
MAX-PLANCK-INSTITUT

FÜR
INFORMATIK

 	

� �
On Extra Variables in (Equational) Logic

Programming

Michael Hanus

MPI–I–94–246 September 1994

���
�

�� k

I N F O R M A T I K

Im Stadtwald

D 66123 Saarbrücken

Germany

Author’s Address

Michael Hanus

Max-Planck-Institut für Informatik

Im Stadtwald

D-66123 Saarbrücken

Germany

michael@mpi-sb.mpg.de

Acknowledgements

The research described in this paper was supported in part by the German Ministry for Research

and Technology (BMFT) under grant ITS 9103 and by the ESPRIT Basic Research Working

Group 6028 (Construction of Computational Logics). The responsibility for the contents of this

publication lies with the author.

Abstract

Extra variables in a clause are variables which occur in the body but not in

the head. It has been argued that extra variables are necessary and contribute

to the expressive power of logic languages. In the first part of this paper, we

show that this is not true in general. For this purpose, we provide a simple

syntactic transformation of each logic program into a logic program without ex-

tra variables. Moreover, we show a strong correspondence between the original

and the transformed program with respect to the declarative and the opera-

tional semantics. In the second part of this paper, we use a similar technique

to provide new completeness results for equational logic programs with extra

variables. In equational logic programming it is well known that extra vari-

ables cause problems since narrowing, the standard operational semantics for

equational logic programming, may become incomplete in the presence of ex-

tra variables. Since extra variables are useful from a programming point of

view, we characterize new classes of equational logic programs with extra vari-

ables for which narrowing and particular narrowing strategies are complete. In

particular, we show the completeness of narrowing strategies in the presence

of nonterminating functions and extra variables in right-hand sides of rewrite

rules.

1 Introduction

Extra variables in a Horn clause L⇐ B are variables in the body B which do not occur in L (other

notions are existential variables [PP94], local variables [BMPT90], right-free variables [BMPT87],

or fresh variables [Pad92]). It has been argued that extra variables are necessary and contribute

to the expressive power of logic languages. For instance, Dershowitz and Okada [DO90] claim that

the restriction of logic programming to clauses without extra variables “is unacceptable since even

very simple relations, such as transitivity, require extra variables in conditions.” In the first part

of this paper, we show that this is not true in general, since each clause containing extra variables

can be transformed into a clause without extra variables by adding the extra variables as a new

argument to the predicate in the head. We prove a strong correspondence between the original

and the transformed program w.r.t. the declarative and the operational semantics, in order to show

that there is no loss due to this transformation.

In the second part of this paper, we consider equational logic programs. This class of programs

is important since it is a basis for integrating functional and logic programming (see [Han94b] for

a recent survey on this subject). In equational logic programming it is well known that extra

variables cause problems since narrowing, the standard operational semantics for equational logic

programming, may become incomplete in the presence of extra variables. This can be seen by the

following example [GM86]:

Example 1.1 Consider the following equational logic program:1

a → b

a → c

b → c ⇐ f(X,b)=f(c,X)

This system has all the properties usually required for completeness of narrowing, i.e., it is confluent

and terminating. However, narrowing cannot infer the validity of the equation b=c since there is

only the following infinite derivation (the subterm where a rule is applied is underlined in each

step):

b=c ; f(X,b)=f(c,X), c=c ; f(X1,b)=f(c,X1), f(X,c)=f(c,X), c=c ; · · ·

In order to prove the condition of the last rule, the extra variable X must be instantiated to a and

then the instantiated occurrences must be derived to c and b, respectively. However, this is not

provided by the narrowing calculus. Although narrowing is complete for confluent and terminating

equational logic programs without extra variables, this example shows that narrowing becomes

incomplete in the presence of extra variables. 2

Extra variables are useful from a programming point of view. For instance, the let construct used

in functional programming to share common subexpressions can be expressed in equational logic

programming using extra variables [BG89]. Therefore, much research has been carried out in order

to characterize classes of equational logic programs with extra variables for which narrowing is com-

plete (see Section 3 for a detailed discussion). The aim of the second part of this paper is to provide

such completeness results. For this purpose, we transform general equational logic programs into

1Since the equation in the clause head is always used to derive an instance of the left-hand side to an instance of

the right-hand side, we use the arrow ‘→’ instead of the equality symbol in the head

2

programs without extra variables and discuss conditions for the adequacy of this transformation.

The main condition is the property that different occurrences of an extra variable need not be

derived to different terms in an instantiated rule (note that this is necessary in Example 1.1). An

interesting class satisfying this condition are weakly orthogonal programs, which is a reasonable

class from a programming point of view. Based on these observations, we characterize new classes

of equational logic programs for which narrowing and particular narrowing strategies are complete.

For instance, we show the completeness of narrowing and lazy narrowing for a class of programs

which allows extra variables in right-hand sides of clause heads. Such programs are very useful in

practice but seldom discussed in the narrowing literature.

2 Extra Variables in Logic Programming

In this section we propose a method to avoid extra variables in pure logic programming. We use

standard notions from logic programming as to be found in [Llo87]. Terms are constructed from

variables and function symbols,2 and (program) clauses have the form L0 ⇐ L1, . . . , Lk, where each

literal Li is a predicate p applied to a sequence of terms t1, . . . , tn (in the following we abbreviate

sequences of terms by t). L0 is called head and L1, . . . , Lk is called body of the clause. The set of

variables occurring in a term t is denoted by Var(t) (similarly for other syntactic constructions).

A term t is called ground if Var(t) = ∅. A logic program is a set of clauses.

Consider the clause

C: p(t)⇐ q1(t1), . . . , qk(tk)

A variable x ∈ Var(C) is called extra variable if x ̸∈ Var(t). In order to eliminate all extra variables,

we apply the transformation eev (eliminate extra variables) to this clause, which is defined by

eev(C): p(t, vn+k(x1, . . . , xn, y1, . . . , yk))⇐ q1(t1, y1), . . . , qk(tk, yk)

where x1, . . . , xn are the extra variables of C and y1, . . . , yk are new variables not occurring in C.3

Moreover, v0, v1, v2, . . . is a family of new function symbols not occurring in the original program.

The following proposition is obvious.

Proposition 2.1 If C is a clause, then eev(C) is a clause without extra variables.

We extend the transformation eev to programs by applying eev to each clause of the program.

Example 2.2 Let P be the program consisting of the following clauses:

append([],L,L)

append([E|R],L,[E|RL]) ⇐ append(R,L,RL)

last(L,E) ⇐ append(R,[E],L)

Then the transformed program eev(P) contains the following clauses:

append([],L,L,v0)

append([E|R],L,[E|RL],v1(Y)) ⇐ append(R,L,RL,Y)

last(L,E,v2(R,Y)) ⇐ append(R,[E],L,Y)
2

2As usual, we assume that there is at least one 0-ary function symbol.
3The order of the variables in the term vn+k(x1, . . . , xn, y1, . . . , yk) is irrelevant. Therefore, we can fix an arbitrary

order for each clause.

3

In the following, we show a strong correspondence between P and eev(P) w.r.t. the declarative

and operational semantics. In particular, we show that the initial model of P is identical to the

initial model of eev(P) provided that the last argument of all predicates is deleted. This implies

a strong correspondence between validity w.r.t. P and eev(P). However, there is a small problem

in the comparison of the validity between both programs. Due to the introduction of the new

function symbols v0, v1, . . ., the languages of P and eev(P) differ. Consequently, the classes of

interpretations are different (in particular, the domains of the interpretations and the denotations

of function symbols are different). However, the following proposition shows that the introduction

of new function symbols does not influence the set of logical consequences.

Proposition 2.3 (Extended signatures) Let Σ = (F ,P) be a signature (i.e., F is a set of

function symbols and P is a set of predicate symbols), Σ′ = (F ′,P) with F ⊆ F ′ be an extended

signature, P be a Σ-program, and G be a Σ-goal. Then: G is Σ-valid w.r.t. P iff G is Σ′-valid

w.r.t. P .

Proof: “if ”: Let I = (U, δ) be a Σ-interpretation which is a model of P , i.e., U is the universe or

domain of the interpretation and δ is a denotation for each function and predicate symbol such

that δf is a mapping from Un into U for each n-ary function symbol f and δp is a mapping from

Un into {true, false} for each n-ary predicate symbol p. Since the language of P contains at least

one constant symbol, U ̸= ∅. Let u ∈ U be some fixed element. We define a Σ′-interpretation

I ′ = (U, δ′) by δ′f := δf for all f ∈ F , δ′f (e1, . . . , en) := u for all n-ary functions f ∈ F ′\F , and
δ′p := δp for all p ∈ P. Since all clauses in P are Σ-clauses and I is a model of P , I ′ is also a model

of P . Since G is Σ′-valid w.r.t. P , G is valid in I ′. Thus G is also valid in I (note that each variable

assignment in I is also a variable assignment in I ′).

“only if ”: Let I ′ = (U ′, δ′) be a Σ′-interpretation which is a model of P . We define a Σ-

interpretation I = (U, δ) by U ′ := U , δf := δ′f for all f ∈ F and δp := δ′p for all p ∈ P. Clearly, I is

a model of P since all clauses are valid in I. Hence G is valid in I, and, therefore, G is also valid

in I ′ (note that each variable assignment in I ′ is also a variable assignment in I).

As a consequence of this proposition, we can avoid explicitly referring to the signature when we

talk about validity. In the rest of this paper, we assume that the new function symbols v0, v1, . . .

always belongs to our logic language (but, of course, they do not occur in the original program P).

The Herbrand base w.r.t. eev(P) contains an additional argument for each predicate in compar-

ison to the Herbrand base w.r.t. P . However, it can be shown that the initial models are equivalent

if the additional arguments are deleted. For this purpose, we define a mapping on Herbrand in-

terpretations which deletes the additional arguments introduced by eev. Let H be a Herbrand

interpretation. Then dla(H) (delete last argument) is the Herbrand interpretation defined by

dla(H) := {p(t1, . . . , tn) | p(t1, . . . , tn, tn+1) ∈ H} .

Now we can establish the precise correspondence between the declarative semantics of P and eev(P):

Theorem 2.4 Let H be the least Herbrand model of the logic program P , and H ′ be the least

Herbrand model of the transformed program P ′ := eev(P). Then H = dla(H ′).

Proof: The least Herbrand model H can be computed as the least fixpoint of the transformation TP ,

i.e., H = lfp(TP) = TP ↑ ω, where TP is the following transformation on Herbrand interpretations

4

[Llo87]:

TP (I) := {L | L⇐ L1, . . . , Lk is a ground instance of a clause in P with {L1, . . . , Lk} ⊆ I}

We define a sequence of Herbrand interpretations by H0 := ∅ and Hi+1 := TP (Hi) (i ≥ 0). We

assume analogous definitions for H ′, TP ′ and H ′
i. First, we show by induction on i: Hi = dla(H ′

i)

for all i ≥ 0.

Since the case i = 0 is trivial, consider i > 0: By induction hypothesis, Hi−1 = dla(H ′
i−1).

“⊆”: Let p(t) ∈ Hi. By definition of TP , there is a ground instance p(t) ⇐ q1(t1), . . . , qk(tk)

of a clause in P with qj(tj) ∈ Hi−1 for j = 1, . . . , k. Since Hi−1 = dla(H ′
i−1) and by

definition of dla, there are ground terms ej with qj(tj , ej) ∈ H ′
i−1. By definition of eev,

p(t, e) ⇐ q1(t1, e1), . . . , qk(tk, ek) is a ground instance of the corresponding clause in P ′ for

some ground term e. Hence p(t, e) ∈ H ′
i, and thus p(t) ∈ dla(H ′

i). Therefore, Hi ⊆ dla(H ′
i).

