W12 +W21

W11 −W22
, (5.29)

tan 2ϕR =
C12 + C21

C11 − C22
. (5.30)

Equations (5.29)-(5.30) and eigenvalue computation are already sufficient for com-
putation of the intensity and phase distribution of any Gaussian beam in the funda-
mental mode. However, they don’t provide a direct description of general astigmatic
Gaussian beam characteristics. In order to study these more closely we can substitute

θ = θ< + i θ=,

1/qi = ρi − iωi, i = 1, 2,

ρi(z) = <(qi)/|qi|2,
ωi(z) = =(qi)/|qi|2

(5.31)
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in the complex radius of curvature tensor Q(z) (equation (5.4)) and obtain the
matrices W (z) and C(z) from equation (5.22). Then the elements of matrix W (z)
are:

w11 =
k

4
(ω1 + ω2 + (ω1 − ω2) cos 2θ< cosh 2θ= + (ρ1 − ρ2) sin 2θ< sinh 2θ=),

w12 = w21 =
k

4
((ω1 − ω2) sin 2θ< cosh 2θ= − (ρ1 − ρ2) cos 2θ< sinh 2θ=),

w22 =
k

4
(ω1 + ω2 − (ω1 − ω2) cos 2θ< cosh 2θ= − (ρ1 − ρ2) sin 2θ< sinh 2θ=).

(5.32)

Similarly the elements of matrix C(z) are:

c11 =
1

2
(ρ1 + ρ2 + (ρ1 − ρ2) cos 2θ< cosh 2θ= − (ω1 − ω2) sin 2θ< sinh 2θ=),

c12 = c21 =
1

2
((ρ1 − ρ2) sin 2θ< cosh 2θ= + (ω1 − ω2) cos 2θ< sinh 2θ=),

c22 =
1

2
(ρ1 + ρ2 − (ρ1 − ρ2) cos 2θ< cosh 2θ= + (ω1 − ω2) sin 2θ< sinh 2θ=).

(5.33)

Then using equations (5.29)-(5.30), the values for the angles of orientation ϕw

and ϕR of the intensity and phase ellipses are

tan 2ϕw =
(ω1 − ω2) tan 2θ< − (ρ1 − ρ2) tanh 2θ=

(ω1 − ω2) + (ρ1 − ρ2) tan 2θ< tanh 2θ=
, (5.34)

tan 2ϕR =
(ρ1 − ρ2) tan 2θ< + (ω1 − ω2) tanh 2θ=

(ρ1 − ρ2)− (ω1 − ω2) tan 2θ< tanh 2θ=
. (5.35)

It is easy to see that tan 2ϕw = tan 2(ϕw0 + θ<) and tan 2ϕR = tan 2(ϕR0 + θ<),
where ϕw0 and ϕR0 are the angles of the constant intensity and phase ellipses for the
case of θ< = 0. Therefore,

tan 2ϕw0(z) = − ρ1(z)− ρ2(z)

ω1(z)− ω2(z)
tanh 2θ=, ϕw(z) = ϕw0(z) + θ<, (5.36)

tan 2ϕR0(z) =
ω1(z)− ω2(z)

ρ1(z)− ρ2(z)
tanh 2θ=, ϕR(z) = ϕR0(z) + θ<. (5.37)

The eigenvalues of the matrices W (z) and C(z) can be expressed as

1

w2
1,2(z)

=
k

4
{ω1(z) + ω2(z)±√
[ω1(z)− ω2(z)]

2
cosh2 2θ= + [ρ1(z)− ρ2(z)]

2
sinh2 2θ=

}
,

(5.38)
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1

R1,2(z)
=

1

2
{ρ1(z) + ρ2(z)±√
[ρ1(z)− ρ2(z)]

2
cosh2 2θ= + [ω1(z)− ω2(z)]

2
sinh2 2θ=

}
.

(5.39)

Equations (5.36)-(5.39) introduce the physical meaning of the complex parameters
of general astigmatic Gaussian beam. In the simple astigmatic case each principal
axis of the beam spot ellipse and the phase ellipse can be computed from a single
q-parameter using equation (3.7). In the general astigmatic case instead each real-
valued parameter is computed using both q-parameters and the value of the complex
angle θ. Therefore a single q-parameter or angle θ alone does not have a direct physical
interpretation for general astigmatic beams.
We have shown that the parameters of intensity and phase distributions of the gen-

eral astigmatic Gaussian beam can be obtained from the radius of curvature tensor
Q(z) using eigenvalue computation and simple equations (5.29) and (5.30). Alterna-
tively, one can use equations (5.36)-(5.39) that allow to compute these parameters
from complex-valued q-parameters and the angle θ.

5.3.2. Beam evolution

The complex angle θ (and thus both θ< and θ=) does not change as the beam propa-
gates in free space (equation (5.18)). Its real part θ< is one of the two terms for both
angles ϕw and ϕR (equations (5.36) and (5.37)) and it does not couple into the prin-
cipal axes of the ellipses of constant intensity and constant phase (equations (5.38),
(5.39)). These two facts allow the interpretation of θ< as the angle of rotation of the
entire beam. It is always possible to choose a beam-fixed coordinate system where
θ< is zero. The imaginary part θ= causes the orientations of both ellipses of con-
stant intensity and of constant phase (ϕw and ϕR) to change along the propagation
(equations (5.36) and (5.37)). In order to study this dependence we will illustrate
the evolution of the two q parameters (equation (5.31))) by a Gaussian beam (or
Collins [20, p. 681]) chart (Figure 5.1). The evolution of each of the two q-parameters
is represented by a circle with a diameter of 1/=(q). The line connecting two circles
at identical values of z changes the angle with the ω axis monotonically by a total
of 2π as z goes from −∞ to +∞. The tangent of this angle for each value of z is
(ρ1−ρ2)/(ω1−ω2). This value is used in both equations (5.36) and (5.37). Therefore
both ϕw and ϕR change monotonically with increasing z. Depending on the value
of θ= angles can either increase, or decrease. Each angle changes by a total of π
radians from z = −∞ to z =∞. Experimental observation over the infinite range is
impossible, but by choosing to observe the regions with maximum slope ∂ϕw/∂z (or
∂ϕR/∂z) one can see most of the overall rotation of the ellipse of constant intensity
(or ellipse of constant phase).
The relative orientation of the ellipses of constant intensity and constant phase
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Figure 5.1.: A Gaussian beam (or Collins) chart. q1 = i 66mm, q2 = −500 + i 266mm at
z = 0. The axes are ω(z) = =(q)/|q|2 and ρ(z) = <(q)/|q|2. The line connecting two circles
for the same value of z forms an angle with tangent (ρ1 − ρ2)/(ω1 − ω2) with the ω axis.

(from equations (5.36) and (5.37)) is described by

tan 2(ϕw(z)− ϕR(z)) = − sinh 2θ= cosh 2θ=
(
ρ1(z)− ρ2(z)

ω1(z)− ω2(z)
+
ω1(z)− ω2(z)

ρ1(z)− ρ2(z)

)
.

(5.40)
This equation shows that the ellipses can only be aligned (have a relative angle

of 0 or π/2) at a given point z′ if either θ= = 0 or q1(z′) = q2(z′). According to
the law of propagation (equation (5.18))) this is only possible for special cases of
the simple astigmatism or perfect stigmatism. Thus the ellipses of constant intensity
and constant phase cannot be aligned at any point along the propagation for general
astigmatic beams. Similarly it can be shown that spot ellipses and wavefronts of the
general astigmatic Gaussian beam never degenerate to circles. Equation (5.40) shows
that the relative orientation changes along the z axis. Only the invariant

tan 2ϕw0(z) tan 2ϕR0(z) = − tanh2 2θ= (5.41)

is independent of z.
The evolution of the beam width is presented in Figure 5.2. The beam parame-

ters that were used to produce this figure are identical to those for Figure 4.2 that
illustrates the evolution of the beam width of the simple astigmatic beam. Only the
complex angle θ is added in general astigmatic case. These two plots illustrate the
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Figure 5.2.: General astigmatic Gaussian beam. Beam width evolution. q-parameters: q1 =
i 66mm, q2 = −500 + i 266 mm at z = 0 (identical to q-parameters used in figure 4.2).
Complex angle θ = 20◦ − i10◦. The wavelength λ = 1064 nm.

comparison of two types of astigmatism of Gaussian beam. The corresponding graphs
for the major and minor semi-axes of both ellipses of constant phase and constant
intensity are shown in Figure 5.3. For simple astigmatic beams waist positions and
Rayleigh ranges can be found from the q-parameters using equation (4.4) separately
in each of the planes of symmetry. The minimal wavefront radius of curvature in this
case is achieved where z = z0i±zRi and is equal to 2zRi. This physical interpretation
no longer holds for general astigmatic Gaussian beams.
Let us estimate the expression under the square root sign in equation (5.38):

[ω1(z)− ω2(z)]
2

cosh2 2θ=︸ ︷︷ ︸
≥1

+ [ρ1(z)− ρ2(z)]
2

sinh2 2θ=︸ ︷︷ ︸
≥0

≥ [ω1(z)− ω2(z)]
2
, (5.42)

and equality holds only in the simple astigmatic case. This means that for any
value of θ=

1

w2
2GA(z)

<
1

w2
1,2SA(z)

<
1

w2
1GA(z)

(5.43)

where w1,2GA(z) are the major and minor semi-axes of the intensity ellipse of the
general astigmatic beam, w1,2SA(z) are the semi-axes of the intensity ellipse of the
simple astigmatic beam with identical q-parameters. Taking into account that all
values of spot radii are positive, this is equivalent to

w1GA(z) < w1,2SA(z) < w2GA(z) (5.44)
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for any value of z. This fact is illustrated in Figure 5.3a and effectively means that
for any general astigmatic Gaussian beam its ellipses of constant intensity have higher
ellipticity than for the corresponding simple astigmatic Gaussian beam. Similarly

1

R2GA(z)
<

1

R1,2SA(z)
<

1

R1GA(z)
, (5.45)

where R1,2GA(z) are the principal radii of curvature of the wavefront of the general
astigmatic Gaussian beam, R1,2SA(z) are the principal radii of curvature of the wave-
front of the corresponding simple astigmatic Gaussian beam. Since some of those
radii can be negative we can not draw the same conclusion as for spot radii (see
Figure 5.3b).
The value of θ= cannot be arbitrary. The semi-axes of the spot ellipse should always

be positive [8]:

ω1 + ω2 ≥
√

(ω1 − ω2)2 cosh2 2θ= + (ρ1 − ρ2)2 sinh2 2θ=. (5.46)

This condition is equivalent to:

cosh2 2θ= ≤ (ω1 + ω2)2 + (ρ1 − ρ2)2

(ω1 − ω2)2 + (ρ1 − ρ2)2
, (5.47)

which in turn is the same as

cosh2 2θ= ≤ (<(q1)−<(q2))2 + (=(q1)−=(q2))2

(<(q1)−<(q2))2 + (=(q1)−=(q2))2
, (5.48)

or, more compactly

cosh2 2θ= ≤
∣∣∣∣q1 − q∗2
q1 − q2

∣∣∣∣ . (5.49)

If this restriction is fulfilled at some position z, it is fulfilled at every point along
the beam axis. Therefore, confined beam remains confined as it propagates in free
space.

5.4. Beam transformation

In order to obtain the formulae for general astigmatic Gaussian beam transformation
via reflection or refraction we will generally follow the procedure proposed in [11]. In
our derivations we will add the possibility of choosing beam-fixed and surface-fixed
transversal coordinate vectors arbitrarily. We will use the fact that the complex phase
(equation (5.21)) of incident, reflected and refracted beams should match exactly on
the surface. This is, therefore, an extension of the phase matching method described
in [28,29]. We will assume that at the point of incidence the beam radii are small in
comparison to the radii of curvature of the surface.
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(b) Radius of curvature of the wavefront evolution.

Figure 5.3.: Beam width evolution (a) and radius of curvature of the wavefront evolution (b)
of a general astigmatic Gaussian beam in comparison to the same parameters of a simple
astigmatic Gaussian beam with identical q-parameters and optical wavelength. q1 = i 66mm,
q2 = −500 + i 266mm at z = 0. λ = 1064 nm. The complex angle for the general astigmatic
beam is θ = 20◦ + i 10◦. For any value of z: w1GA(z) < w1,2SA(z) < w2GA(z), w1GA(z) 6=
w2GA(z), and R1GA(z) 6= R2GA(z).
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Any second order 3D surface (sphere, ellipsoid, cylinder etc.) can be described by
a quadratic equation

s(d) = d1d̂1 + d2d̂2 −
1

2
(dTCsd)n̂, (5.50)

where d is a 2D vector with components d1 and d2, (d̂1, d̂2, n̂) is an orthonormal
local coordinate system describing a surface at the point of incidence (see Figure 5.4)
such that n̂ is a unit vector normal to the surface and d̂1 and d̂2 are unit vectors
in the plane tangential to the surface. Vectors d̂1 and d̂2 can be chosen arbitrarily
such that the coordinate system stays orthonormal. Cs is the curvature matrix of
the surface in the local coordinate system. Any higher order surface can be locally
approximated using equation (5.50).

Figure 5.4.: Reflection and refraction of a general astigmatic Gaussian beam at an ellipsoidal
surface.

If the surface equation in the local coordinate system is given, one can obtain its
curvature matrix Cs as the second order derivative at the point of incidence. For
example the ellipsoid with the principal semi-axes A, B and C (see Figure 5.4) in its
nominal coordinate system, placed in the center of the ellipsoid, is represented by

f(x) = xTSx− 1 = 0, (5.51)
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where

S =

1/A2 0 0
0 1/B2 0
0 0 1/C2

 , (5.52)

and x = (x, y, z) is a coordinate vector. We can rewrite this equation in the local
coordinate system using the affine transformation x′ = Mx + t, where t is a vector
connecting the center of the ellipsoid with the point of incidence, and M is a rotation
matrix from the nominal ellipsoid coordinate system into the local coordinate system.
Then we obtain

f(x′) = (x′ − t)TS′(x′ − t)− 1 = 0. (5.53)

Here S′ = MSMT . From this equation we need to derive z′ as a function of (x′, y′)
and find the curvature matrix as it’s second order derivative

Cs =

(
∂2z′/∂x′2 ∂2z′/∂x′∂y′

∂2z′/∂y′∂x′ ∂2z′/∂y′2

)
. (5.54)

Skipping lengthy calculations (see appendix A), the curvature matrix of an ellipsoid
at a point on it’s surface is equal to

Cellipsoid = ±1

b

(
S′11S

′
33 − S′213 + gt2y S′12S

′
33 − S′13S

′
23 − gtxty

S′12S
′
33 − S′13S

′
23 − gtxty S′22S

′
33 − S′223 + gt2x

)
, (5.55)

where

b = [(S′13tx + S′23ty)2 − S′33(S′11t
2
x + 2S′12txty + S′22t

2
y − 1)]3/2,

g = S′11S
′2
23 + S′22S

′2
13 + S′33S

′2
12 − 2S′12S

′
13S
′
23 − S′11S

′
22S
′
33,

(5.56)

S′ij are the elements of matrix S′. Equation (5.55) can also be used for cylindrical
surfaces (1/A2 or 1/B2 should then be set to 0). In the special case of spherical
surfaces the curvature matrix is the same at every point of the surface:

Csphere = ±
(
c 0
0 c

)
, (5.57)

where 1/c is the radius of the sphere.
Now let us introduce three beam-fixed coordinate systems (x̂l, ŷl, ẑl) for l = i, r, t

for incident, reflected and transmitted beams, respectively (Figure 5.4). Similar to
ray fixed coordinate system from [29, chapter 4] ẑl corresponds to the direction of
the beam and transversal unit vectors x̂l and ŷl can be chosen arbitrarily such that
coordinate system (x̂l, ŷl, ẑl) stays orthonormal. The directions of the beams are
connected via law of reflection (2.2) and law of refraction (2.3).
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For each of the three beams the complex radius of curvature tensor Ql(zl) is given in
a corresponding coordinate system (x̂l, ŷl, ẑl). The complex phase (equation (5.21))
of each of the three beams in their beam-fixed coordinate system is

ψ(rl, zl) = −φac l + kl
1

2
rTl Ql(zl)rl, l = i, r, t, (5.58)

where rl is a vector of transversal coordinates xl and yl in a beam-fixed coordinate
system (x̂l, ŷl, ẑl). We neglect the slowly varying Gouy phase η(z) since it can
be computed independently using equation (5.2). In order to keep the Gouy phase
continuous, the accumulated Gouy phase can be used as described in Chapter 3.
Similarly to simple astigmatic case, we can use the term klzl instead of accumulated
phase in the phase matching.
The points (xl, yl, zl) on a surface (equation (5.50)) can be found from

xl = s(d)x̂l = d1x̂ld̂1 + d2x̂ld̂2 − 1/2(dCsd
T )x̂ln̂

yl = s(d)ŷl = d1ŷld̂1 + d2ŷld̂2 − 1/2(dCsd
T )ŷln̂

zl = s(d)ẑl = d1ẑld̂1 + d2ẑld̂2 − 1/2(dCsd
T )ẑln̂

(5.59)

If we introduce coordinate transformation matrices as

Kl =

(
x̂ld̂1 x̂ld̂2

ŷld̂1 ŷld̂2

)
, l = i, r, t, (5.60)

equation (5.59)) can be split into two terms:

rl = Kld−
1

2
(dCsd

T ) ·
(
x̂ln̂
ŷln̂

)
zl = d1ẑld̂1 + d2ẑld̂2 −

1

2
(dCsd

T )n̂ẑl

(5.61)

Ignoring second order term for the transversal coordinates [28] and substituting the
result into equation (5.58), we obtain:

φl = −kl
(

(ẑld̂1)d1 + (ẑld̂2)d2 −
1

2
(dCsd

T )n̂ẑl +
1

2
(Kld)TQl(zl)(Kld)

)
= −kl((ẑld̂1)d̂1 + (ẑld̂2)d̂2︸ ︷︷ ︸

pl

)(d1d̂1 + d2d̂2)− 1

2
kld

T (KT
l Ql(zl)Kl − Cn̂ẑl︸ ︷︷ ︸

Γl

)d.
(5.62)

Here pl is a projection of the beam direction ẑl on a plane that is tangential to the
surface at the point of incidence. Since the beam radii are much smaller than the
radii of curvature of the surface we can assume that Ql is constant on a surface and
is equal to its value at the point of incidence.
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Linear and quadratic terms of the complex phases should be matched separately.
The linear term confirms Snell’s law and the quadratic term allows the equations
for the complex radius of curvature tensor of reflected and transmitted beams to be
obtained:

kiΓi = kiΓr = ktΓt, (5.63)

which yields:

Qr = (KT
r )−1(KT

i QiKi − C(n̂ẑi − n̂ẑr))K−1
r , (5.64)

Qt =
n1

n2
(KT

t )−1(KT
i QiKi − C(n̂ẑi −

n2

n1
n̂ẑt))K

−1
t . (5.65)

Therefore we derived the equations for the complex radius of curvature tensor of
reflected and refracted beams for the case of an arbitrary 3D surface, approximated
by a quadratic equation. Lenses and other multi-surface structures can be analyzed
by considering multiple reflections and refractions from each of the surfaces that make
up such structures.
Equations (5.64) and (5.65) do not only correct the typos in [11], but also allow

different possible notations for beam-fixed and surface-fixed coordinate systems. Only
the beam directions ẑl and surface normal (n̂) at the point of incidence should stay
fixed, while transversal coordinate vectors (x̂l, ŷl, d̂1, d̂2) can be chosen arbitrarily
in the plane that is tangential to the surface at the point of incidence. We also
believe that using the given vector notation is more reliable than substituting angles
of incidence, reflection and refraction since it does not require sign checks.
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CHAPTER 6

Experimental verification of the general astigmatic Gaussian
beam model

T aking into account the configuration of general astigmatic beam, investigated
in Chapter 5, one of the obvious ways to verify the general astigmatic Gaussian

beam model experimentally is to compare the evolution of the intensity ellipse ellipse
obtained in simulation and in experiment.
In this chapter I will introduce the experiment, where the simple astigmatic beam is

transformed into a general astigmatic by two cylindrical lenses. Then the light spots at
different distances behind the second lens are measured with a charge-coupled device
(CCD) and compared to the simulation results. Apart from the plain comparison this
work includes the search of the setup that produces a beam with the clearly visible
properties of general astigmatism in the observation region. In order to minimize the
effect of measurement uncertainties of the individual parameters of the setup we then
fitted these parameters to the measured beam intensity distributions.
The experiment has been performed by Dennis Schmelzer [30], the simulations were

done by myself. Within this chapter there are deviations from the results presented
in [30]. This is due to the fact that a lot more simulation analysis has been performed
after the thesis was written by Dennis Schmelzer. Thus, this work represents a re-
finement, which results in small differences in some numbers and graphs. However,
the results presented in [30] are very similar to the ones given in this chapter and the
major conclusions stay unaffected.
I will start this chapter with the general schematic of the experiment provided in

Section 6.1. I will talk about the main components and their features and about the
measurement technique. Section 6.2 will include the approach to the comparison of
the measured and simulated data. It will discuss the difficulties and the criteria of
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the good agreement between the theory and the experiment. I will also introduce the
procedure of fitting individual measured parameters to the measured data. In Sec-
tion 6.3 I will talk about the first measurements, made with a simple approach. Then
I will give an overview of a procedure for finding an optimal setup for the comparison.
I will explain what setup and why do we consider an optimal and how do we choose it
from the number of different possibilities. With the new optimal setup two other sets
of measurements have been performed. The results of these measurements compared
to the simulation will be presented in Section 6.5 and Section 6.6. In Section 6.7 I
will discuss the results of the comparison so far and the way forward in the field of
experimental verification of the general astigmatic Gaussian beam model.

