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AbstraCt 

We extend arithmetic with a new predicate Pr, giving axioms for Pr based on 
first-order versions of Lob's derivability conditions. We hoped that the addi­
tion of a reflection schema mentioning Pr would then give a non-conservative 
extension of the original arithmetic theory. The paper investigates this pos­
sibility. It is shown that, under special conditions, the extension is indeed 
non-conservative. However, in general such extensions turn out to be conser­
vative. 
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§ 1 Introduction 

In any !-consistent recursively enumerable theory of arithmetic, T, one can 
follow Godel's construction to obtain a 'provability predicate', a :E1-formula 
Bewr(x), satisfying: 

ifi T 1- A, 

where r A' is the Godel number of the formula A. Moreover, if T is suf­
ficient-ly strong then Bewr satisfies the following predicate (or 'uniform') 
versions of Lob's derivability conditions [7]: 

(Dl) if T 1- 'VxA then T 1- 'VxBewr( A(x) '), 

(D2) T 1- 'Vx(Bewrr(A ~ B)(x)'] ~ (Bewr( A(x)') ~ Bewr(rB(x)'))), 

(D3) T 1- 'Vx(Bewr(r A(x) ') ~ Bewr(rBewr(r A(x) ')(x) ')), 

where we write r A(x)., for a term with a free variable x 'disquoting' any 
occurrence of x in A (see section 2). Solovay, [9], showed that the origi­
nal propositional versions of the derivability conditions identify all the valid 
'modal' schematic properties of Bewr (the other modal axiom, the formaliza­
tion of LOb's theorem, is derivable from (Dl)-(D3) using the diagonalization 
lemma). Although the first-order derivability conditions above do not cap­
ture all the valid first-order schematic properties of Bewr (see [1]), they do 
isolate a natural class of 'modal' properties satisfied by Bewr. 

All the aforementioned work treats the derivability conditions as descrip­
tive in that their purpose is to describe properties of the Bew predicate. In 
this paper we consider them in an alternative prescriptive role. We define a 
language, £', by adding a new unary predicate symbol, Pr, to the original 
language .C. Then we define an £'-theory, T', as the least theory containing 
T that is closed under the following analogues of (Dl)-(D3): 

(Cl) if T' 1- 'VxA then T' 1- 'VxPr(r A(x)'), 

(C2) T' 1- 'Vx(Pr((A ~ B)(x)') ~ Pr( A(x)') ~ Pr(rB(x)')), 

(C3) T' 1- 'Vx(Pr(r A(x)') ~ Pr(Pr( A(x)')(x)')), 

where we assume that GOdel numbering has been extended to .C'. It is 
natural to ask how much of the behaviour of Bewr' is forced upon Pr by the 
satisfaction of (Cl)-(C3). 

As remarked in Boolos and Je:ffrey [2, p. 185], there are many 'predi­
cates' other than Bewr that satisfy (Dl)-(D3); for example, the predicate 
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expressing the property of being (the Godel number of) a well-formed for­
mula. Therefore it does not hold that T' f- 'v'x(Pr(x)-+ BewT'(x)). We shall 
see below that the converse implication fails too. 

However, it occurred to us to consider the effect of adjoining the following 
analogue of the uniform reflection schema to T': 

(R) 'v'x(Pr( A(x)')-+ A). 

The question we were interested in was whether T' + R is a non-conservative 
extension of the original theory T. 

The possibility that T' + R might not be conservative over T is initially 
plausible for the following reason. There is an evident 'intended' interpreta­
tion ofT' in T under which Pr is (modulo some mapping of Godel numbers) 
translated as BewT. This interpretation can be used to prove that T' is a 
conservative extension ofT. However, the proof cannot be extended to show 
that T' + R is conservative over T, and moreover one can show that no other 
interpretation of Pr will do instead (see theorem 1). 

On the other hand, the same interpretation can be used to establish that 
any £-formula entailed by T' + R is a theorem in the theory obtained by 
extending T with its uniform reflection schema: 

(Rfn) 'v'x(BewT( A(x)')-+ A). 