“⊇”: Let p(t) ∈ dla(H ′
i). By definition of dla, there is a ground term e with p(t, e) ∈ H ′

i. By

definition of TP ′ , there is a ground instance p(t, e) ⇐ q1(t1, e1), . . . , qk(tk, ek) of a clause in

P ′ with qj(tj , ej) ∈ H ′
i−1 for j = 1, . . . , k. Since Hi−1 = dla(H ′

i−1) and by definition of dla,

qj(tj) ∈ Hi−1. By definition of eev, p(t) ⇐ q1(t1), . . . , qk(tk) is a ground instance of the

corresponding clause in P . Hence p(t) ∈ Hi by definition of TP . Therefore, Hi ⊇ dla(H ′
i).

Finally, we have to show: H = dla(H ′).

“⊆”: Let p(t) ∈ H. Since H = TP ↑ ω, p(t) ∈ Hn for some n. Since Hn = dla(H ′
n), there is

a ground term e with p(t, e) ∈ H ′
n, which implies p(t, e) ∈ H ′. Thus p(t) ∈ dla(H ′), and

H ⊆ dla(H ′).

“⊇”: Let p(t) ∈ dla(H ′). By definition of dla, there is a ground term e with p(t, e) ∈ H ′. Since

H ′ = TP ′ ↑ ω, p(t, e) ∈ H ′
n for some n. Since Hn = dla(H ′

n), p(t) ∈ Hn, which implies

p(t) ∈ H. Therefore, H ⊇ dla(H ′).

This theorem shows that there is no basic difference in the declarative semantics between P and

eev(P). Everything which is valid w.r.t. P is also valid w.r.t. eev(P), and vice versa, if we disre-

gard the additional arguments in eev(P). In the following, we will show a similar property for the

operational semantics. We consider SLD-resolution with the leftmost computation rule as the op-

erational semantics. The commitment to the leftmost computation rule is for the sake of simplicity

of the proofs, but these proofs can also be extended to an arbitrary computation rule. First, we

show that each computed answer w.r.t. P is covered by a computed answer w.r.t. eev(P).

Theorem 2.5 Let P be a logic program, G = p1(t1), . . . , pk(tk) be a goal and σ be a computed

answer for G w.r.t. P . If x1, . . . , xk are new variables, then there are terms e1, . . . , ek such that

{x1 7→ e1, . . . , xk 7→ ek} ◦ σ is a computed answer for G′ = p1(t1, x1), . . . , pk(tk, xk) w.r.t. eev(P).

Proof: Since σ is a computed answer for G, there is a resolution sequence

G ⊢σ1 G1 ⊢σ2 · · · ⊢σn Gn = 2 (∗)

w.r.t. P (2 denotes the empty goal), where σn ◦ · · · ◦ σ1(x) = σ(x) for all x ∈ Var(G). We show

that there is a resolution sequence

G′ ⊢σ′
1
G′

1 ⊢σ′
2
· · · ⊢σ′

n
G′

n = 2

5

w.r.t. eev(P) with σ′
i = ρi ◦σi and dom(ρi)∩(Var(G)∪Var(G1)∪· · ·∪Var(Gn)) = ∅ (i = 1, . . . , n).

We construct this sequence by induction on n.

n = 1: Then sequence (∗) has the form p(t1) ⊢σ1 2, and there is a clause p(s) ∈ P (or a variant if

s and t1 have variables in common) so that σ1 is an mgu for t1 and s. By definition of eev,

p(s, v0) ∈ eev(P). If x1 is a new variable, σ′
1 := {x1 7→ v0} ◦ σ1 is an mgu for p(t1, x1) and

p(s, v0), and p(t1, x1) ⊢σ′
1
2 is a resolution step. Thus the claim holds for n = 1.

n > 1: Let p(s) ⇐ q1(s1), . . . , ql(sl) be (the variant of) the clause used in the first resolution step

in (∗), i.e., σ1 is an mgu for p1(t1) and p(s) and G1 = σ1(q1(s1), . . . , ql(sl), p2(t2), . . . , pk(tk)).

Then p(s, vm(. . . , y1, . . . , yl)) ⇐ q1(s1, y1), . . . , ql(sl, yl) is (a variant of) a clause in eev(P),

and σ′
1 := ρ1 ◦ σ1 with ρ1 = {x1 7→ vm(. . . , y1, . . . , yl)} is an mgu for p(s, vm(. . . , y1, . . . , yl))

and p1(t1, x1). Thus

G′ ⊢σ′
1
G′

1 = σ′
1(q1(s1, y1), . . . , ql(sl, yl), p2(t2, x2), . . . , pk(tk, xk))

is a resolution step w.r.t. eev(P). Moreover, σ′
1(yj) = yj for j = 1, . . . , l and σ′

1(xj) = xj for

j = 2, . . . , k. Therefore, we can apply the induction hypothesis to the remaining resolution

sequence. Hence there is a resolution sequence

G′
1 ⊢σ′

2
G′

2 ⊢σ′
3
· · · ⊢σ′

n
G′

n = 2

w.r.t. eev(P) with σ′
i = ρi ◦ σi and dom(ρi) ∩ (Var(G) ∪ Var(G2) ∪ · · · ∪ Var(Gn)) = ∅

(i = 2, . . . , n). If we combine this sequence with the first step, we obtain a resolution sequence

G′ ⊢σ′
1
G′

1 ⊢σ′
2
· · · ⊢σ′

n
G′

n = 2

w.r.t. eev(P). Since the variables in the applied clauses can be freely chosen, we can ensure

that dom(ρi) ∩ (Var(G) ∪ Var(G1) ∪ · · · ∪ Var(Gn)) = ∅ (i = 1, . . . , n).

Altogether, σ′
n ◦ · · · ◦ σ′

1 = ρn ◦ σn ◦ · · · ◦ ρ1 ◦ σ1 = ρ ◦ σn ◦ · · · ◦ σ1 for some substitution ρ with

ρ(x) = x for all x ∈ Var(G)∪Var(G1)∪ · · ·∪Var(Gn) (the last equality holds since the domains of

all ρi have no variables in common with Var(G) ∪ Var(G1) ∪ · · · ∪ Var(Gn)). Thus the computed

answer of the constructed resolution sequence for G′ is {x1 7→ ρ(x1), . . . , xk 7→ ρ(xk)} ◦ σ.

The next theorem shows that the opposite direction of the previous theorem is also true.

Theorem 2.6 Let P be a logic program, G = p1(t1), . . . , pk(tk) be a goal and x1, . . . , xk be new

variables. If σ′ is a computed answer for G′ = p1(t1, x1), . . . , pk(tk, xk) w.r.t. eev(P), then σ′

restricted to Var(G) is a computed answer for G w.r.t. P .

Proof: Since σ′ is a computed answer for G, there is a resolution sequence

G′ ⊢σ1 G′
1 ⊢σ2 · · · ⊢σn G′

n = 2 (∗)

w.r.t. eev(P), where σ′
n ◦ · · · ◦σ′

1(x) = σ′(x) for all x ∈ Var(G′). We show that there is a resolution

sequence

G ⊢σ1 G1 ⊢σ2 · · · ⊢σn Gn = 2

w.r.t. P with σ′
i = ρi◦σi for some substitution ρi and dom(ρi)∩(Var(G)∪Var(G1)∪· · ·∪Var(Gn)) =

∅ (i = 1, . . . , n). We construct this sequence by induction on n.

6

n = 1: Then sequence (∗) has the form p(t1, x1) ⊢σ′
1
2, and there is a clause p(s, v0) ∈ eev(P) (or a

variant) so that σ′
1 is an mgu for p(t1, x1) and p(s, v0). By definition of eev, p(s) ∈ P . Since

x1 is a new variable, σ′
1 has the form {x1 7→ v0} ◦ σ1, where σ1 is an mgu for p(t1) and p(s).

Thus p(t1) ⊢σ1 2 is a resolution step, and the claim holds for n = 1.

n > 1: Let p(s, vm(. . . , y1, . . . , yl))⇐ q1(s1, y1), . . . , ql(sl, yl) be (the variant of) the clause used in

the first resolution step in (∗), i.e., σ′
1 is an mgu for p1(t1, x1) and p(s, vm(. . . , y1, . . . , yl)) and

G′
1 = σ′

1(q1(s1, y1), . . . , ql(sl, yl), p2(t2, x2), . . . , pk(tk, xk)). Then p(s)⇐ q1(s1), . . . , ql(sl) is (a

variant of) a clause in P , and σ′
1 has the form ρ1 ◦ σ1, where ρ1 = {x1 7→ vm(. . . , y1, . . . , yl)}

and σ1 is an mgu for p(s) and p1(t1) (note that x1 is a new variable). Thus

G ⊢σ1 G1 = σ1(q1(s1), . . . , ql(sl), p2(t2), . . . , pk(tk))

is a resolution step w.r.t. P . Note that σ′
1(yj) = yj for j = 1, . . . , l and σ′

1(xj) = xj for

j = 2, . . . , k. Therefore, we can apply the induction hypothesis to the remaining resolution

sequence. Hence there is a resolution sequence

G1 ⊢σ2 G2 ⊢σ3 · · · ⊢σn Gn = 2

w.r.t. P with σ′
i = ρi◦σi and dom(ρi)∩(Var(G)∪Var(G2)∪· · ·∪Var(Gn)) = ∅ (i = 2, . . . , n).

If we combine this sequence with the first step, we obtain a resolution sequence

G ⊢σ1 G1 ⊢σ2 · · · ⊢σn Gn = 2

w.r.t. P . Since the variables in the applied clauses can be freely chosen, we can ensure that

dom(ρi) ∩ (Var(G) ∪ Var(G1) ∪ · · · ∪ Var(Gn)) = ∅ (i = 1, . . . , n).

Since the domains of all ρi have no variables in common with Var(G) ∪ Var(G1) ∪ · · · ∪ Var(Gn),

σ′
n ◦ · · · ◦ σ′

1(x) = σn ◦ · · · ◦ σ1(x) for all variables x ∈ Var(G). This implies the claim.

The proofs of Theorem 2.5 and 2.6 show that each resolution derivation w.r.t. P can be transformed

into a resolution derivation w.r.t. eev(P), and vice versa. Thus there is also a strong correspondence

between P and eev(P) w.r.t. the derivation trees, i.e., P and eev(P) have the same operational

behavior. This shows that the restriction to logic programs without extra variables is not a real

restriction, i.e., extra variables are not an important feature of logic programming.

Application of the transformation eev

The purpose of the transformation eev was to show that all extra variables can be eliminated in logic

programs. Although this seems to be only of theoretical interest, there is an interesting application

of this transformation in equational logic programming. Equational logic programming is a basis for

integrating functional and logic programming languages [Han94b], since it permits the definition of

predicates by Horn clauses and the definition of functions by (conditional) equations. The standard

operational semantics for equational logic programs is narrowing, a combination of term reduction

and resolution (see next section for details). Completeness results for narrowing strategies are often

stated under the assumption that no extra variables occur in conditions. Therefore, it is sometimes

argued that equational logic programming is less powerful than logic programming due to these

7

restrictions. The results in this section show that this is wrong, since it is possible to eliminate all

extra variables in a logic program, and then represent all predicates as Boolean functions.

We do not elaborate this idea, since such a translation method does not exploit the power

of equational logic programming. One reason to use extra variables in logic programming is the

missing ability to write nested function calls. For instance, if the predicate append defined in

Example 2.2 is given, the following clause defines a predicate conc3 to concatenate three lists:

conc3(L1,L2,L3,L) ⇐ append(L1,L2,M), append(M,L3,L)

The extra variable M in this clause is introduced because we cannot write nested function calls.

However, in an equational logic language, we define conc3 as a function by the following equation

(provided that append is also defined as a function from two lists into a list):

conc3(L1,L2,L3) = append(append(L1,L2),L3)

Therefore, it is better to use directly an equational logic language instead of transforming logic

programs by representing predicates as Boolean functions (other advantages of equational logic

programming in comparison to pure logic programming are discussed in [Han92]). However, extra

variables are also a useful feature in equational logic programming. Due to the incompleteness of

some narrowing strategies in the presence of extra variables, it seems that there is no simple way to

avoid extra variables in equational logic programs. In the next section, we show how to eliminate

extra variables similarly to pure logic programs, and we discuss classes of programs where this

method yields interesting new results.