6.1. General setup
Within this thesis I emphasized that general astigmatic Gaussian beam can be pro-
duced from stigmatic and simple astigmatic beams in the optical system that contains
only two spherical lenses. However, using such a system in the comparison of the light
spots is not efficient due to the fact that it produces the general astigmatic beams with
a small ellipticity of the intensity pattern. The easiest way to achieve high ellipticity
is to use strongly astigmatic components in the optical system. An example of such a
component is a cylindrical lens. In order to produce a general astigmatic beam from
stigmatic two cylindrical lenses are needed. The first lens will transform stigmatic
beam into simple astigmatic. The second lens will transform simple astigmatic beam
into general astigmatic if the principal axes of the simple astigmatic beam are not
aligned with the principal axes of the lens. This is the case if the second lens is aligned
at an oblique angle to the first one in the plane, orthogonal to the axis of propagation.

Laser

1st lens
(f1, z1, α1)

2nd lens
(f2, z2, α2)

CCD

Optical fiber
with fiber

outcoupler

y

z

x

Figure 6.1.: A simplified schematic of experiment. The output from a laser was coupled into a
fiber acting as a special mode filter. First, the beam exiting the fiber was characterized using
the CCD camera, then two cylindrical lenses (focal length fi, distance to fiber collimator
zi, angle αi to y-axis) were inserted and the resulting beam intensity pattern was measured
with the CCD camera at different positions behind the second lens.

In Figure 6.1 the schematic of the experimental setup is shown. The light from a
laser (Mephisto 500 by Coherent [31]) with a wavelength of λ = 1064nm was coupled
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into a single-mode polarisation-maintaining fiber with angle-polished connectors, that
acted as a spatial mode filter. The light emitted by the fiber was collimated with an
aspherical lens with 11mm focal length (60FC-4-A11-03 by Schäfter und Kirchhoff
[32]). The principal beam radii w1 and w2 and the angle of orientation ϕw0 of the
intensity ellipse with respect to the camera-fixed coordinate system were measured at
several distances zj from the fiber collimator using the WinCamD-UCD23 by Dataray
[33].
The waist radii w01 and w02 and distances between fiber collimator and waists z01

and z02 were obtained using least-square fit of the beam radii evolution described as

wi(z) = w0i

√
1 +

(
λ
z − z0i

πw2
0i

M2
i

)2

, i = 1, 2. (6.1)

to the measured beam radii wi(zj), i = 1, 2. The beam propagation factor M2

characterizes the beam quality or the deviation of the initial beam from Gaussian
beam in fundamental mode [34, p. 605], [17, p. 85]. For the ideal Gaussian beam
in fundamental mode M2 = 1. The beam propagation factors in the simulations
discussed in this chapter were always set to 1 and thus the initial beam was always
considered to be simple astigmatic Gaussian beam in the fundamental mode. How-
ever, I will leave the M2 factors in the list of parameters of the initial beam for
completeness. The procedure of obtaining the parameters of the initial beam will
be discussed in details in the sections where the measurement results are introduced.
The parameters of the initial beam are listed in Table 6.1.

Table 6.1.: The list of parameters of the initial beam.
λ optical wavelength
z01 waist position in XZ-plane
z02 waist position in Y Z-plane
w01 waist size in XZ-plane
w02 waist size in Y Z-plane
ϕw0 beam orientation in XY -plane
M2

1 beam propagation factor in XZ-plane
M2

2 beam propagation factor in Y Z-plane

After an initial simple astigmatic beam was fully characterized we transformed it
into a general astigmatic beam using two cylindrical lenses, tilted with respect to each
other in the transversal plane xy. The lenses were placed at distances z1 and z2 from
the fiber collimator and tilted by angles α1 and α2 around the optical axis (αj = 0
stands for no curvature in the horizontal direction). Their focal lengths were f1 and
f2 respectively.
After the general astigmatic beam was produced, it’s intensity profile was char-

acterised using the same CCD camera at different distances behind the second lens.
From this characterisation we obtained principal beam radii w1 and w2 and the angles
of the beam ellipse ϕw at different positions along the optical axis z.
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6.1.1. Cylindrical lenses

Within our investigations we had three different cylindrical lenses available. Their
parameters were unknown and we measured them by ourselves. In this subsection I
will describe the characterization procedure that we used. In the end I will provide
the resulting parameters of all three lenses.

Figure 6.2.: Cylindrical lens and its geometri-
cal parameters: height h, width w, thickness
d, orientation in the transversal plane α.

The cylindrical lens has the following
parameters: height h, width w, thickness
d, refractive index n and focal length f
(see Figure 6.2). In order to simulate
the beam refraction the curvature ma-
trix of the surface at the point of in-
cidence is required. It means that we
need to transform the focal length into
the principal curvatures of the cylindri-
cal surface and using these values obtain
the needed curvature matrix using equa-
tion (5.55). To compute the principal
curvatures of the lens additionally to fo-
cal length and thickness of the lens the
asymmetry parameter a is needed. It
shows the connection between the curva-
tures of two surfaces of the lens. For the
plano-convex lenses this parameter can

have values of 1 if the plane surface is a front surface facing the incident beam and
−1 in the other case. For biconvex lenses with equal curvatures on front and back
surfaces asymmetry parameter is zero.
For both front and back surfaces of the cylindrical lens the curvature in one of the

transversal directions is zero. The curvatures in the other two directions are equal (c1
for front surface and c2 for back surface). Then we can use the usual lensmaker’s
equation [16, chapter 6], [21] to obtain the required principal curvature of the front
and the back surfaces of the cylindrical lens:

1

f
= (n− 1)

(
c1 + c2 −

n− 1

n
dc1c2

)
. (6.2)

In order to solve this equation for c1 and c2 additionally an asymmetry condition
is required [21]:

a =
c2 − c1
g

, (6.3)

where

g =
1

f(n− 1)
= c1 + c2 −

n− 1

n
dc1c2. (6.4)
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Once the lens is placed in the setup two more parameters are of interest: lens
position z along the optical axis and the angle of the lens orientation in the transversal
plane α. Zero angle corresponds to zero principal curvature in the horizontal direction.
The sketch of cylindrical lens and its geometrical parameters is given in Figure 6.2.
The complete set of cylindrical lens parameters is given in Table 6.2. These parameters
were measured in a lab for all three lenses. The results of these measurements were
implemented in the simulation, where they were used to refract the ingoing beam on
a lens surface using equation (5.65).

Table 6.2.: Parameters of a cylindrical lens (cf. Figure 6.2).
h height
w width
d thickness
f focal length
a asymmetry parameter
n refractive index
z position along the optical axis
α transversal angle of orientation

All three lenses we had in our study were made of fused silica (refractive index
n = 1.44963 at a wavelength λ = 1064 nm). Linear sizes of lenses (height, width
and thickness) were measured accurately. Height and width do not affect neither
experimental, nor simulation results. Only the thickness is involved into the beam
transformation. Since all three parameters were well defined, we assumed no toler-
ances for them later on in the fit. The values of these parameters for all three lenses
are listed in Table 6.3.

Table 6.3.: Linear sizes of cylindrical lenses.
Parameter Unit Lens1 Lens2 Lens3

h [mm] 50 20 30
w [mm] 50 60 60
d [mm] 5.5 3 6.5

The asymmetry parameter of biconvex Lens3 is equal to zero. The plano-convex
Lens1 and Lens2 can have the asymmetry parameter a to be either 1, or -1, depending
on which surface (planar of convex) faces the ingoing beam.
The most important lens parameter in our calculations was the focal length, which

allows to compute the curvature matrix of the surface. This parameter was measured
by illuminating the lens with a flashlight and measuring the distance of the arising
focus. This method has a limited accuracy and we assumed an error of up to 10%
for each measurement. As we will see later, this fact made the focal length the major
source of errors in our comparison.
The focal length was measured with visible light (λvisible = 480nm). In the sim-

ulations we need the focal length for the wavelength of λlaser = 1064nm. From the
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lensmaker’s equation for this lens [16, chapter 5]

1

f
= (n− 1)(c1 + c2) (6.5)

it follows that

flaser

fvisible
=
nvisible − 1

nlaser − 1
. (6.6)

Fused silica has refractive index nvisible = 1.4635 for visible light and refractive
index nlaser = 1.44963 for laser light. Therefore,

flaser = 1.030848 fvisible. (6.7)

The focal length of the first lens was measured only once and therefore has a tol-
erance σ(f) of 10%. The focal lengths of the second and third lenses were measured
independently two times. Each measurement has a tolerance σ(f) ≈ 10%(f). There-
fore for the average of the two measurements is defined as:

σ2(f̄) = σ2

(
1

2
(f1 + f2)

)
=

1

4
σ2(f1) +

1

4
σ2(f2) +

1

2
cov(f1, f2). (6.8)

Since they are independent and σ(f1) = σ(f2) = σ(f) ≈ 10%, the tolerance of the
average value of the two measurements is given by

σ(f̄) =
σ(f)√

2
≈ 7%(f). (6.9)

The results of both measurements (f1 and f2) are listed in a table 6.4. We used
the average values (f̄) of the two measurements in the simulations, since they have
smaller tolerances σ(f̄) than each individual measurement.

Table 6.4.: Measured focal lengths of cylindrical lenses and tolerances of these measurements.
The upper indices show the number of the measurement. A bar indicates averaging of all
measurement results for this value. The values that will be used in the simulations are shown
in bold.

Parameter Unit Lens1 Lens2 Lens3
f1 [mm] 361 62 52
f2 [mm] - 71 55
σ(f) [mm] ±35 ±6 ±5

f̄ [mm] 361 66.5 53.5
σ(f̄) [mm] ±35 ±4.2 ±3.5

For the position z of the lens in a setup we assumed a tolerance of 1mm. The
transversal angle α of the lens in a setup can be measured up to 1◦.
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6.1.2. Charge-coupled device (CCD) camera

The charge-coupled device (CCD) camera is used to measure the intensity profile
of the beam [17, p. 85]. In our investigations we used the beam profiling camera
WinCamD-UCD23 by Dataray [33] with a CCD-sensor. This camera is suitable for
the wavelengths in the range from 350 to 1150 nm. The sensor area is 8.8mm×6.6mm.
However, in order to have the entire intensity profile on the sensor and to perform
accurate measurements with the camera the beam radii should not exceed 1.25mm.
The minimal possible beam diameter that corresponds to 10 pixels on a sensor is
65µm [33].

Table 6.5.: The list of parameters of the CCD camera.
l longitudinal offset
β angular offset

In the simulation we have to include two parameters related to the CCD camera.
A chip depth from the front of case produces a longitudinal offset l of 7.2mm in our
case. The maximum possible tolerance given in the datasheet of a camera is ±0.5mm.
However, the measurement from the fiber outcoupler (or from the second cylindrical
lens) to the front of case of a camera is also performed with some tolerance. Therefore,
we will assume a tolerance of 1mm for the longitudinal offset. The second parameter
that has to be introduced is the transversal angle of the camera with respect to the
global coordinate system β. The camera was aligned to the global coordinate system,
but its small residual tilt around the z axis has to be accounted for. For this angle
we assume a tolerance of ±1 ◦. The description of the parameters related to the
CCD camera is given in Table 6.5. The summary of values and tolerances of these
parameters can be found in Table 6.6.

Table 6.6.: The values of the parameters of the CCD camera and their tolerances.
Parameter Unit Value Tolerance

l [mm] 7.2 ±1
β [degree] 0 ±1

CCD camera makes a snapshot of the intensity profile at a given point of the beam
axis. Then its software defines the principal beam radii w1 and w2 and the angle
of orientation ϕw of the intensity ellipse with respect to the camera-fixed coordinate
system at this point. The intensity profile can be measured in several points along the
beam axis. Then the curves w1(z), w2(z) and ϕw(z) can be constructed and fitted to
the desired beam model.
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6.2. Comparison of experimental and simulated
results

The procedure of the comparison of experimental and simulated results seems to be
obvious. In the first step one needs to measure the required parameters and plug
them in the simulation. In the next step one needs to perform the measurement of
interest and run the corresponding simulation. Then, finally, one can compare the
results obtained from the experiment and simulation. However, in reality it’s not
that simple. The initial parameters required by the simulation can only be measured
with some tolerances. It leads to deviations between simulated and experimental
results. In order to conclude that the reached agreement is sufficient we decided to
fit the simulation results to the experiment by varying the initial parameters within
the measurement tolerances. This was done by the special simulation that minimized
the average deviation between the measured and simulated values.
The complete set of the initial parameters of the experimental setup includes the

parameters listed in Table 6.1 and Table 6.5. The lens parameters from Table 6.2 must
be given for each of the two cylindrical lenses in the setup. Each of these parameters
has its measurement tolerance. However, we don’t need to include all of them in the
fit.
Within the investigation described in this chapter we assumed that the optical

wavelength λ of the beam, as well as refractive indices n and asymmetry parameters
a of all lenses are well-known and do not need to be varied. We also did not include
the M2 factors in the simulation. As I will show in subsequent sections, using simple
astigmatic Gaussian beam in fundamental mode in the simulations allows very good
fits to the measurements. This indicates that the higher order modes that caused M2

factors to be greater than 1 do not seem to have a notional effect. The linear sizes of
lenses (height h, width w and thickness d) were also not varied in a fit since height
and width do not influence the beam transformation and the thickness was accurately
measured. Additionally, from equation (6.4) it follows that thickness variations are
residual if the focal length is varied. Variations of the transversal angle of the first
lens in the setup α1 cause the same effect as the variations of the transversal angle of
the initial beam ϕw0. Thus only one of these parameters should be included in the fit.
We chose to vary the beam angle ϕw0. Similarly changes of the first lens position z1

can not be distinguished from changes of waist positions in both principal planes of
the initial simple astigmatic beam z0x and z0y. We vary the waist positions in the fit.
Therefore, for each measurement the following parameters are varied in a fit: focal
lengths of both cylindrical lenses in a setup (f1 and f2), longitudinal position (z2)
and the angle (α2) of the second lens, waist radii (w01 and w02) and waist positions
(z01 and z02) of the initial beam in its principal planes, transversal angle (ϕw0) of
the initial beam with respect to the global coordinate system, longitudinal (l) and
angular (β) offsets induced by the CCD camera.
The residual parameters were not included in the fit. However, as I will show in the

next section, if the individual parameters that are used in the fit are varied separately
one by one, variations of different parameters can cause similar effects in the results.
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Thus, the fit might not be unique in all cases. However, the fit always answers the
question how well the experimental and simulated results can agree within the current
measurement uncertainties.

6.3. First measurements with manually defined setup
The first comparison was performed with a heuristically obtained setup. The only
criterion for the setup choice was the beam size limitation conditioned by the CCD
camera restriction discussed above. This criterion has to be fulfilled at every point
along the beam path, where beam intensity was measured with the camera.

In this section I will first describe the procedure of initial beam characterization.
Then I will introduce the lens configuration that was chosen for the first measure-
ments. Afterwards I will show the results of the comparison of the simulated and
measure data and discuss the impact of each individual parameter variation.

6.3.1. Characterization of the initial beam
In order to characterize the initial simple astigmatic beam several measurements of
its intensity profile were performed using a CCD camera. These measurements were
made within a Rayleigh range from the waist to guarantee an accurate beam char-
acterization. From each measurement of the intensity ellipse the camera software
automatically extracted its principal axes w1 and w2. Then waist radii w01, w02 and
waist positions z01, z02 were found by fitting beam radii evolutions (see equation (6.1))
to the measured beam radii wi(zj), i = 1, 2. The angle of orientation of the simple
astigmatic initial beam ϕw0 is constant along the beam axis and can be found from
the single measurement of the intensity ellipse.
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Figure 6.3.: Characterization of the beam. Gaussian curve is fitted to the measured beam
radii separately for two principal semi-axes of the simple astigmatic beam.

The evolution of the initial beam in the first measurements is shown in Figure 6.3.
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Black plusses and brown crosses represent the measured values of the principal semi-
axes of the intensity ellipses at different points along the propagation. Red and blue
lines indicate the corresponding fitted curves.
The parameters of the initial beam together with their standard errors and confi-

dence interval, obtained in the fit are given in Table 6.7. The values of these param-
eters correspond to the red and blue lines in Figure 6.3. Standard errors show the
range where each parameter value most probably lies. However, this value can also
lie within a confidence interval. Therefore, taking confidence interval as the tolerance
in the fit is more secure.

Table 6.7.: The parameters of simple astigmatic beam obtained by fitting Gaussian curves
into the measured beam radii.

Parameter Units Value Standard error Confidence interval
z01 [mm] 1.02 ±3.6 ±10.2
z02 [mm] 0.82 ±4.3 ±12.3
w01 [µm] 295 ±4.3 ±12.2
w02 [µm] 253 ±5.4 ±15.2
M1 [1] 1.06 ±0.008 ±0.024
M2 [1] 0.97 ±0.01 ±0.027

Both M2-factors are sufficiently close to one and can be neglected within a com-
parison.

Figure 6.4.: Intensity profile of the initial beam
at a position close to the waist.

The orientation ϕw0 of the initial sim-
ple astigmatic beam was measured sev-
eral times. Due to the fact that the beam
is close to circular (w0x/w0y = 1.17)
and it doesn’t have an ideal Gaussian
profile (see Figure 6.4) the camera soft-
ware could not determine this value ac-
curately. The results from different mea-
surements varied. Thus, we assumed the
nominal value for the beam angle to be
ϕw0 = 0 and the measurement tolerance
to be ±10◦.

6.3.2. Manually defined lens configuration

Every configuration of the two cylindrical lenses, oriented at an oblique angle with
respect to each other in the transversal plane, transforms a stigmatic or a simple
astigmatic beam into general astigmatic beam. In the beginning we chose a random
configuration of the two lenses out of three available. The only restriction imposed
was the limitation of the resulting general astigmatic beam radius. It could not exceed
1.25mm (CCD camera restriction discussed above) in any of the transversal directions
within the propagation distance, sufficient to perform several measurements of the
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intensity ellipse at different points along the optical axis. We made measurements
within a distance of about 20 cm behind the second lens.

Lens1 Lens2

CCD

Figure 6.5.: Lab photograph of the manually defined setup.

The manually defined lens configuration that fulfilled the limitation above was found
and used in first measurements. It included the first two cylindrical lenses out of three
described above. The lenses were oriented almost orthogonally to each other. Both
of them were plano-convex, and within this setup were oriented such that the curved
surface was facing the incoming beam. The photograph of this lens configuration
is shown in Figure 6.5. The parameters of the setup are listed in Table 6.8. As
described in Section 6.1, parameter z shows the distance from the fiber outcoupler
to the front surface of the lens, angle α shown the orientation of the lens in the
transversal plane such that zero angle corresponds to zero principal curvature in the
horizontal direction.

Table 6.8.: The parameters of the manually defined lens configuration.
Name Orientation (a) z [cm] α [degree]
Lens2 convex-plane (-1) 13 0
Lens1 convex-plane (-1) 16 81

6.3.3. Measurement results
Three sets of measurements were performed with the initial beam and manually de-
fined setup described above. All three showed similar results. Right behind the second
lens, where we expect a general astigmatic beam to be formed, the elliptical inten-
sity profile was aligned horizontally. Then it transformed into a nearly circular light
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spot. At a distance of about 10 cm behind the second cylindrical lens the intensity
profile obtained vertical orientation, which was preserved as the beam propagated
further. The selection of snapshots from the CCD camera, illustrating these results,
is shown in Figure 6.7. Thus, within this case the expected rotation of the inten-
sity ellipse cannot be easily seen from the pictures, produced by the camera. Major
and minor semi-axes can switch their principal directions in simple astigmatic case
(see Chapter 4). Therefore, it is hard to say if the measured beam is indeed general
astigmatic.
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Figure 6.6.: The measured evolution of orientation (in black) and major and minor semi-axes
(in blue and red) of the intensity ellipse as beam propagates behind the second lens of the
manually defined setup. Dashed area highlights the region of maximal rotation and minimal
ellipticity of the light spot.