Now, by Godel's second incompleteness theorem, T'+R is a non-conservative 
extension ofT. Further, if T proves only true statements of arithmetic then 
so does T+Rfn. Thus, by the translation, T'+R proves only true statements 
of arithmetic. Indeed our initial hope was that T' + R might be a (necessarily 
conservative) extension ofT+ Rfn. 

This possibility is of practical interest. If T' + R were an extension of 
T+Rfn, then the definition ofT' +R would provide a feasible way of extend­
ing the reasoning powers ofT without having to go through the laborious 
construction of GOdel's BewT predicate (although admittedly the definition 
ofT'+ R does still require a Godel numbering of formulae). However, in 
theorem 2 we prove that, unfortunately, T' + R is always conservative overT. 
(This shows that, as claimed above, T' If 'v'x(BewT'(x)-+ Pr(x)).) Thus our 
construction ofT'+ R does not give the desired general method of achieving 
a non-conservative extension of T. 

Nevertheless, a slight and natural modification of the construction of 
T' + R does lead to a non-conservative extension in one notable case. Since 
Pr(t) is intended to mimic BewT(t) it ought to be treated as a :E1-formula. 
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So if T supports induction over :E1-formulae then it is reasonable to include 
induction over atomic formulae of the form Pr(t) in T'. In this case T' + R 
provides full induction over formulae of .C' (theorem 3), and thus contains 
Peano Arithmetic. So for any T containing :E1-induction but not full induc­
tion, a non-conservative extension can be obtained by our method. 

Unfortunately, the non-conservative effect does not extend beyond Peano 
Arithmetic. Since Peano Arithmetic supports induction over arbitrary for­
mulae of £ it is natural to allow induction over arbitrary formulae of .C' in 
T'. However, even allowing such induction, if T is Peano Arithmetic then 
T' + R is conservative over T (theorem 4). 

The paper is structured as follows. In section 2 we give the technical 
background to our work. In section 3 we give a semantic proof that, in 
general, T' + R is conservative over T. In section 4 we consider extend­
ing induction to the new language, proving the non-conservativity result for 
arithmetic with :E1-induction and the conservativity result for Peano Arith­
metic. Finally, section 5 contains some concluding remarks. 

§ 2 Preliminaries 
Throughout the paper we work, for convenience, with the language, £, of 
Primitive Recursive Arithmetic (PRA) [4]. Thus when we refer to Peano 
Arithmetic (PA) we mean a definitional extension in£ of the usual Peano 
Arithmetic (which is in the language of elementary arithmetic). As in section 
1, we define a language .C' by adding a new unary predicate symbol, Pr, to£. 

A Godel-numbering of .C' is an injective mapping from .C' into the natural 
numbers. We assume some such mapping. We denote the number standing 
for a formula A of .C' by r A..,, and similarly for terms, etc. We assume that 
all the relevant operations and predicates on formulae/terms are primitive 
recursive. In particular there is a primitive recursive function sub(·,·,·), 
such that for any formula A (or term t), and number n: 

where n is the numeral sn(o). We define the abbreviation: 

The restriction of r ·.., to £ gives us also a Godel-numbering of £. 
Let T be any theory in £ that extends PRA (i.e. supports quantifier­

free induction), is recursively enumerable, and entails no false arithmetical 
sentence. Let Bewr(x) be Godel's provability predicate forT. Because T 
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extends PRA, the formula BewT does indeed satisfy the properties (Dl)­
(D3) of section 1. 

We define the £'-theory T' as in section 2. 

Proposition 1 T' is a conservative extension ofT. 

Proof. We define a translation ( ·) * from formulae of C to formulae of C. 
By the seco11d recursion theorem, there is a number r such that (writing { r} 
for the r-th partial recursive function): 

where the (·)* translation is defined primitively recursively by: 

P(t1, ... , t,.)* - P(t1, ... , t,.) (where P ~ Pr) 

Pr(t)* - 3y(T(r, t, y) A BewT(U(y))) 

(A oB)* - A* oB* 

(QxA)* = Qx(A*) 

(here o and Q are any propositional connective and quantifier, and T and U 
are Kleene's primitive-recursive T predicate and result-extraction function). 
By definition { r} is primitive recursive. So there is a function symbol, 
trans, such that, by the formalized recursion theorem and quantifier-free 
induction: 

(1) 

(2) 

T 1- 'v'x3y(T(r, x, y) 1\ U(y) = trans(x)), 

T 1- 'v'x(trans(r A(x)') = r A*(x)'). 