3 Extra Variables in Equational Logic Programming

Equational logic programming (see [Han94b] for a survey) amalgamates functional and logic pro-

gramming styles. It permits the definition of predicates by Horn clauses and the definition of

functions by (conditional) equations. Since predicates can be represented as Boolean functions,

they are considered as syntactic sugar for the sake of simplicity. Therefore, we assume that all

clauses in an equational logic program have the form

l→ r ⇐ s1 = t1, . . . , sk = tk

(n ≥ 0), where l, r, s1, t1, . . . , sk, tk are terms and l is not a variable. Such a clause is also called

conditional rewrite rule, and unconditional rewrite rule in case of n = 0. A conditional term

rewriting system (CTRS) is a set of conditional rewrite rules. For instance, Example 1.1 is a

CTRS. We consider an equational logic program as a CTRS.

3.1 Basic Definitions

In order to give a precise definition of the computation with CTRS, we recall basic notions of

(conditional) term rewriting [BK86, DJ90].

Substitutions and most general unifiers are defined as in logic programming [Llo87]. A position

p in a term t is represented by a sequence of natural numbers (where Λ denotes the root position),

t|p denotes the subterm of t at position p, and t[s]p denotes the result of replacing the subterm t|p
by the term s (see [DJ90] for details).

8

Let → be a binary relation on a set S. Then →∗ denotes the transitive and reflexive closure of

the relation →, and ↔∗ denotes the transitive, reflexive and symmetric closure of →. → is called

terminating if there are no infinite chains e1 → e2 → e3 → · · ·. We write e1 ↓ e2 if there exists an

element e3 ∈ S with e1 →∗ e3 and e2 →∗ e3. → is called confluent if e1 ↓ e2 for all e, e1, e2 ∈ S

with e→∗ e1 and e→∗ e2.

Let R be an unconditional term rewriting system, i.e., an equational logic program where all

rules have the form l → r with Var(r) ⊆ Var(l). A rewrite step (w.r.t. R) is an application of a

rewrite rule to a term (rewriting with conditional rules is discussed below), i.e., t→R s if there are

a position p in t, a rewrite rule l → r ∈ R and a substitution σ with t|p = σ(l) and s = t[σ(r)]p.

In this case we say t is reducible (at position p). A term t is called irreducible or in normal form if

there is no term s with t→R s.

The confluence of the rewrite relation →R is a basic requirement to apply rules only in one

direction during equational reasoning. In order to ensure confluence even for nonterminating rewrite

systems,4 we need some syntactical restrictions on the rewrite rules. A rewrite rule l→ r is called

left-linear if there are no multiple occurrences of the same variable in l. Two rewrite rules l1 → r1
and l2 → r2 (with disjoint variables) have a critical pair ⟨σ(r2), σ(l2[r1]p)⟩ if σ is an mgu for l1
and the nonvariable subterm l2|p (in case of p = Λ we additionally require that l1 → r1 is not a

variant of l2 → r2). An unconditional term rewriting system R is called orthogonal if all rules in

R are left-linear and there are no critical pairs between variants of rules in R. R is called weakly

orthogonal if all rules in R are left-linear and all critical pairs between variants of rules in R are

trivial, i.e., they describe an overlap at the root position p = Λ and have the form ⟨t, t⟩.
An important property of weakly orthogonal systems is the confluence of the rewrite relation

(see [Klo92] for a comprehensive survey on results for orthogonal systems).

If R is a CTRS, we denote by Ru := {l → r | l → r ⇐ C ∈ R} the unconditional part of R. A
CTRS R is called (weakly) orthogonal if Ru is (weakly) orthogonal.

3.2 Equational Logic Programs

The computation mechanism of unconditional term rewrite systems was defined by the rewrite

relation →R in the previous section. If we want to define the computation with a CTRS, we

have to explain the evaluation of the condition in a rewrite step. Due to [BK86, DO90], we can

distinguish the following possibilities. A condition s1 = t1, . . . , sk = tk is satisfied if

(i) (semi-equational systems) s1 ↔∗ t1, . . . , sk ↔∗ tk (i.e., the left-hand side of each condition

can be converted into the right-hand side by equational reasoning),

(ii) (join systems) s1 ↓ t1, . . . , sk ↓ tk (i.e., the left- and right-hand side of each condition can be

reduced to a same term), or

(iii) (normal systems) s1 →∗ t1, . . . , sk →∗ tk (i.e., the left-hand side of each condition is reducible

to the right-hand side), where t1, . . . , tk are ground normal forms w.r.t. the unconditional

part of the CTRS.

4We do not require the termination of the rewrite system since this cannot be checked automatically and such a

requirement excludes important functional programming techniques like programming with infinite data structures.

9

Note that all three definitions of conditional rewriting are recursive, but we can provide an iterative

definition (this is only done for the case (ii) but it is obvious to define the other cases). Let R be

a CTRS. We inductively define the following unconditional term rewriting systems Rn (n ≥ 0) by:

R0 := {l→ r | l→ r ∈ R}
Rn+1 := {σ(l)→ σ(r) | l→ r ⇐ s1 = t1, . . . , sk = tk ∈ R and σ(si) ↓Rn σ(ti) (i = 1, . . . , k)}

Note that Rn ⊆ Rn+1 for all n ≥ 0. We have s →R t iff s →Rn t for some n ≥ 0. The minimal n

is called the depth of the rewrite step s→R t.

Semi-equational systems have a complex proof procedure for conditions. The rewrite relation of

join systems may not be confluent even for orthogonal CTRS. This can be shown by the following

example [BK86].

Example 3.1 Consider the rewrite rules:

f(X) → a ⇐ X ↓ f(X)

b → f(b)

Now f(f(b)) can be rewritten to a (since f(b) ↓ f(f(b))) and to f(a) (since b ↓ f(b)). However,

a ↓ f(a) does not hold. 2

A similar example shows that the rewrite relation of normal systems may not be confluent if we

allow nonground ti’s in the condition [BK86]. Fortunately, this cannot occur for normal systems

[Klo92]:

Theorem 3.2 The rewrite relation of a weakly orthogonal normal CTRS is confluent.

Therefore, we consider in the following only normal CTRS as equational logic programs (this restric-

tion is also made in the functional logic languages BABEL [MR92] and K-LEAF [GLMP91]). This

is not a restriction from a logic programming point of view, since each logic program can be trans-

formed into a weakly orthogonal normal CTRS by representing predicates as Boolean functions

and eliminating multiple occurrences of variables in left-hand sides by introducing new variables

and new equations for them in the condition part (see [MR92] for details).

In practice, most equational logic programs are constructor-based, i.e., the set of function sym-

bols is divided into a set of constructors C and a set of defined functions or operations D (see, for

instance, the functional logic languages ALF [Han90], BABEL [MR92], K-LEAF [GLMP91], LPG

[BE86], or SLOG [Fri85]). A constructor term is a term containing only variables and symbols from

C. In a constructor-based term rewrite system, the left-hand side of each clause must be of the form

f(t1, . . . , tn), where f ∈ D and t1, . . . , tn are constructor terms. Additionally, in a constructor-based

normal CTRS, each conditional rule l → r ⇐ s1 = t1, . . . , sk = tk has the property that t1, . . . , tk
are ground constructor terms.

In constructor-based normal CTRS we cannot write arbitrary equations in conditions. However,

we can provide an explicit definition of an equality function ≡ between constructor terms by the

following rules (this strict equality is the only sensible notion of equality for possible nonterminating

10

systems, since normal forms may not exist [GLMP91, MR92]):

c ≡ c → true for all 0-ary constructors c

c(x1, . . . , xn) ≡ c(y1, . . . , yn) → x1 ≡ y1 ∧ · · · ∧ xn ≡ yn for all n-ary constructors c

c(x1, . . . , xn) ≡ d(y1, . . . , ym) → false for all constructors c ̸= d or n ̸= m

true ∧ x → x

false ∧ x → false

The reduction of s ≡ t to true is equivalent to the reduction of s and t to a same ground constructor

term ([AEH94], Proposition 1). In the rest of this paper, we assume that an equation s ≡ t in a

condition of a constructor-based normal CTRS denotes the equation (s ≡ t) = true.

We are interested in the influence of extra variables to the completeness of narrowing strategies

for equational logic programs. In contrast to pure logic programming, equational logic program-

ming allows a refined classification of rules according to the occurrence of extra variables. Each

conditional rule l→ r ⇐ C is classified according to the following table [MH94]:

Type Requirement

1 Var(r) ∪ Var(C) ⊆ Var(l)
2 Var(r) ⊆ Var(l)
3 Var(r) ⊆ Var(l) ∪ Var(C)

4 no restrictions

All variables in a conditional rule which do not occur in the left-hand side l are called extra variables.

An n-CTRS contains only rules of type n, i.e., a 1-CTRS does not contain extra variables, a 2-CTRS

may contain extra variables only in the condition, and a 3-CTRS may contain extra variables in

the right-hand side, but these extra variables must also occur in the condition.

Example 3.3 The equational logic program in Example 1.1 is a 2-CTRS, and the following equa-

tional version of Example 2.2 is a constructor-based normal 3-CTRS:

append([], L) → L

append([E|R],L) → [E|append(R,L)]

last(L) → E ⇐ append(R,[E])≡ L
2

3.3 Conditional Narrowing

In equational logic programming we are interested in solving equational goals, i.e., we want to

compute a substitution such that terms rewrite to some normal forms under this substitution. Due

to the restriction on conditions in rules introduced in the previous section, we define a (normal

equational) goal (w.r.t. a normal CTRS R) as a sequence of equations s1 = t1, . . . , sk = tk, where

t1, . . . , tk are ground normal forms w.r.t. Ru. Since it is straightforward to extend the definitions of

Section 3.1 to goals, we will use them in the following. For instance, we use notions like “subterms

of goals” and apply rewrite steps to goals.

A narrowing step transforms a goal G into another goal by applying a rule to some subterm of

G. More precisely, G narrows to G′, denoted G ;σ G′, if there exist a nonvariable position p in the

goal G (i.e., G|p is not a variable), a variant l→ r ⇐ C of a rewrite rule in R and a substitution σ

such that σ is a mgu of G|p and l, and G′ = σ(C,G[r]p). Since R is a normal CTRS, it is clear that

11

G′ is again a well-defined goal. If there is a narrowing sequence G1 ;σ1 G2 ;σ2 · · ·;σn−1 Gn, we

write G1 ;∗
σ Gn with σ = σn−1 ◦ · · · ◦ σ2 ◦ σ1. A narrowing sequence is successful if the final goal

Gn is trivial, i.e., it has the form t1 = t1, . . . , tk = tk.

Although we have defined narrowing steps on normal equational goals, it should be clear how

to extend narrowing steps to other classes of equational programs (e.g., join systems). The only

difference is due to the fact that the right-hand sides ti need not be ground in other classes of

programs. Therefore, it is necessary to introduce narrowing steps with the rule x = x → true

and consider only goals of the form true, . . . , true as trivial. When we discuss completeness results

for narrowing strategies w.r.t. other classes of programs, we assume this extended definition of

narrowing.

The important property of evaluation strategies for (equational) logic programs is their com-

pleteness, i.e., their ability to compute all answers which are valid w.r.t. the declarative semantics.

The declarative semantics of pure logic programs is described by the notions of the least Herbrand

model and logical consequences. In equational logic programming the declarative semantics of a

program is described as the set of all equalities which are derivable by equational reasoning (see,

for instance, [GM87]). If the rewrite relation of a term rewriting system is confluent (as usually

required for equational logic programs), then the application of rewrite steps is equivalent to equa-

tional reasoning. Therefore, we use the following specialized definition of completeness. Narrowing

is complete w.r.t. the equational logic program R if, for all goals G and substitutions σ so that

σ(G) can be rewritten to a trivial goal, there exists a narrowing derivation G ;∗
σ′ G′, where G′ is

a trivial goal and σ = ϕ ◦ σ′ for some substitution ϕ. That is, each valid answer σ is subsumed by

a more general answer σ′ computed by narrowing.