For each snapshot of the beam profile the dedicated camera software computes the
principal semi-axes and the orientation of the beam ellipse. If we plot these results,
we obtain the graph in Figure 6.6. This graph shows that intensity ellipse indeed
tilts along the propagation, but the major changes in its orientation correspond to
approximately 1 cm long region, where the beam is nearly circular. Thus the resulting
beam behind the second lens is general astigmatic, which agrees to the theoretical
expectations. Even though it is hard to see the rotation of the intensity ellipse, we
can use this beam for the first comparison of the experimental and simulated light
spot evolutions.

6.3.4. Fit of the intensity ellipse angle evolution
The fits were performed separately for each of the three measurements made with the
manually defined setup. There was a time gap between the measurements and the
setup was reconstructed for each of them. However, the goal was to build the iden-
tical setup described in Table 6.8 in all measurements. Thus, the initial parameters
describing cylindrical lenses and their configuration did not change from one fit to
another, but in reality they could have differed within measurement tolerances. The
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initial simple astigmatic beam was configured and characterized once before the first
of the three measurements and was not changed since then. Still we expect that some
minor deviations could have occurred. Therefore, all initial parameters used in the
simulation are identical for all three fits. However, it is expected that the resulting
fitted parameters may vary from one fit to another.

Figure 6.9 illustrates the results of the comparison of the simulated and measured
intensity ellipse orientations for the manually defined setup. In red is the so-called
nominal simulated curve corresponding to the measured values of the setup parame-
ters. This line is identical in all three graphs. Black plusses illustrate the measurement
points, obtained from the CCD camera software. It is easy to see that they form sim-
ilar, but not identical curves from one measurement to another. In blue are simulated
curves corresponding to the best found fit of the setup parameters to the measure-
ment results. In all three cases they follow the measurement points very closely. This
means that it was possible to find a set of the setup parameters within their measure-
ment tolerances that results in accurate theoretical description of the experimental
observations.
The results of all three fits are summarized in Table 6.9. It includes all the com-

plete set of parameters of the setup that took part in the fit with their measured
values, tolerances and fitted values. As expected, the values of the setup parameters
resulting from different fits are not identical. However, the fitted values of both focal
lengths and one of the waist sizes changed only slightly from one fit to another. All
other parameters of the initial simple astigmatic beam differ. The fit with so many
parameters is not necessarily unique. This hypothesis will be discussed separately
later. The geometrical parameters of the setup such as the second lens position and
angle, longitudinal and angular offsets, do not have to agree in different fits since the
setup was reconstructed before each set of measurements.
The fit performance can be evaluated using the average absolute difference between

the measured and simulated intensity ellipse angle at identical positions. The initial
average difference ∆ϕ

nominal is defined as

∆ϕ
nominal =

[
n∑

i=1

(ϕm
wi − ϕn

wi)
2/n

]1/2

, (6.10)

where ϕm
wi are the measured values of the intensity ellipse angle, ϕn

wi are the corre-
sponding values of the intensity ellipse angle obtained from the simulation with the
nominal values of all parameters. Analogously the fitted average difference ∆ϕ

fitted is
given by

∆ϕ
fitted =

[
n∑

i=1

(ϕm
wi − ϕf

wi)
2/n

]1/2

. (6.11)

Here ϕf
wi are values of the intensity ellipse angle produced by the simulation with

the fitted parameter values. In Table 6.9 both average differences are given for each
of the three measurements. The initial average difference ∆ϕ

nominal is in the order
of tens of degrees for all measurements. This means that in average the measured

69



6.3. First measurements with manually defined setup Chapter 6: Experiment

z = 7 cm, ϕw = 1.5◦ z = 8 cm, ϕw = 2.4◦ z = 8.5 cm, ϕw = 3.4◦

z = 9.5 cm, ϕw = 19.3◦ z = 9.7 cm, ϕw = 45◦ z = 10 cm, ϕw = 75.8◦

z = 10.5 cm, ϕw = 84.1◦ z = 11 cm, ϕw = 86.6◦ z = 12 cm, ϕw = 87.8◦

Figure 6.7.: The evolution of intensity ellipse of the general astigmatic beam produced by
the manually defined setup. Snapshots from the CCD camera taken at different distances z
behind the second cylindrical lens. The orientation ϕw of each intensity ellipse was defined
by the CCD camera software.
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z = 7 cm, ϕw = 2.3◦ z = 8 cm, ϕw = 3.3◦ z = 8.5 cm, ϕw = 4.3◦

z = 9.5 cm, ϕw = 14.6◦ z = 9.7 cm, ϕw = 28.9◦ z = 10 cm, ϕw = 70.7◦

z = 10.5 cm, ϕw = 84.2◦ z = 11 cm, ϕw = 87◦ z = 12 cm, ϕw = 88.7◦

Figure 6.8.: The evolution of intensity ellipse of the general astigmatic beam produced by
the manually defined setup. Snapshots from the simulation fitted to the third measurement.
The value of z shows the distance behind the second cylindrical lens. The value ϕw is the
angle of orientation of the intensity ellipse.
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(b) Second measurement.
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Figure 6.9.: The evolution of intensity ellipse orientation as beam propagates behind the
second lens of the manually defined setup. Black plusses illustrate the measurement points,
red curve results from the simulation with the measured parameters of the setup, blue curve
results from the simulation with the fitted parameters of the setup.
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angle at some point along the beam axis deviates from the simulated angle by tens of
degrees. This is clearly a large difference, but if we look at graphs in Figure 6.9, we
can see that it results from the longitudinal shift between the curves, which is then
eliminated by fit. The average difference ∆ϕ

fitted for fitted curves (see Table 6.9) is in
the order of one degree in all three cases. This value lies within (or even exceeds) a
measurement accuracy of the intensity ellipse orientation.

Table 6.9.: Measured and fitted parameters of the manually defined setup. The deviation
between the measurement and simulation with the measured parameter values is given by
∆ϕ

nominal. Similar deviation for the fitted parameter values is given by ∆ϕ
fitted.

Parameter Units Value Tolerance Fit 1 Fit 2 Fit 3
f1 [mm] 66.5 ±4.2 62.11 62.3 62.3
f2 [mm] 361 ±35 326 326 327
z2 [mm] 160 ±1 161 161 161
α2 [degree] 81 ±1 79.98 82 81.9
w01 [µm] 295 ±12.2 307.6 307.3 307.2
w02 [µm] 253 ±15.2 255.4 269 268
z01 [mm] 0.82 ±10.2 5.66 11.02 6.4
z02 [mm] 1.01 ±12.3 13.7 10.94 -8.62
ϕw0 [degree] 0 ±10 -10 -3.75 0.79
l [mm] 7.2 ±1 8.2 8.2 8.1
β [degree] 0 ±1 1 -0.92 0.1

∆ϕ
nominal [degree] 21.9 38.2 33.7

∆ϕ
fitted [degree] 1.27 0.73 1.07

Fit has helped us to obtain a good agreement between measured and simulated
orientation of the intensity ellipse in the manually defined setup. However, there are
still some questions to answer. One of them is to find an explanation of the significant
disagreement between the measurement results and simulated results with nominal
parameters. Another remaining question requires understanding of deviations of the
initial beam parameters from one fit to another. I will answer both questions in the
next section.

6.3.5. Analysis of the impact of individual parameters

It is well-known that from the results of several separate variations of the individ-
ual parameters of the simulation it is hard to predict the result of variation of all
parameters simultaneously. However, by looking at individual parameter variations
it is possible to get a feeling of how big is the impact that they can cause. Such
investigation can also help in understanding how much can the simulated curve vary
within the given tolerances of individual parameters.
The impact of variation of the offsets induced by the CCD camera (longitudinal

offset l and angular offset β) is trivial: the nominal simulated curve (see Figure 6.9)
will be shifted horizontally (for longitudinal offset) or vertically (for angular offset)
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exactly by the value of the offset variation. For all three graphs in Figure 6.9 the
longitudinal shift between the nominal and fitted curves is in the order of cm. The
tolerance of each of the offsets is small and thus they can not play a major role in the
procedure of the parameter fit.
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Figure 6.10.: Variation of individual parameters of the manually defined setup in equidistant
steps.

Individual variation of most of the parameters of the setup that take part in the fit
shifts the nominal simulated curve horizontally. This is true for both focal lengths f1

and f2, longitudinal position of the second lens z2 (see Figure 6.10a), waist sizes w01

and w02 (Figure 6.10b) and waist positions z01 and z02 (Figure 6.10c) of the initial
simple astigmatic beam in both of its principal planes. Neither of those parameters
significantly effects the slope of the curve. The biggest impact according to the graphs
in Figure 6.10 has the uncertainty in the focal length of the first cylindrical lens in
the setup. The focal length of the second cylindrical lens has bigger uncertainty.
Surprisingly, its variation causes smaller effect. Variation of the waist sizes of the
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initial simple astigmatic beam also causes significant shift of the nominal simulated
curve. Variation of waist positions and the longitudinal position of the second lens
does not seem to produce big effect.

Variation of angular parameters of the setup (orientation of the initial simple astig-
matic beam ϕw0 and orientation of the second cylindrical lens α2) results in changes of
the slope of the nominal simulated curve (see Figure 6.10d). The angle of the second
lens does not seem to play a big role in the parameter fit. Uncertainty of the ori-
entation of the initial simple astigmatic beam, in contrary, causes clearly observable
changes.
This study shows that variations of individual parameters of the setup cause similar

effects and thus it is not surprising that the fit is not unique. This agrees to my
observations while running fitting simulation several times for each measurements.
The results given in Table 6.9 were chosen by the smallest found value of ∆ϕ

fitted

from several simulation runs. However, it does not mean that all the parameters of
the setup in each of the measurements were exactly equal to the fitted parameters
in the table. Another important observation is that variation of some parameters
does not cause big changes in the evolution of the intensity ellipse orientation. It
explains, for example, why the fitted waist positions vary from one measurement to
another. The major source of uncertainty is the imprecise focal length of the first
lens. According to Figure 6.10a, it can explain most of the longitudinal shift between
the nominal and fitted simulated curves in Figure 6.9. Unfortunately, we could not
improve the accuracy of the focal length definition within the scope of this analysis.
Another significant factor of uncertainty is the inaccurate value of orientation of the
initial beam. Variation of this value causes significant deviations and its fitted value
is different in different fits. On the one hand, the laser beam was not changed between
the measurements. On the other hand, initial beam tilt is the only parameter that
can cause significant changes of the slope of the curve (see Figure 6.10d). As we can
see in Figure 6.9, the slope of measured curves is not identical in all three graphs.
Thus, it is not surprising that the fitted values of the initial beam angle change from
one measurement to another.

6.3.6. Comparison of the intensity ellipse semi-axes

Previously I discussed the comparison and fit of the evolution of the intensity el-
lipse orientation of the general astigmatic beam. In order to compare the measured
and simulated evolutions of the intensity ellipse it is also necessary to compare the
evolution of the principal beam radii w1 and w2. Such comparison is illustrated in
Figure 6.11. This graph shows that the evolution of both measured and simulated
intensity ellipse semi-axes is similar and at every measurement point both principal
radii are well below the CCD camera restriction of 1.25mm. However, the point where
the major and minor semi-axes are closest to each other for the nominal simulated
curves is shifted with respect to the similar point of measured curves. The fit improves
the situation, but even in this case there is significant deviation between measured
and simulated values of the principal beam radii. This deviation can be explained
by the filters used or inaccuracy of the CCD-camera software. This effect was not
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observed later in the measurements, where new camera software and no filters were
used.
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Figure 6.11.: The evolution of principal radii w1 and w2 of intensity ellipse of the the general
astigmatic beam as it propagates behind the second cylindrical lens of the manually defined
setup. Measurement points are taken from the second measurement (Figure 6.9b). The
threshold shows the CCD camera restriction of 1.25mm.

6.3.7. Comparison of intensity distributions

The comparison of the evolutions of the orientation and semi-axes of the intensity
ellipse is sufficient to study how well do the simulated and measured results agree.
However, we can do yet another step and compare the images illustrating intensity
distributions at different points along the propagation. Such pictures are taken by the
CCD camera and a subset of those pictures have already been shown in Figure 6.7.
In order to produce their simulated analogs we can compute intensity in every point
using equation (5.9) and produce a heat map. The resulting simulated ellipses are
illustrated in Figure 6.8. Comparing them to the measured ellipses from Figure 6.7,
one can see that both sets of intensity distributions are very similar. The largest
deviations in values of intensity ellipse angle occur in the region where the intensity
distribution is nearly circular and thus CCD camera is expected to produce larger
errors in defining this angle.

6.3.8. Conclusion

The first set of comparisons with the manually defined lens configuration has shown
promising results. Overall we achieved a good agreement between the simulation and
measurement results. However, with this setup we did not have a chance to see a
clear rotation of the intensity ellipse as general astigmatic beam propagates in free
space. Thus, in the next set of measurements our goal is to build a lens configuration
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that produces a general astigmatic beam with the clearly observable rotation of the
intensity ellipse.

6.4. Optimal setup search

In the previous section it was shown that with some general astigmatic Gaussian
beams it is not easy to study all their properties. In particular, we could not ob-
serve the clear rotation of the intensity ellipse. This problem was not caused by the
measurement accuracy or any other technical problems. It came from the properties
of the beam itself. Major part of the rotation of its ellipse happened within a small
distance, corresponding to the region, where the intensity profile was nearly circular.
This observation leads to the conclusion that not all general astigmatic beams are
equally well-suited to study their properties. The parameters of the resulting general
astigmatic beam are conditioned by the setup the beam propagated through. Thus,
not all the setups that produce general astigmatic Gaussian beams are equally good
to investigate the behavior of such beams.

In this section I will suggest the criteria of a setup that is optimal in a sense that
it produces the general astigmatic beam that is the most convenient for a study of
beam characteristics from all possible setups. To find the optimal setup I developed
an algorithm and implemented it in the simulation. The resulting optimal setup will
be described in the end of this section.

6.4.1. Criteria of optimal setup

As discussed above we consider the lens configuration to be optimal if it produces the
general astigmatic beam with the most clearly recognizable rotation of the intensity
ellipse behind the second lens. In this section I am going to transform this relatively
vague condition into concrete criteria of optimality.
In Chapter 5 it was proven that the intensity ellipse angle of the general astigmatic

beam changes by a total of π as beam propagates from −∞ to +∞. It is obvious that
the measurements cannot be performed over infinite distance. Thus, in order to see a
clear rotation we need to have a significant fraction of a total angle change within a
region, where measurements are performed. Assume that the first measurement point
is located at distance z1 behind the second lens and the orientation of the intensity
ellipse at this point is ϕ1

w, the last – at a distance zn with the intensity ellipse angle
of ϕn

w. Then we would like to maximize the total change of the intensity ellipse
orientation ∆ϕw = |ϕn

w − ϕ1
w|.

Even if the observed change of the intensity ellipse angle in the measurement region
contains a significant fraction of the total change of π radians, it does not guarantee
the observation of clear rotation. It can happen that most of the observed change hap-
pens between two consequent measurement points and in other measurement points
the curve is nearly flat. To avoid this in the optimal setup we need to minimize
the maximum slope of the evolution of the intensity ellipse orientation max

i
∂ϕi

w/∂z.
Together with the first criterion it will allow to choose the setup that produces the
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intensity ellipse that rotates as slow as possible to reach the big change of the intensity
ellipse orientation. In other words, we want to reach moderate speed of rotation that
allows observations of the intensity ellipse at different stages of its evolution. In the
first criterion we postulated that we want the overall measured angle change to be as
big as possible. In the second criterion we added that we don’t want all this change
to happen within a single measurement point, but rather to spread it over the entire
measurement region.
The higher the ellipticity wmajor/wminor (or flattening F = 1 − wminor/wmajor)

of the intensity ellipse at every measurement point, the easier to see the ellipse ori-
entation and thus rotation of the light spot. If the measurements were performed at
distances zi, i = 1, ..., n behind the second lens and the flattening at each point was
F i, i = 1, ..., n, than we would like to maximize the minimum flattening min

i
F i.

The last criterion is induced by the CCD-camera and was already mentioned above.
It implies that at each measurement point the beam should not become too large for
the camera to capture. Both principal beam radii should not exceed 1.25mm. We did
not impose the lower limit on the beam size since within the investigations described
in this chapter we never had an issue with a beam that is too small. However, it
should be kept in mind that beam diameter should not become smaller than 65µm.
These four criteria were implemented in the simulation for the search of the optimal

setup among the variety of two lens configurations that we could build using three
available lenses. The algorithm used in this simulation is described in appendix B.

6.4.2. Optimal lens configuration
The simulation for the optimal setup search (appendix B) has found the optimal
configuration of the two cylindrical lenses described in table 6.10. Lens positions are
given with respect to the beam waist, the transversal angle α is zero when the axis
of symmetry of the cylindrical lens, corresponding to the zero curvature, is oriented
horizontally.

Table 6.10.: The parameters of optimal lens configuration, found by the simulation for the
optimal setup search.

Name Orientation (a) z [mm] α [degree]
Lens3 biconvex (0) 10 0
Lens2 plano-convex (1) 216.5 25

The performance of this setup according to criteria discussed above can be described
as:

1. the total change of the intensity ellipse orientation over the measurement region
of 25 cm behind the second lens is |∆ϕw| = 101.88◦ or about 0.6 of the total
rotation of 180◦;

2. the maximum slope of the evolution of the intensity ellipse angle is
|∂ϕw/∂z|max = 0.77◦/mm, which means that the rotation is really slow and
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smooth within the measurement region;

3. the minimum flattening over the measurement region of 25 cm behind the second
lens is Fmin = 0.46, which means that at every point along the beam propagation
in this region the major principal semi-axis of the intensity ellipse is at least
1.85 times larger than the minor principal semi-axis;

4. the beam does not exceed the radius of 1.25mm within a measurement region.

The evolution of the intensity ellipse is illustrated in Figure 6.12. Black lines
corresponds to the intensity ellipse orientation, blue and red curves represent major
and minor semi-axes of the beam spot. It is easy to see that the evolution of the light
spot angle is smooth and result in a big angle change over the measurement region.
The principal semi-axes never become close to each other and thus the intensity profile
remains elliptical at every point.
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Figure 6.12.: The performance of the optimal lens configuration found by the simulation for
the optimal setup search. Evolution of the intensity ellipse angle (in black) and semi-major
(in red) and semi-minor (in blue) axes.

This optimal setup meets all the requirements. It should be mentioned, however,
that depending on the search parameters such as the weighting of the different criteria
the optimal setup can change. It might also be different if the initial simple astigmatic
beam is replaced by a different one. For our concrete specifications this setup is
optimal and we used it in the further investigations of general astigmatic Gaussian
beams.

6.5. Measurements with the nearly optimal setup
In this section I will show the results of the measurements with the setup that is close
to the optimal lens configuration described in the previous section. It will provide the
new sets of observations and comparison between measured and simulated results.
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The initial simple astigmatic beam did not change in comparison to the previous sets
of measurements. Thus I will not discuss it in this section. I will start right away
with the parameters of the new setup and continue with the measurement results and
corresponding simulation results.

6.5.1. Nearly optimal lens configuration
Due to technical reasons the setup that was built in the lab is slightly different setup
from the one found in the optimal setup search. Almost all parameters of the lens
configuration are identical to the ones give in Table 6.10. The only parameter who’s
value has changed is the transversal angle of the second lens α2 since the angle required
in the optical setup was not achievable with the available mounts. Its value was 19◦
in the experiment instead of 25◦ in the optimal setup. Such setup still has a good
performance and the rotation of its intensity ellipse is still clearly observable. For this
nearly optimal lens configuration

Lens1

Lens2

CCD

Figure 6.13.: Lab photograph of the nearly optimal setup.

1. the total change of the intensity ellipse orientation over the measurement region
of 25 cm behind the second lens is |∆ϕw| = 116.07◦ or about 0.64 of the total
rotation of 180◦;

2. the maximum slope of the evolution of the intensity ellipse angle is
|∂ϕw/∂z|max = 0.9◦/mm;

3. the minimum flattening over the measurement region of 25 cm behind the second
lens is Fmin = 0.41, which means that at every point along the beam propagation
in this region the major principal semi-axis of the intensity ellipse is at least 1.7
times larger than the minor principal semi-axis;
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4. the beam does not exceed the radius of 1.25mm within a measurement region.