We now show that for all C -formulae A, if T' 1- A then T 1- A •. And, since 
A • = A for any £,-formula A, this establishes the desired conservativity 
result. The proof is a straightforward induction on the closure conditions of 
T': 

(Cl) Assume that T' 1- 'v'xA. By the induction hypothesis we have that 
T 1- ('v'xA)*, and therefore that T 1- 'v'xA •. We need to show that 
T 1- ('v'xPr(r A(x)'))*; i.e., that 

T 1- 'v'x3y(T(r, r A(x) ', y) A BewT(U(y))). 

However, T 1- 'v'xyzw.(T(x, y, z) 1\ T(x, y, w)) -t z = w. Therefore, by 
(1) and (2), the above formula is equivalent toT 1- 'v'xBewT(r A*(x)'). 
And this, in turn, follows from (Dl) and the fact that T 1- 'v'xA*. 
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(C2) We have to show that 

T 1- ('Vx Pr(r(A ~ B)(x},) ~ (Pr(r A(x},) ~ Pr(rB(x),)))* 

which, in the same way as (Cl) above, reduces to 

T 1- 'Vx(BewT(r(A ~ B)*(x),) ~ BewT(r A*(x),) ~ BewT(B*(x},)), 

an instance of (D2). 

( C3) Similar to ( C2) only making use of (.lJ3) instead. 0 

Proposition 2 For any £-formula A, ifT' + R 1- A then T + Rfn 1- A. 

Proof. Let (·)* be the translation from .c' to .C defined in the last proof. 
We already know that if T' 1- A then T 1- A* and hence T + Rfn 1- A*. So 
we need only show that T + Rfn 1- R*. However, as in the proof above, this 
translates to showing that: 

T + Rfn 1- 'v'x(BewT(r A*(x),) ~A*), 

which is an instance of Rfn. 0 

The above translation cannot be used to prove the conservativity ofT' + 
Rover T, because it is not in general the case that T 1- 'v'x(BewT( A*(x},) ~ 
A*). One might wonder whether there is a cleverer translation that works 
instead. We shall give a quite general proof that in fact there is none. 

Definition 3 A retraction of £' onto .C is a translation, ( ·) t, from .c'­
formulae to £-formulae in which the predicates and function symbols of .C 
are interpreted by themselves and Pr is interpreted by a .formula H(x) of .C. 

· (It is a retraction in the appropriate category of languages and translations.) 
The translation (·)* used in the above proofs is an example of a retraction 
of£' onto .C in which H(x) is the formula 3y(T(r, x, y) 1\ BewT(U(y))). 

Let.S be any .C-theory and S' be any .C'-theory extending S. A retraction 
of S' onto S is a retraction, ( ·) t, from .C' to .C such that, for any £'-formula 
A, S' 1- A implies S 1- At. (It is a retraction in the appropriate category of 
theories and interpretations.) It is clear that the existence of a retraction 
from S' to S implies that S' is a conservative extension of S. Indeed the 
proof of proposition 1 worked by establishing that ( ·) * is a retraction of T' 
onto T . The impossibility of obtaining a similar translational proof of the 
conservativity of T' + R over T is given by: 

5 



Theorem 1 There is no retraction ofT' + R onto T. 

Proof. Suppose, for contradiction, that ( ·) t is a retraction of T' + R onto 
Tin which Pr is translated to H(x). By the diagonalization lemma, there 
is an £-sentence A such that: 

(3) 

However, we claim that: 

(4) 

(5) 

if T 1- A then T 1- H( A,), 

T 1- H(r A,)-+ A. 