There are many results for the completeness of narrowing w.r.t. different classes of programs (see

[MH94] for a comprehensive survey). Hussmann [Hus85] and Kaplan [Kap87] showed completeness

of narrowing for confluent and terminating 1-CTRS. However, Example 1.1 shows that narrowing is

incomplete for confluent and terminating 2-CTRS. In order to ensure completeness in the presence of

extra variables, Giovannetti and Moiso [GM86] proposed the notion of level-confluence. A CTRS R
is level-confluent if each rewrite relation→Rn (n ≥ 0) is confluent. For instance, weakly orthogonal

normal 2-CTRS are level-confluent. Narrowing is complete for level-confluent and terminating 2-

CTRS [GM86] and 3-CTRS [MH94].

The completeness results for narrowing defined so far are more or less of theoretical interest if we

want to use it as the operational semantics of equational logic programs. Since the position where

the next narrowing step is applied is not fixed, simple narrowing as defined above has a huge search

space. Therefore, refined narrowing strategies which restrict the number of possible narrowing

derivations are needed. The development of good strategies that do not destroy completeness was

an active research topic during the last decade (see [Han94b] for a detailed survey). We discuss

only the most important strategies.

Basic narrowing [Hul80] and its refinement [BKW92] reduces the possible narrowing positions

by disregarding narrowing steps in positions introduced by substitutions in previous steps. Inner-

most narrowing [Fri85] selects an innermost position for the next narrowing step, i.e., a function call

is evaluated by narrowing only if all its arguments were completely evaluated before. Alternatively,

outermost narrowing [Ech88] selects an outermost position for the next narrowing step. All these

strategies are complete under additional requirements. The most important requirement is the ter-

mination of the rewrite relation. However, termination is difficult to check due its undecidability,

12

and such a requirement excludes important functional programming techniques like programming

with infinite data structures. Therefore, we are mainly interested in strategies which do not require

termination. For this purpose, lazy evaluation strategies have been proposed for languages like

BABEL [MR92] and K-LEAF [GLMP91]. In order to ensure the confluence of the rewrite rela-

tion, these languages are based on weakly orthogonal normal CTRS (where the non-overlapping

requirement is slightly weakened in BABEL). It is well-known that lazy narrowing is complete for

weakly orthogonal normal 2-CTRS, where lazy narrowing selects an outermost position but also

allows narrowing steps at an inner position if the value at this position is demanded by some rule

(see [MR92] for details). However, there are many cases where 2-CTRS are too restricted and

3-CTRS are appropriate, but no completeness results are known for this class. Moreover, there

are operationally better strategies than lazy narrowing. For instance, needed narrowing [AEH94]

is an optimal strategy for inductively sequential programs, which is a subclass of unconditional

orthogonal programs, and for weakly orthogonal programs it has been shown that the combination

of lazy narrowing with intermediate simplification steps yields a better behavior [Han94a]. Again,

there are no results for these refined strategies w.r.t. extra variables.

In order to avoid separate completeness proofs w.r.t. extra variables for all these (and possible

future) extensions, we present a systematic method to eliminate extra variables in equational logic

programs. The method is based on the ideas presented in Section 2, but the incompleteness

of narrowing in the presence of extra variables shows that this method cannot work in general.

Therefore, we will discuss conditions for the adequacy of our method.

3.4 Eliminating Extra Variables in Conditional Rules

In this section we present a transformation on equational logic programs to eliminate all extra

variables. The purpose of this transformation is to provide a general method to derive completeness

results in the presence of extra variables. This method consists of the following steps:

1. Transform an equational logic program into a new program without extra variables.

2. Apply a complete narrowing strategy to the transformed program (note that more such

strategies are known if extra variables do not occur).

3. Check the correspondence of narrowing derivations between the original and the transformed

program.

In this section we discuss conditions for the correctness of steps 1 and 3. Applications of the entire

method are discussed in Section 3.5.

In order to eliminate extra variables in equational logic programs, we transform each rewrite

rule by adding new arguments to each function occurring in the rule. Since functions can be nested,

we have to add new arguments in each subterm. For this purpose, we denote by t̂ the term obtained

from t by adding a new variable argument to each function occurring in t, i.e., t̂ can be defined as

follows:
x̂ = x for all variables x

t̂ = f(t̂1, . . . , t̂n, y) if t = f(t1, . . . , tn) and y is a new variable

The new arguments added to each function call are called extension arguments and the new vari-

ables introduced in these arguments are called extension variables. Terms that contain extension

13

arguments for each subterm (which may be instantiated) are called extended terms. Although the

names of the extension variables are not fixed, we consider in the following the transformation ̂ as
a mapping from terms into terms (this can be formalized by taking a list of new variables as an ad-

ditional argument to ,̂ but for the sake of readability we avoid this formalism). The transformation

will also be applied to list of terms and equations. We omit the straightforward definition.

Each conditional rewrite rule R: f(t) → r ⇐ C is transformed into a rule eev(R) by applying

the transformation ̂ to t, r and C, and adding the extra variables to the left-hand side, i.e.,

eev(R): f (̂t, vn(x1, . . . , xn))→ r̂ ⇐ Ĉ

where {x1, . . . , xn} = (Var(r̂) ∪ Var(Ĉ))\Var(̂t).5 The transformed clause may not be a normal

one, but this causes no problems since the requirement for normal CTRS is only necessary for the

original programs in order to ensure the confluence of the original rewrite relation. Similarly to the

transformation for pure logic programs, we have the following property.

Proposition 3.4 IfR is a conditional rewrite rule, then eev(R) is a conditional rewrite rule without

extra variables.

We extend eev to sets of rewrite rules by applying it to each rule. For the sake of readability, we use

the following obvious optimization in concrete examples: Introduce extension arguments only in

function calls of the form f(s) where there is some rewrite rule f(t)→ r ⇐ C for f . In particular,

extension arguments are not introduced in constructor terms if R is a constructor-based program.

Example 3.5 Let R be the equational logic program of Example 1.1 (although it is not a normal

CTRS, it can be transformed into a normal system by replacing “=” by “≡” in the condition).

Then eev(R) is the following program:

a(v1(Y)) → b(Y)

a(v0) → c

b(v2(X,Z)) → c ⇐ f(X,b(Z))=f(c,X)

It is not necessary to add extension arguments to the functions c and f since there are no rewrite

rules for them. 2

The elimination of extra variables in equational logic programs seems to be very similar to pure

logic programs. However, there is an essential difference. The transformation does not change

the meaning in the case of pure logic programs (cf. Theorem 2.4), but this is no longer true in

the equational case. The meaning of an equational logic program is the set of valid equalities.

For instance, b=c is valid w.r.t. Example 1.1 (since the instantiated condition f(a,b)=f(c,a) can

be rewritten to the trivial equation f(c,b)=f(c,b), i.e., b →R1 c). However, no instance of the

equation b(V)=c is valid w.r.t. the transformed program in Example 3.5, since this would require

an equality between a(v0) and some instance of a(v1(Y)). A deeper analysis of this example shows

that in the original program the term a can be rewritten to the terms b and c, which is necessary

5 In contrast to pure logic programming, the order of the variables in the term vn(x1, . . . , xn) is relevant to

ensure that the transformed programs are weakly orthogonal if the original programs are weakly orthogonal (see

Proposition 3.14). Therefore, we fix the same ordering principle for all rules. A possible choice is a left-to-right

innermost ordering for all variables in r̂, Ĉ.

14

to prove the condition of the last rule. However, in the transformed program, there is no term

which is simultaneously reducible to b(Y) and c (only a(v1(Y)) is reducible to b(Y) and a(v0) is

reducible to c).

Hence we can see that the meanings of the original and the transformed program differ whenever

it is necessary to rewrite an instance of a variable to different terms in the original program (it is

interesting to note that a similar phenomenon is the reason for the divergence in Example 3.1).

The inversion of this observation yields a criterion for the adequacy of the transformation. We can

ensure that the original and the transformed program have the same meaning if all occurrences

of the same variable are reduced to an identical term, i.e., if the same rewrite steps are applied

to all occurrences of a variable (in the instantiated rule). This can be expressed by the notion of

sharing, which means that all occurrences of a rule variable are represented only once. Sharing is

also a well-known implementation technique in functional and logic languages. Sharing in rewriting

can be formally treated in the framework of term graph rewriting [BvEG+87]. In order to avoid

repeating all details of term graph rewriting, we assume familiarity with graphs to represent shared

subterms (see [BvEG+87] for details). We only cite the following result, which is important in our

framework.

Theorem 3.6 ([BvEG+87]) If R is an unconditional weakly orthogonal term rewriting system,

then graph rewriting (where all variables in rules are shared) is a sound and complete implementa-

tion of term rewriting; in particular, the normal forms (w.r.t. traditional term rewriting) of terms

are also computable if all rule variables are shared.

The restriction to weakly orthogonal systems is essential. Otherwise, rewriting with sharing is

incomplete as the following example shows.

Example 3.7 Consider the following rewrite rules [BvEG+87]:

g(X) → f(X,X) a → b

f(a,b) → c b → a

Then there is the following reduction of g(a) to the normal form c in the traditional term rewriting

sense (without sharing):

g(a) → f(a,a) → f(a,b) → c

However, if rule variables are shared, both occurrences of a in the derived term f(a,a) are identical.

Therefore, a rewrite step applied to one of these occurrences also replaces the other occurrence.

Consequently, there is only the following sequence with sharing:

g(a) → f(a,a) → f(b,b) → f(a,a) → · · ·

Hence rewriting with sharing fails to compute the normal form c. 2

To apply the result of Theorem 3.6 in our framework, we have to extend it to conditional rewrite

systems. Example 3.1 shows that this is not possible in general: there, f(b) is reducible to a in the

traditional sense, but f(b) is not reducible if all occurrences of variable X in the rule are shared.

Fortunately, sharing is a complete implementation for the class of programs which we consider as

equational logic programs. This also shows that the restriction to normal CTRS is sensible from

an implementation point of view.

15

For the sake of simplicity, we assume in subsequent proofs that all conditional rules have the

form l → r ⇐ s = t. This is not a restriction, since this form can be obtained by joining all

equations of the condition into one equation.

Theorem 3.8 Let R be a weakly orthogonal normal CTRS (with extra variables). Then all

variables in rewrite rules can be shared during the computation of a normal form.

Proof: By induction on the sum d of the depths of all rewrite steps (including rewrite steps in

conditions) in the derivation t→∗
R t0 (where t0 is a normal form).

d = 0: Then the normal form is computed without a conditional rule, i.e., in all rewrite steps a rule

from R0 is applied. Since R is weakly orthogonal, R0 is a weakly orthogonal unconditional

rewrite system. Thus all rule variables in the derivation can be shared by Theorem 3.6.

d > 1: W.l.o.g. assume that the first step is a conditional rewrite step, i.e., there is an application

of a conditional rule R: l→ r ⇐ s = v ∈ R to term t at position p with substitution σ. Since

R is a normal CTRS, v is a ground normal form w.r.t. Ru and σ(s) →∗
R v. Let x1, . . . , xn

be all variables occurring in R. Let f ′ and cond f be new function symbols. Then add the

following unconditional orthogonal rules to R:

f ′(x1, . . . , xn) → cond f(s, r)

cond f(v, x) → x

If the first rewrite step with rule R has depth d1, t→Rd1
t[σ(r)]p →∗

R t0 with σ(s)→∗
Rd1−1

v.