Overall for this setup only the slope of the intensity ellipse angle evolution is slightly
bigger and the minimum flattening is slightly higher than for the optimal setup. On
the other hand, the total angle change increases by about 15◦. All together it makes
this setup comparable with the optimal setup. The photograph of this nearly optimal
setup is shown in Figure 6.13.

6.5.2. Measurement results

With the setup described above two sets of measurements were performed. As before,
the snapshots of the intensity profile were taken with the CCD camera at different
distances behind the second lens. The angle of the intensity ellipse was extracted
from these pictures by the CCD camera software. The subset of the images from the
CCD camera is presented in Figure 6.14. As expected, the rotation of the intensity
ellipse is clearly observable. The light spot never degenerates to circle, the rotation
is significant, slow and thus captured at different stages.

6.5.3. Fit of the intensity ellipse angle evolution

For each of the two sets of measurements the fit has been performed in the same way as
for measurements with the manually defined setup. Figure 6.16 illustrates the results
of the comparison between the measured and simulated intensity ellipse orientations
for both sets of measurements. As for the measurements with the manually defined
setup, black pluses show the measurement points, red curve is the nominal simulated
curve and blue curve is the fitted simulated curve. The graphs show that even with
the measured initial parameters simulation agrees with the experiment. After the
parameters are fitted the agreement improves. For the second set of measurements
fitted simulated curve almost exactly follows the measurement points.
The results of the comparison are summarized in Table 6.11. The fit performance

is again characterized by the value of ∆ϕ
fitted. In both cases it shows significant im-

provement in comparison to the value of ∆ϕ
nominal. However, for the first measurement

the average distance between the measured and simulated intensity ellipse angles is
about 6◦, which is a significant deviation that can hardly be explained by inaccuracy
of the measurement points. This is not true for the second measurement, where this
value is less than 2◦.

6.5.4. Comparison of the intensity distributions

Additionally to comparison of measured and simulated evolutions of intensity ellipse
orientations we can now compare measured and simulated intensity profiles in the
same way as it was done in the section dedicated to the manually defined setup. The
snapshots from the CCD camera are given in Figure 6.14. Corresponding simulated
intensity distributions are given in Figure 6.15. These pictures show that the evolution
of intensity profiles is very similar in both cases.
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z = 3.5 cm, ϕw = 22.7◦ z = 5.5 cm, ϕw = 39◦ z = 7.5 cm, ϕw = 50.6◦

z = 9.5 cm, ϕw = 57.2◦ z = 11.5 cm, ϕw = 65.2◦ z = 13.5 cm, ϕw = 70.7◦

z = 15.5 cm, ϕw = 79.6◦ z = 17.5 cm, ϕw = 92◦ z = 19.5 cm, ϕw = 102.5◦

Figure 6.14.: The evolution of intensity ellipse of the general astigmatic beam produced by
the nearly optimal setup. Snapshots from the CCD camera taken at different distances z
behind the second cylindrical lens. The orientation ϕw of each intensity ellipse was defined
by the CCD camera software.
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z = 3.5 cm, ϕw = 22.4◦ z = 5.5 cm, ϕw = 40.3◦ z = 7.5 cm, ϕw = 52.1◦

z = 9.5 cm, ϕw = 60◦ z = 11.5 cm, ϕw = 66.6◦ z = 13.5 cm, ϕw = 73.3◦

z = 15.5 cm, ϕw = 81.3◦ z = 17.5 cm, ϕw = 90.1◦ z = 19.5 cm, ϕw = 101.2◦

Figure 6.15.: The evolution of intensity ellipse of the general astigmatic beam produced by
the nearly optimal setup. Snapshots from the simulation fitted to the first measurement.
The value of z shows the distance behind the second cylindrical lens. The value ϕw is the
angle of orientation of the intensity ellipse.
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(a) First measurement.
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(b) Second measurement.

Figure 6.16.: Evolution of the intensity ellipse orientation as the beam propagates behind
the second lens of the nearly optimal setup. Black plusses illustrate the measurement points,
the red curve results from the simulation with the measured parameters of the setup, the
blue curve results from the simulation with the fitted parameters of the setup.

Table 6.11.: Measured and fitted parameters of the nearly optimal setup. The deviation
between the measurement and simulation is given by ∆ϕ

nominal. Similar deviation for the
fitted parameters values is given by ∆ϕ

fitted.
Parameter Units Value Tolerance Fit 1 Fit 2

f1 [mm] 53.5 ±3.5 49.9 50.1
f2 [mm] 66.5 ±4.2 66.3 66.8
z2 [mm] 216.5 ±1 217.5 217.5
α2 [degree] 19 ±1 18 19.7
w01 [µm] 295 ±12.2 307.4 307.5
w02 [µm] 253 ±15.2 268.4 237.5
z01 [mm] 0.82 ±10.2 11.05 -9.5
z02 [mm] 1.01 ±12.3 13.34 13.3
ϕw0 [degree] 0 ±10 -10 -10
l [mm] 7.2 ±1 6.2 6.2
β [degree] 0 ±1 -1 -1

∆ϕ
nominal [degree] 11.56 4.5

∆ϕ
fitted [degree] 6.14 1.87
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On the pictures taken by the CCD camera (Figure 6.14) some disturbances in
intensity distributions are visible (see for example snapshot at z = 13.5 cm). This
effect is also visible in the snapshots from the measurements with the manually defined
setup (Figure 6.7). It can be explained by the imperfection of the initial simple
astigmatic Gaussian beam (see Figure 6.4). It is not unlikely that this deviation of
the initial beam from the Gaussian beam profile can couple into the values of the
intensity ellipse angle and semi-axes.

6.5.5. Conclusion
In this section we performed two sets of measurements with the nearly optimal setup.
Thus we could clearly see the intensity ellipse rotation as general astigmatic Gaussian
beam propagates in free space. The comparison between the measured and simulated
evolutions of the intensity ellipse orientation has shown good agreement. However,
this agreement can possibly be further improved by using different initial simple astig-
matic (or circular) beam. From Figure 6.4 it is obvious that the initial beam does
not have a clear Gaussian profile. Even with the naked eye it is visible that it is hard
to determine the orientation of this beam. Thus it is not surprising that different
measurements with the CCD camera have shown different values of ϕw0. Therefore,
in the next step we will improve the quality of the initial beam.

6.6. Measurements with improved initial beams
In this section I will present the results of comparison of two sets of measurements
with the corresponding simulations. Each set of measurements was performed with a
different initial beam and slightly different lens configuration. In both cases the initial
beams had much clearer Gaussian profile than the beam that was used in previous sets
of measurements. Thus within this investigation we could achieve a good agreement
not only for orientation of the intensity ellipse, but also for its semi-axes.
I will start with the characterization of both improved initial beams. Then I will

describe the lens configurations. Both of them are the variations of the nearly optimal
setup studied in the previous section. It is not unlikely that for new beams optimal
setup search would suggest different optimal lens configuration. However, with the
new beams nearly optimal setup produced general astigmatic beam with the clearly
observable rotation of the intensity ellipse. After describing the setup I will present
the results of fits for both cases.

6.6.1. Characterization of the improved initial beams
The characterization of both improved initial beams has been performed following
the same procedure as the characterization of the previously used initial beam. Even
though they were fitted into simple astigmatic model, both beams are nearly circular
in reality. Thus, we assumed that the angle of orientation of the initial beam can
have any value in the range of ±90◦. The tolerances of other beam parameters were
computed in the same way as before.
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Figure 6.17.: Characterization of the first improved initial beam. Gaussian curve is fitted
to the measured beam radii separately for two principal semi-axes of the simple astigmatic
beam.

The evolution of the principal semi-axes of the first improved initial beam is shown
in Figure 6.17. Black pluses and brown crosses represent the measurement points,
red and blue curves are the corresponding fitted curves. Found beam parameters are
given in Table 6.12.

Table 6.12.: The list of parameters of the first improved initial beam.
Parameter Units Value Standard error Confidence interval

z01 [mm] 0.68 ±1.7 ±5
z02 [mm] 0.21 ±2 ±5.7
w01 [µm] 218 ±4.2 ±12.2
w02 [µm] 213 ±5 ±14
M1 [1] 1.12 ±0.008 ±0.025
M2 [1] 1.11 ±0.01 ±0.03

Figure 6.18.: Intensity profile of
the improved beam at a position
close to the waist.

Similarly the results for the second improved initial
beam are given in Figure 6.17 and Table 6.12.
Even though the determined M2 factors for both

improved beams are significantly bigger than they
were in the previous case, we could achieve a very
good agreement between simulation and experiment
without taking them into account. As before, they
were not implemented in the simulation and thus ne-
glected in a comparison.
Both beams have a clear Gaussian shape with no

disturbances. The intensity profile of the second im-
proved initial beam near the waist position is shown
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Figure 6.19.: Characterization of the second improved initial beam. Gaussian curve is fitted
to the measured beam radii separately for two principal semi-axes of the simple astigmatic
beam.

Table 6.13.: The list of parameters of second improved initial beam.
Parameter Units Value Standard error Confidence interval

z01 [mm] 151 ±0.5 ±1.44
z02 [mm] 149.5 ±0.6 ±2
w01 [µm] 252 ±0.6 ±2
w02 [µm] 244.5 ±0.8 ±2.75
M1 [1] 1.13 ±0.002 ±0.007
M2 [1] 1.11 ±0.003 ± 0.01

87



6.6. Measurements with improved initial beams Chapter 6: Experiment

in Figure 6.18. The intensity profile of the first improved beam looks similar.

6.6.2. Lens configuration
The lens configuration did not change much in comparison to the nearly optimal
lens configuration used in the previous section. As it will be shown later, from the
new initial beams it also produced clearly observable rotating intensity ellipses with
a moderate speed of rotation, significant ellipticity and without violating spot size
requirement. The exact parameters of the lens configuration used in both sets of
measurements can be found in Table 6.14.

Table 6.14.: The parameters of nearly optimal lens configurations that were used in the
measurements with the improved beams. 1 – measurement with the first improved beam, 2

– measurement with the second improved beam
Name Orientation (a) z [mm] α [degree]
Lens3 biconvex (0) 10 0
Lens21 plano-convex (1) 208 17
Lens22 plano-convex (1) 213 17

6.6.3. Fit of the intensity ellipse evolution
The sets of measurements with both improved beams have been performed with the
updated CCD camera software and without filters. Thus it was possible to fit the
evolution of principal semi-axes of the intensity ellipse together with the evolution of
the intensity ellipse orientation. The evolution of the intensity ellipse is illustrated in
Figure 6.20. The simulated evolution of both orientation and semi-axes of the intensity
ellipse agrees to the experimental results even when the measured parameters are used.
Fitted curves follow the measurement points even closer. These graphs also show that
nearly optimal lens configuration has good performance with the new initial beam:
the total change of the intensity ellipse orientation is big and the speed is moderate,
the major semi-axis is always significantly bigger than the minor semi-axis, but does
not exceed the limit induced by the CCD camera.
Table 6.15 contains both measured and fitted parameters of the measurement with

the nearly optimal lens configuration and the first improved initial beam. The fit
performance can still be evaluated by comparing the values ∆nominal and ∆fitted.
These values are now the normalized sums of the average differences between measured
and simulated values of both intensity ellipse semi-axes and orientation:

∆nominal = ∆ϕ
nominal + ωw1∆w1

nominal + ωw1∆w2
nominal, (6.12)

∆fitted = ∆ϕ
fitted + ωw1∆w1

fitted + ωw1∆w2
fitted, (6.13)

where the average value of the absolute difference between the measured and simu-
lated angles of the intensity ellipse is given by equations (6.10) and (6.11). Similarly

88



Chapter 6: Experiment 6.6. Measurements with improved initial beams

 0

 20

 40

 60

 80

 100

 120

 0  50  100  150  200  250

ϕ
w
 [d

eg
re

e]

z [mm]

measurement
simulation nominal
simulation fitted

(a) Orientation.
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Figure 6.20.: Intensity ellipse evolution as beam propagates behind the second lens of the
nearly optimal setup. The initial beam is the first improved nearly circular beam.

the average absolute difference between measured and simulated intensity ellipse semi-
axes is defined as

∆wj
nominal =

[
n∑

i=1

(wm
j − wn

j )2/n

]1/2

, (6.14)

∆wj
fitted =

[
n∑

i=1

(wm
j − wf

j)
2/n

]1/2

, j = 1, 2. (6.15)

The weights ω1 and ω2 are given by

ωj = ∆ϕ
nominal/∆

wi
nominal, j = 1, 2. (6.16)

Similarly the results for the measurement with the second improved beam are pre-
sented in Figure 6.20 and Table 6.16. In this case, unlike in all previous measurements,
the waist of the initial beam is not located before the first cylindrical lens. Still the
performance of nearly optimal lens configuration is very good and the rotation is
clearly observable. The simulated curve is fitted very closely to the measurement
points.

6.6.4. Comparison of intensity distributions

Within these sets of measurements we did not produce large sets of intensity profiles
to compare. However, to illustrate that the measured and simulated light spots in
this case are even more similar to each other, in Figure 6.22 several intensity ellipse
snapshots from the CCD camera and from the simulation are provided.
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Table 6.15.: Measured and fitted parameters for the measurement with the first improved
initial beam.

Parameter Units Value Tolerance Fit
f1 [mm] 53.5 ±3.5 49.9
f2 [mm] 66.5 ±4.2 68.2
z2 [mm] 208 ±1 209
α2 [degree] 17 ±1 16.6
w01 [µm] 218 ±12.2 207.17
w02 [µm] 213 ±14 227.3
z01 [mm] 0.68 ±5 -2.5
z02 [mm] 0.21 ±5.7 5.98
ϕw0 [degree] 0 ±90 1.5
l [mm] 7.2 ±1 6.2
β [degree] 0 ±1 -0.6

∆nominal [degree] 11.74
∆fitted [degree] 3.8
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Figure 6.21.: Intensity ellipse evolution as beam propagates behind the second lens of the
nearly optimal setup. The initial beam is the second improved nearly circular beam.
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Table 6.16.: Measured and fitted parameters for the measurement with the second improved
initial beam.

Parameter Units Value Tolerance Fit
f1 [mm] 53.5 ±3.5 50
f2 [mm] 66.5 ±4.2 69
z2 [mm] 213 ±1 214
α2 [degree] 17 ±1 16.3
w01 [µm] 252 ±2 254
w02 [µm] 244.5 ±2.75 242.5
z01 [mm] 151 ±1.44 149.56
z02 [mm] 149.5 ±2 242.5
ϕw0 [degree] 0 ±90 1
l [mm] 7.2 ±1 6.2
β [degree] 0 ±1 -0.6

∆nominal [degree] 12.25
∆fitted [degree] 4.7

z =11.5 cm, ϕw = 69.3◦ z = 14 cm, ϕw = 73.5◦ z = 16 cm, ϕw = 77.5◦

z = 11.5 cm, ϕw = 69◦ z = 14 cm, ϕw = 73.6◦ z = 16 cm, ϕw = 77.4◦

Figure 6.22.: The evolution of intensity ellipse of the general astigmatic beam produced from
the first improved initial beam by the nearly optimal setup. Images from CCD camera (first
row) and simulated images (second row).
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6.7. Conclusion and outlook
In this chapter I presented the results of the experimental verification of the general
astigmatic Gaussian beam model. We compared measured and simulated evolutions
of the intensity ellipses in several different cases. By fitting the initial parameters of
the setup within their measurement tolerances we achieved a very good agreement
between the simulation and the experiment. Thus, we proved that the suggested
general astigmatic Gaussian beam model is capable of representing the evolution of
the general astigmatic Gaussian beam. Within the simulation I used the formula
that transforms arbitrary Gaussian beams in fundamental mode via refraction on
the second order surface (equation (5.65)). Therefore, the capability of the model to
transform beams on surfaces was verified experimentally.
Since there was no Shack-Hartmann sensor available (see for example [35]), this

study does not include any comparison of the evolution of the wavefront. It is planned,
however, to investigate the evolution of the wavefront of the general astigmatic Gaus-
sian beam in further experiments.
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CHAPTER 7

The implication of beam model choice on a pathlength readout

T hree models of the Gaussian beam in fundamental mode were discussed in
Chapter 3, Chapter 4 and Chapter 5. The geometrical part of tracing beams

though the optical systems is identical for all types of beams and was given in Chap-
ter 2. The accumulated phase and accumulated optical pathlength are also computed
in the same way in all three models. The main differences between the models are
the beam description and beam transformation via reflection and refraction.
It was shown that the most general case of a Gaussian beam in fundamental mode

is a general astigmatic Gaussian beam. With the general astigmatic model it is
possible to simulate the transformation of a beam impinging at an oblique angle at
an arbitrary second order surface. With the simple astigmatic model a beam can
be transformed at an ellipsoidal surface if one of its principal axes and one of the
principal axes of the surface lie in the plane of incidence. If these restrictions are
not fulfilled the simple astigmatic beam model can only be used as an approximation.
For the beam transformation within the stigmatic Gaussian beam model it is assumed
that the beam incidence on a surface is close to normal and the angle of incidence
is neglected when the q-parameter is transformed. Therefore, when using this model
for the transformation of the beam impinging at an oblique angle on a surface, one
should keep in mind that the angle of incidence will only be used in the geometrical
part of the beam tracing.
In this chapter I will analyze the implications of the beam model choice on the

main science signal, namely the longitudinal pathlength signal (see Chapter 2). In
my investigation I will consider the cross-coupling of the angular beam jitter into
the pathlength readout for the case, when before impinging on the photodiode both
reference and measurement beams are traced through the imaging optics, consisting
of two spherical lenses.
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I will start with the explanation of the main principles of the imaging optics systems
and the motivation to use them in a LISA-like mission (Section 7.1). Then I will
present the approach to the design of such systems and suggest a set of exemplary
two lens optical systems. In Section 7.3 I will discuss which types of Gaussian beams
in fundamental mode and under which circumstances can appear in such systems.
Then I will start the comparison of the cross-coupling of the beam angular jitter into
the pathlength readout obtained with three different models. First I will present the
results for the perfectly aligned optical systems. Then I will analyze the response of
the longitudinal pahtlength signal on the misalignment of the single lens. In the end I
will compare the results for the realistically misaligned optical systems and conclude
on the implication of the beam model choice.

7.1. Imaging optics

Optical simulations for LISA Pathfinder have shown that the expected test mass an-
gular jitter, which results in angular jitter of the measurement beam, cross couples
into the longitudinal pathlength signal [6, p. 93]. In a LISA-like mission the sen-
sitivity requirements are more stringent and thus the suppression of the undesired
cross-coupling is required. It was decided to design lens systems that image the test
mass surface onto the photodiode [PD1]. Such systems have not been used before in
precision interferometery for this purpose. Thus, they required extensive investiga-
tion.
Stigmatic and simple astigmatic beams can be transformed into general astigmatic

beams by an imaging optics system. Therefore, the only beam model that can be
used to trace tilted beams through the lens systems is the general astigmatic beam
model. In this chapter I will study the impact of the use of simplified beam model in
simulations of imaging optics systems.
In order to investigate the propagation of a Gaussian beam in fundamental mode

through the imaging optics and study the implications of the beam model choice I
will use two lens systems for the test mass interferometer. In this interferometer
the reference and measurement beams are both Gaussian in fundamental mode with
a waist radius of 1mm. The requirements for the imaging optics systems evolve
together with the design of the LISA Optical Bench (LISA OB). Thus, it is likely
that the concrete specifications will change in the future. The requirements for the
imaging optics systems that will be used within this chapter are taken from [PD2].
The primary design goal for the imaging optics system is to suppress the cross coupling
of the test mass angular jitter into the longitudinal pathlength signal. For all test
mass angles ϕTM in the range of ±250µrad the slope of the longitudinal pathlength
signal ∂(LPS)/∂ϕTM should not exceed 35.8 pm/µrad [PD3].
The distance between the test mass and the first lens of the imaging system Lin is

fixed and with the requirements considered here is equal to 426mm (see Figure 7.1).
This restriction comes from the fact that in order to balance transmission through
fused silica substrates, the imaging optics systems should be placed behind the recom-
bination beam splitter that interferes the static reference and the tilting measurement
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beams. Another length constraint effects the distance between the second lens and
photodiode Lout. This distance cannot be smaller than 16mm to accommodate the
photodiode and its mount [PD3]. Due to the size limits of the LISA OB the overall
size of the imaging optics system (L + Lout) cannot exceed 120mm.