To see that (4) holds, suppose that T 1- A. Then T' 1- A. So, by (Cl), it 
follows that T' 1- Pr( A,). Therefore T 1- (Pr( A,))t. SoT 1- H(r A,) as 
required. For (5), we have that T' +R 1- Pr(r A,)-+ A. SoT 1- (Pr(r A,)-+ 
A)t. Thus indeed T 1- H(r A,)-+ A. 

But from (3)-(5) it is easy to derive that T is inconsistent, which is a 
contradiction. 0 

This proof is similar to Montague's proof of the inconsistency of syntactic 
interpretations of certain modal logics [8]. 

§ 3 The general conservativity proof 

Theorem 1 gives hope that T' + R might be non-conservative over T. U n­
fortunately, this turns out not to be the case. The main theorem of this 
section is: 

Theorem 2 T' + R is a conservative extension ofT. 

The proof of the theorem involves some analysis of properties of Godel­
numbering when formalized in T. Recall that all the relevant operations and 
predicates on Godel-numbers have been assumed to be primitive recursive. 
More specifically, we require primitive recursive 'constructors' for all function 
symbols, predicate symbols, connectives and quantifiers, which can be used 
to assemble terms and formulas. As T supports quantifier-free induction, 
each constructor is provably injective. Furthermore it is provable in T that 
the Godel-number of a compound term/formula has a unique decomposition 
into the components out of which it is built. We also require a primitive 
recursive function free-in(·,·), such that free-in(r A,, rx,) if and only if xis 
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free in A (and similarly for terms). Again, quantifier-free induction suffices 
to ensure that: 

(Sl) T f- r A[s(x)/x](y) ' = r A(s(y))' , 

(S2) T f- -,fref7in( A', rx') -t r A(y)' = r A(z)' , 

(S3) T f- (fref7in(r A', rx') I\ r A(y)' = r A(z)') -t y = z, 

(S4) T f- (free-in(rt•,rx') I\ rt• =I= rx• I\ y:::; z) -t rx(y)' =I= rt(z)'. 

The meanings of (S1)-(S3) are clear. The more cumbersome (S4) reflects 
the fact that if t is different from, but contains, x and m :::; n, then m is 
different from t[njx] (since the former is a strict subterm of the latter). 

A further important property of a reasonable GOdel numbering is that if 
x occurs free in A then it is provable in T that the function sub( A 1 , r x', ·) 
tends to infinity. (This follows from (S3) by :E2-induction, but more gener­
ally is provable using quantifier free induction because sub(r A 1 , r x 1 , ·) has 
a primitive recursive 'inverse'.) Our use of this fact is model-theoretic: let 
9J1 = (D, :::;, 0, s, .. . ) be a model ofT. If d E D is non-standard, then the 
denotation, r A(d) ', of the term r A(x) 1 with d assigned to x is also non­
standard. On the other hand, if x does not occur free in A then, by (S2), 
r A (d) 1 is standard and equal to r A 1 . 

Theorem 2 will be proved semantically. Let 9J1 be a model ofT. We 
extend 9J1 to a £'-structure, 9Jl', by defining, ford E D: 

Pr( d) if there exists an £'-formula A and an element d' E D such that 

d = r A(d') 1 and T' 1- 'v'xA. 

We now prove a sequence of results aiming to show that 9)1' is a model of 
T' + R (proposition 7). We write A = B (t = t') for syntactic identity 
between formulae (terms). 

Lemma 4 If dE D is non-standard, d :::; d' E D and r A(d)' = rB(d')' 
then there exists n such that A= B[sn(x)jx]. 

Proof. The proof is by induction on the structure of B. Suppose that d E D 
is non-standard and d :::; d' E D. 

We first show, by induction on the structure of terms t , that if r t' (d) 1 = 
r t(d') 1 then: 

1. If x does not occur free in t , then t' = t. 
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2. If x occurs free in t then there exists n such that d' = sn(d) and 
t' = t[sn(x)jx]. 