Consider the modified term t′ := t[σ(f ′(x1, . . . , xn))]p. Then there is the following derivation:

t′ →R0 t[cond f(σ(s), σ(r))]p
→∗

Rd1−1
t[cond f(v, σ(r))]p

→R0 t[σ(r)]p
→∗

R t0

(∗)

The sum of the depths of this derivation is smaller than the sum of the depths of the original

derivation t →∗
R t0. By the induction hypothesis, all variables in this derivation can be

shared, in particular, the variables x1, . . . , xn. Since the derivation of the condition and the

right-hand side of rule R is identical to the derivation (∗), all variables in rule R in the original

derivation can also be shared.

Now we want to relate rewrite proofs in R with rewrite proofs in the transformed system eev(R).
In order to compare extended terms with original terms, we introduce a mapping dv which deletes

all extension arguments in terms:

dv(x) = x for all variables x

dv(f(t1, . . . , tn, tn+1)) = f(dv(t1), . . . , dv(tn))

Clearly, dv(t̂) = t for all terms t. The following theorem shows that every normal form computation

w.r.t. R can also be performed for the extended terms w.r.t. eev(R), provided that R is a weakly

orthogonal normal CTRS.

16

Theorem 3.9 Let R be a weakly orthogonal normal CTRS (with extra variables), t be a term

and R′ = eev(R). If t →∗
R s (where s is a normal form), then there is an extended term t′ with

dv(t′) = t and t′ →∗
R′ ŝ.

Proof: By induction on the number n of rewrite steps (including rewrite steps in conditions) in the

derivation t→∗
R s.

n = 0: Then t = s. For t′ := ŝ we have t′ →∗
R′ ŝ and dv(t′) = s = t.

n > 0: Consider the first step of the derivation. There is a rewrite rule R: l→ r ⇐ u = u0 (where

u0 is a ground normal form w.r.t. Ru),
6 a position p in t and a substitution σ such that

t→R t[σ(r)]p →∗
R s and σ(u)→∗

R u0. By induction hypothesis, there are extended terms t′1,

u′ with dv(t′1) = t[σ(r)]p, dv(u
′) = σ(u) and t′1 →∗

R′ ŝ, u′ →∗
R′ û0. Consider the transformed

rule

eev(R): f (̂t, vn(x1, . . . , xn))→ r̂ ⇐ û = û0

(provided that l = f(t)). By Theorem 3.8, all variables of rule R can be shared. Therefore,

they are also replaced by identical terms in t′1 and u′. This implies the existence of a substi-

tution σ′ with t′1|p = σ′(r̂) and u′ = σ′(û), where the only difference between σ and σ′ is the

fact that σ′ additionally instantiates the extension variables in r̂ and û.

Let t|p = f(v) (i.e., v = σ(t)). Then t̂|p = f(v̂, x) for some new variable x. Since the

extension variables in t̂ are disjoint from the extension variables in r̂ and û, σ′(̂t) = σ(̂t).

Moreover, all extension variables in f(v̂, x) are different. Hence there exists a substitution

ρ for the extension variables in f(v̂, x) with ρ(f(v̂, x)) = σ′(f (̂t, vn(x1, . . . , xn))) (note that

t = σ(t) = σ′(t)), in particular, ρ(x) = vn(σ
′(x1), . . . , σ

′(xn)). Let t0 = t̂[ρ(f(v̂, x))]p. Clearly,

dv(t0) = t[dv(ρ(f(v̂, x)))]p = t[f(v)]p = t and eev(R) is applicable to t0 at position p, since

t0|p = ρ(f(v̂, x)) = σ′(f (̂t, vn(x1, . . . , xn))) and σ′(û) = u′ →∗
R′ û0:

t0 →R′ t0[σ
′(r̂)]p = t̂[σ′(r̂)]p =: t′′1

Now we have:

1. dv(t′′1) = t[σ(r)]p = dv(t′1), i.e., the only difference between t′′1 and t′1 is the instantiation

of extension arguments.

2. t′′1|p = σ′(r̂) = t′1|p

Moreover, t′′1 = t̂[σ′(r̂)]p, i.e., all extension arguments not in the subterm at position p are

different new variables. This implies the existence of a substitution τ for these extension

variables with τ(t′′1) = t′1. Since τ influences only variables outside the subterm at position p,

the first rewrite step is also applicable to t′ := τ(t0):

τ(t0) →R′ τ(t0)[σ
′(r̂)]p = t′1

Moreover, dv(t′) = dv(τ(t0)) = t and t′1 →∗
R′ ŝ. Hence t′ →∗

R′ ŝ, which proves the claim.

This theorem implies that all strict equalities w.r.t. R are also valid w.r.t. eev(R).
6An unconditional rule l → r is considered as a conditional rule l → r ⇐ true = true in order to avoid an

additional case distinction.

17

Corollary 3.10 LetR be a constructor-based weakly orthogonal normal CTRS. If the strict equal-

ity t ≡ t′ is valid w.r.t. R, then there are terms u, u′ with dv(u) = t, dv(u′) = t′ so that u ≡ u′ is

valid w.r.t. eev(R).

Proof: Let R′ = eev(R). If the strict equality t ≡ t′ is valid w.r.t. R, there is a ground constructor

term s with t→∗
R s and t′ →∗

R s. By Theorem 3.9, there are terms u, u′ with dv(u) = t, dv(u′) = t′

so that u →∗
R′ ŝ and u′ →∗

R′ ŝ. By replacing all extension arguments of ŝ by arbitrary ground

constructor terms in these derivations, this implies the validity of the strict equality u ≡ u′ w.r.t.

R′.

We do not explicitly prove the converse of this corollary, since this is a consequence of the fact

that each narrowing derivation w.r.t. eev(R) corresponds to a narrowing derivation w.r.t. R. In

order to prove this fact, we need two auxiliary propositions. The first lemma shows a relationship

between the function dv and substitutions. In this lemma it is assumed that dv is extended on

substitutions σ by dv(σ)(x) := dv(σ(x)).

Lemma 3.11 Let t be an extended term and σ be a substitution on extended terms. Then

dv(σ(t)) = dv(σ)(dv(t)).

Proof: By structural induction on t. Let σ′ := dv(σ).

t = x: By definition, σ′(x) = dv(σ(x)). Hence dv(σ(x)) = σ′(x) = σ′(dv(x)).

t = f(t1, . . . , tn, v) (n ≥ 0): In this case we have

dv(σ(t)) = dv(f(σ(t1), . . . , σ(tn), σ(v)))

= f(dv(σ(t1)), . . . , dv(σ(tn))) (by definition of dv)

= f(σ′(dv(t1)), . . . , σ
′(dv(tn))) (by induction hypothesis)

= σ′(f(dv(t1), . . . , dv(tn)))

= σ′(dv(t)) (by definition of dv)

The following important theorem relates most general unifiers for extended terms to most general

unifiers for their non-extended equivalents.

Theorem 3.12 Let û1, û2 be extended terms which are variable disjoint, and θ be a most general

unifier for û1 and û2. Then dv(θ)|V with V = Var(u1) ∪ Var(u2) is a most general unifier for u1
and u2.

Proof: Martelli and Montanari [MM82] showed that most general unifiers can be computed (up

to variable renaming) by applying the following transformation rules to a system of equations (we

omit the failure rules since we will apply these rules to unifiable terms):

18

Delete:
x = x,E

E

Decompose:
f(s1, . . . , sn) = f(t1, . . . , tn), E

s1 = t1, . . . , sn = tn, E

Commute:
t = x,E

x = t, E
if t is not a variable

Instantiate:
x = t, E

x = t, σ(E)
if x ∈ Var(E)\Var(t) and σ = {x 7→ t}

We denote by E ⇒ E′ an application of one of these transformation steps. In order to unify two

terms s and t, these rules are applied to the initial system s = t.

Let EV be the set of extension variables, i.e., EV := (Var(û1) ∪ Var(û2))\V . First, we prove

the following invariants for all equation systems E which are derived by applying transformation

rules starting from the initial system û1 = û2:

1. If s = t ∈ E, then all extension arguments in s and t are variables disjoint from V , and

t1, . . . , tn−1 ̸∈ EV for all subterms f(t1, . . . , tn) of s and t.

2. For all x = t ∈ E or t = x ∈ E:

(a) If x ∈ EV , then t ∈ EV .

(b) If x ∈ V , then t ̸∈ EV .

We prove these invariants by induction on the number k of transformation steps:

k = 0: This case is trivial, since it is easy to check that all invariants hold for the initial equation

û1 = û2.

k > 0: Assume that the invariants hold for the equation system E and E ⇒ E′. We prove the

invariant for E′ by a case distinction on the transformation rules:

Delete: The invariants trivially hold by the induction hypothesis since an equation is deleted

in E′.

Decompose: Then E has the form f(s1, . . . , sn) = f(t1, . . . , tn), E0 and E′ has the form

s1 = t1, . . . , sn = tn, E0. Invariant 1 holds for all new equations, since it holds for the

equation f(s1, . . . , sn) = f(t1, . . . , tn) ∈ E. Furthermore, s1, t1, . . . , sn−1, tn−1 ̸∈ EV

and sn, tn ∈ EV by invariant 1 for E. Thus invariant 2 also holds for all new equations

in E′.

Commute: The invariants trivially hold for E′ since they hold for E.

Instantiate: Then E has the form x = t, E0 and E′ has the form x = t, σ(E0) with σ =

{x 7→ t}.
If x ∈ V , then t ̸∈ EV by invariant 2 for E. Invariant 1 for E implies that extension

arguments are not altered by σ. Thus invariant 1 holds for E′. Since t ̸∈ EV , invariant

2 also holds.

If x ̸∈ V , then t ∈ EV by invariant 2 for E, i.e., σ replaces an extension variable by

another extension variable. Hence invariants 1 and 2 also hold for E′.

19

Next we show: If E1 ⇒ E2 ⇒ · · · is a sequence of transformation steps with E1 = {û1 = û2}, then
E′

1 ⇒= E′
2 ⇒= · · ·, where ⇒= is the reflexive closure of ⇒, and

E′
i := {dv(s) = dv(t) | s = t ∈ Ei and s, t ̸∈ EV } .

We prove this claim by showing that either E′
k+1 = E′

k or E′
k ⇒ E′

k+1 is a valid transformation

step. The proof is done by a case distinction on the transformation applied in step Ek ⇒ Ek+1.

Delete: Then Ek has the form x = x,E. If x ∈ V , then x = x ∈ E′
k and this step is also a valid

transformation step on E′
k. If x ̸∈ V , then x = x ̸∈ E′

k and E′
k = E′

k+1.

Decompose: Then Ek has the form f(s1, . . . , sn) = f(t1, . . . , tn), E and f(dv(s1), . . . , dv(sn−1)) =

f(dv(t1), . . . , dv(tn−1)) ∈ E′
k. By invariant 1 for Ek, s1, t1, . . . , sn−1, tn−1 ̸∈ EV and sn, tn ∈

EV . Thus dv(s1) = dv(t1), . . . , dv(sn−1) = dv(tn−1) ∈ E′
k+1, i.e., E′

k ⇒ E′
k+1 is a valid

decomposition step.

Commute: Trivial.

Instantiate: Then Ek has the form x = t, E and σ = {x 7→ t}.

If x ̸∈ V , then t ∈ EV by invariant 2 for Ek, i.e., x = dv(t) do not occur in E′
k and E′

k+1, and

σ replaces an extension variable by another extension variable which occur only in extension

arguments by invariant 1 for Ek. Thus E
′
k = E′

k+1.

If x ∈ V , then t ̸∈ EV by invariant 2 for Ek. Thus E′
k has the form x = dv(t), E′, and

E′
k+1 contain the same set of equations (except for the application of σ). Thus there is

a subset E0 of E with E′ = dv(E0), and E′
k+1 has the form x = dv(t), dv(σ(E0)). By a

straightforward extension of Lemma 3.11 to equation systems, dv(σ(E0)) = dv(σ)(dv(E0))

and dv(σ) = {x 7→ dv(t)}. Hence E′
k ⇒ E′

k+1 is a valid transformation.