Test Mass PD

y

z

x
Imaging Optics

Lin LoutL

Figure 7.1.: The simplified not to scale schematic of the imaging optics system as it is
implemented in the simulation. Both the reference and the measurement beams have their
origins at the test mass surface. The reference beam is static, the measurement beam is
tilting.

The imaging optics system should not introduce considerable magnification. Within
the current requirements we aim for a 1:1 imaging in the test mass interferometer.
The preferable lens material is fused silica [PD3].

Table 7.1.: The requirements for the imaging optics systems for the test mass interferometer.
Parameter Requirement
∂(LPS)/∂ϕTM < 35.8 pm/µrad

for every ϕTM in range of ±250µrad
Lin = 426mm
Lout > 16mm
L + Lout < 120mm
magnification 1:1
material fused silica
PD diameter 5.33mm
QPD slit width 70µm
waist position on the test mass
waist radius 1mm

The currently chosen photodiode is the quadrant photodiode with the 5.33mm
diameter and 70µm slit. Within this chapter I will show the results for this photodiode
and for a single element photodiode with the same diameter.
It is desired to use as few lenses as possible in the imaging optics systems to minimize

stray light within the laser mode. Within this chapter I will only consider the systems
that include only two spherical lenses. However, it is possible to design imaging optics
with more lenses. Also the lenses can be aspherical. Analysis of such systems is out
of the scope of the current study.
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The requirements for the imaging optics for the test mass interferometer that were
used within this chapter are summarized in Table 7.1. However, this investigation
does not aim to evaluate the overall performance of each imaging optics system and
suggest the solution that can be used in the LISA OB. Rather, it will show the impact
of the use of the simplified beam model, which will be quite general for all similar
lens systems.

7.2. Designs of the imaging optics systems

When the reference and measurement beams have identical wavefront curvatures on
the photodiode their relative tilt does not couple into the pathlength readout in case if
they are both centered on a perfect photodiode that detects both beams without any
clipping. In the test mass interferometer reference and measurement beams do have
nominally equal waist sizes and similar beam paths. Thus, if they are both centered
on the photodiode they should have similar wavefront curvatures. This fact gives a
possibility to use a purely geometrical approach to design the imaging optics systems
for the test mass interferometer. If we find a lens system system that minimizes the
beam walk on the photodiode, it will also minimize the cross coupling of the angular
beam jitter into the pathlength signal.
In order to find suitable imaging systems a dedicated simulation was used. The goal

of this simulation was to find a lens system, which would transform the measurement
beam, tilted by 100µrad with respect to the reference beam, into a beam, impinging at
the same angle (magnification 1:1) on the center of the photodiode. The test angle of
the measurement beam could have been chosen differently. The value of 100µrad lies
within a range of interest and seems to lead to the systems with a good performance.
In the search we used the fused silica lenses available from Qioptiq (former Linos)

[36]. This catalog does not include fused silica lenses with focal lengths smaller than
6.14mm. One additional fused silica lens with the small focal length of -4.5mm was
taken from the catalog of Sill Optics [37]. Each plano-convex and plano-concave
lens was considered twice, depending on its orientation towards the incoming beam
(similarly to cylindrical lenses in the optimal setup search in Chapter 6).
For each pair of lenses the distance L between them and the distance Lout between

the second lens and the photodiode were varied until the measurement beam hit the
center of the photodiode at the angle of 100µrad. If for some particular lens pair it
is impossible to find such values of L and Lout within the length constraints given in
Table 7.1, the simulation continued the search with the new lens pair.
I performed the search of the imaging optics systems using the dedicated simulation

described above. With the current requirements given in Table 7.1 I could find ten
candidates shown in Figure 7.2. Their parameters are listed in Table 7.2. The lens
names starting with capital G denote the lenses from Qioptiq. The lens S6LDK4120 is
taken from Sill Optics. The specifications of lenses can be found in the corresponding
lens cataloges.
The approach to the imaging optics design suggested above does not include the

beam parameters and the photodiode shape. The imaging optics systems found with
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Table 7.2.: The parameters of the imaging optics systems for the test mass interferometer.
Name Lens 1 Lens 2 z1 [mm] z2 [mm] zPD [mm]

TMIO-M1-EP426-01 G312257000 S6LDK4120 426 448.360 523.584
TMIO-M1-EP426-02 G312257000 S6LDK4120 426 445.954 520.716
TMIO-M1-EP426-03 G312258000 S6LDK4120 426 454.430 514.919
TMIO-M1-EP426-04 G312258000 S6LDK4120 426 452.373 512.529
TMIO-M1-EP426-05 G312259000 S6LDK4120 426 463.465 511.111
TMIO-M1-EP426-06 G312259000 S6LDK4120 426 460.457 507.706
TMIO-M1-EP426-07 G312301000 S6LDK4120 426 505.601 528.982
TMIO-M1-EP426-08 G311206000 S6LDK4120 426 449.331 524.003
TMIO-M1-EP426-09 G311026000 S6LDK4120 426 456.376 515.943
TMIO-M1-EP426-10 G311207000 S6LDK4120 426 461.541 511.030

the simulation described above guarantee minimum beam walk of the measurement
beam on the photodiode. However, they do not guarantee the satisfaction of the
primary design goal (∂(LPS)/∂ϕTM < 35.8 pm/µrad). The search does not take
into account the values of the longitudinal pathlength signal (LPS). Since within this
study I aim to investigate the impact of the beam model choice on the longitudinal
pathlength signal, I will not consider the performance of the found imaging optics
systems with respect to the main science goal. Instead I will compare the pathlength
signals for the found lens systems obtained with each of the three beam models. Using
only one setup in such a comparison would not allow to draw general conclusions, since
a particular setup can have specific features that might affect the results. Thus, I will
use all ten setups given in Table 7.1 in the comparison to provide the sustainability
of the obtained results.

7.3. Analysis of pathlength readout

α

α
α

Figure 7.3.: The tilt of the test
mass by an angle α results in the
tilt of the measurement beam by
an angle 2α.

Within this section I will investigate the cross cou-
pling of the test mass angular jitter into the longitu-
dinal pathlength signals both for quadrant and single
element photodiodes. The test mass angular jitter in
the range of ± 250µrad results in the angular jitter
of the measurement beam in the range of ± 500µrad
(see Figure 7.3). The reference beam is not reflected
from the test mass and thus stays unaffected. To es-
timate the cross coupling of test mass angular jitter
into the main science signal for each particular imag-
ing optics system I will vary the test mass angle (and
thus the angle of the measurement beam) in equidis-
tant steps in the range of ± 250µrad. On each step
I will compute the LPS of a QPD and of a SEPD as

described in Chapter 2. Therefore, I will obtain the curve LPS(ϕTM) for both types
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Figure 7.2.: The imaging optics systems for the test mass interferometer. The horizontal
axis corresponds to the distance from the test mass (in meters). The vertical axis shows
the transversal sizes of the components of optical systems (in meters). For simplicity the
photodiode is represented as the glass plate with the diameter 5.33mm. The labels on the
vertical lines show the distances from the test mass to the front surface of the corresponding
component in mm.
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of photodiodes. The primary design goal of the imaging optics systems involves the
slope of this curve ∂(LPS)/∂ϕTM. Since within this study I am only interested in
the differences between the LPS(ϕTM) and ∂(LPS)/∂ϕTM curves for different beam
models and not in the concrete values of the slope of the curve, the comparison will
only include the LPS signals. The conclusion on the impact of the beam model on
the slope of the curve follows directly from the similar conclusion on the LPS(ϕTM)
curve.

7.3.1. Aligned imaging optics systems

Let me first consider the case when the reference and measurement beams are both
stigmatic Gaussian beams in fundamental mode before they are transformed by the
imaging optics. If the lens system is perfectly aligned the reference beam impinges
at every lens surface at a normal angle and thus stays a stigmatic Gaussian beam
after propagation through the lenses. The measurement beam even in the aligned
lens system impinges at the primary surface of the first lens at an oblique angle.
Therefore, according to equation (4.38) and equation (4.39) after the propagation
through the first lens the measurement beam becomes simple astigmatic. The plane,
in which the measurement beam rotates (XZ plane in Figure 7.1), is also the plane
of incidence of the measurement beam on the primary surface of the first lens. One
of the principal axes of the simple astigmatic measurement beam behind the first
lens lies in this plane. When this simple astigmatic beam impinges on the perfectly
aligned second lens of the imaging optics system the plane of incidence on the second
lens coincides with the plane of incidence on the first lens (XZ plane). Therefore, one
of the principal axes of the simple astigmatic beam still lies in the plane of incidence.
It means that the optical system the beam propagates through is orthogonal and the
resulting measurement beam impinging on the photodiode is simple astigmatic.
With all three beam models the geometrical part of the beam tracing is identical.

In the stigmatic beam model the non-normal incidence of the measurement beam on
a lens surface will be neglected in the transformation of the q-parameter. However,
the accumulated optical pathlength and the accumulated phase of the measurement
beam will differ from those values for the reference beam and thus there will be a
cross coupling of the test mass angular jitter into the pathlength readout.
With the simple astigmatic Gaussian beam model the non-normal incidence of the

measurement beam on the lens surface is taken into account in the transformation
of the q-parameters. Therefore, it is expected that the result obtained with the
stigmatic beam model will differ from the result obtained with the simple astigmatic
beam model, and the result obtained with the simple astigmatic beam model is more
accurate.
General astigmatic beams are not produced by the perfectly aligned lens system.

Therefore, the results obtained with the general astigmatic beam model have to be
identical to those with the simple astigmatic beam model.
The simulation results for the ten perfectly aligned imaging optics systems for

the test mass interferometer are given in Figure 7.4. They agree with the theoretical
expectations provided above. In all graphs for both QPD and SEPD the LPS obtained
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with the circular beam model is clearly different to the LPS obtained with both simple
astigmatic and general astigmatic beam models. Both astigmatic models show very
good agreement. Tiny differences that are hardly observable on the graphs result
from numerical errors that can appear due to the fact that the general astigmatic
beam model involves complex computations in the transformation of the radius of
curvature tensor. It is noticeable that for all aligned setups the difference between
the LPS obtained with the stigmatic beam model is smaller than the LPS obtained
with both astigmatic models by about a factor of ten. Thus, the results obtained
with the stigmatic beam model are too optimistic and cannot be regarded as accurate
estimates of the LPS for the perfectly aligned lens systems.

7.3.2. Transversal shift of the second lens

Perfectly aligned optical systems cannot be built in a real experiment. In order
to predict realistic results with a simulation it is important to study the impact of
possible misalignments. First I will introduce the single misalignment and discuss the
theoretical expectations of its impact of the LPS. Then I will compare the theoretical
expectations with the simulated results.

Within the comparison of the three beam models it is interesting to consider the
optical systems that produce general astigmatic beams. In this case the results ob-
tained with the simplified beam models (the circular and the simple astigmatic) are
expected to differ from the results obtained with the general astigmatic beam. As it
was shown above, a perfectly aligned optical system produces only simple astigmatic
beams from initial stigmatic beams. In order to obtain an optical system that trans-
forms a circular beam into a general astigmatic it is sufficient to introduce a single
specific misalignment.
Let me consider the two lens optical system, where the first lens is perfectly aligned

and the second lens is shifted from the optical axis orthogonally to the plane, where the
measurement beam is rotated. For example, if the beam is tilted in XZ plane, I will
consider the shift of the second lens along the Y axis. Behind the first lens, as before,
the reference beam is stigmatic and the measurement beam is simple astigmatic. The
plane of incidence of the measurement beam on the first lens is still the plane, where
this beam is tilting (XZ plane). The reference beam impinges at a second lens at
an oblique angle and thus is transformed into a simple astigmatic beam. For the
measurement beam the plane of incidence on the second lens is not aligned with the
plane of incidence on the first lens. When the second lens is shifted along the Y axis,
the normal to the lens surface at the point of incidence does not lie in XZ plane.
Thus, none of the principal axes of the beam ellipse lies in the plane of incidence on
the second lens. Therefore, the measurement beam impinging on the photodiode in
this case is a general astigmatic Gaussian beam.
In the next step of the analysis I have shifted the second lens in all ten setups

in 10 equidistant steps between 0µm and 10µm transversally to the plane of the
measurement beam rotation. The measurement beam was tilted in XZ plane, the
second lens was shifted along the Y axis. The results are shown in Figure 7.5 and
Figure 7.6. The accumulated optical pathlength sac and the accumulated phase φac
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Figure 7.4.: The LPS for perfectly aligned imaging optics systems. The parameters of the
lens systems are listed in Table 7.2. The parameters of the QPD are given in Table 7.1. The
SEPD has the same diameter as the QPD. LPSLPF is the pathlength signal on the QPD,
LPS in the pathlength signal on SEPD. Angle ϕTM is the test mass angle or half the angle
of the measurement beam.
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Figure 7.5.: The LPSLPF on the QPD described in Table 7.1 for the imaging optics systems
given in Table 7.2 with the second lens shifted orthogonally to the plane of the measurement
beam tilt in 10 equidistant steps from 0µm to 10µm. The measurement beam tilts in XZ
plane, the second lens shifts along the Y axis. When the second lens is not shifted, the optical
system is orthogonal and results obtained with the simple astigmatic model are identical to
the results obtained with the general astigmatic model. Arrows show the offsets of the second
lens.
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Figure 7.6.: The LPS on the SEPD with the diameter 5.33mm for the imaging optics systems
given in Table 7.2 with the second lens shifted orthogonally to the plane of the measurement
beam tilt in 10 equidistant steps from 0µm to 10µm. The measurement beam tilts in XZ
plane, the second lens shifts along the Y axis. When the second lens is not shifted, the optical
system is orthogonal and results obtained with the simple astigmatic model are identical to
the results obtained with the general astigmatic model. Arrows show the offsets of the second
lens.
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are computed identically in all three models. These values change as the second lens
is shifted for both reference and measurement beams and thus their relative change
is almost negligible and does not cause significant variations of the LPS curve. The
q-parameter in the circular model is transformed as if the incidence on the second lens
was normal and thus it does not change as the lens shifts from the optical axis. Within
the simple astigmatic beam model the q-parameters are transformed as if the optical
system stayed orthogonal. The two lens system is an orthogonal optical system only
if the second lens is not shifted orthogonally to the plane of the measurement beam
tilt. Thus, the q-parameters of the outgoing beam do not change as the lens shifts
from the optical axis. Therefore, both stigmatic and simple astigmatic beam models
show a very small response to this misalignment. The general astigmatic beam model,
in contrary, shows a clear response of the LPS curve on the transversal misalignment
of the second lens of the imaging optics system. When the second lens is not shifted
from the optical axis, the results obtained with simple and general astigmatic beam
models are identical, as expected. The interesting effect that can be observed on the
graphs is that for all systems the LPS curve becomes less steep and thus has smaller
slope when the second lens is shifted from the optical axis by some distance. For
the imaging optics system TMIO-M1-EP426-07 we can also see that its LPS curve
obtained with the general astigmatic beam model is relatively stable and for most
values of the second lens shift this curve coincides with the curve obtained with the
simple astigmatic beam model. Since the second lens in all ten setups is identical
I cannot conclude that the LPS curve generally becomes less steep if some specific
transversal misalignment of the second lens is introduced. However, it means that in
some cases the cross coupling in the misaligned lens system can be smaller than in
the aligned lens system.

7.3.3. Realistically misaligned imaging optics

Previously it was shown that in cases where the general astigmatic beam impinges on
the photodiode using simplified model of the Gaussian beam in fundamental mode
can cause considerable impact on the pathlength readout. However, so far I have
only shown the setups, for which all parameters are well known. These estimates
would be realistic if all parameters of the optical system were known to sub-micron
accuracy. However, such an accuracy cannot be guaranteed so far. Thus, in order to
estimate the LPS that will be obtained in the experiment I need to simulate a set
of realistically misaligned imaging optics systems. When this set is sufficiently big
it is possible to define a range, within which the LPS can lie in the experiment. If
this range will differ for different beam models, it will mean that good estimates can
only be found with the general astigmatic Gaussian beam model as the most general
model that avoids many simplifications. In case if the range is similar for all models
it is relevant to conclude that within the current measurement uncertainties the beam
model choice does not have a considerable impact.
In order to produce the set of realistically misaligned setups I have varied the

positions of lenses and photodiode in longitudinal and both transversal directions
within a 10µm range. For the waist position of both reference and measurement
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beams the uncertainty was set to one tens of the Rayleigh range of the beam (see
[PD2]). Before entering the imaging optics system both beams are not necessarily
ideally circular. The fibers are normally cut at 8◦angle [32]. The ellipticity of the
beam coming out from the fiber is then 1/ cos 8◦ ≈ 1.01. Then this beam goes
through the fiber outcoupler, which can alter the beam ellipticity. For the upper
limit of the beam ellipticity I have chosen the best result that has been achieved
in the experimental investigation of the general astigmatic beam (Chapter 6). The
first improved beam with the waist radii of 213µm and 218µm has the ellipticity of
218/213 ≈ 1.02. This value was used as the uncertainty in the simulation. All the
uncertainties that were implemented in the simulation are summarized in Table 7.3
and Table 7.4.

Table 7.3.: The uncertainties of the parameters of the imaging optics systems in the test
mass interferometer.

x [mm] y [mm] z [mm]
Lens 1 ±10µm ±10µm ±10µm
Lens 2 ±10µm ±10µm ±10µm
Photodiode ±10µm ±10µm ±10µm

Table 7.4.: The uncertainties of the beam parameters in the test mass interferometer.
Waist position ±0.1 zR ≈ 295mm
Ellipticity 1/1.02 .. 1.02

For each of the ten imaging optics systems 100 realistically misaligned setups have
been generated. The parameters of each setup have been chosen randomly and inde-
pendently from each other within corresponding ranges of uncertainty. I have used
the randomizer with the uniform distribution, which means that all values within the
uncertainty range was considered to have equal probabilities. Then for each realisti-
cally misaligned setup the LPS curves both with QPD and SEPD were produced. As
a result for each of the ten imaging optics systems described in Table 7.2 100 realistic
LPS curves have been generated with each of the three beam models. The results
are shown in Figure 7.7 and Figure 7.8. On these graphs one can see that with the
current ranges of uncertainties of the parameters of the imaging optics systems and
both reference and measurement beams the ranges of the LPS variations are identical
for all three beam models. Thus, within the current measurement uncertainties using
a simplified beam model does not introduce significant changes in the main science
signal. Therefore, in this case it is sufficient to work with the stigmatic or the simple
astigmatic beam models.
The curves in Figure 7.7 and Figure 7.8 have a maximum slope of 100-350 pm/µrad,

which is above the requirement given in Table 7.1. The cross-coupling can be reduced
in the experiment for example by realigning the photodiode longitudinally. In this
chapter I have also shown that transversal misalignment of lenses can decrease the
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Figure 7.7.: The LPSLPF on the QPD described in Table 7.1 for 100 realistically misaligned
variations of each of the imaging optics systems given in Table 7.2.
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(f) TMIO-M1-EP426-06
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(g) TMIO-M1-EP426-07
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(h) TMIO-M1-EP426-08
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(i) TMIO-M1-EP426-09
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Figure 7.8.: The LPS on the SEPD with the diameter 5.33mm for 100 realistically misaligned
variations of each of the imaging optics systems given in Table 7.2.
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slope of the LPS curve. The exact procedure that will lead to sufficient amount of
the cross-coupling of the test mass angular jitter into the pathlenghth signal is out of
the scope of this investigation.
It should be noted that for each particular misaligned optical system the results

obtained with different beam models might be considerably different. For example,
Figure 7.9 shows the LPS for a single instance of the realistically misaligned setup
TMIO-M1-EP426-01 with the parameters given in Table 7.5. The difference between
the results obtained with each of the three models is clearly visible. This is not
surprising. If we look at the specifications of this setup given in Table 7.5, we can see
that both beams in this setup are simple astigmatic before they are transformed by
the first lens. Since the first lens is misaligned in both transversal directions, even for
the reference beam none of its principal axes lies in plane on incidence on the first lens.
Thus, both the reference and the measurement beams are transformed into general
astigmatic beams already at the first lens. This setup is not symmetrical around the
optical axis in the plane of rotation of measurement beam (XZ plane). Thus, the
curves are not symmetrical for positive and negative values of the test mass angle.
It is interesting to note that the type of curve, obtained with the general astigmatic
model on the SEPD, has changed with respect to the fourth order curves that we
observed for example in Figure 7.5 and Figure 7.6. This change can be explained
by the complex configuration of general astigmatic beams that can couple into the
pathlength signal.
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Figure 7.9.: The LPS for QPD (on the left) and SEPD (on the right) for the single in-
stance of the realistically misaligned imaging optics system TMIO-M1-EP426-01 described
in Table 7.5.