Suppose the term is a variable, y, different from x, and rt'{d)' = ry(d')'. 
Now x is not free in y so, by (S2), ry(d')' = ry• and is standard. Thus 
r t' (d).., is standard, which implies that x does not occur free in t'. So 
rt'(d)' = rt''· Therefore, by the injectivity of Godel numbering, t' = y 
as required. 

Suppose the term is x and rt'(d)' = rx(d')'. We prove, by induction on 
the structure oft', that there exists n such that d' = sn(d) and t' = sn(x). 
First, t' cannot be a variable ,y different from x because then rt'{d)' would 
be standard whereas r x(d'), is non-standard. If t' is x then we are done with 
n = 0, as d = d' by (S3). Lastly, suppose that t' is of the form f'(t~ , ... , t~) 
(with h possibly zero). Now d' E D is non-standard so it has a predecessor 
d" E D. Thus rx(d')' = rx(s(d"))' = rs(x){d")', the last equality by (Sl). 
But then rt'(d)' = rs(x){d")'. So, by the formalized injectivity of Gooel 
numbering, t' is of the form s(t") for some t" such that rt"(d)' = rx{d")'. 
Then, by the induction hypothesis, there exists n such that d" = sn(d) 
and t" = sn(x). Thus n + 1 is the number required as d' = sn+1(d) and 
t' = sn+l(x). 

Suppose that the term is f(t 1 , ••• , tk) (where k is possibly zero) and 
rt' {d)'= r f(t 1 , ••• , tk){d')'. Then t' cannot be a variable y different from x. 
If t' is x then x must occur free in some ti (otherwise r f ( t1 , .• • , tk) ( d'), would 
be standard). However, d $ d' so, by (S4) , r x{d), # r f(t 1 , ••• , tk){d') ', 
a contradiction. So t' must be of the form f'(t~, ... , t~). But then, by 
formalized injectivity, we have that f = f'. So h = k and, for all i (1 $ 
i $ k) r~{d)' = rti{d')'. If x does not occur free in any ti then, by the 
induction hypothesis, t~ = ti for all i and thus t' = f(t 1 , .•. , tk) as required. 
If x does occur free in some ti then, by the induction hypothesis, there 
exists n such that d' = sn(d) and, for all i , t~ = ti[sn(x)Jx]. So indeed 
t' = f(tll . .. , tk)[sn(x)Jx] . 

It remains only to extend the induction to formulae. One proves, by 
induction on the structure of B, that r A[ d)'= r B[d']' implies that if x does 
not occur free in B then A = B and if x does occur free in B then there 
exists n such that d' = sn(d) and A = B[sn(x)jx]. The straightforward 
argument, similar to the case for f'(t~, ... , t~) and f(t 1 , ••• , tk) above, is 
omitted. The result follows. D. 

Lemma 5 1. If d E D is standard then rot' F= Pr(r A{d) ') if and only if 
T' 1- A[djx]. 
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2. If d E D is non-standard then rot' I= Pr(r A(d) ,) if and only if there 
exists n such that T' 1- 'v'x(A[s"(x)jx]). 

Proof. 

1. Supposed E D is standard and rot' I= Pr( A(d),). Then r A[djx]), = 
r A(d), = r B(d'), for some d' E D and B such that T' 1- 'v'xB (by the 
definition of the extension of Pr in rot') . Now if d' is standard then 
T' 1- B[d' jx] and r A[djx], = r B[d' jx], so A[djx] = B[d' jx]. Thus 
indeed T' 1- A[djx]. If, however, d' is non-standard then x cannot occur 
free in B. Therefore T' 1- Band r A[d/x], = r B, so A[djx] =B. Thus 
again T' 1- A[d/x] as required. 

Conversely, suppose that T' 1- A[djx] . Then trivially T' 1- 'v'xA[djx]. 
It follows that rot' I= Pr(r A[djxp). Thus indeed rot' I= Pr(r A(d) ,). 