Martelli and Montanari [MM82] showed that the mgu θ can be computed (up to variable renaming)

by repeated application of the transformation⇒ to the initial equation û1 = û2 until a solved form

x1 = s1, . . . , xn = sn (where all xi occur only once) is obtained. Then θ = {x1 7→ s1, . . . , xn 7→ sn}.
We have shown that there is also a valid transformation sequence from u1 = u2 into {xi = dv(si) |
xi ∈ V } (note that xi, si ̸∈ EV is equivalent to xi ∈ V by invariant 2). Thus θ′ := {xi 7→ dv(si) |
xi ∈ V } is an mgu for u1 and u2 with θ′ = dv(θ)|V .

Now we are able to show that each narrowing derivation w.r.t. eev(R) corresponds to a narrowing

derivation w.r.t. R, i.e., if there is a narrowing derivation on the extended level, then there is also

a narrowing derivation on the original level. This property will be used to state new completeness

results for narrowing strategies in the presence of extra variables. Remember that all trivial goals

have the form t1 = t1, . . . , tn = tn, where t1, . . . , tn are in normal form (not necessarily ground if

they contain extension arguments).

Theorem 3.13 Let R be a normal CTRS such that eev(R) is weakly orthogonal and G be a goal.

If there is a narrowing derivation Ĝ ;∗
σ G1, where G1 is a trivial goal, then there is a narrowing

derivation G ;∗
ϕ G0 with dv(G1) = G0 and dv(σ(x)) = ϕ(x) for all x ∈ Var(G). Moreover, the

narrowing positions in both derivations are identical, and the applied rules correspond via the

transformation eev.

20

Proof: By induction on the number k of narrowing steps in the derivation Ĝ ;∗
σ G1.

k = 0: Then G1 = Ĝ and σ is the identity substitution. Clearly, G ;∗
ϕ G with dv(G1) = G and ϕ

is the identity.

k > 0: Consider rule R: f(t) → r ⇐ C, where its extended version eev(R): l → r̂ ⇐ Ĉ with

l = f (̂t, vn(x1, . . . , xn)) is applied at position p in the first narrowing step. Let σ0 be the mgu

for Ĝ|p and f (̂t, vn(x1, . . . , xn)) computed in the first step. Then the narrowing derivation

has the structure

Ĝ ;σ0 σ0(Ĉ, Ĝ[r̂]p) ;∗
σ1

G1

Note that p is also a position in G since Ĝ|p is not a variable and Ĝ has only variables in

extension arguments. Consider the slightly modified left-hand side l′ = f (̂t, x), where x is a

new variable. Then l′ and Ĝ|p are extended terms with different variables in all extension

arguments. By Theorem 3.12, ϕ0 := dv(σ0)|V0 with V0 = Var(t) ∪ Var(G) is an mgu for f(t)

and G|p (note that σ0 also replaces the variable z, provided that Ĝ|p = f(s, z), by a term

vn(· · ·), but this has no influence on ϕ0). Thus there is a narrowing step

G ;ϕ0 ϕ0(C,G[r]p)

with
dv(σ0(Ĉ, Ĝ[r̂]p)) = dv(σ0)(dv(Ĉ, Ĝ[r̂]p)) (by Lemma 3.11)

= dv(σ0)(C,G[r]p)

= ϕ0(C,G[r]p)

In order to apply the induction hypothesis, we have to show that G′ := σ0(Ĉ, Ĝ[r̂]p) is an

extended goal, where all extension arguments are different variables. Since l is a linear term

and l and Ĝ|p are variable disjoint, the mgu σ0 cannot identify different extension variables

in Ĝ. All extension arguments in r̂ and Ĉ are also new variables. Thus G′ can only contain

multiple occurrences of extension variables if there are multiple occurrences of variables in

r or C. By Theorem 3.8, all these variables can be shared (we have proved that variables

can be shared only for rewrite derivations, but since completeness of narrowing is proved by

lifting rewrite derivations to narrowing derivations, the sharing theorem can also be lifted

to narrowing derivations). So, if G′ has multiple occurrences of extension variables, we can

replace them by different new variables and identify these different variables afterwards (this

is always possible since they are instantiated to terms which are identical up to renaming

due to the possible sharing). Therefore, we can assume that G′ is an extended term. Since

the derivation G′ ;∗
σ1

G1 has less than k steps, by induction hypothesis there is a derivation

G′
1 := ϕ0(C,G[r]p) ;∗

ϕ1
G0 with dv(G1) = G0 and dv(σ1(x)) = ϕ1(x) for all x ∈ Var(G′

1).

Moreover, the narrowing positions in both derivations are identical, and the applied rules

correspond via the transformation eev. Hence

G ;ϕ0 G′
1 ;∗

ϕ1
G0

21

is the required narrowing derivation and, for all x ∈ Var(G),

dv(σ(x)) = dv(σ1(σ0(x))

= dv(σ1)(dv(σ0(x))) (by Lemma 3.11)

= dv(σ1)(dv(σ0)(x)) (by Lemma 3.11)

= dv(σ1)(ϕ0(x))

= ϕ1(ϕ0(x))

The last equality holds since dv(σ1)(x) = ϕ1(x) for all x ∈ Var(G′
1) and w.l.o.g. ϕ1(x) = x =

σ1(x) for all x ∈ Var(ϕ0(G))\Var(G′
1).

If R is a weakly orthogonal normal CTRS and we want to apply our transformation in order to

show the completeness of sophisticated narrowing strategies, we have to ensure that the transformed

program eev(R) is also weakly orthogonal (Theorem 3.13). The following proposition shows that

this is always the case.

Proposition 3.14 If R is a weakly orthogonal CTRS, then eev(R) is weakly orthogonal.

Proof: We have to show that all critical pairs in eev(R) are trivial. For this purpose, consider the

variable-disjoint variants

f(t1)→ r1 ⇐ C1 and g(t2)→ r2 ⇐ C2

of rules in R, and the corresponding transformed rules

l′1 → r̂1 ⇐ Ĉ1 and l′2 → r̂2 ⇐ Ĉ2

where l′1 = f(t̂1, vm(x1, . . . , xm)) and l′2 = g(t̂2, vn(y1, . . . , yn)). Assume that there is an overlap

between these rules at nonvariable position p in l′2, i.e., there is a mgu σ with σ(l′1) = σ(l′2|p).
Since p is a nonvariable position and all arguments of vn(y1, . . . , yn) are variables and also all

other extension arguments of l′2, p is a position in g(t2) and g(t2)|p = dv(l′2|p). By Theorem 3.12

(after replacing the terms vm(x1, . . . , xm) and vn(y1, . . . , yn) by new variables), σ′ := dv(σ)|V with

V = Var(f(t1)) ∪ Var(g(t2)|p) is a mgu for f(t1) and g(t2)|p. Since Ru is weakly orthogonal, it

contains only trivial critical pairs, i.e., p = Λ and σ′(r1) = σ′(r2). This implies

dv(σ(r̂1)) = dv(σ)(dv(r̂1)) (by Lemma 3.11)

= σ′(r1)

= σ′(r2)

= dv(σ)(dv(r̂2))

= dv(σ(r̂2)) (by Lemma 3.11)

Hence σ(r̂1) and σ(r̂2) are identical if we ignore the extension arguments. All extension arguments

in r̂1 and r̂2 are new variables occurring in vm(x1, . . . , xm) and vn(y1, . . . , yn), respectively. Since σ

is an mgu for l′1 and l′2, m = n and σ(xi) = σ(yi) for i = 1, . . . ,m, i.e., σ identifies all corresponding

extension arguments (here it is essential that the orderings of x1, . . . , xm and y1, . . . , yn are the

same, cf. Footnote 5). Thus σ(r̂1) = σ(r̂2), i.e., the critical pair is trivial. Hence eev(R) is weakly
orthogonal.

22

We mentioned in Section 3.3 that simple narrowing has a huge search space and, therefore, sophis-

ticated narrowing strategies are needed in practice. In general, a narrowing strategy restricts the

number of possible narrowing steps, i.e., it can be seen as a mapping which assigns to each goal a

set of pairs of positions and rules.7 However, a narrowing strategy should not destroy complete-

ness, and completeness results are often known only for equational logic programs without extra

variables. In order to overcome these problems, we can apply the results of this section to transfer

completeness results for narrowing strategies from programs without extra variables to programs

which may contain extra variables. The following result shows the general method.

Theorem 3.15 Let R be a weakly orthogonal normal CTRS (with extra variables) and N be a

narrowing strategy which is complete for eev(R). Then N is also complete for R.

Proof: Let R′ = eev(R), G be a goal and σ be a solution for G, i.e., σ(G) can be rewritten to the

trivial goal G0. By a straightforward extension of Theorem 3.9 to goals, there is an extended goal

G′ with dv(G′) = σ(G) and G′ →∗
R′ Ĝ0. Thus there is a substitution σ′ with G′ = σ′(Ĝ) (dv(σ′)

is identical to σ on Var(G), but σ′ additionally instantiates extension variables in Ĝ). Since N is

a complete narrowing strategy w.r.t. R′, there is a narrowing derivation Ĝ ;∗
ϕ′ Ĝ0 (the extension

variables in Ĝ0 can be considered as new constants) with σ′ = τ ◦ ϕ′ for some substitution τ . By

Theorem 3.13 (note that eev(R) is weakly orthogonal by Proposition 3.14), there is a narrowing

derivation G ;∗
ϕ G0 with dv(ϕ′(x)) = ϕ(x) for all x ∈ Var(G). Moreover, the narrowing positions

in both derivations are identical and the rules correspond via the transformation eev, i.e., it is also

a narrowing derivation computed by N .8 Therefore, for all x ∈ Var(G),

σ(x) = dv(σ′)(x) (by definition of σ′)

= dv(σ′(x))

= dv(τ(ϕ′(x)))

= dv(τ)(dv(ϕ′(x))) (by Lemma 3.11)

= dv(τ)(ϕ(x))

i.e., σ is an instance of an answer computed by N for the goal G. This implies the completeness of

N for R.

Concrete applications of this result are shown in the following section.

3.5 Application of Extra Variable Elimination

3.5.1 Inductively Sequential Systems

If the termination of the rewrite relation is not required, a lazy narrowing strategy is necessary to

compute solutions to goals. For instance, BABEL’s lazy narrowing strategy primarily selects an

outermost position but also allows narrowing steps at an inner position if the value at this position is

demanded by some rule [MR92]. This narrowing strategy is complete for weakly orthogonal normal

7An exception is the needed narrowing strategy [AEH94] which additionally assigns a unifier because the unifier

in a needed narrowing step is not necessarily a most general one.
8Here we assume that the narrowing strategy N does not depend on the extension arguments since these are

always variables, cf. proof of Theorem 3.13. Although this is true for all known narrowing strategies, it must be

checked for each new narrowing strategy in order to apply this theorem.

23

2-CTRS. However, it is well known that lazy narrowing may perform superfluous narrowing steps

due to the interaction of redex selection and rule selection. As an alternative, needed narrowing is

proposed in [AEH94]. The needed narrowing strategy is optimal w.r.t. the length of the derivations

and the number of computed solutions. Needed narrowing is defined for the class of inductively

sequential systems. These are particular constructor-based orthogonal unconditional rewrite sys-

tems. The precise definition can be found in [AEH94]. Roughly speaking, in inductively sequential

systems all rules defining a function can be organized in a hierarchical structure, called definitional

tree, which represents a unique selection of a rule by a case distinction on the arguments for each

ground function call. For instance, the rules for append in Example 3.3 are inductively sequential,

since a unique selection of a rule can be made by the first argument of append: if this argument

is an empty list ([]), the first rule is selected, and the second rule is selected if this argument is a

nonempty list ([·|·]). On the other hand, the rules of Example 1.1 are not inductively sequential,

since the first as well as the second rule can be applied to the term ‘a’.