7.4. Conclusion
In this chapter I have investigated the impact of the beam model choice on the path-
length readout in case when the imaging system that consists of two spherical lenses
is used. The absence of a systematic difference between the results obtained with
the different beam models for realistically misaligned setups allows the efficient use
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Table 7.5.: The parameters of the single instance of the realistically misaligned imaging optics
system TMIO-M1-EP426-01.

z [mm] x [µm] y [µm]
Lens 1 425.998 -6.43564 6.23762
Lens 2 448.356 -1.88119 -3.46535
Photodiode 523.577 -2.27723 1.48515

w01 [mm] w02 [mm] z0 [mm]
Reference beam 1 0.995686 -143.246
Measurement beam 1 0.989412 -78.9316

of simplified beam models within the current uncertainties of the parameters of the
optical systems. This conclusion can be applied quite generally to the systems of the
spherical lenses, which do not produce strongly elliptical beams. However, it does not
mean that simplified beam models are applicable for all types of optical simulations.
In this chapter I have shown that analyzing the particular instances of the lens sys-
tems with the simplified beam models can lead to wrong conclusions. For example,
the results for the perfectly aligned imaging optics systems show significantly smaller
cross coupling of the test mass angular jitter with the circular beam model than with
the astigmatic models. The use of stigmatic and simple astigmatic beam models re-
sults in very little response of the LPS curve on the transversal misalignment of the
second lens of the system, while the use of more accurate general astigmatic beam
model results in clear changes of pathlength readout. Therefore, it is preferable to
use the general astigmatic beam model in all cases, where the optical system beam
propagates through is non-orthogonal.
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CHAPTER 8

Summary and outlook

In this thesis I have presented the procedure of simulating laser interferometers with
three models of Gaussian beams in fundamental mode. The most general and the
most complex model is the general astigmatic Gaussian beam model. It can be used to
transform an arbitrary Gaussian beam in fundamental mode impinging at an oblique
angle at a surface that can be approximated by a second order equation at the point
of incidence. The stigmatic and the simple astigmatic Gaussian beam models are
the simplifications of the general astigmatic model. The simple astigmatic beam
model can be used to transform circular and simple astigmatic beams incident at
an elliptical surface at an oblique angle. However, this transformation will only be
accurate if both one of the principal axes of the beam ellipse and one of the principal
axes of the surface lie in the plane of incidence. Within the stigmatic beam model
for each transformation of the beam at a surface it is assumed that the incidence is
normal and the surface is planar or spherical.

All three models make use of the geometrical part of the ray tracing given in Chap-
ter 2. As the beam propagates through the optical system it accumulates phase. Due
to the independence of the geometrical part from the choice of the beam model accu-
mulated phase is also identical for all models of Gaussian beams in fundamental mode.
The difference between the models comprises the propagation and transformation of
q-parameters, which results in different evolution of the wavefront and the intensity
pattern along the propagation.
The interferometer signals are computed following the same procedure suggested in

Chapter 2 for each of the three models. This procedure involves computation of the
complex amplitude of the electric field, which is different for each type of Gaussian
beams in fundamental mode.
The circular beam model is relatively well-known and thus well-tested. The sim-

117



Chapter 8. Summary and outlook

ple astigmatic beam model can be split up into two circular beam representations
and thus does not introduce particularly novel phenomena. The general astigmatic
beam model is the most complex and appears in the least number of publications.
In order to have a complete model I had to comprise fragmented information from
different sources and derive several key equations. The resulting model was verified
by an experiment. In experiment several configurations of cylindrical lenses were
used. Each configuration consisted of the two lenses, oriented at an oblique angle
with respect to each other in the plane, orthogonal to the beam axis. The stigmatic
or simple astigmatic beam is transformed into a general astigmatic beam by such a
configuration. The evolution of the intensity ellipse of the resulting general astigmatic
beam, obtained in the experiment and in the simulation, was compared. A very good
agreement between the simulation and the experiment was achieved. It is planned to
perform the similar comparison of the evolution of the wavefront.
The main motivation to study different models of Gaussian beams in fundamental

mode was the question that arose while designing imaging optics systems for LISA.
We knew that in the aligned system of two spherical lens the tilted measurement
beam can be transformed into a simple astigmatic one. Later we found out that in
a misaligned system it can even become general astigmatic. Using a simplified beam
model can affect the simulation results for the main science signal. In order to under-
stand how big can be the impact of the simplifications I have studied all three models
and used them in the simulations of the cross coupling of the test mass angular jitter
into the longitudinal pathlength signal. The ranges of uncertainty of the longitudinal
pathlength signals are identical for all three models with the current alignment pos-
sibilities. Thus, within the current measurement uncertainties it is sufficient to use
simplified model to estimate the cross coupling of the test mass angular jitter into
the pathlength readout. However, for the single instance of the misaligned imaging
optics system that consists of two spherical lens the results obtained with the different
models can be clearly different with respect to each other. The analysis of the impact
of the specific misalignment can also show different results depending on the beam
model choice. Therefore, it is preferable to use the general astigmatic beam model
for the optical simulations of non-orthogonal optical systems.
The study of different beam models provided in this thesis enables a precise under-

standing of the circumstances, under which one type of Gaussian beam in fundamental
mode can be transformed into another. With this knowledge one can make a well-
motivated choices of the appropriate beam model for each particular investigation.
Having accurate beam models in the simulation tool allows precise evaluation of var-
ious effects. With the general astigmatic beam model we are not limited to spherical
and planar surfaces. Using second order approximation at the point of incidence, we
can simulate beam transformations at a large variety of surfaces.
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APPENDIX A

Curvature matrix of second order surface

The curvature matrix of a surface is used in transformation of general astigmatic beam
via reflection or refraction (equations (5.64), (5.65)). This appendix will be dedicated
to the derivation of a curvature matrix at some point on a second order surface.
The derivation of the curvature matrix of ellipsoidal surface can equally well be used
for cylindrical surfaces. The case of spherical surface will be considered separately.
Thus I will cover several common types of surfaces, used in interferometers, including
spherical and cylindrical lenses.

A.1. Curvature matrix of ellipsoidal surface

The ellipsoidal surface (see Figure A.1) can be described using the following expression
in its nominal coordinate system (ŝ1, ŝ2, ŝ), related to the center of the ellipsoid O:

f(x, z) = x2
1c

2
1 + x2

2c
2
2 + z2c2 − 1 = 0. (A.1)

In principal coordinate system (ŝ1, ŝ2, ŝ) each of the three unity vectors is aligned
with one of the principal semi-axes of ellipsoid. Here x = (x1, x2, z) is the vector in
coordinate system (ŝ1, ŝ2, ŝ), where of transversal coordinates x1 and x2 correspond
to unity vectors ŝ1, ŝ2, coordinate z corresponds to ŝ. Values 1/c1, 1/c2 and 1/c are
the principal semi-axes of ellipsoid; c1, c2 and c are its principal curvatures.
Equation (A.1) can be rewritten as:

f(x) = xTAx− 1 = 0, (A.2)
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A.1. Curvature matrix of ellipsoidal surface

where

A =

c21 0 0
0 c22 0
0 0 c2

 (A.3)

In order to derive the curvature matrix at some arbitrary point on a surface O′,
we need to rewrite equation (A.1) in the local coordinate system (d̂1, d̂2, n̂). This
coordinate system is related to the point O′, unity vector n̂ is a local normal vector
to the surface at the point of interest O′. Unity vectors d̂1 and d̂2 are the arbitrary
vectors in the plane, tangential to the surface at the point O′, chosen such as the local
coordinate system is orthonormal.

Figure A.1.: Coordinate transformation for
an elliptisoidal surface.

Assume x′ is a vector (x′1, x
′
2, z
′) in a lo-

cal coordinate system (d̂1, d̂2, n̂). To trans-
form the principal coordinate system of
the surface into local coordinate system we
need to find the parameters of the affine
transformation:

x′ = Mx + t (A.4)

In the center of ellipsoid O this equation
becomes:

x′ = t. (A.5)

Since the point O in local coordinate sys-
tem (d̂1, d̂2, n̂) can be described by vector
~O′O, the elements of vector t can be found

as the projections of a vector ~O′O on vec-
tors d̂1, d̂2, n̂.
If we take x = s and x′ = n in equa-

tion (A.4), we can obtain rotation matrix
M using for example algorithm [38]. Then

the transversal vectors of the local coordinate system can be found from:

d̂i = ŝiM, i = 1, 2. (A.6)

Taking into account the fact that rotation matrix M satisfies expression M−1 =
MT , we can find the coordinate vector x from equation (A.4):

x = MT (x′ − t). (A.7)

Substituting this expression into equation (A.2), we obtain the equation of surface
in local coordinate system:

f(x′) = (MT (x′ − t))TA(MT (x′ − t))− 1 = 0, (A.8)
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which is equivalent to

f(x′) = (x′ − t)TA′(x′ − t)− 1 = 0, (A.9)

where

A′ = MAMT . (A.10)

Since matrix A is diagonal and matrix M is a rotation matrix, matrix A′ is sym-
metric.
After equation (A.1) is rewritten in the local coordinate system, we can obtain the

expression for coordinate z′, aligned with the surface normal n̂. Assuming that the
curvature c 6= 0 (otherwise the surface would be flat at the point of incidence) we can
now derive the equation for z′ from equation (A.8) :

z′ =t3 −
a′13x̄1 + a′23x̄2

a′33

±

1

a′33

√
(a′13x̄1 + a′23x̄2)2 − a′33(a′11(x′21 − t1) + 2a′12x̄1x̄2 + a′22x̄

2
2 − 1)

(A.11)

Here a′ij with i, j = 1, 2, 3 are elements of matrix A′, x̄i = x′i − ti with i = 1, 2, ti
with i = 1, 2, 3 are the elements of vector t.

Finding second order derivative of the obtained expression with respect to coordi-
nates x′1 and x′2 will give the required curvature matrix.

C =


∂2z′1
∂x′21

∂2z′1
∂x′1∂x

′
2

∂2z′1
∂x′2∂x

′
1

∂2z′1
∂x′22

 =

± 1

b

(
a′11a

′
33 − a′213 + gt22 a′12a

′
33 − a′13a

′
23 − gt1t2

a′12a
′
33 − a′13a

′
23 − gt1t2 a′22a

′
33 − a′223 + gt21

)
,

(A.12)

where

b = [(a′13t1 + a′23t2)2 − a′33(a′11t
2
1 + 2a′12t1t2 + a′22t

2
2 − 1)]3/2,

g = a′11a
′2
23 + a′22a

′2
13 + a′33a

′2
12 − 2a′12a

′
13a
′
23 − a′11a

′
22a
′
33.

(A.13)

Equation (A.12) provides the required expression for the curvature matrix at an
arbitrary point on an ellipsoidal surface. Even though it was derived for ellipsoidal
surfaces, nothing stops us from having zero curvature in one of the directions ŝ1 or
ŝ1. Then equation (A.12) will provide the curvature matrix for cylindrical surface.
Negative curvatures can also be treated by changing the sign of the curvature matrix.
Therefore the described case is general for any 2nd-order surface in 3D.
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A.2. Curvature matrix of spherical surface
In this section I will derive the curvature matrix of a spherical surface as a special case
of ellipsoidal surface. For this type of surfaces the matrix A given in equation (A.3)
is defined as

c2E, (A.14)

where E is a unity matrix. The principal curvatures of spherical surface in its
principal coordinate system are identical in all three directions. Then equation (A.10)
becomes:

A′ = M(c2E)MT = c2MMT = c2MM−1 = c2E = A. (A.15)

Since normal vector n̂ for spherical surface is always aligned along the radius of
a sphere, t1 = t2 = 0, t3 = 1/c. Substituting these values into equation (A.12) we
obtain:

b = c3,

g = −c6.
(A.16)

Then from equation (5.55) the curvature matrix at any point on a spherical surface
is independent on the choice of the coordinate system (d̂1, d̂2, n̂):

C = ± 1

c3

(
c4 0
0 c4

)
= ±

(
c 0
0 c.

)
(A.17)
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APPENDIX B

Algorithm of the optimal setup search

This appendix is dedicated to the simulation for the optimal setup search that was
used in experimental verification of the general astigmatic Gaussian beam model.
This simulation searches through the variety of possible configurations of the two
cylindrical lenses that transform the initial circular of simple astigmatic Gaussian
beam into general astigmatic. The goal is to find a configuration that produces
general astigmatic beam with the clearly observable rotation of the intensity ellipse
according to criteria from Chapter 6.

I will start this chapter with the overview of the possible two lens configurations.
Then I will present the algorithm for the optimal setup search. In the end I will put
the code listing of the simulation that can be used together with our in-house software
IfoCad P4.

B.1. Possible two lens configurations

In our study we had three cylindrical lenses available. It does not seem to be many.
However, a large variety of different two lens setups producing different general astig-
matic beams can be built using these lenses.
Two or three lenses are plano-convex. Thus each of them can be put in the setup

either facing the incoming beam with the plane surface or with the convex surface.
Taking into account that we only have one sample of each lens types, it is possible to
combine our lenses into 16 different configurations (see Table B.1).
In order to produce the general astigmatic beam the transversal relative angle ∆α

between two cylindrical lenses can take any value between 0◦ and 90◦ (not including
edges). Implementing relative angle ∆α of more than 90◦ does not add new possibil-
ities, since the intensity ellipse evolution in this case will be identical to the one for
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B.2. Algorithm description

Table B.1.: Possible combinations of two cylindrical lenses.
Lens1
(a = 1)

Lens1
(a = −1)

Lens2
(a = 1)

Lens2
(a = −1)

Lens3
(a = 0)

Lens1
(a = 1)
Lens1

(a = −1)
Lens2
(a = 1)
Lens2

(a = −1)
Lens3
(a = 0)

∆α−90◦, just mirrored. We can look at different relative angles in steps of 5◦starting
with 5◦and ending with 85◦. Such step size should be sufficient to look at all impor-
tant possibilities on the one hand and avoid too many similar computations of the
other hand. The angle of orientation of the first lens in the transversal plane can be
set to zero, then angle of the second lens is identical to the relative orientation of both
lenses α2 = ∆α.
Another parameter that should be varied in the optimal setup search is the distance

between the two lenses ∆z. It is hard to set the limits for this parameter since it can
be almost arbitrary. We decided to restrict ourselves to the distances between 3 cm
and 20 cm since such distances are convenient to be implemented in the experiment.
It was chosen to vary the distance between two lenses in 5 steps. Such choice again
allows to evaluate all interesting possibilities avoiding too many computations. The
position of the first lens was set to z1 = 1 cm. The position of the second lens wav
varied according to the variations of distance between the two lenses.
We could include even more parameters in this investigation. For instance, we could

vary the angles of both lenses separately. The suggested variations already produce
16 × 17 × 5 = 1360 possibilities, which is already impossible to explore manually
and hard enough to explore in the simulation. It is also not necessary to add more
possibilities. as it is shown in chapter 6, the suggested approach allows to find a really
good lens configuration with a very clearly observable rotation of the intensity ellipse.

B.2. Algorithm description

The simulation starts with constructing the list of all available lenses (see Figure B.1).
If the lens is asymmetric (for example, plano-convex), it is added twice in the list: once
with the positive asymmetry parameter (in case of plano-convex lens planar surface
faces the incoming beam, a = 1) and once with the negative asymmetry parameter
(in case of plano-convex lens convex surface faces the incoming beam, a = −1).
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B.2. Algorithm description

Figure B.1.: The flowchart of the algorithm of the optimal setup search.

Then for each pair of different lenses from the list several distances between lenses
(in our case from 3 cm to 20 cm in 5 equidistant steps) and several angles of the second
lens (in our case from 5◦ to 85◦ in 17 equidistant steps) are tried out (see Figure B.2).

For each particular lens configuration the initial simple astigmatic beam is traced
through the setup. After the second lens it transforms into general astigmatic beam.
This beam is propagated over some specific distance (in our case 25 cm) behind the
second lens. Along this propagation several values are computed (see Figure B.3):

1. total change of the intensity ellipse angle over the propagation distance (|∆ϕw|);

2. maximum slope of the intensity ellipse angle evolution over the propagation
distance (|∂ϕw/∂z|max);

3. minimum flattening of the intensity ellipse over the propagation distance (Fmin);

4. distance behind the second lens, where spot size requirement is violated (zw>1.25).

Using these values, each setup (new_result) is compared to the so far found best
setup (best_result) as described below.
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B.2. Algorithm description

Figure B.2.: The flowchart of the algorithm of the local best result search with the two specific
cylindrical lenses.

Figure B.3.: The flowchart of the algorithm of the local best result search with the specific
configuration of the two cylindrical lenses.
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B.3. Code listing

1. First for each of the four parameters their normalized difference is computed:

∆(Fmin) =
Fmin(new_result)− Fmin(best_result)

Fmin(best_result)

∆(|∆ϕw|) =
|∆ϕw(new_result)| − |∆ϕw(best_result)|

|∆ϕw(best_result)|

∆(|∂ϕw

∂z
|max) = −

|∂ϕw

∂z |max(new_result)− |∂ϕw

∂z |max(best_result)
|∂ϕw

∂z |max(best_result)

∆(zw>1.25) =
zw>1.25(new_result)− zw>1.25(best_result)

zw>1.25(best_result)

(B.1)

2. Then the weighted sum of the found normalized differences is found:

∆ =w(Fmin)∆(Fmin) + w(|∆ϕw|)∆(|∆ϕw|)+

w(|∂ϕw

∂z
|max)∆(|∂ϕw

∂z
|max) + w(zw>1.25)∆(zw>1.25)

(B.2)

Initially all parameters are equally important and have weights of 0.25. But as
soon as some parameter for both new_result and best_result becomes "better"
than some fixed sufficient value, it’s weight drops by a factor of 10. For flmin the
value of 0.33 (major semi-axes is 1.5 times bigger than minor semi-axes in every
point) is considered to be sufficient, slope of no more than 1◦/mm and angle
change of at least 100◦ are also sufficient. We aim for having beam smaller than
1.25 at all propagation distance and we don’t look at the points further than
propagation distance, therefore propagation distance is maximum possible value
for zw>1.25. If both for new and for best result this is the case, this parameter
doesn’t count anyway. Otherwise it doesn’t make sense to drop it’s weight.

3. If the resulted sum is positive, new_result becomes best_result.

This algorithm allows to find an optimal setup through a set of comparisons between
the performances of different setups.