2. Suppose that dE D is non-standard, and that rot' I= Pr(r A(d) ,). Then 
r A (d), = r B ( d'), for some d' E D and B such that T' 1- 'v' xB. If d ~ d' 
then, by lemma 4, A= B[sm(x)jx] for some m. So clearly T' 1- 'v'xA, 
and the n we are required to find is zero. If d' < d and d' is non­
standard then, by lemma 4, A[s"(x)jx] = B for some n;· But then we 
have found ann such that T' 1- 'v'xA[s"(x)jx]. Lastly, if d' is standard 
then r B(d'), is standard, so x cannot occur free in A. Thus A = 
B[d' jx]) and T' 1- B[d' jx]. Therefore T' 1- 'v'xA and again n is zero. 

Conversely, suppose there exists n such that T' 1- 'v'xA[s"(x)jx]. As 
d is non-standard, there exists d' E D such that d = s"(d'). By the 
definition of the extension of Pr, rot' I= Pr( A[s"(x)jx](d'),). But, by 
(S1), r A(d), = r A[s"(x)jx](d'),. So indeed rot' I= Pr(r A(d),). 0 

Proposition 6 rot' is a model ofT'. 

Proof. We must show that rot' validates (C1)-(C3) . 

(Cl) Suppose T' 1- 'v'xA and dE D. Then it is immediate from the defini­
tion of the extension of Pr in rot' that rot' I= Pr( A(d) ,) as required. 

(C2) Supposed E D, rot' I= Pr(r(A-+ B)(d),) and rot' I= Pr( A(d),). If 
d is standard then, by lemma 5(1), T' 1- (A -+ B)[djx] and T' 1-
A[djx]. SoT' 1- B[djx] whence, by lemma 5(1), rot' I= Pr(rB(d),) 
as required. If d is non-standard then, by lemma 5 ( 2), there exists 
m such that T' 1- 'v'x(A-+ B)[sm(x)jx] and there exists m' such that 
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T' 1- 'v'xA[sm' (x)jx]. Therefore T' 1- 'v'xB[s"'(x)jx] where n is the 
maximum of m and m'. So, by lemma 5(2), rot' f= Pr(B(d)') as 
required. 

(C3) Suppose that d E D and rot' f= Pr( A(d)'). We omit the easy 
argument if d is standard. If d is non-standard then, by lemma 
5(2), there exists n such that T' 1- 'v'xA[s"'(x)jx]. Whence, by (Cl), 
T' 1- 'v'xPr(r A[s"'(x)jx](x)'). Now, by n applications of (Sl), T' 1-
'v'x(Pr(r A(s"'(x))')). So, by lemma 5(2), it follows, as required, that 
rot' f= Pr(rPr( A(x)')(d)'). 0 

We now have a second proof of proposition 1. We have shown that any model 
m of T extends to a model rot' of T'. It follows that T' is a conservative · 
extension of T. 

Proposition 7 rot' is a model ofT' + R. 

Proof. We need only verify R. Suppose then that d E D and rot' f= 
Pr( A(d)'). If d is standard then, by lemma 5(1), T' 1- A[djx]. Thus, by 
proposition 6, rot' f= A[djx]. Therefore rot' f=A[d] as required. If d is non­
standard then, by lemma 5(2), there exists n such that T' 1- 'v'x(A[s"'(x)jx]). 
By proposition 6, rot' f= 'v'x(A[s"'(x)jx]). But d is non-standard, so there 
exists d' E D such that d = s"'(d'). Therefore m' f= A[d) as required. 0 

We have shown that any model ofT extends to a model ofT' + R. This 
completes the proof of theorem 2. 

§ 4 Extending induction to C' 

The conservativity result of the last section is very general, as the proof 
works for an arbitrary T extending PRA. However, one important possi­
bility has been overlooked: that of extending induction to the language C'. 
Such an extension of induction would render impossible any model-theoretic 
conservativity proof along the lines of that above. 

However, the rules of how one ought to extend induction are not im­
mediately clear. For example, if T is PRA then it only has induction over 
quantifier-free formulae. Given that we are thinking of Pr as a :E1-formula 
in disguise, it does not seem reasonable to give T' any instances of induction 
not already available in PRA. Thus although uniform reflection together 
with PRA gives PA, there is no analogous situation using T' and R. 