We will use the results of the previous section to extend needed narrowing to conditional

rewrite rules with extra variables in a simple way. A CTRS R is called inductively sequential

if it is a constructor-based normal CTRS and its unconditional part Ru is inductively sequential.

Since inductively sequential systems are orthogonal, we can use the method proposed in [BK86] to

translate inductively sequential normal CTRS into an unconditional system. For this purpose, we

introduce for each conditional rule R: l→ r ⇐ s = u of R (where u is a ground constructor term)

a new function symbol condR and replace R by the following unconditional rules:

l → condR(s, r)

condR(u, x) → x

We denote by uc(R) the new unconditional system obtained fromR. Since u is a ground constructor

term, the new unconditional system is inductively sequential if the original system is an inductively

sequential CTRS without extra variables.9 Moreover, there is a strong correspondence between the

rewrite derivations (see [BK86], Proposition 2.5.4). In order to deal with extra variables, we have

to translate R by the transformation eev before applying uc. The following proposition is obvious

since the introduction of extension arguments does not influence the non-overlapping of left-hand

sides.

Proposition 3.16 If R is an inductively sequential CTRS, then uc(eev(R)) is an unconditional

inductively sequential rewrite system.

Example 3.17 Consider the following inductively sequential CTRS R which defines the Boolean

function member on the basis of the function append:

append([], L) → L

append([E|R],L) → [E|append(R,L)]

member(E,L) → true ⇐ append(L1,[E|L2])≡ L

Then the transformed system uc(eev(R)) consists of the following rules:

append([], L,v0) → L

9Proposition 2.5.3 in [BK86] is not true in the presence of extra variables.

24

append([E|R],L,v1(X)) → [E|append(R,L,X)]

member(E,L,v3(L1,L2,X)) → cond(append(L1,[E|L2],X)≡ L,true)

cond(true,X) → X
2

Since needed narrowing is an optimal and complete strategy for inductively sequential unconditional

systems, we can apply the results of the previous section (as in Theorem 3.15), and we obtain the

following new result.10

Theorem 3.18 Needed narrowing is complete for inductively sequential CTRS (with extra vari-

ables). Moreover, it is optimal w.r.t. the length of the derivations and the number of computed

solutions.

This result can be extended to overlapping rules with excluding conditions. For instance, the two

rules
R1: l → r1 ⇐ s = u1
R2: l → r2 ⇐ s = u2

with identical left-hand sides but different ground constructor terms u1, u2 can be translated into

the following unconditional rules:

l → condR1R2(s, r1, r2)

condR1R2(u1, x, y) → x

condR1R2(u2, x, y) → y

Example 3.19 The following rules define an ordered insert function on lists (which may be a part

of a sort function, see [Han92, p. 6]):

insert(E,[]) → [E]

insert(E,[F|L]) → [E,F|L] ⇐ leq(E,F) = true

insert(E,[F|L]) → [F|insert(E,L)] ⇐ leq(E,F) = false

These rules can be translated into the following unconditional rules which are inductively sequential:

insert(E,[]) → [E]

insert(E,[F|L]) → condInsert(leq(E,F),[E,F|L],[F|insert(E,L)])

condInsert(true ,X,Y) → X

condInsert(false,X,Y) → Y
2

Using this translation method, we obtain an optimal narrowing strategy for a large class of equa-

tional logic programs.

10Note that needed narrowing steps do not always compute mgu’s. However, Theorem 3.12 also holds for specialized

unifiers computed in needed narrowing steps.

25

3.5.2 Extra Variables in Right-Hand Sides

Current functional logic languages like BABEL [MR92] and K-LEAF [GLMP91]) permit extra

variables in conditions but not in the right-hand side of conditional rules. However, as observed

by several authors [DOS87, Klo92, MH94], it makes good sense to allow extra variables also in

right-hand sides if they occur in conditions (3-CTRS). Example 3.3 shows a sensible use of extra

variables in right-hand sides. The following example [Klo92] shows that such extra variables can

be a replacement for the let construct of functional languages.

Example 3.20 The Fibonacci numbers can be computed by the following conditional rules:

fib(0) → <0,1>

fib(s(X)) → <Z,Y+Z> ⇐ fib(X)≡ <Y,Z>
2

However, an unrestricted use of extra variables in right-hand sides leads to nonconfluent rewrite

relations even for non-overlapping normal CTRS.

Example 3.21 Consider the following rewrite rules:

a → X ⇐ g(X)=true

g(b) → true

g(c) → true

According to the definition of conditional rewriting in Section 3.2, a can be rewritten to b as well

as c. Thus the rewrite relation is not confluent. 2

To ensure the confluence of the rewrite relation and completeness of narrowing, additional re-

strictions are needed. Middeldorp and Hamoen [MH94] showed that narrowing is complete for

level-confluent and terminating 3-CTRS. However, the completeness of refined strategies like basic

narrowing is an open problem. In [BG89, DO90, Pad92] 3-CTRS with a special rewrite relation are

proposed, where extra variables are instantiated only to irreducible terms and all such instantiations

of conditional rules must be decreasing (i.e., the left-hand side must greater than the conditions

and right-hand side w.r.t. a termination ordering). Narrowing is complete for such rewrite systems.

Since we do not want to restrict ourselves to terminating rewrite systems, we need other conditions.

For this purpose, we call a CTRS R functional if the following conditions hold:

1. R is a normal CTRS.

2. The unconditional part Ru is weakly orthogonal (where we use the same definition as in

Section 3.1 but do not require Var(r) ⊆ Var(l) for all l→ r ∈ Ru).

3. →R is confluent.

Conditions 1 and 2 are necessary to extend Theorem 3.8 and Proposition 3.14 to functional CTRS.

Since Example 3.21 shows that these conditions are not sufficient for the confluence of the rewrite

relation, we have the explicit confluence condition 3. We will discuss sufficient conditions ensuring

confluence below. Note that the confluence of→R is only needed to ensure that all valid equational

goals can be proved by rewriting. Confluence is not necessary to apply our transformation method

to such CTRS. Actually, using our transformation method, we can show completeness of narrowing

26

for CTRS satisfying conditions 1 and 2 w.r.t. goals provable by rewriting. However, completeness

results are usually stated w.r.t. all valid goals. Therefore, we consider only CTRS where rewriting

is sufficient to verify all valid goals. Note that each weakly orthogonal normal 2-CTRS is functional

(by Theorem 3.2), while a 4-CTRS cannot be functional. Hence the class of functional CTRS lies

between the classes of weakly orthogonal normal 2-CTRS and 3-CTRS.

We want to apply our transformation to show the completeness of narrowing strategies for

functional CTRS. Therefore, we have to ensure that the transformed systems are weakly orthogonal.

Since the proof of Proposition 3.14 does not depend on variable restrictions in the right-hand side,

we immediately have the following result.

Proposition 3.22 If R is a functional CTRS, then eev(R) is weakly orthogonal.

Hence we can apply Theorem 3.13 also to functional CTRS. Moreover, it is easy to check that the

proof of Theorem 3.8 is also valid for functional CTRS, which implies the validity of Theorem 3.9

for functional CTRS. Thus Theorem 3.15 is also valid for functional CTRS:

Theorem 3.23 Let R be a functional CTRS and N be a narrowing strategy which is complete

for eev(R). Then N is also complete for R.

We can use this result to show the completeness of various narrowing strategies for equational

logic programs with extra variables in right-hand sides. For instance, Middeldorp and Hamoen

[MH94] showed the completeness of simple narrowing for level-confluent and terminating 3-CTRS.

However, they could not state any result for basic narrowing. Since basic conditional narrowing is

complete for confluent and decreasing rewrite systems [MH94], Theorem 3.23 implies the following

result.

Corollary 3.24 Let R be a functional CTRS such that eev(R) is decreasing. Then basic condi-

tional narrowing is complete for R.

As mentioned in Section 3.2, most equational logic languages are constructor-based. For such

constructor-based languages it is possible to define sophisticated narrowing strategies even for

nonterminating rewrite systems. Such strategies are based on the principle of lazy evalua-

tion [GLMP91, MR92], which can be made optimal in the case of inductively sequential pro-

grams [AEH94]. However, completeness results for lazy narrowing strategies are only known for

constructor-based normal 2-CTRS [MR92] since variables in right-hand sides are usually excluded.

Our transformation method yields new completeness results for functional CTRS by applying The-

orem 3.23 to the completeness result of lazy narrowing [MR92] for weakly orthogonal normal

2-CTRS.

Corollary 3.25 Let R be a functional CTRS. Then lazy narrowing is complete for R.

To obtain a further interesting result, we apply Theorem 3.23 to inductively sequential systems

with extra variables in right-hand sides. For this purpose, we use the same translation techniques

as introduced in Section 3.5.1 and we immediately obtain the following proposition.

27

Corollary 3.26 Let R be a functional CTRS such that the unconditional part Ru is inductively

sequential.11 Then needed narrowing is complete for R, and it is an optimal strategy w.r.t. the

length of the derivations and the number of computed solutions.

Thus needed narrowing is a complete and optimal strategy for the programs in Examples 3.3

and 3.20.

Due to these results, it is no problem to extend equational logic languages like BABEL [MR92]

or K-LEAF [GLMP91] by permitting extra variables in right-hand sides. However, the use of these

extra variables must be restricted so that the programs are functional. The first two conditions of

functional CTRS are easy to check, but the confluence condition 3 is usually hard to verify. In some

cases it is possible to show confluence by proving that the rewrite system R is level-confluent, i.e.,

we may show that each unconditional rewrite system Rn is confluent for all n ≥ 0. For instance,

it is relatively easy to show that the rewrite system in Example 3.3 is level-confluent. However,

from a practical point of view, it is desirable to have syntactic criteria to ensure the confluence of a

3-CTRS. Toyama and Oyamaguchi [TO94] characterized a confluent class of semi-equational CTRS

with extra variables in right-hand sides (left-right separated CTRS), but this class is too restricted

for equational logic programming due to the strong requirements on variable occurrences and the

form of conditions. Fortunately, for constructor-based programs there is an interesting subclass of

functional CTRS which has a simple syntactic characterization. Note that in constructor-based

systems each conditional rule can be written in the form l→ r ⇐ s ≡ t.

Proposition 3.27 Let R be a constructor-based normal CTRS which satisfies the following con-

ditions:

1. The unconditional part Ru is weakly orthogonal.

2. For each rule l→ r ⇐ s ≡ t with extra variables in r, t is a constructor term, Var(s) ⊆ Var(l),
and Var(r) ⊆ Var(l) ∪ Var(t).

Then R is functional.

Proof: Bergstra and Klop [BK86] proved the confluence of (weakly) orthogonal normal 2-CTRS.

More precisely, they have shown the stronger notion of level-confluence. Since we also require Ru

to be weakly orthogonal, the only new divergence in rewrite derivations w.r.t. R (in comparison to

weakly orthogonal normal 2-CTRS) is due to an overlap of a rule R with itself, where R has extra

variables in the right-hand side which are instantiated to different terms. We show that all these

divergencies can be joined by rewriting in a lower level. This implies the level-confluence of R.
Let R be the rewrite rule l→ r ⇐ s ≡ t containing extra variables in r so that t is a constructor

term, Var(s) ⊆ Var(l), and Var(r) ⊆ Var(l) ∪ Var(t). Consider a divergent rewrite computation

t1 Rn← t →Rn t2 in level n caused by this rule, i.e., there are a position p in t and substitutions

σ1, σ2 with t|p = σ1(l) = σ2(l), σ1(s ≡ t) →∗
Rn−1

true, σ2(s ≡ t) →∗
Rn−1

true, t1 = t[σ1(r)]p ̸=
t[σ2(r)]p = t2. We have to show: σ1(r) ↓Rn−1 σ2(r).