B.3. Code listing

code/gagb_max_effect_cyl.cpp
1 /∗∗
2 The s imu la t i on i s s ea r ch ing f o r the setup with 2 c y l i n d r i c a l
3 l en s e s , that produces the most s i g n i f i c a n t gene ra l a s t i gmat i c
4 e f f e c t . I d e a l l y i t f i n d s a setup with the b i g g e s t i n t e n s i t y
5 e l l i p s e ang le change over some f i x ed propagat ion d i s tance ,
6 sma l l e s t s l ope o f t h i s change ( or r o t a t i on " speed ")
7 and b i gg e s t i n t e n s i t y e l l i p s e f l a t t e n i n g
8 ( f = 1 − spot_rad_2 / spot_rad_1 ) .
9 I f i t ’ s not po s s i b l e , the c l o s e s t to the " best " setup w i l l be
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10 found .
11 To f i t i n to the CCD−camera beam shouldn ’ t be l a r g e r than some
12 f i x e d value . This i s a l s o taken in to account .
13 Al l r e s u l t s are l i s t e d in a tab l e .
14 Future i n v e s t i g a t i o n can be performed us ing separa t e program .
15 ∗/
16

17 #inc lude <fstream>
18 #inc lude <sstream>
19 #inc lude <iostream>
20 #inc lude <iomanip>
21

22 /∗ IFOCAD f i l e s ∗/
23 #inc lude " . . / . . / . . / source /beams/ga_gbeam . h"
24 #inc lude " . . / . . / . . / source / t r a c i ng /beam_tracing . h"
25

26 /∗ l o c a l f i l e s ∗/
27 #inc lude "phase_jumps . h"
28 #inc lude " c y l i n d r i c a l_ l e n s e s . h"
29

30 //========================Result s t r u c tu r e==========================
31 /∗∗
32 ∗ This s t r u c tu r e i s used to r ep r e s en t the r e s u l t o f the beam
33 ∗ propagat ion through the 2− l e n s setup .
34 ∗ I t conta in s
35 ∗ − the parameters o f the setup ( l e n s e s and t h e i r r e l a t i v e
36 ∗ po s i t i o n ) − s u f f i c i e n t data to r e c on s t ru c t the setup i f needed ;
37 ∗ − the key va lue s f o r setup comparison (minimum f l a t t e n i n g ,
38 ∗ maximum slope , ang le change and di s tance , where spot s i z e
39 ∗ requirement i s v i o l a t e d ) .
40 ∗/
41 s t r u c t Result
42 {
43 // Index o f the f i r s t l e n s in the l e n s l i s t
44 unsigned i n t l en s1 ;
45 // Index o f the second l en s in the l e n s l i s t
46 unsigned i n t l en s2 ;
47 // Angle o f the second l en s
48 double lens2_ang ;
49 // Distance between the 2 l e n s e s
50 double l en s2_di s t ;
51 // Minimum f l a t t e n i n g o f the i n t e n s i t y e l l i p s e over the
52 // propagat ion d i s t ance
53 double min_f latten ing ;
54 // Maximum s l ope o f the i n t e n s i t y e l l i p s e ang le curve over the
55 // propagat ion d i s t ance
56 double max_slope ;
57 // Angle change over the propagat ion d i s t ance
58 double angle_change ;
59 // Distance behind the second lens , where spot s i z e requirement
60 // i s v i o l a t e d
61 double spot_s i z e_v io la t i on_di s t ;
62 } ;
63 //=====================Function d e c l a r a t i o n s========================
64 /∗∗
65 ∗ I n i t i a l i s e s r e s u l t with u n r e a l i s t i c a l l y "bad" (" worse " than
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66 ∗ anything that can be produced by r e a l l e n s e s ) parameters .
67 ∗/
68 void i n i t_ r e s u l t ( Result &r e s u l t ) ;
69 /∗∗
70 ∗ Returns t rue i f new_result i s " b e t t e r " than prev_best_result .
71 ∗ 4 parameters are taken in to account :
72 ∗ − minimum f l a t t e n i n g ( e l l i p t i c i t y ) over propagat ion d i s t ance ;
73 ∗ − maxixum s l ope [ ang le / d i s t anc e ] over propagat ion d i s t anc e ;
74 ∗ − ang le change over propagat ion d i s t anc e ;
75 ∗ − di s tance , where spot s i z e s t a r t s to v i o l a t e the requirement .
76 ∗ For each parameter normal ized d i f f e r e n c e between new_result
77 ∗ and prev_best_result i s computed . I f the weighted sum of 4
78 ∗ normal ized d i f f e r e n c e s i s po s i t i v e , the new r e s u l t i s " b e t t e r " .
79 ∗∗/
80 bool compare_results ( const Result &new_result , const Result
81 &prev_best_result ) ;
82 /∗∗
83 ∗ Copies to_copy to r e s u l t .
84 ∗/
85 void copy_result ( Result &r e su l t , const Result &to_copy ) ;
86 /∗∗
87 ∗ Computes bes t r e s u l t f o r the setup conta in ing l en s1 as the f i r s t
88 ∗ l e n s and l en s2 as the second l en s . The f i r s t l e n s always s tays at
89 ∗ 1 cm and 0 degree ang le . The d i s t anc e between l e n s e s i s var i ed
90 ∗ between LENS1_LENS2_MIN_DISTANCE and LENS1_LENS2_MAX_DISTANCE
91 ∗ in NUMBER_DISTANCE_STEP st ep s . The ang le o f the second l en s i s
92 ∗ var i ed between LENS2_MIN_ANGLE and LENS2_MAX_ANGLE in
93 ∗ NUMBER_ANGLE_STEP st ep s .
94 ∗/
95 void get_resu l t_for_lens1_lens2 ( Beamspl i t te r l ens1 , Beamsp l i t t e r
96 l ens2 , Result &bes t_re su l t ) ;
97 /∗∗
98 ∗ Computes r e s u l t f o r the s p e c i f i c setup conta in ing l en s1 and l en s2
99 ∗ with f i x ed d i s t ance between l e n s e s and ang le o f the second l en s .

100 ∗/
101 void get_result_for_setup ( Beamsp l i t te r &lens1 , Beamspl i t te r &lens2 ,
102 Result &r e s u l t ) ;
103 /∗∗
104 ∗ Propagates GAGB and computes phase jump , ang le change , d i s t ance
105 ∗ where spot s i z e requirement i s v i o l a t ed , minimum f l a t t e n i n g and
106 ∗ maximum s l ope .
107 ∗/
108 void propagate_and_get_results (GA_GBeam beam , bool &inc , double
109 &added , double &angle , double &spot_s ize_vio la t ion_dis t ,
110 double &min_flattening , double &max_slope ) ;
111 /∗∗
112 ∗ f = 1 − spot_rad_2 / spot_rad_1 , where spot_rad_2 <= spot_rad_1
113 ∗ http :// en . w ik iped ia . org / wik i / F la t t en ing
114 ∗ http ://www. gmat . unsw . edu . au/snap/gps/ clynch_pdfs / e l l i p e q u . pdf
115 ∗/
116 double f l a t t e n i n g ( double spot_rad_1 , double spot_rad_2 ) ;
117 /∗∗
118 ∗ Computes the abso lu t e va lue o f the s l ope o f the i n t e n s i t y e l l i p s e
119 ∗ ang le at a cur rent beam po s i t i o n .
120 ∗/
121 double angle_slope_abs (GA_GBeam beam ) ;
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122 /∗∗
123 ∗ Pr in t s out the found best setup .
124 ∗/
125 void pr int_bes t_resu l t_to_f i l e ( const std : : s t r i n g &file_name ,
126 const std : : vector<lens> &l en s_ l i s t , const Result &bes t_re su l t ) ;
127 //===========================Constants==============================
128

129 // Beam parameters
130 s t a t i c const double WAIST_X_RAD = 295 ∗ UM;
131 s t a t i c const double WAIST_Y_RAD = 253 ∗ UM;
132 s t a t i c const double WAIST_X_POS = 0.82 ∗ MM;
133 s t a t i c const double WAIST_Y_POS = 1.01 ∗ MM;
134 s t a t i c const double BEAM_ANGLE = 0 ∗ DEGREE;
135

136 // Lens p o s i t i o n s
137 s t a t i c const double LENS1_POSITION = 10 ;
138 s t a t i c const double LENS1_LENS2_MIN_DISTANCE = 30 ;
139 s t a t i c const double LENS1_LENS2_MAX_DISTANCE = 200 ;
140 s t a t i c const i n t NUMBER_DISTANCE_STEP = 5 ;
141

142 // Second l en s ang le
143 s t a t i c const double LENS2_MIN_ANGLE = 5 ∗ DEGREE;
144 s t a t i c const double LENS2_MAX_ANGLE = M_PI / 2 − 5 ∗ DEGREE;
145 s t a t i c const i n t NUMBER_ANGLE_STEP = 17 ;
146

147 // Propagation d i s t ance behind the second l en s ( a f t e r GAGB appears )
148 s t a t i c const double PROPAGATION_DISTANCE = 250 ;
149 s t a t i c const i n t NUMBER_PROPAGATION_STEP = 10 ;
150

151 // Spot s i z e requ i rements
152 s t a t i c const double MAX_SPOT_RADIUS = 2.5 / 2 . 0 ;
153

154 // Const f o r ang le s l ope d e r i v a t i on
155 s t a t i c const double DIST_CHANGE_SLOPE = 1 . 0 ;
156

157 // Values that are used in comparison o f the r e s u l t s
158 enum { MIN_FL, MAX_SL, ANG_CH, SP_S_DIST, COMPARE_NUM };
159

160 // Weights o f parameters
161 s t a t i c const double WEIGHTS[ ] = { 0 .25 , 0 . 25 , 0 . 25 , 0 .25 } ;
162

163 // S u f f i c i e n t parameter va lue s
164 s t a t i c const double SUFFICIENT_FLATTENING = 0 . 3 3 ;
165 s t a t i c const double SUFFICIENT_SLOPE = DEGREE;
166 s t a t i c const double SUFFICIENT_ANG_CHANGE = 100 ∗ DEGREE;
167

168 // Constant , by which weight i s reduced a f t e r va lue becomes
169 // s u f f i c i e n t
170 s t a t i c const double REDUCE_CONST = 10 . 0 ;
171

172 // CCD camera parameters
173 s t a t i c const double CCD_LONG_OFFSET = 7 . 2 ;
174 s t a t i c const double CCD_ANG_OFFSET = 0 . 0 ;
175

176 s t a t i c const Direction_3d X_AXIS = Direction_3d (1 , 0 , 0 ) ;
177
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178 //========================Implementation============================
179

180 double angle_slope_abs (GA_GBeam beam)
181 {
182 // In case i f phase jump happens between ang_0 and ang_dif , the
183 // s l ope w i l l be too high . But the phase jump can ’ t happen in
184 // both p o s i t i v e and negat ive d i r e c t i o n o f propagation , s i n c e
185 // DIST_CHANGE_SLOPE i s too smal l f o r both phase jumps to happen
186 // with in (−DIST_CHANGE_SLOPE; DIST_CHANGE_SLOPE) . There fore to
187 // avoid tak ing phase jump in to account we w i l l compute s l o p e s
188 // in both d i r e c t i o n s and return the sma l l e s t .
189

190 // Angle at the cur rent beam o r i g i n
191 double ang_0 = beam . in t en s i ty_ang l e ( ) ;
192

193 // Propagation in p o s i t i v e d i r e c t i o n
194 beam . propagate (DIST_CHANGE_SLOPE) ;
195 double ang_dif_1 = beam . in t ens i ty_ang l e ( ) ;
196 double ang_change_1 = fabs ( ang_dif_1 − ang_0 ) ;
197

198 // Propagation in negat ive d i r e c t i o n
199 beam . propagate (−2 ∗ DIST_CHANGE_SLOPE) ;
200 double ang_dif_2 = beam . in t ens i ty_ang l e ( ) ;
201 double ang_change_2 = fabs ( ang_dif_2 − ang_0 ) ;
202

203 // Choosing the sma l l e r s l ope
204 i f ( ang_change_1 < ang_change_2 )
205 r e turn ang_change_1 / DIST_CHANGE_SLOPE;
206 e l s e
207 r e turn ang_change_2 / DIST_CHANGE_SLOPE;
208 }
209

210 bool compare_results ( const Result &new_result , const Result
211 &prev_best_result )
212 {
213 std : : vector<double> compare_res ;
214 compare_res . r e s i z e (COMPARE_NUM, f a l s e ) ;
215

216 compare_res [MIN_FL] = new_result . min_f latten ing −
217 prev_best_result . min_f latten ing ;
218 i f ( f abs ( prev_best_result . min_f latten ing ) > DBL_EPSILON)
219 compare_res [MIN_FL] /= prev_best_result . min_f latten ing ;
220

221 i f ( prev_best_result . max_slope == INFINITY)
222 compare_res [MAX_SL] = new_result . max_slope ;
223 e l s e
224 compare_res [MAX_SL] = 1 .0 − new_result . max_slope /
225 prev_best_result . max_slope ;
226

227 compare_res [ANG_CH] = fabs ( new_result . angle_change ) −
228 f abs ( prev_best_result . angle_change ) ;
229 i f ( f abs ( prev_best_result . angle_change ) < DBL_EPSILON)
230 compare_res [ANG_CH] /= M_PI;
231 e l s e
232 compare_res [ANG_CH] /= fabs ( prev_best_result . angle_change ) ;
233
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234 compare_res [SP_S_DIST] = new_result . spot_s i z e_v io la t i on_di s t −
235 prev_best_result . spot_s i ze_v io la t i on_di s t ;
236 i f ( f abs ( prev_best_result . spot_s i z e_v io la t i on_di s t ) <
237 DBL_EPSILON)
238 compare_res [SP_S_DIST] /= PROPAGATION_DISTANCE;
239 e l s e
240 compare_res [SP_S_DIST] /=
241 prev_best_result . spot_s i ze_v io la t i on_di s t ;
242

243 compare_res [MIN_FL] ∗= WEIGHTS[MIN_FL ] ;
244 i f ( new_result . min_f latten ing > SUFFICIENT_FLATTENING &&
245 prev_best_result . min_f latten ing > SUFFICIENT_FLATTENING)
246 compare_res [MIN_FL] /= REDUCE_CONST;
247

248 compare_res [MAX_SL] ∗= WEIGHTS[MAX_SL] ;
249 i f ( new_result . max_slope < SUFFICIENT_SLOPE &&
250 prev_best_result . max_slope < SUFFICIENT_SLOPE)
251 compare_res [MAX_SL] /= REDUCE_CONST;
252

253 compare_res [ANG_CH] ∗= WEIGHTS[ANG_CH] ;
254 i f ( f abs ( new_result . angle_change ) > SUFFICIENT_ANG_CHANGE &&
255 f abs ( prev_best_result . angle_change ) > SUFFICIENT_ANG_CHANGE)
256 compare_res [ANG_CH] /= REDUCE_CONST;
257

258 compare_res [SP_S_DIST] ∗= WEIGHTS[SP_S_DIST ] ;
259

260 double r e s = compare_res [MIN_FL] + compare_res [MAX_SL] +
261 compare_res [ANG_CH] + compare_res [SP_S_DIST ] ;
262

263 r e turn r e s > 0 ;
264 }
265

266 void copy_result ( Result &r e su l t , const Result &to_copy )
267 {
268 r e s u l t . angle_change = to_copy . angle_change ;
269 r e s u l t . min_f latten ing = to_copy . min_f latten ing ;
270 r e s u l t . max_slope = to_copy . max_slope ;
271 r e s u l t . l en s1 = to_copy . l en s1 ;
272 r e s u l t . l en s2 = to_copy . l en s2 ;
273 r e s u l t . lens2_ang = to_copy . lens2_ang ;
274 r e s u l t . l en s2_di s t = to_copy . l ens2_d i s t ;
275 r e s u l t . spot_s i z e_v io la t i on_di s t =
276 to_copy . spot_s i z e_v io la t i on_di s t ;
277 }
278

279 double f l a t t e n i n g ( double spot_rad_1 , double spot_rad_2 )
280 {
281 double r a t i o = spot_rad_2 / spot_rad_1 ;
282 i f ( r a t i o > 1 . 0 )
283 r a t i o = 1 .0 / r a t i o ;
284 r e turn 1 .0 − r a t i o ;
285 }
286

287 void get_resu l t_for_lens1_lens2 ( Beamspl i t te r l ens1 , Beamsp l i t t e r
288 l ens2 , Result &bes t_re su l t )
289 {
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290 i n i t_ r e s u l t ( be s t_re su l t ) ;
291

292 Result r e s u l t ;
293 r e s u l t . l en s1 = bes t_re su l t . l en s1 ;
294 r e s u l t . l en s2 = bes t_re su l t . l en s2 ;
295

296 double current_lens2_pos i t ion = LENS1_POSITION +
297 l e n s1 . t h i c kne s s ( ) + LENS1_LENS2_MIN_DISTANCE;
298 double d i s t_step_s ize = (LENS1_LENS2_MAX_DISTANCE −
299 LENS1_LENS2_MIN_DISTANCE) / (NUMBER_DISTANCE_STEP − 1 ) ;
300

301 double ang_step_size = (LENS2_MAX_ANGLE − LENS2_MIN_ANGLE) /
302 (NUMBER_ANGLE_STEP − 1 ) ;
303

304 l e n s1 . set_center_xyz (LENS1_POSITION, 0 , 0 ) ;
305

306 f o r ( i n t i = 0 ; i < NUMBER_DISTANCE_STEP; i++)
307 {
308 l e n s2 . set_center_xyz ( current_lens2_pos i t ion , 0 , 0 ) ;
309 l e n s2 . set_nv ( Direction_3d (−1 , 0 , 0 ) , Direction_3d (0 , 1 , 0 ) ) ;
310 double current_lens2_angle = LENS2_MIN_ANGLE;
311 l e n s2 . rotate_3d (X_AXIS, LENS2_MIN_ANGLE) ;
312 f o r ( i n t j = 0 ; j < NUMBER_ANGLE_STEP; j++)
313 {
314 std : : cout << std : : setw (8) << len s1 . name ( )
315 << std : : setw (8) << len s2 . name ( ) << std : : f i x e d
316 << std : : setw (8) << std : : s e t p r e c i s i o n (1 )
317 << current_lens2_pos i t ion << std : : setw (8)
318 << current_lens2_angle / DEGREE;
319

320 r e s u l t . lens2_ang = current_lens2_angle ;
321 r e s u l t . l en s2_di s t = current_lens2_pos i t ion −
322 LENS1_POSITION − l en s1 . t h i c kne s s ( ) ;
323

324 get_result_for_setup ( lens1 , l ens2 , r e s u l t ) ;
325 i f ( compare_results ( r e su l t , be s t_re su l t ) )
326 copy_result ( bes t_resu l t , r e s u l t ) ;
327 current_lens2_angle += ang_step_size ;
328 l e n s2 . rotate_3d (X_AXIS, ang_step_size ) ;
329 }
330 current_lens2_pos i t ion += dis t_step_s ize ;
331 }
332 }
333

334 void get_result_for_setup ( Beamsp l i t te r &lens1 , Beamspl i t te r &lens2 ,
335 Result &r e s u l t )
336 {
337 GA_GBeam beam ;
338 beam . set_orig in_xyz ( 0 . 0 , 0 . 0 , 0 . 0 ) ;
339 beam . set_SA_waist_rad (WAIST_X_RAD, beam . o r i g i n ( ) . x ( ) −
340 WAIST_X_POS, WAIST_Y_RAD, beam . o r i g i n ( ) . y ( ) −
341 WAIST_Y_POS, BEAM_ANGLE) ;
342

343 beam . se t_bas i s ( Direction_3d (0 , 1 , 0 ) ) ;
344 r e f r a c t_ f r on t ( lens1 , beam ) ;
345 r e f r a c t_ f r on t ( lens2 , beam ) ;
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346 beam . propagate (CCD_LONG_OFFSET − l en s2 . t h i c kne s s ( ) ) ;
347

348 double intens i ty_angle_1 = beam . in t ens i ty_ang l e ( ) + CCD_ANG_OFFSET;
349 double f l a t t en ing_beg in = f l a t t e n i n g (beam . spot_rad_1 ( ) ,
350 beam . spot_rad_2 ( ) ) ;
351

352 std : : cout << std : : setw (12) << std : : f i x e d << std : : s e t p r e c i s i o n (5 )
353 << intens i ty_angle_1 / DEGREE;
354

355 bool inc ;
356 double added ;
357 double intens i ty_angle_2 ;
358

359 r e s u l t . min_f latten ing = f l a t t en ing_beg in ;
360 r e s u l t . max_slope = angle_slope_abs (beam ) ;
361

362 propagate_and_get_results (beam , inc , added , intens ity_angle_2 ,
363 r e s u l t . spot_s ize_vio la t ion_dis t , r e s u l t . min_flattening ,
364 r e s u l t . max_slope ) ;
365

366 r e s u l t . angle_change = intens i ty_angle_2 − intens i ty_angle_1 ;
367 std : : cout << std : : setw (12) << std : : s e t p r e c i s i o n (5 )
368 << intens i ty_angle_2 / DEGREE << std : : s e t p r e c i s i o n (6 )
369 << std : : setw (12) << added << std : : setw (12)
370 << r e s u l t . angle_change / DEGREE << std : : s e t p r e c i s i o n (4 )
371 << std : : setw (8) << r e s u l t . min_f latten ing << std : : setw (8)
372 << r e s u l t . max_slope << std : : s e t p r e c i s i o n (2 )
373 << std : : setw (8) << r e s u l t . spot_s i z e_v io la t i on_di s t / CM
374 << std : : endl ;
375 }
376

377 void i n i t_ r e s u l t ( Result &r e s u l t )
378 {
379 r e s u l t . lens2_ang = 0 . 0 ;
380 r e s u l t . l en s2_di s t = LENS1_LENS2_MIN_DISTANCE;
381 r e s u l t . min_f latten ing = 0 . 0 ;
382 r e s u l t . max_slope = INFINITY ;
383 r e s u l t . angle_change = 0 . 0 ;
384 r e s u l t . spot_s i z e_v io la t i on_di s t = 0 . 0 ;
385 }
386