Things becomes a good deal more interesting if we consider PRA together 
with :D1-induction as the initial theory. We shall refer to this theory as I:E1 . 
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With 1'2:,1 as the base theory it seems reasonable to give the extended . 
theory induction over some appropriate analogue of E1 in C'. To this end, 
we extend the whole arithmetical hierarchy to C'. We define sets E~, II~ 
( 1 $ n) as the least sets closed under: 

2. If Pis not Pr then P(t11 ••• , tn) E E~,II~. 

3. Pr(t) E E~. 

4. If A, BEE~ then A!\ B, 3xA E E~ and -.A E IT~. 

5. If A, BE IT~ then A!\ B, V'xA E IT~ and -.A E E~. 

The motivation is that Pr is supposed to be emulating a E1 (but not II1 ) 

formula. 
We now give the extended theory, IE~, the evident definition. IE~ is 

the smallest C'-theory containing IE1 and E~-induction and closed under 
(Cl )-(C3). Again we consider adding the analogue of uniform reflection, R. 
This time we do get the desired non-conservativity. 

Theorem 3 IE~ + R contains PA. 

Proof. Suppose that we have that IE~ f- A[Ojx] and IE~ f- V'x (A -+ 
A[s(x)fx]). By applying (Cl) we get that IE~ f- Pr(r A[Ojx],) and IE~ f­
V'xPr((A-+ A[s(x)fx])[xp). The former gives immediately: 

IE~ f- Pr(r A(O) ,). 

The latter gives, by (C2), IE~ f- V'x(Pr(r A(x),) --+ Pr(r A[s(x)jx](x),)) 
whence, by (Sl): 

IE~ f- V'x(Pr(r A(x),)--+ Pr( A(s(x)),)). 

We can now apply E~-induction to derive IE~ f- V'xPr( A(x),). Therefore, 
by one application of R, we have that IE~ + R f- V'xA. 

It is now easy to see that IE~ + R derives induction for any C'-formula, 
B. Just apply the above argument to the formula: 

A ::: (B[Ojx] !\ V'y(B[yjx]--+ B[s(y)fx]))--+ B. 

The result follows. D 
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The above argument can be translated back to give an elegant proof, using 
only (Dl), (D2) and (Sl), that n::;1 + Rfn is a theory as strong as PA. Note 
that condition (C3) was not needed in the proof. Also R was used only as a 
rule. We conjecture that if any of (Cl), (C2) and Rare weakened to their 
propositional versions then the resulting extension of Jl;1 is conservative. 

It is a special case of Lemma 9 below that ll;~ + R is actually conservative 
over PA. 

We conclude by showing that the trick used to prove theorem 3 cannot 
be generalized to derive stronger principles than full induction. Define PA' 
to be the least £'-theory containing PA and induction over every £'-formula 
and closed under (Cl)-(C3). 

Theorem 4 PA' + R is a conservative extension of PA. 

We write Il;n for the £-theory obtained by extending PRA with 'l;n­
induction. Following the definition of J:E~ above, define ll;~ to be the least 
£'-theory containing PRA and !:~-induction and closed under (Cl)-(C3). 
The proof of theorem 4 uses the observation that: 

(6) PA' = UI:E~. 

The inclusion Un J:E~ s; PA' is obvious. For the converse, it is easy to show 
that Un J:E~ contains PRA, contains induction for arbitrary .C' -formulae 
and is closed under (Cl)-(C3). Thus Un T~ satisfies the closure conditions 
of PA'. Therefore it contains PA'. 

Lemma 8 For all n, the theory I:E~ is a conservative extension of I:En. 

Proof. Let n be fixed but arbitrary. Consider the translation (·)* from 
formulae of £' to formulae of .C defined in the proof of proposition 1 (where 
T is taken to be I:En). We claim that for all A E £', if J:E~ 1- A then 
I:En 1- A*. The claim is shown by a straightforward modification of the 
proof of proposition 1. The only additional case is to show that if A is an 
instance of !:~-induction then I:En 1- A*. But this holds because(·)* maps 
!:~-formulae to :En-formulae, so A* is an instance of :En-induction. 0 

Lemma 9 For all n, the theory I:E~ + R is a conservative extension of PA. 