By definition of strict equality, there are ground constructor terms u1, u2 with σ1(s)→∗
Rn−1

u1,

σ1(t) →∗
Rn−1

u1, σ2(s) →∗
Rn−1

u2, σ2(t) →∗
Rn−1

u2. Since σ1(l) = σ2(l), σ1(x) = σ2(x) for all

11Since the property of inductive sequentiality depends only on the left-hand sides of the rewrite rules, the definition

can simply be extended to rules with extra variables in right-hand sides.

28

x ∈ Var(l). Thus Var(s) ⊆ Var(l) implies σ1(s) = σ2(s) and u1 = u2 by confluence of the lower

level →Rn−1 . Since t is a constructor term and u1 = u2, σ1(x) ↓Rn−1 σ2(x) for all x ∈ Var(t).
Therefore, σ1(x) ↓Rn−1 σ2(x) for all x ∈ Var(t) ∪ Var(l). This implies σ1(r) ↓Rn−1 σ2(r) by

Var(r) ⊆ Var(l) ∪ Var(t).

As a consequence of this proposition, the rewrite system in Example 3.20 is functional. It is

straightforward to refine the proposition to conditional rules with more than one strict equation

in the condition part. Requirement 2 can be replaced by the relaxed requirement that, for all

conditional rules

l→ r ⇐ s1 ≡ t1, . . . , sk ≡ tk

with extra variables in r, the terms t1, . . . , tk are constructor terms, Var(si) ⊆ Var(l)∪
∪i−1

j=1 Var(tj)
(i = 1, . . . , k), and Var(r) ⊆ Var(l) ∪

∪k
j=1 Var(tj). For instance, the conditional rule

f(X) → Z+Z ⇐ X+X≡ Y, Y*Y≡ Z

satisfies this relaxed requirement. Rewrite rules with similar restrictions but additional termination

requirements are considered in [BG89] as “quasi-reductive rules.” Rewriting with quasi-reductive

rules is always terminating. This allows to deal with nontrivial critical pairs and rewrite systems

which are not constructor-based, but it is too restricted from a functional programming perspective.

We conclude this section by discussing some advantages of 3-CTRS in comparison to 2-CTRS.

Current equational logic languages with a lazy operational semantics (BABEL [MR92], K-LEAF

[GLMP91]) do not permit extra variables in right-hand sides. This restriction to 2-CTRS requires

the representation of some functions as relations, namely those functions which could be defined

by rules with extra variables in right-hand sides (if we do not want to define the functions by

completely different rewrite rules). For instance, the function last of Example 3.3 can be defined

as a relation by the following rule without extra variables in the right-hand side:

last(L,E) → true ⇐ append(R,[E])≡ L

However, such a representation requires the flattening of originally nested function calls. E.g., an

original goal like 0*last([1,2])≡ N must be transformed into the new goal

last([1,2],E)≡ true, 0*E≡ N .

This new goal has a worse operational behavior than the original one, due to the fact that all

equations in a goal must be proved in order to verify the entire goal. In particular, the function

call last([1,2],E) is evaluated. However, if the function ‘*’ is defined by the rule

0*X → 0

the original goal is verified without evaluating the function call last([1,2]) provided that a “good”

narrowing strategy like needed narrowing [AEH94] is used:

0*last([1,2])≡ N ;{} 0≡ N ;{N 7→0} true

Although this example might look artificial, avoiding unnecessary evaluations of subterms becomes

important in the presence of unbound variables, since different bindings of a variable causes different

subterms to be evaluated. For instance, if we have to solve the goal Z*last([1,2])≡ N, the function

call last([1,2]) need not be evaluated if Z is bound to 0, but it must be evaluated if Z is bound

to a nonzero value. A detailed discussion on this subject can be found in [AEH94].

29

One of the advantages of integrating functions into logic programming is the possible nesting

of expressions. In nested expressions, it is not necessary to evaluate all subexpressions but only

those which are needed to compute the overall result (see [AEH94] for more details). As shown

by the previous example, 3-CTRS permits more nested expressions than 2-CTRS. Hence we can

obtain a better operational behavior. Another advantage of 3-CTRS is their ability to express let

constructs of functional languages (see Example 3.20 and [BG89] for a more detailed discussion).

let constructs enable the programmer to express explicit sharing of values in order to avoid multiple

evaluations of the same expression.

4 Conclusions

In this paper we have discussed the necessity and problems of extra variables in pure logic program-

ming and equational logic programming. In the first part, we have shown that extra variables are

unnecessary for pure logic programming since all occurrences of extra variables during a computa-

tion can be moved into the initial goal. Although this transformation does not change the declar-

ative and operational semantics of pure logic programs, it does not generally work for equational

logic programs, since it is known that the presence of extra variables may cause incompleteness

of narrowing, the standard operational semantics of equational logic programs. Nevertheless, we

have shown that this transformation works for the important subclass of weakly orthogonal normal

programs. As a consequence of this result, we have provided a general method to lift completeness

results for narrowing without extra variables to programs with extra variables. Using this method,

we could prove various new completeness results like completeness and optimality of needed narrow-

ing and completeness of lazy narrowing in the presence of extra variables. As far as we know, these

are the first completeness results for narrowing calculi in the presence of nonterminating functions

and extra variables in right-hand sides of rules. Programs with such properties often occur if pro-

gramming techniques like infinite data structures (e.g., streams) and let constructs from functional

programming are simultaneously used. Therefore, our results are a contribution to extend current

functional logic languages in a practically useful way, since such extensions give the programmer

more expressivity and allow a more efficient execution of programs. Our method can also be helpful

to simplify completeness proofs for possibly more sophisticated narrowing strategies that will be

developed in the future.

References

[AEH94] S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy. In Proc. 21st ACM

Symposium on Principles of Programming Languages, pp. 268–279, Portland, 1994.

[BE86] D. Bert and R. Echahed. Design and Implementation of a Generic, Logic and Functional

Programming Language. In Proc. European Symposium on Programming, pp. 119–132. Springer

LNCS 213, 1986.

[BG89] H. Bertling and H. Ganzinger. Completion-Time Optimization of Rewrite-Time Goal Solving.

In Proc. of the Conference on Rewriting Techniques and Applications, pp. 45–58. Springer LNCS

355, 1989.

[BK86] J.A. Bergstra and J.W. Klop. Conditional Rewrite Rules: Confluence and Termination. Journal

of Computer and System Sciences, Vol. 32, No. 3, pp. 323–362, 1986.

30

[BKW92] A. Bockmayr, S. Krischer, and A. Werner. An Optimal Narrowing Strategy for General Canon-

ical Systems. In Proc. of the 3rd Intern. Workshop on Conditional Term Rewriting Systems,

pp. 483–497. Springer LNCS 656, 1992.

[BMPT87] R. Barbuti, P. Mancarella, D. Pedreschi, and F. Turini. Intensional Negation of Logic Programs:

Examples and Implementation Techniques. In Proc. of the TAPSOFT ’87, pp. 96–110. Springer

LNCS 250, 1987.

[BMPT90] R. Barbuti, P. Mancarella, D. Pedreschi, and F. Turini. A Transformational Approach to

Negation in Logic Programming. Journal of Logic Programming (8), pp. 201–228, 1990.

[BvEG+87] H.P. Barendregt, M.C.J.D. van Eekelen, J.R.W. Glauert, J.R. Kennaway, M.J. Plasmeijer, and

M.R. Sleep. Term Graph Rewriting. In Proc. Parallel Architectures and Languages Europe

(PARLE’87), pp. 141–158. Springer LNCS 259, 1987.

[DJ90] N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, editor, Handbook of

Theoretical Computer Science, Vol. B, pp. 243–320. Elsevier, 1990.

[DO90] N. Dershowitz and M. Okada. A Rationale for Conditional Equational Programming. Theoretical

Computer Science, Vol. 75, pp. 111–138, 1990.

[DOS87] N. Dershowitz, M. Okada, and G. Sivakumar. Confluence of Conditional Rewrite Systems. In

Proc. 1st Int. Workshop on Conditional Term Rewriting Systems, pp. 31–44. Springer LNCS

308, 1987.

[Ech88] R. Echahed. On Completeness of Narrowing Strategies. In Proc. CAAP’88, pp. 89–101. Springer

LNCS 299, 1988.

[Fri85] L. Fribourg. SLOG: A Logic Programming Language Interpreter Based on Clausal Superposition

and Rewriting. In Proc. IEEE Internat. Symposium on Logic Programming, pp. 172–184, Boston,

1985.

[GLMP91] E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel LEAF: A Logic plus Functional

Language. Journal of Computer and System Sciences, Vol. 42, No. 2, pp. 139–185, 1991.

[GM86] E. Giovannetti and C. Moiso. A completeness result for E-unification algorithms based on con-

ditional narrowing. In Proc. Workshop on Foundations of Logic and Functional Programming,

pp. 157–167. Springer LNCS 306, 1986.

[GM87] J.A. Goguen and J. Meseguer. Models and Equality for Logical Programming. In Proc. of the

TAPSOFT ’87, pp. 1–22. Springer LNCS 250, 1987.

[Han90] M. Hanus. Compiling Logic Programs with Equality. In Proc. of the 2nd Int. Workshop on

Programming Language Implementation and Logic Programming, pp. 387–401. Springer LNCS

456, 1990.

[Han92] M. Hanus. Improving Control of Logic Programs by Using Functional Logic Languages. In

Proc. of the 4th International Symposium on Programming Language Implementation and Logic

Programming, pp. 1–23. Springer LNCS 631, 1992.

[Han94a] M. Hanus. Combining Lazy Narrowing and Simplification. In Proc. of the 6th International

Symposium on Programming Language Implementation and Logic Programming. Springer LNCS

(to appear), 1994.

[Han94b] M. Hanus. The Integration of Functions into Logic Programming: From Theory to Practice.

Journal of Logic Programming, Vol. 19&20, pp. 583–628, 1994.

[Hul80] J.-M. Hullot. Canonical Forms and Unification. In Proc. 5th Conference on Automated Deduc-

tion, pp. 318–334. Springer LNCS 87, 1980.

31

[Hus85] H. Hussmann. Unification in Conditional-Equational Theories. In Proc. EUROCAL ’85, pp.

543–553. Springer LNCS 204, 1985.

[Kap87] S. Kaplan. Simplifying conditional term rewriting systems: Unification, termination, and con-

fluence. Journal of Symbolic Computation, Vol. 4, No. 3, pp. 295–334, 1987.

[Klo92] J.W. Klop. Term Rewriting Systems. In S. Abramsky, D. Gabbay, and T. Maibaum, editors,

Handbook of Logic in Computer Science, volume II. Oxford University Press, 1992.

[Llo87] J.W. Lloyd. Foundations of Logic Programming. Springer, second, extended edition, 1987.

[MH94] A. Middeldorp and E. Hamoen. Completeness Results for Basic Narrowing. Applicable Algebra

in Engineering, Communication and Computing, Vol. 5, pp. 213–253, 1994.

[MM82] A. Martelli and U. Montanari. An Efficient Unification Algorithm. ACM Transactions on

Programming Languages and Systems, Vol. 4, No. 2, pp. 258–282, 1982.

[MR92] J.J. Moreno-Navarro and M. Rodŕıguez-Artalejo. Logic Programming with Functions and Pred-

icates: The Language BABEL. Journal of Logic Programming, Vol. 12, pp. 191–223, 1992.

[Pad92] P. Padawitz. Generic Induction Proofs. In Proc. of the 3rd Intern. Workshop on Conditional

Term Rewriting Systems, pp. 175–197. Springer LNCS 656, 1992.

[PP94] M. Proietti and A. Pettorossi. Completeness of Some Transformation Strategies for Avoiding

Unnecessary Logical Variables. In Proc. Eleventh International Conference on Logic Program-

ming, pp. 714–729. MIT Press, 1994.

[TO94] Y. Toyama and M. Oyamaguchi. Church-Rosser Property and Unique Normal Form Property

of Non-Duplicating Term Rewriting Systems. In Fourth Int. Workshop on Conditional Term

Rewriting Systems. Springer LNCS (to appear), 1994.

32