387 void propagate_and_get_results (GA_GBeam beam , bool &inc ,
388 double &added , double &angle , double &spot_s ize_vio la t ion_di s t ,
389 double &min_flattening , double &max_slope )
390 {
391 double s t ep_s i ze = PROPAGATION_DISTANCE /
392 (NUMBER_PROPAGATION_STEP − 1 ) ;
393 std : : vector<double> ang l e s ;
394 spot_s i z e_v io la t i on_di s t = PROPAGATION_DISTANCE;
395 bool v i o l a t e d = f a l s e ;
396 double f l a t t e n , s l ope ;
397 f o r ( i n t i = 0 ; i < NUMBER_PROPAGATION_STEP; i++)
398 {
399 ang l e s . push_back (beam . in t en s i ty_ang l e ( ) + CCD_ANG_OFFSET) ;
400 f l a t t e n = f l a t t e n i n g (beam . spot_rad_1 ( ) , beam . spot_rad_2 ( ) ) ;
401 i f ( f l a t t e n < min_f latten ing )
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402 min_f latten ing = f l a t t e n ;
403 i f ( ! v i o l a t e d )
404 i f (beam . spot_rad_1 ( ) > MAX_SPOT_RADIUS | |
405 beam . spot_rad_2 ( ) > MAX_SPOT_RADIUS)
406 {
407 spot_s i z e_v io la t i on_di s t = i ∗ s t ep_s i ze ;
408 v i o l a t e d = true ;
409 }
410 s l ope = angle_slope_abs (beam ) ;
411 i f ( s l ope > max_slope )
412 max_slope = s l ope ;
413 beam . propagate ( s t ep_s i ze ) ;
414 }
415 added = get_rid_of_phase_jumps ( angles , i nc ) ;
416 ang le = ang l e s [NUMBER_PROPAGATION_STEP − 1 ] ;
417 }
418

419 void pr int_bes t_resu l t_to_f i l e ( const std : : s t r i n g &file_name ,
420 const std : : vector<lens> &l en s_ l i s t , const Result &bes t_re su l t )
421 {
422 std : : o f s tream r e s u l t _ f i l e ;
423 i f ( ! r e s u l t _ f i l e . good ( ) )
424 r e turn ;
425 r e s u l t _ f i l e . open ( f i le_name . c_str ( ) , s td : : f s t ream : : out ) ;
426 i f ( r e s u l t _ f i l e . f a i l ( ) )
427 r e turn ;
428

429 r e s u l t _ f i l e << "# LENSES" << std : : endl ;
430

431 r e s u l t _ f i l e << "#" << std : : setw (19) << "Lens name"
432 << std : : setw (15) << "Height [mm] " << std : : setw (15)
433 << "Width [mm] " << std : : setw (15) << "Thickness [mm] "
434 << std : : setw (10) << " f [mm] " << std : : setw (5) << "a"
435 << std : : setw (12) << "n" << std : : endl ;
436

437 r e s u l t _ f i l e << std : : setw (20)
438 << l e n s_ l i s t [ be s t_re su l t . l en s1 ] . name << std : : setw (15)
439 << l e n s_ l i s t [ be s t_re su l t . l en s1 ] . he ight << std : : setw (15)
440 << l e n s_ l i s t [ be s t_re su l t . l en s1 ] . width << std : : setw (15)
441 << l e n s_ l i s t [ be s t_re su l t . l en s1 ] . t h i c kne s s << std : : setw (10)
442 << l e n s_ l i s t [ be s t_re su l t . l en s1 ] . f << std : : setw (5)
443 << l e n s_ l i s t [ be s t_re su l t . l en s1 ] . a << std : : setw (12)
444 << l e n s_ l i s t [ be s t_re su l t . l en s1 ] . n << std : : endl ;
445

446 r e s u l t _ f i l e << std : : setw (20)
447 << l e n s_ l i s t [ be s t_re su l t . l en s2 ] . name << std : : setw (15)
448 << l e n s_ l i s t [ be s t_re su l t . l en s2 ] . he ight << std : : setw (15)
449 << l e n s_ l i s t [ be s t_re su l t . l en s2 ] . width << std : : setw (15)
450 << l e n s_ l i s t [ be s t_re su l t . l en s2 ] . t h i c kne s s << std : : setw (10)
451 << l e n s_ l i s t [ be s t_re su l t . l en s2 ] . f << std : : setw (5)
452 << l e n s_ l i s t [ be s t_re su l t . l en s2 ] . a << std : : setw (12)
453 << l e n s_ l i s t [ be s t_re su l t . l en s2 ] . n << std : : endl ;
454

455 r e s u l t _ f i l e << std : : endl ;
456

457 r e s u l t _ f i l e << "#" << std : : setw (15) << "Long . Pos . [mm] "
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458 << std : : setw (15) << "Angle [ deg ] " << std : : endl ;
459

460 r e s u l t _ f i l e << std : : setw (16) << LENS1_POSITION << std : : setw (15)
461 << 0 << std : : endl ;
462

463 r e s u l t _ f i l e << std : : setw (16) << LENS1_POSITION +
464 l e n s_ l i s t [ be s t_re su l t . l en s1 ] . t h i c kne s s + bes t_re su l t . l en s2_d i s t
465 << std : : setw (15) << bes t_re su l t . lens2_ang / DEGREE << std : : endl ;
466

467 r e s u l t _ f i l e << std : : endl << "# BEAM" << std : : endl ;
468

469 r e s u l t _ f i l e << "#" << std : : setw (18) << "waist_x [mm] "
470 << std : : setw (18) << "waist_pos_x [mm] " << std : : setw (18)
471 << "waist_y [mm] " << std : : setw (18) << "waist_pos_y [mm] "
472 << std : : setw (15) << " angle [ deg ] " << std : : endl ;
473

474 r e s u l t _ f i l e << std : : setw (19) << WAIST_X_RAD << std : : setw (18)
475 << WAIST_X_POS << std : : setw (18) << WAIST_Y_RAD << std : : setw (18)
476 << WAIST_Y_POS << std : : setw (15) << BEAM_ANGLE / DEGREE
477 << std : : endl ;
478

479 r e s u l t _ f i l e << std : : endl << "#" << std : : setw (36)
480 << "CCD_long_offset [mm] " << std : : setw (36) << "CCD_ang_offset [ deg ] "
481 << std : : endl ;
482

483 r e s u l t _ f i l e << std : : setw (36) << CCD_LONG_OFFSET << std : : setw (36)
484 << CCD_ANG_OFFSET << std : : endl ;
485

486 r e s u l t _ f i l e . c l o s e ( ) ;
487 }
488

489 i n t main ( )
490 {
491 std : : vector<lens> l e n s_ l i s t ;
492 read_lenses ( " ava i l ab l e_ca ta l og . txt " , l e n s_ l i s t ) ;
493

494 Beamspl i t te r l ens1 , l en s2 ;
495

496 std : : cout << std : : s e t f i l l ( ’ ’ ) << std : : setw (8) << "LENS1"
497 << std : : setw (8) << "LENS2" << std : : setw (8) << "L2_z"
498 << std : : setw (8) << "L2_ang" << std : : setw (12) << "b0_ang"
499 << std : : setw (12) << "b_end_ang" << std : : setw (12) << "phase_jump"
500 << std : : setw (12) << "ang_change" << std : : setw (8) << "min_fl "
501 << std : : setw (8) << "max_sl" << std : : setw (8) << " sz_vio l "
502 << std : : endl ;
503

504 Result best_resu l t , r e s u l t ;
505 i n i t_ r e s u l t ( be s t_re su l t ) ;
506

507 f o r ( unsigned i n t i = 0 ; i < l e n s_ l i s t . s i z e ( ) ; i++)
508 {
509 make_lens ( l e n s_ l i s t , i , l e n s1 ) ;
510 f o r ( unsigned j = 0 ; j < l e n s_ l i s t . s i z e ( ) ; j++)
511 {
512 i f ( l e n s_ l i s t [ i ] . name != l e n s_ l i s t [ j ] . name)
513 {
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514 make_lens ( l e n s_ l i s t , j , l en s2 ) ;
515 r e s u l t . l en s1 = i ;
516 r e s u l t . l en s2 = j ;
517 std : : cout << "Asymmetry parameters : a1 = "
518 << l e n s_ l i s t [ i ] . a << " , a2 = " << l e n s_ l i s t [ j ] . a
519 << std : : endl ;
520 get_resu l t_for_lens1_lens2 ( lens1 , l ens2 , r e s u l t ) ;
521 i f ( compare_results ( r e su l t , be s t_re su l t ) )
522 copy_result ( bes t_resu l t , r e s u l t ) ;
523 }
524 }
525 }
526

527 std : : cout << "Best r e s u l t i s : " <<
528 l e n s_ l i s t [ be s t_re su l t . l en s1 ] . name << " ( a = "
529 << l e n s_ l i s t [ be s t_re su l t . l en s1 ] . a << " ) and "
530 << l e n s_ l i s t [ be s t_re su l t . l en s2 ] . name << " ( a = "
531 << l e n s_ l i s t [ be s t_re su l t . l en s2 ] . a
532 << " ) with d i s t ance between l e n s e s " << bes t_re su l t . l en s2_di s t
533 << " mm, second l en s ang le " << bes t_re su l t . lens2_ang / DEGREE
534 << " degree , minimum i n t e n s i t y e l l i p s e f l a t t e n i n g over "
535 << PROPAGATION_DISTANCE / CM << " cm "
536 << bes t_re su l t . min_f latten ing << " , ang le change over "
537 << PROPAGATION_DISTANCE / CM << " cm "
538 << bes t_re su l t . angle_change / DEGREE
539 << " degree with maximum s l ope "
540 << bes t_re su l t . max_slope / DEGREE << " [ deg / mm] " ;
541

542 i f ( f abs ( be s t_re su l t . spot_s i z e_v io la t i on_di s t −
543 PROPAGATION_DISTANCE) < DBL_EPSILON)
544 std : : cout << " , spot s i z e requirement i s not v i o l a t e d over "
545 << PROPAGATION_DISTANCE / CM << " cm " << std : : endl ;
546 e l s e
547 std : : cout << " , spot s i z e requirement i s v i o l a t e d at "
548 << bes t_re su l t . spot_s i z e_v io la t i on_di s t << " mm"
549 << std : : endl ;
550

551 pr int_bes t_resu l t_to_f i l e ( " r e s u l t / be s t_re su l t . txt " , l e n s_ l i s t ,
552 bes t_re su l t ) ;
553

554 r e turn 0 ;
555 }

code/cylindrical_lenses.h
1 #i f n d e f CYLINDRICAL_LENSES_H
2 #de f i n e CYLINDRICAL_LENSES_H
3

4 #inc lude <vector>
5

6 /∗ IFOCAD f i l e s ∗/
7 #inc lude " . . / . . / . . / source /components/ beamsp l i t t e r . h"
8

9 //=========================l en s s t r u c tu r e===========================
10 s t r u c t l e n s
11 {
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12 std : : s t r i n g name ;
13 double he ight ;
14 double width ;
15 double th i c kne s s ;
16 double a ; // Asymmetry parameter
17 double f ; // f o c a l l ength
18 double n ; // Re f r a c t i v e index
19 } ;
20 //======================Function d e c l a r a t i o n s=======================
21 /∗∗
22 ∗ Constructs a l i s t o f l e n s e s from ca ta l og . I f l e n s i s not
23 ∗ symmetric ( a <> 0 , f o r example f o r plano−convex l e n s e s ) , i t i s
24 ∗ added twice ( with a and −a ) .
25 ∗/
26 void read_lenses ( const std : : s t r i n g &file_name , std : : vector<lens>
27 &l e n s_ l i s t ) ;
28 /∗∗
29 ∗ Creates an ob j e c t o f Beamsp l i t te r c l a s s from the i−element o f a
30 ∗ l e n s_ l i s t .
31 ∗/
32 void make_lens ( const std : : vector<lens> &l en s_ l i s t , i n t i ,
33 Beamspl i t te r &new_lens ) ;
34 //==================================================================
35 #end i f // CYLINDRICAL_LENSES_H

code/cylindrical_lenses.cpp
1 #inc lude " c y l i n d r i c a l_ l e n s e s . h"
2

3 #inc lude <fstream>
4

5 void read_lenses ( const std : : s t r i n g &file_name , std : : vector<lens>
6 &l e n s_ l i s t )
7 {
8 std : : i f s t r e am l i n o s _ f i l e ;
9 i f ( ! l i n o s _ f i l e . good ( ) )

10 r e turn ;
11 l i n o s _ f i l e . open ( f i le_name . c_str ( ) , s td : : f s t ream : : in ) ;
12 i f ( l i n o s _ f i l e . f a i l ( ) )
13 r e turn ;
14 std : : s t r i n g l i n e ;
15 s i ze_t l ine_count = 0 , lens_count = 0 ;
16 l e n s current_lens ;
17 whi le ( ! l i n o s _ f i l e . e o f ( ) )
18 {
19 std : : g e t l i n e ( l i n o s_ f i l e , l i n e ) ;
20 i f ( l i n e . empty ( ) | | l i n e [ 0 ] == ’#’ )
21 cont inue ;
22 std : : s t r i ng s t r eam s s ( l i n e , s td : : s t r i ng s t r eam : : in ) ;
23 s s >> current_lens . name >> current_lens . he ight
24 >> current_lens . width >> current_lens . t h i c kne s s
25 >> current_lens . f >> current_lens . a >> current_lens . n ;
26 i f ( ! s s . good ( ) )
27 cont inue ;
28 ++line_count ;
29 l e n s_ l i s t . push_back ( current_lens ) ;
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30 ++lens_count ;
31 i f ( current_lens . a )
32 {
33 current_lens . a = −current_lens . a ;
34 l e n s_ l i s t . push_back ( current_lens ) ;
35 ++lens_count ;
36 }
37 }
38 }
39

40 void make_lens ( const std : : vector<lens> &l en s_ l i s t , i n t i ,
41 Beamspl i t te r &new_lens )
42 {
43 new_lens . s e t_s i z e ( l e n s_ l i s t [ i ] . width , l e n s_ l i s t [ i ] . he ight ) ;
44 new_lens . s e t_th i cknes s ( l e n s_ l i s t [ i ] . t h i c kne s s ) ;
45 Mater ia l m;
46 m. set_n ( l e n s_ l i s t [ i ] . n ) ;
47 new_lens . s e t_subst ra te (m) ;
48 new_lens . se t_foca l_length ( l e n s_ l i s t [ i ] . f , l e n s_ l i s t [ i ] . a ,
49 CYLINDRICAL_LENS) ;
50 new_lens . set_name ( l e n s_ l i s t [ i ] . name ) ;
51 }

code/phase_jumps.h
1 #i f n d e f PHASE_JUMPS_H
2 #de f i n e PHASE_JUMPS_H
3

4 #inc lude <vector>
5

6 //======================Function d e c l a r a t i o n s=======================
7 /∗∗
8 ∗ Returns t rue i f e lements in the array are mostly in " i n c r e a s i n g "
9 ∗ order , f a l s e f o r " dec r ea s ing "

10 ∗/
11 bool i n c r e a s i n g ( const std : : vector<double> &ang l e s ) ;
12 /∗∗
13 ∗ Gets r i d o f the "phase jumps" − p l a c e s in array , where major
14 ∗ order ( i n c r e a s i n g or dec r ea s i ng ) i s changed to the oppos i t e .
15 ∗ There fore adds or sub t r a c t s PI/2 f o r a l l e lements , s t a r t i n g with
16 ∗ the one that brakes the order . Returns the b i g g e s t va lue that was
17 ∗ added or subtracted from the e lements o f array ( f o r phase e l l i p s e
18 ∗ and i n t e n s i t y e l l i p s e ang l e s shouldn ’ t be more than +/− PI )
19 ∗/
20 double get_rid_of_phase_jumps ( std : : vector<double> &angles ,
21 bool &inc ) ;
22 double get_rid_of_phase_jumps ( std : : vector<double> &ang l e s ) ;
23

24 //=========================Implementation===========================
25

26 bool i n c r e a s i n g ( const std : : vector<double> &ang l e s )
27 {
28 bool inc = true ;
29 i n t increas ing_count = 0 ;
30 i n t decreas ing_count = 0 ;
31 f o r ( unsigned i n t i = 0 ; i < ang l e s . s i z e ( ) − 1 ; i++)
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32 {
33 i f ( ang l e s [ i ] < ang l e s [ i + 1 ] )
34 increas ing_count += 1 ;
35 e l s e
36 decreas ing_count += 1 ;
37 }
38 i n c = increas ing_count > decreas ing_count ;
39 r e turn inc ;
40 }
41

42 double get_rid_of_phase_jumps ( std : : vector<double> &angles ,
43 bool &inc )
44 {
45 i n c = i n c r e a s i n g ( ang l e s ) ;
46 double added = 0 ;
47 double to_add = 0 ;
48 f o r ( unsigned i n t i = 0 ; i < ang l e s . s i z e ( ) − 1 ; i++)
49 {
50 i f ( i nc && ( ang l e s [ i + 1 ] < ang l e s [ i ] ) &&
51 f abs ( ang l e s [ i + 1 ] − ang l e s [ i ] ) > 1e−10)
52 {
53 to_add = M_PI / 2 . 0 ;
54 added += M_PI / 2 . 0 ;
55 }
56 i f ( ( ! i n c ) && ( ang l e s [ i + 1 ] > ang l e s [ i ] ) &&
57 f abs ( ang l e s [ i + 1 ] − ang l e s [ i ] ) > 1e−10)
58 {
59 to_add = −M_PI / 2 . 0 ;
60 added −= M_PI / 2 . 0 ;
61 }
62 i f ( f abs ( to_add ) > DBL_EPSILON)
63 {
64 f o r ( unsigned i n t j = i + 1 ; j < ang l e s . s i z e ( ) ; j++)
65 ang l e s [ j ] += to_add ;
66 to_add = 0 . 0 ;
67 }
68 }
69 r e turn added ;
70 }
71

72 double get_rid_of_phase_jumps ( std : : vector<double> &ang l e s )
73 {
74 bool inc ;
75 r e turn get_rid_of_phase_jumps ( angles , i nc ) ;
76 }
77

78 #end i f // PHASE_JUMPS_H
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ABCD-law, 33
Accumulated optical pathlength, 22
Accumulated phase, 22
Angle of orientation

intensity ellipse, 45, 46
phase ellipse, 45, 46

Angular frequency
beam, 9
heterodyne, 9

Asymmetry parameter, 60

Beam
measurement, 8
power, 8
propagation factor, 59
radius, 20, 30, 46
reference, 8

Beam tracing, 5, 6

CCD camera, 63
Complex amplitude

of electric field, 9
general astigmatic Gaussian beam,

40
simple astigmatic Gaussian beam,

28
stigmatic Gaussian beam, 18

of heterodyne power, 11
Complex envelope, 18, 28
Complex phase, 33, 44

Complex radius of curvature tensor, 41
Coordinate system

beam principal, 6, 29
beam-fixed, 6

Coordinate transformation matrix, 54
Curvature matrix of a surface, 52
Cylindrical lens, 60

Divergence, 21

Electric field, 9
Ellipticity, 78
Euler-Poisson integral, 29

Flattening, 78

Gaussian beam in fundamental mode,
2

general astigmatic, 2, 39
simple astigmatic, 2, 27
stigmatic (circular), 2, 17

Gouy phase shift
general astigmatic Gaussian beam,

41
jumps, 23
simple astigmatic Gaussian beam,

28
stigmatic Gaussian beam, 22

Helmholz equation, 18
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paraxial, 18

Imaging optics, 94
Impedance of the medium, 9
Intensity ellipse matrix, 44
Interferometer

heterodyne, 8, 12
homodyne, 8, 13

Interferometer signals, 8
contrast, 5, 10, 11, 13
differential power sensing (DPS),

5, 12
differential wavefront sensing (DWS),

5, 12
longitudinal pathlength (LPS), 5,

11, 12, 97

Lensmaker’s equation, 60
LISA mission, 2

optical bench (LISA OB), 2

Optical intensity, 8
contrast, 10
general astigmatic Gaussian beam,

44
mean, 10
simple astigmatic Gaussian beam,

30
stigmatic Gaussian beam, 20

Optical system
non-orthogonal, 14
orthogonal, 14, 27, 35
rotationally symmetric, 14, 17

Phase
general astigmatic Gaussian beam,

44
simple astigmatic Gaussian beam,

30
stigmatic Gaussian beam, 22

Phase ellipse matrix, 44
Photocurrent, 8
Photodiode

quadrant (QPD), 5, 8, 12
responsivity, 8
single element (SEPD), 8, 11

Plane of incidence, 3
Power

mean, 10, 11
sensed, 8, 10

Propagation
general astigmatic Gaussian beam,

43
simple astigmatic Gaussian beam,

31
stigmatic Gaussian beam, 24

q-parameter, 19, 28

Radius of curvature of wavefront, 23,
30, 47

Ray, 6
Rayleigh range, 20
Reflection law, 7

general astigmatic Gaussian beam,
50

simple astigmatic Gaussian beam,
36

stigmatic Gaussian beam, 25
Refraction law, 7

general astigmatic Gaussian beam,
50

simple astigmatic Gaussian beam,
37

stigmatic Gaussian beam, 25
Rotation matrix, 41

Snell’s law, 7
Spot radius, 20, 30, 46

Waist, 20
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