Proof. By theorem 3, J:E~ + R contains PA. Let (·)* be the translation 
used in the last proof. We claim that J:E~ + R 1- A implies PA 1- A*. We 
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already know that if J~~ f-A then!~,... f-A.* and hence PA f-A*. So we 
need only show that PA f- R*. However, as in the proof of proposition 2, 
this follows from the following fact about PA [6): 

for all n, PA f- 'Vx(Bewrr: .. ( A(x} ,) -+ A). 0 

Theorem 4 is now easily proved. By (6), it is clear that PA' +R = U,..(J~~ + 
R). So it follows from Lemma 9 that PA' + R is indeed conservative over 
PA. 

§ 5 Conclusions 

In this paper we have investigated the potential of using the derivability 
conditions to induce properties of a provability predicate without having 
to go to the effort of following Godel's construction. In particular we have 
focused on the possibility of obtaining non-conservative extensions using an 
extra axiom that mimics the uniform reflection schema. 

Unfortunately, our results are mainly negative. Although we have ob­
tained a non-conservative extension in one notable case, the resulting the­
ory, PA, can be obtained much more easily just by giving the full induction 
schema. Nevertheless, we believe that our results (both of non-conservativity 
and of conservativity) are interesting. 

One natural question is whether a more general method of obtaining non-. 
conservative extensions could be obtained by using more powerful axioms 
than (Cl)-( C3). It is clear that the proof of theorem 4 is general to apply to 
any T' generated by a collection of axioms based on arithmetically valid for­
mulae of predicate provability logic [1]. Nevertheless, the possibility remains 
that a more general method could be obtained by going beyond what we get 
from predicate provability logic (for example, by replacing ( C2) and ( C3) 
with single axioms quantifying over the G&:lel numbers of formulae). We 
believe it to be an interesting programme to investigate such generalizations. 

There are other ways of adding a new predicate to the language to obtain 
non-conservative extensions. For example, one can axiomatize the property 
of being a satisfaction class like in the work of Robinson, Kotlarski and others 
(see [5, Ch. 15]). Also, Feferman has obtained non-conservative extensions 
by axiomatizing a partial truth predicate [3]. It is unclear how this work 
relates to the provability based approach of this paper. 

Acknowledgements 

We thank Alan Smaill for encouraging this work. 

13 



References 
[1] G. Boolos. The logic of provability. Cambridge University Press, Cam­

bridge, 1993. 

[2) G. Boolos and R. Jeffrey. Computability and logic (tbird edition). Cam­
bridge University Press, Cambridge, 1989. 

[3) S. Feferman. Reflecting on completeness. J. Symbolic Logic, 56:1-49, 
1991. 

[4) J .-Y. Girard. Proof Theory and Logical Complexity, volume 1, Studies 
in Proof Theory. Bibliopolis, Naples, 1987. 

[5) R. Kaye. Models of Peano arithmetic. Oxford University Press, Oxford, 
1991. 

[6) G. Kreisel and A. Levy. Reflection principles and their use for establish­
ing the complexity of axiomatic systems. Zeitshrift fiir Mathematische 
Logic und Grundlagen der Mathematik, 14:97-142, 1968. 

[7) M. Lob. Solution of a problem of Leon Henkin. J. Symbolic Logic, 
20:115-118, 1955. 

(8) R. Montague. Syntactical treatment of modality, with corollaries on re­
fiexion principles and finite axiomatisability. Acta Phil. Fennica, 16:153-
167, 1963. 

[9) R.· Solovay. Provability interpretations of modal logic. Israel J. Math., 
25:287-304, 1976. 

14 


	94-234_Cover
	94-2340002
	94-2340003
	94-2340004
	94-2340005
	94-2340006
	94-2340007
	94-2340008
	94-2340009
	94-2340010
	94-2340011
	94-2340012
	94-2340013
	94-2340014
	94-2340015
	94-2340016
	94-2340017
	94-2340018

