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Abstract

We analyze the search e�ciency of a number of common refutational theorem proving
strategies for �rst�order logic� Search e�ciency is concerned with the total number of
proofs and partial proofs generated� rather than with the sizes of the proofs� We show
that most common strategies produce search spaces of exponential size even on simple
sets of clauses� or else are not sensitive to the goal� However� clause linking� which
uses a reduction to propositional calculus� has behavior that is more favorable in some
respects� a property that it shares with methods that cache subgoals� A strategy which
is of interest for term�rewriting based theorem proving is the A�ordering strategy� and
we discuss it in some detail� We show some advantages of A�ordering over other strate�
gies� which may help to explain its e�ciency in practice� We also point out some of
its combinatorial ine�ciencies� especially in relation to goal�sensitivity and irrelevant
clauses� In addition� SLD�resolution� which is of importance for Prolog implementa�
tion� has combinatorial ine�ciencies� this may suggest basing Prolog implementations
on a di�erent theorem proving strategy�



� Introduction

The e�ciency of a theorem prover is more directly in�uenced by the total number
of inferences performed before a proof is found than by the size of the �nal proof�
In general� in the �eld of automated deduction for full �rst�order logic� there has
been a great deal of attention devoted to the completeness of strategies but little
to their e�ciency� in the sense of the total work expended in the search for a proof�
The main e�ciency considerations to date have to do with the times needed by par�
ticular implementations to �nd proofs of particular example theorems� or with the
e�ciencies of decision procedures for specialized theories� Of course� there has also
been work on the e�ciencies of low�level operations employed by theorem provers
�such as uni�cation�� It is informative �and fun� to evaluate a prover by running it
on a series of examples� but this could well be supplemented by analytical results�
To this end� a theoretical study would be useful� It would be nice to know something
about the behaviors of proposed new strategies without having to read and under�
stand papers about them or having to run them on examples� Theoretical measures
of search space size would permit this� Such measures would also make it easier to
weed out bad strategies early and would stimulate the development of good ones�
There is more at issue than just a quantitative measure of performance � analytical
measures reveal something about how a strategy works� and how it does subgoaling�
This gives some insight into the strategy� A theoretical approach could also help to
pinpoint problem areas and weaknesses in a method and lead to improvements� In
general� theory does not replace experiment but it does supplement it� and provides
insights that might otherwise be missed� Theory tends to make general statements
and to be machine�independent� whereas experiment tends to deal in speci�cs and
to be machine�dependent� This paper is an attempt to initiate �or further� a theory
of the search e�ciency of automated theorem proving�

In sum� we are interested in the sizes of the search spaces produced by clause
form refutational theorem proving strategies for �rst�order logic� This interest is
di�erent from that of most logicians who are interested in provability or the length
of proofs� For some examples of the latter� see �CR	�� Hak�
� Urq�	� Ede���� The
paper �Let��� studies how accurately the length of a derivation re�ects the actual
complexity of a proof� By the search space size we mean the number of proofs and
partial proofs� This latter measure is more relevant for the e�ciency of theorem
provers than the size of a minimal proof� There has been very little work on search
space size� The paper �KBL��� shows that many re�nements of resolution do not
increase a certain measure of search space size by more than a factor of four� but
does not compare re�nements with one another� Their paper considers monotone
re�nements of resolution� these do not allow deletion operations such as deletion of
subsumed clauses� However� the results are otherwise very general� We demonstrate
some surprising and little appreciated ine�ciencies of many common strategies�
which may help to explain their poor performance on some kinds of problems� We
also discuss the clause linking method �LP��� and methods that cache subgoals and
show that they overcome some of these limitations� We present some examples
where resolution has better performance� These analyses are interesting because
they do not depend on particular machine architectures or data structures used to
implement strategies� and are thus of a more universal nature� We only consider
clause form refutational theorem proving methods for �rst�order logic� it would be
interesting to extend this analysis to Hilbert�style� sequent�style� semantic tableau�
and other methods� We emphasize Horn clauses� which are common in practice�
We analyze the behavior of strategies on propositional Horn sets as well as giving
some �rst�order clauses sets with a similar behavior�

We believe that our theoretical results are re�ected in practice� both for strate�
gies and their re�nements� For example� we show that negative resolution on Horn
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sets is ine�cient theoretically� this is also frequently true in practice� As a result�
one can expect some practical bene�t from this work� It may lead to the develop�
ment of strategies that are more e�cient in practice� as well as helping to reveal
the comparative value of re�nements to strategies� For example� under some cir�
cumstances� ordering predicate symbols improves the e�ciency of resolution� and in
other cases� it signi�cantly degrades performance� This analysis also highlights the
e�ciency to be gained in model elimination and the MESON strategy �Lov	�� by
unit lemmas and caching� which reduce exponential behavior to polynomial behav�
ior for Horn clauses� Also� we feel that an analytical approach will help to point out
some underlying problems in the �eld� which need to be addressed before mechani�
cal theorem provers can be reliable assistants to human mathematicians� A failure
to address these issues can only be detrimental� as users become frustrated with the
performance of their provers and don�t understand the reasons for the ine�ciencies�
The kinds of problems where resolution and similar methods perform well are in
many cases Horn clause problems� or problems of a similar nature� these are also
the kinds of problems for which the theoretical analysis indicates good behavior
�as long as goal�sensitivity is not important�� It is on such Horn clause problems
that many of the publicized successes of resolution in solving open problems� have
occurred� This may give an impression of the power of existing theorem provers
that does not correspond to their performance on the types of problems more likely
to be encountered by a typical user�

Some of these results are particularly interesting because of their implications
for neighboring areas of research� We discuss theorem proving methods based on
term�rewriting� which correspond to the A�ordering re�nement of resolution for
propositional logic� Term�rewriting is of interest because it is often very e�cient on
pure equational problems� We show that from a theoretical standpoint� A�ordering
has some signi�cant advantages over other strategies� although it also has some
severe problems� especially if the ordering is not chosen properly� Moreover� a good
ordering can be hard to �nd� we give some evidence in section 
��� that it is not
always possible to choose an ordering that is natural� goal�sensitive� and e�cient�
even for unsatis�able clause sets� This suggests that it may be di�cult in general to
obtain e�cient goal�sensitive term�rewriting based theorem provers for �rst�order
logic� and that other methods may have to be used� Giving up goal�sensitivity seems
like a high price to pay� although it is conceivable that one could prove theorems
e�ciently without considering the goal� Also� we give a set of clauses for which
A�ordering� even with a good ordering� generates an exponential number of clauses�
Turning our attention now to logic programming� we show that SLD�resolution
�Llo�	� also has severe ine�ciencies in some cases� Since SLD�resolution is the basis
for logic programming implementations� this result may suggest the possibility of
basing Horn�clause logic programming implementations on other theorem proving
strategies�

Furthermore� this work highlights what we feel is a dilemma of theorem proving�
namely� that most strategies are either ine�cient on Horn clauses or are not sensitive
to the theorem being proved� For hard problems� it seems essential to have a strategy
that works backwards from the theorem to try to �nd a proof� Although some
fairly hard theorems can be proved without backward reasoning� it seems unlikely
that a strategy that simply combines general axioms will make much progress� in
general� However� for Horn clauses� strategies that work backwards tend to be
highly ine�cient� and many problems consist largely of Horn clauses� The author
has been aware of this problem for some time� and has developed some strategies to
avoid this problem� But our impression is that few in the �eld appreciate this issue
properly� Even the strategies that overcome this problem have additional problems
of their own� The clause linking strategy of �LP��� is a back chaining strategy that
is e�cient on Horn clauses but sometimes needs to retain instances of more general
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clauses� Clause linking with semantics �CP�
� is e�cient on Horn clauses and makes
use of semantics� but sometimes needs to enumerate ground terms� which we would
also like to avoid� Also� the base method used for clause linking with semantics
does not involve uni�cation� Despite this� its notable successes on certain hard
problems tends to con�rm our theoretical considerations� We would like to �nd a
back chaining strategy that is e�cient on Horn clauses� based on uni�cation� and
still always permits instances to be deleted� Some such strategies exist� they are the
MESON strategy� model elimination �Lov	��� and the simple and modi�ed problem
reduction formats �Pla��� Pla���� all with caching� However� of these� either caching
of unit lemmas and subgoals is not complete for �rst�order logic� as for the �rst two�
or the strategies have propositional ine�ciencies for non�Horn problems� as for the
second two� For the MESON strategy and model elimination� if caching of non�unit
lemmas and subgoals is done� then the e�ciency on Horn clauses is lost�

� First Order Logic and Refutational Theorem

Proving

We assume the standard de�nitions of propositional and �rst�order logic� For a
discussion of �rst�order logic and theorem proving strategies see �CL	�� Lov	��
Bun��� WOLB�
�� We restrict our attention to clause form �rst�order refutational
theorem proving� A term is a well�formed expression composed of variables and
function and constant symbols� such as� f�x� g�y� c��� An atom is a predicate symbol�
possibly followed by a list of terms� For example� P and Q�a� f�x�� are atoms� A
literal is an atom or an atom preceded by a negation sign� For example� �P �b� is a
literal� A literal is called positive if it lacks a negation sign and negative if it contains
a �single� negation sign� A clause is a set of literals� signifying their disjunction�
Thus fP��Qg is a clause signifying P ��Q� Variables in a clause are assumed to be
implicitly universally quanti�ed� Thus the clause fP �x���Q�x�gmeans ��x��P �x��
�Q�x��� A clause is positive if all of its literals are positive� and negative if all of its
literals are negative� often we say all�negative for emphasis� A Horn clause is a clause
having at most one positive literal� Thus f�P��Q�Rg is a Horn clause� Such clauses
are commonly used in Prolog programs� A set of clauses signi�es the conjunction
of the clauses in the set� For example� the set ff�Q�x�� P �x�g� f�P �y�� Q�y�gg
signi�es the formula ��x���y����Q�x� � P �x�� � ��P �y� � Q�y���� Thus� a set of
clauses represents a quanti�er�free �rst�order formula in conjunctive normal form�
It is known that any �rst�order formula can be converted to this form e�ciently in a
satis�ability�preserving manner� The theorem proving problem �in this refutational
format� is to decide if such a set of clauses is unsatis�able� The general problem is
only partially decidable� A number of strategies have been developed to partially
decide this property� We are interested in comparing their e�ciency� We say a
strategy is complete if it correctly reports whenever a set of clauses is unsatis�able
but may fail to terminate if the set of clauses is satis�able�

A literal M is an instance of a literal L if M is obtained from L by replacing
variables by terms in a systematic way� that is� all occurrences of the same variable
are replaced by the same term� Thus P �f�a�� f�a�� is an instance of P �x� x�� We
similarly de�ne what it means for a clause D to be an instance of a clause C� We
de�ne the operation of unit simpli�cation as follows� Suppose we have a unit clause
fLg and another clause fM�� ����Mng� where L and M� are complementary� Then�
the clause fM�� ����Mng can be deleted and replaced by fM�� ����Mng� This extends
to �rst�order logic� in that case� we require that M� be an instance of the negation
of L�

We also de�ne pure literal clause deletion as follows� Suppose S is a set of clauses






and C is a clause in S� Suppose L is a literal in C and there is no literal M in any
clause of S such that L and the complement of M are uni�able� Then L is said to
be pure� Also� in this case� S � fCg is unsatis�able i� S is� So� pure literal clause
deletion is the operation of deleting such clauses from S� This may cause other
literals to become pure� Sometimes all of S can be deleted by repeated pure literal
clause deletion� In this case� S is satis�able�

We also de�ne subsumption� In the propositional setting� a clause C subsumes
D if C is a subset of D� We say C properly subsumes D if C is a proper subset of
D� In the �rst�order setting� we say that C subsumes D if C has a �substitution�
instance that is a subset of D� Note that if C subsumes D� then C logically implies
D� If C is derived� then one can often simplify clause sets by removing subsumed
clauses D without losing completeness�

� Search Space Formalism

We formalize theorem proving strategies as directed graphs� Formally� a theorem
proving strategy is a 
�tuple � S� V� i� E� u � where S is a set of states� i maps the
input clauses to a set of states� E is a set of edges �pairs of states�� and u maps
S to fTrue� Falseg� Each state s is labeled with a set label�s� of elements from
some underlying set V of structures �such as clauses or chains�� If an edge �s� t� is
in E� this means that t is a possible successor state to s� Thus� �S�E� is a directed
graph� We require that no two distinct edges �s�� t��� �s�� t�� have t� � t�� Thus
the graph is a set of trees� Also� u is an unsatis�ability test� u�s� is True if the
state s corresponds to a proof of unsatis�ability� We say such a strategy is complete
if for all sets R of clauses� if R is unsatis�able then there exists a path from some
element of i�R� to a state s such that u�s� is True� We say such a strategy is sound
if R is unsatis�able whenever there is a path from some element of i�R� to a state
s such that u�s� is True� A strategy is linear if for all s in S� there is a unique t
in S such that there is an edge from s to t in E� The intention of this de�nition is
that i and u are computable and of low complexity� Let FM be the set of ordered
pairs f�s� ft � �s� t� � Eg� � s � Sg for a strategy M � Thus� FM �s� is the set of
successors of a state s� We require that FM be a function� in the sense that if the
labels of s� and s� are the same then the sets of labels of their successors should
also be the same� �Recall that each state is labeled with a set of elements of V ��
Also� we intend that FM should be computable and of low complexity� Often we
omit V and write the strategy as a 
�tuple � S� i� E� u ��

As an example� we formalize resolution in this way� For this� we have the 
�tuple
� S� V� i� E� u � where each state in S is labeled with a �nite set of clauses� V is
the set of all clauses over some set of predicates and function symbols� i�R� � fRg
for all R� and �s� t� is in E if t is s together with all resolvents of clauses in s� Thus
resolution is a linear strategy� in this formalism� Finally� u�s� � True i� the empty
clause is in label�s�� Now� resolution formalized in this way is complete� since if R is
unsatis�able� there is a resolution proof of the empty clause fromR� Also� resolution
is sound� In contrast� model elimination is not linear in this formalism� For model
elimination� the labels of the states consist of single chains� Here i�R� is a set of
states� one for each clause in R� each state labeled with a singleton set containing
a single chain� Also� �s� t� is in E if the chain in the label of t is obtained by a
permissible operation �extension� reduction� or contraction� from the chain in the
label of s� Thus� strategies that are conventionally thought of as linear� become non�
linear in this framework� but strategies that are non�linear like resolution become
linear in this framework�






� Measures of Search Duplication

We now de�ne some measures of search space duplication for such strategies� For
this� we assume that R is a set of propositional clauses� for simplicity� although
these ideas can be lifted to �rst�order logic� We can think of a search space G ��
S� V� i� E� u � as a function mapping a set R of clauses to a graph G�R� representing
the search space for R� For this� we de�ne an initial state to be an element of i�R�
and a �nal state to be a state s such that u�s� � True� Thus the task of the theorem
prover is to �nd a path from an initial to a �nal state� We say a state s is reachable
from R if there is a path from some element of i�R�� to s� We are only interested in
the nodes s that are reachable from R� Also� we are only interested in edges in E
that occur on some such path� So� we de�ne S�R� to be the set of nodes reachable
from R� We de�ne E�R� to be the set of edges in E that occur on some path of
reachable states� Also� we de�ne G�R� to be the graph � S�R�� E�R� �� Let jT j
be the number of elements in a set T � Then� we are interested to know how jS�R�j
depends on the length c�R� of R� represented as a string of characters� For example�
is jS�R�j linear in c�R�� polynomial in c�R�� or exponential in c�R�� Also� we are
interested in the structure of the states� Recall that S is a set of states� each labeled
with a set of structures indicating lemmas or partial proofs� We are interested in
how big these sets of structures can become� because this is a meaningful measure
of search complexity� Thus� the most meaningful measure of search complexity is
the sum� over all s in S�R�� of jlabel�s�j� Let us call this measure jjG�R�jj� and refer
to it as the total duplication for R�

To further re�ne this measure� we consider three other measures� �� The maxi�
mum length of a path in G�R�� �� The maximum size of a subset of S�R�� no two
elements of which are on the same path� �� The maximum of jlabel�s�j for all s
in S�R�� We call the �rst� the duplication by iteration� the second� the duplication
by case analysis� and the third� the duplication by combination� The intuition for
this is that the length of a path represents the number of times that search must be
iterated� Also� each path represents a case that must be considered in the search�
so the second measure indicates the number of cases there are� The third measure
concerns the sizes of the labels of the states� If the sizes of the labels are large� then
there must be many elements of V in the same state label� However� in common
propositional strategies� the elements of V are constructed from the predicates ap�
pearing in the input clauses� This means that there must be many combinations of
these predicates� hence the term duplication by combination�

For each measure� we are interested in whether it is a constant� polynomial�
or exponential in c�R�� We are also interested in the size of the total duplication
jjG�R�jj� It is not di�cult to show that jjG�R�jj is bounded by the product of these
three measures� To see this� we note that G�R� is a tree� Each tree is a union of a
set of paths from the root to a leaf� We can thus identify each state of G�R� with
a pair �path� position� where the position tells the distance from the root� We thus
have that the number of ordered pairs �s� v� such that v � label�s� is equal to the
number of triples �path� position� v� where v � label�s� for s the state corresponding
to �path� position�� Thus the number of such ordered pairs �s� v� is bounded by the
product of the number of paths� the length of the longest path� and the number of
elements in the largest label� But the number of such ordered pairs is just jjG�R�jj
and the product is just the product of the three measures of duplication� This shows
that the total duplication is bounded by the product of duplication by iteration�
combination� and case analysis�

We say the duplication by iteration for R is constant if the duplication by iter�
ation is bounded� We say the duplication by iteration for R is linear if the ratio
of the duplication by iteration to c�R� is bounded� We say it is polynomial if the
duplication by iteration is polynomial in c�R�� We say it is exponential if the dupli�
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cation by iteration is exponential in c�R�� Similarly� we can de�ne what it means for
duplication by combination and case analysis to be constant� linear� et cetera� We
also de�ne in this way what it means for the total duplication to be linear� et cetera�
We say a strategy has polynomial behavior if all three kinds of duplication are poly�
nomial� or equivalently� if the total duplication is polynomial� We say a strategy
has exponential behavior if the total duplication is exponential� or equivalently� if
one of the three kinds of duplication is exponential�

If a strategy is linear� then a round is an edge in E�R�� The rounds are ordered�
the �rst round is the edge of the form �i�R�� s�� the second round is the edge of
the form �s� t�� and so on� so the edges are ordered by their distance from i�R��
Sometimes we use a similar terminology for non�linear strategies� It is often useful
to discuss the behavior of the rounds in order to analyze a strategy�

� Analysis of Duplication for Various Strategies

We are interested in determining the degree of duplication for various strategies
and their re�nements� In this way we obtain the following chart� This chart shows�
in addition to the search space measures for each strategy� whether the strategy is
goal sensitive� A strategy is goal sensitive for Horn clauses if each inference depends
on a negative Horn clause� this means that some kind of backward chaining from
the goal clauses is being done� In logic programming applications� one considers
the negative clauses as goals or queries� and we adopt the same convention here�
This seems to be true of many mathematical theorems as well as logic programs� Of
course� there is no intrinsic reason why negative literals should be treated di�erently
than positive literals in a more general context� If a strategy G is goal sensitive� then
G�R� will be empty for sets R of Horn clauses containing no all�negative clauses� We
also indicate the search depth� this is the maximum length of a path in the search
space from an initial to a �nal state� This indicates the depth at which a proof
can be found� This di�ers from duplication by iteration� duplication by iteration
considers essentially the maximumnumber of rounds of inference that can be done�
whether or not a proof is found� This could conceivably be larger than the search
depth �for example� if the set of input clauses is satis�able or if we chose the wrong
path to search�� Presumably� the prover will not continue to search beyond nodes
s for which u�s� � True� Thus� in some situations� search depth may give better
information than duplication by iteration�

The chart is based on propositional Horn clauses� Horn clauses are interesting
because they correspond to a derivation of a fact �atom� from a collection of facts
�atoms�� and such derivations are common� Horn clauses as a result appear fre�
quently in sets of clauses seen by theorem provers� In addition� Horn clauses are
useful for studying how a theorem prover performs subgoaling� Such clause sets are
decidable in linear time �DG�
�� However� it is conceivable that one could do even
better than that� One may not even have to look at all the input if a goal�directed
method is used� only the clauses that are in some sense relevant to the goal need to
be considered� This could be relevant if there are thousands of input clauses and if
many queries are given to the same database of clauses� In addition� our results are
transferrable to certain �rst�order clause sets� as we will show� It is instructive at
the beginning to give the simplest sets of clauses illustrating the various behavoirs�
Another reason for the interest in propositional Horn clauses is because of the dra�
matic di�erences they reveal between di�erent strategies� often strategies that di�er
in fairly small and seemingly insigni�cant ways�

We would like to emphasize that the functions in this chart are upper bounds�
valid for all propositional Horn sets� In addition� the bounds are tight� meaning
that there are propositional Horn sets for which these bounds are achieved� Since

	



we give several speci�c sets of clauses below� the reader may get the impression
that we are only measuring the search behavior for these sets of clauses� This is an
incorrect impression� These clause sets are only used to show that the bounds are
tight�

Also� we are not considering which search method is used� whether depth��rst�
breadth��rst� best��rst� or some other search method� We only consider the total
size of the search space� It�s possible that a very good search method could lead to
better bounds� However� we are not aware of any search method that can improve on
the bounds given below� In particular� breadth��rst search and depth��rst iterative
deepening �Kor�
� ST�
� should explore a portion of the search space having the
same size as that indicated here� That is� if any of the bounds are exponential�
these search methods will explore an exponential amount of the search space� Also�
for theorem proving strategies having exponential search depth� any search method
will �sometimes� explore an exponential amount of the search space�

The following abbreviations are used in this table� hyper�res means hyper�
resolution� ord means ordering the literals� P��ded means P��deduction� ��lit means
��literal clauses� res means resolution� A�ord means A�ordering� neg means nega�
tive� g�o� means good ordering� b�o� means bad ordering� supp means support� ME
means model elimination� lemmmeans lemmas� cach means caching� sprf means the
simpli�ed problem reduction format� mprf means the modi�ed problem reduction
format� clin means clause linking� f� means forward� b� means backward� and conn
means a connection calculus�

Search Case Goal
Strategy Depth Combination Iteration Analysis Sensitive

hyper�res linear linear linear O��� no
hyper�res� ord linear linear linear O��� no
P��ded linear exp� linear O��� no
P��ded� � lit linear linear linear O��� no
P��ded� ord neg linear linear linear O��� no
res� A�ord linear exp� linear O��� no
all�neg res linear exp� linear O��� yes
all�neg res� g�o� linear exp� � O��� yes
all�neg res� b�o� exp� exp� exp� O��� yes
res� neg supp linear exp� linear O��� yes
ME exp� O��� exp� exp� yes
ME� unit lemm linear exp� linear O��� yes
ME� unit lemm� cach linear linear linear O��� yes
MESON exp� O��� exp� exp� yes
MESON� unit lemm� linear linear linear O��� yes
cach
sprf� no cach exp� O��� exp� exp� yes
sprf� cach linear linear linear O��� yes
mprf� no cach exp� O��� exp� exp� yes
mprf� cach linear linear linear O��� yes
clin� f� supp linear linear linear O��� no
clin� b� supp� linear linear linear O��� yes
f� conn� linear linear linear O��� no
b� conn� exp� O��� exp� exp� yes

We can make some general observations about this table� The backward chaining
strategies are goal�sensitive� but are mostly ine�cient� Forward chaining strategies�
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though e�cient for Horn clauses� are not goal�sensitive� All of the strategies that
are goal sensitive have exponential duplication� except for the simpli�ed problem re�
duction format with caching� the modi�ed problem reduction format with caching�
and clause linking with backward support� MESON and model elimination with
caching and unit lemmas have this property� but these are not complete for general
�rst�order clauses� A recent implementation of model elimination and unit lemmas
with caching is described in �AS���� Note that some re�nements can be very dam�
aging to a strategy� For example� ordering negative literals can severely degrade
the performance of negative resolution�

These results are valid for sets of Horn clauses� We might consider a more general
set of clauses� namely� those for which a renaming of predicate symbols produces
a Horn set� For such clauses� none of the results given above are any better� and
many of the results are much worse� For example�P� deduction and hyper�resolution
can be made as bad as all�negative resolution� since we can choose to reverse the
signs of the literals� making P� deduction and hyper�resolution simulate all�negative
resolution� We believe that the behavior of the simpli�ed and modi�ed problem
reduction formats degrades in a similar way� However� clause linking still has only
linear duplication of search� This sets it apart from all other strategies considered�
but the reason is that unit simpli�cation is built in to this strategy� Without this�
it might not have such good behavior either� And of course� other strategies with
unit simpli�cation added would have this good behavior also on unsatis�able Horn
sets� However� satis�able Horn sets are more of a problem for the strategies other
than clause linking since clause linking has a model��nding approach to detecting
satis�ability that doesn�t seem to �t into the other strategies given here� One can
show that the model��nding part of Davis and Putnam�s method will always succeed
in polynomial time for satis�able propositional Horn sets �GU����

��� Hard sets of clauses for the strategies

We now indicate how the above results were derived� For this we consider the sets
of clauses S�n� S

�
n� and S�n de�ned as follows� Note that S

�
n is unsatis�able but S

�
n

and S�n are satis�able�
Let S�n be the set of n�� clauses ff�P���P�� �����Pn� Pg� fP�g� fP�g� ���� fPng�

f�Pgg� We sometimes write clauses in Prolog format� a clause fP��P�� �����Png is
written as P �� P�� ���� Pn� A clause f�P�� �����Png is written as �� P�� ���� Pn�
Let S�n be the following clauses� written in Prolog format for readability�

goal clause �� P��n

type � clauses Pi�j �� Pi���j� Pi�j��� � � i � j � n

Pi�j �� Qi���j� Qi�j��� � � i � j � n

Qi�j �� Pi���j� Qi�j��� � � i � j � n

Qi�j �� Qi���j� Pi�j��� � � i � j � n

type � clauses Pi�i �� Pi�i�n��� i � n��

Qi�i �� Qi�i�n��� i � n��

Pi�i �� Pi�n���i� i � n��

Qi�i �� Qi�n���i� i � n��

The following picture should help to illustrate the structure of S�n� The type �
clauses are not shown�
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We can think of backward chaining theorem proving strategies on this set of clauses
as ways of moving P �pebbles and Q�pebbles around on this graph� Initially� there is
a P �pebble on the ��� n� vertex� At each step� we are permitted to remove a pebble�
If we remove a P pebble from vertex �i� j�� we must either add two P pebbles or
two Q pebbles to the two vertices �i� j � �� and �i � �� j� below� If we remove a Q
pebble� we must add a P pebble and a Q pebble to these vertices� Note that the
parity of the number of Q pebbles never changes unless some Q literal is generated
in two or more ways� Later we will formalize this pebbling idea in a more general
context�

Let S�n be the following clauses� in Prolog format�

goal clause �� P�� Q�

type � clauses Pi �� Pi��� Pi��� � � i � �n� �

Pi �� Qi��� Qi��� � � i � �n� �

Qi �� Pi��� Qi��� � � i � �n� �

Qi �� Qi��� Pi��� � � i � �n� �

type � clauses P�n�� �� Pn��

P�n �� Pn

Q�n�� �� Qn��

Q�n �� Qn

The following picture should help to illustrate the structure of S�n� As before�
the type � clauses are not shown�
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Here we can think of backward chaining strategies as methods of pebbling this
graph� Whenever a pebble is removed from vertex i� pebbles must be added to
vertices i � � and i � �� As before� there are P pebbles and Q pebbles and the
parity of the number of Q pebbles is preserved unless a Q pebble is generated in
two ways�

We also introduce the set T �
n of clauses which is S

�
n together with the unit clauses

Pi�i and Qi�i for � � i � n� We introduce T �
n which is S

�
n together with the unit

clauses P�n��� P�n��� Q�n��� and Q�n��� T �
n and T �

n are unsatis�able� but easy if
unit simpli�cation is done�

We now give a sample backward chaining proof attempt� Consider S�n� We can
resolve the initial goal clause �P��n with P��n �� P��n� P��n�� to obtain the clause
f�P��n��P��n��g� Then we can resolve this with P��n �� Q��n� Q��n�� to obtain the
clause f�Q��n��Q��n����P��n��g� Di�erent choices for these two resolutions would
have led to eight clauses in all �because we have a choice which literal to resolve on��
As the number of resolutions increases� the number of clauses generated increases
exponentially� For S�n� the graph is narrower� but one can still get exponentially
many such proofs by backward chaining�

We use these clause sets to show exponential behavior of some of the strategies�
The strategies that have exponential behavior are often back chaining strategies
that are similar to Prolog �SLD resolution �Llo�	� � in their execution� thus� a
clause fP��Q��Rg can be viewed as a Prolog clause P �� Q�R� which means that
if P is a goal� then Q and R become subgoals that are solved in turn� An SLD�
resolution between this clause and some all�negative clause C such that �P � C
produces the clause C�f�Pg�f�Q��Rg� This replaces the literal �P by �Q and
�R� corresponding in Prolog terms to replacing the subgoal P by the subgoals Q
and R� Initially� an all�negative clause is chosen to start the search� The literals
of the all�negative clauses are considered as �sub�goals� The search proceeds by
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subgoaling�
We now indicate why these clauses sets are di�cult for some strategies� In S�n�

there are a large number of negative literals in the non�unit clause� and if an order
for resolving them is not speci�ed� many clauses can be generated with some of the
negative literals deleted� since there are exponentially many orders for resolving the
literals� This causes a problem for forward chaining methods that do not order the
negative literals� In S�n� for each subgoal Pi�j and Qi�j� there is a choice of two clauses
to resolve with it� each generating two more literals �subgoals�� �This corresponds
to the two ways of choosing P pebbles and Q pebbles�� These choices each generate
more subgoals� each having two choices for a clause to solve it� Therefore� these
choices can be made in many ways� generating many combinations of the Pi�j and
Qi�j for backward chaining methods� Also� for some methods� the same subgoal
will be solved repeatedly� This set of clauses was chosen to neutralize the obvious
methods of reducing the search space� The type � clauses were added so there would
be no pure literals� to neutralize pure�literal�clause deletion� In S�n and T �

n � there
are fewer clauses altogether and fewer subgoals at each level� The subgoals Pi and
Qi both depend on Pi��� Qi��� Pi��� and Qi��� for all i � n� ��

Let�s adopt the Prolog subgoal calling formalism to describe the search space
for all�negative resolution� In T �

n � the top�level goal clause is f�P���Q�g� This
corresponds to the two subgoals P� and Q�� If we call subgoals in a depth��rst
manner� we will �rst attempt P�� which will eventually succeed� and then we will
call Q�� During one attempt to solve P� �one resolution�� the subgoals P� and
P� will be generated� and in another attempt to solve P�� the subgoals Q� and
Q� will be generated� During one attempt to solve Q�� the subgoals P� and Q�

will be generated� and during the other attempt� the subgoals Q� and P� will be
generated� This leads to a total of two occurrences of each of the subgoals P��
P�� Q��and Q�� Each occurrence of P� and Q� will eventually be called� each call
corresponds to two resolution operations� and each resolution generates two more
subgoals� All subgoals attempted will eventually succeed� and later subgoals in the
same clause will be called� Thus four more occurrences of the subgoals P� and Q�

will be generated and eventually called� So the subgoals P� and Q� will both be
solved twice� the subgoals P� and Q� will both be solved six times� et cetera� in
an exponential sequence generated by a simple recurrence relation� Let t�L� be the
time required to generate a proof of a literal L using some strategy� With depth��rst
search as indicated here� we have t�Pi� � �� t�Pi��� � t�Pi��� � t�Qi��� � t�Qi���
and t�Qi� � �� t�Pi��� � t�Qi��� � t�Qi��� � t�Pi��� for i � �n� �� The solution
is exponential� and this leads to exponential behavior for most backward chaining
methods� and often to exponential search depth�

In S�n the behavior is a little better� all the attempts to solve a subgoal will
fail and this will be detected within a linear number of rounds� Thus� for example�
in the top�level clause f�P���Q�g� if the subgoal P� is attempted �rst� it will
eventually fail and Q� will never be called� This considerably reduces the size of
the search space� However� the duplication by combination will still be exponential�
since there are an exponential number of paths of subgoal calls that are possible
from each top�level goal� We believe that T �

n and T �
n will be quite a challenge for

pure back�chaining methods without unit simpli�cation� and S�n and S�n will be a
challenge for pure back�chaining methods even with unit simpli�cation� Of course�
these clause sets can be solved fast by forward chaining methods�

Now� the strategies that have exponential behavior can often be made more ef�
�cient in simple ways� such as adding unit simpli�cation� For example� T �

n and T
�
n

can be shown unsatis�able in polynomial time in this way� However� unit simpli��
cation and subsumption do not help S�n and S�n because there are no positive unit
clauses in the input� Also� these examples could be made slightly more complicated
or lifted to �rst order logic and would still reveal the same poor behavior� even
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with unit simpli�cation� Later we give such simple modi�cations to these sets of
clauses� We think it is most illuminating initially to give the simplest examples
demonstrating bad behavior� Furthermore� we believe that the kinds of bad behav�
ior illustrated here often occur in practice in the execution of theorem provers� but
they are masked by the thousands and thousands of clauses generated� A straight�
forward implementation of various strategies can produce combinatorial problems
of which the programmer is not aware� An awareness of these problems can lead to
modest changes to the search procedure which can have dramatic �positive� e�ects
on its performance�

We now discuss the strategies in turn� justifying the entries in the above chart�
Often we identify a state with its label� and thus each state is considered as a set
of elements of V � though this is not formally correct� First we consider hyper�
resolution �Rob�
��

��� Hyper�resolution

Hyper�resolution is equivalent to a sequence of resolutions that eliminate all the
negative literals in a clause� by resolving with clauses that are all�positive� The
positive clauses are called electrons and the clause containing negative literals is
called the nucleus� For example� by hyper�resolving the nucleus f�P��Q�Rg and
the two electrons P and Q we obtain the hyper�resolvent R� Now R �really fRg�
subsumes the original nucleus f�P��Q�Rg� For theorem proving purposes� sub�
sumed clauses can be deleted� so that we delete the original nucleus and only retain
the simpler clause R� We assume that such subsumed clauses are deleted� In gen�
eral� for propositional Horn clauses� each hyper�resolvent is a positive unit clause
that subsumes the parent �nucleus� clause� causing the parent to be deleted� There�
fore� each round of hyper�resolution reduces the size of the clause set� Therefore�
after a linear number of rounds� either a proof is found or the search stops �for Horn
sets�� This means that the search depth and the duplication by iteration are linear�
Also� there is constant duplication by case analysis �since this method is linear in
our formulation� and linear duplication by combination �since literals from di�erent
clauses are never combined� and the number of clauses in each state is no greater
than that in the previous state�� Also� the same analysis applies to hyper�resolution
enhanced with any literal ordering method �ordering of the positive literals�� since
in the Horn case each clause has at most one positive literal�

��� P� deduction

P��deduction is the strategy that resolves two clauses only if one of them is pos�
itive �Rob�
�� For Horn clauses� as in hyper�resolution� this produces a clause
that subsumes its parent� For example� if we resolve P �which is positive� and
f�P��Q�Rg we obtain f�Q�Rg� which subsumes f�P��Q�Rg� Thus the parent
clause f�P��Q�Rg can be deleted� In this way� if subsumption �at least parent
subsumption� is tested after each resolution� then each P� resolution reduces the
size of the set of clauses� so that the search depth and the duplication by iteration
and combination are always linear�

Assuming that subsumption is only tested after each round of resolution� it is
possible to obtain additional resolvents� We could have resolved Qwith f�P��Q�Rg
to obtain f�P�Rg� for example� In this way� we can obtain resolvents containing
arbitrary subsets of the negative literals of a clause� Because any subset of the
n subgoals �negative literals� can be generated� there are �n clauses that can be
generated� Subsumption testing after each round will reduce this number to some
extent� since sets need not be retained if proper subsets have been generated� To
analyze this� we consider the order in which the clauses are generated� P� deduction
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on S�n will �rst generate all subsets of size n��� then all subsets of size n��� deleting
those of size n� � by subsumption� then all subsets of size n� �� deleting all those
of size n� � by subsumption� and so on� Also� given two distinct ground clauses of
size k� neither can subsume the other� Therefore� the number of clauses generated
is at least the maximum over k of the number of subsets of n elements of size k�
This implies that there will be at least �n��n � �� clauses generated such that no
such clause subsumes any other� This bound is actually not as good as possible�
but it is still exponential� We can derive this bound by noting that for some k� the
number of subsets of size k must be at least �n��n���� since there are at most n��
sizes and �n subsets altogether� However� the search depth and the duplication by
iteration are linear� and there is a constant duplication by case analysis�

If the input clauses are restricted to have � literals� then there are at most two
subgoals per clause� and at most 
 subsets of these exist� Thus the duplication
by combination is linear� Another re�nement is to specify a total ordering on the
negative literals of a clause� Only the negative literal that is smallest in this ordering
can be resolved on� This is still complete� If an ordering on predicate symbols is
speci�ed� then the subgoals will be solved in order� reducing the number of subsets of
the subgoals generated to a linear amount� This indicates the potential importance
of limiting the number of literals per clause �which can be done by introducing new
predicate symbols�� and ordering the predicate symbols�

��� A�ordering

Resolution with A�ordering �Sla�	� is the strategy in which an ordering is speci�ed on
predicate symbols� and literals with predicates that are maximal in the ordering� are
resolved on �rst� For example� suppose we have clauses f�P��Q�Rg and f�R� Tg�
Suppose R � P � R � Q� R � T where � is the ordering on predicates� Then
R is the predicate that will be resolved on� and we can resolve these two clauses
to produce the clause f�P��Q� Tg� We assume that the ordering used is a total
ordering� although one could just as well de�ne A�ordering with a partial ordering
on the predicate symbols� We note that A�ordering proofs are regular� in the sense
of �Tse���� so that the proof length is exponential for all clause sets for which regular
resolution has exponential length proofs� But this does not settle its behavior on
Horn sets� A�ordering does not behave exactly like P��deduction or like all�negative
resolution with ordering� One would think that by choosing a suitable ordering we
could simulate these� but it does not appear in general to be possible� We would
have to make the unit clauses maximal in the ordering to simulate P� deduction� but
because these unit clauses may also appear elsewhere� some non�P� deductions may
occur� For example� we could have a clause set containing� among other clauses�
f�Q�Pg� fPg� and f�P�Rg� If we make P maximal in the ordering to simulate
P� deduction� there will also be an unwanted resolution on the occurrence of the
literal P in the clause f�Q�Pg� However� we note that the clause fPg subsumes
f�Q�Pg� so if subsumed clauses are deleted� the problem disappears� There is
another problem� however� that prevents the simulation of P��deduction in some
cases� we will present this additional problem later in section 
����

It is conceptially simpler to think of A�ordering with the search reordered a
little� Suppose the predicate symbols are ordered P� � P� � � � � � Pn� Then in
the �rst round� all A�ordering resolutions on the literal P� are done� and in the
second round� all A�ordering resolutions on the literal P� are done� and so on� Let
us call this uniform A�ordering� in contrast to the usual search method in which all
possible A�ordering resolutions are done at each round� we call the latter breadth�
�rst A�ordering search� The uniform version is still a complete theorem proving
strategy for propositional clauses� even non�Horn clauses� This uniform search
method explores essentially the same search space as breadth��rst A�ordering� but
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it can result in a search space larger or smaller than breadth��rst search due to the
di�erent subsumption deletions that can occur� We can express one relationship
between the two methods of search as follows�

Theorem ��� Suppose S is a set of clauses and uniform A�ordering without sub�
sumption deletion generates a search space of size s� from S� Suppose breadth��rst
A�ordering with subsumption deletion generates a search space of size s�� Then
s� � s��

Proof� Breadth��rst A�ordering does the same resolutions as uniform A�ordering�
but some of them occur in earlier rounds� Therefore breadth��rst A�ordering with�
out subsumption deletion generates the same search space as uniform A�ordering
without subsumption deletion� It follows that breadth��rst A�ordering with sub�
sumption deletion generates a search space that is the same size or possibly smaller�

�

It is clear that uniform search will stop after a linear number of rounds �when
all the predicate symbols have been eliminated�� Therefore the search depth and
the duplication by iteration for uniform A�ordering are always linear� regardless of
the ordering� After all predicates have been resolved on� the search stops� This
holds even for non�Horn clauses� by the way� This shows that uniform A�ordering
has a de�nite global notion of progress �elimination of predicates from the set of
clauses�� Because of the similarity of uniform A�ordering to the usual breadth��rst
A�ordering� it turns out that breadth��rst A�ordering also has linear search depth
and duplication by iteration� and a de�nite notion of progress� However� we give a
formal proof of this as follows�

Theorem ��� The search depth and duplication by iteration for A�ordering is lin�
ear� in fact� bounded by the number of predicates in S�

Proof� Suppose C is an A�ordering resolvent of C� and C�� Then the maximum
predicate symbol in C is smaller than the maximum predicate symbols in C� and
C�� Then if C resolves against some other clause D� the resolvent of C and D will
have a maximum predicate symbol that is yet smaller� A simple induction shows
that no new resolvents can be produced beyond a depth of search equal to the
number of predicate symbols�

�

For Horn sets� this is actually not better than the situation for all�negative
resolution without ordering� where the search depth is also linear� But it is better
than all�negative resolution with ordering� which can produce an exponential search
depth for a bad ordering� However� duplication by combination for A�ordering can
still be exponential� as shown by S�n� If we choose the A�ordering in S�n so that
the predicates Pi�j are ordered by j � i� that is� Pi�j � Pk�l if j � i � l � k�
then exponentially many combinations of literals are generated� This is so because
whenever we resolve on a literal Pi�j we have two clauses to choose from� each
generating a di�erent combination of literals� The same is true for Qi�j� Each such
resolution produces literals whose jj � ij value is one less� Thus it takes n stages
until all such resolutions are exhausted� and a number of combinations exponential
in n is generated� Also� A�ordering is not goal�sensitive� To verify this� it is only
necessary to choose a set of Horn clauses with one goal clause �P that is a negative
unit clause� and to order the predicate symbols so that P is smallest� Then the
goal clause �P will not participate in any resolutions until the very end� One might
ask whether we can make the A�ordering strategy goal sensitive by a proper choice
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of ordering� This is not always possible� if the goal is �P��Q then it can happen
that P also appears in other clauses� If P is made maximal in the ordering� then
resolutions involving P may occur that are not goal�sensitive �say� a resolution with
the clause �P�R�� However� later on we give special cases for which an ordering can
be found that is goal�sensitive� Another question is whether there is always a good
ordering for every set S of clauses� that is� an ordering that will produce polynomial
behavior for A�ordering� Later we show that this is not always possible� but give
some special cases where such a good ordering always exists�

��� Implications for term rewriting

Note that the �rst�order strategies based on term�rewriting techniques �HR��� BG���
generally reduce to A�ordering methods on clauses without equality� This shows that
these methods also sometimes su�er from exponential search ine�ciency and often
lack goal sensitivity� Nor do they have smaller search depth than all�negative reso�
lution� However� there is some advantage for A�ordering strategies over all�negative
resolution in this framework� and that is that regardless of the ordering used� the
search depth is still linear� �And this holds even for non�Horn sets�� Also� term�
rewriting methods are often very e�cient on pure equality problems� An advantage
of all�negative resolution is that it is goal�sensitive� Because of its importance for
term�rewriting� we explore the behavior of A�ordering further� after introducing
proof dags� This will reveal some additional advantages �and disadvantages� of
resolution with A�ordering� It seems that methods based on conditional rewriting
�ZK��� may order the search di�erently and may have di�erent search behavior�

��� Proof dags

To facilitate the analysis of the remaining strategies� and even to clarify the analy�
sis of the preceding ones� we introduce the concept of a proof dag �directed acyclic
graph�� This illustrates the dependencies between the literals in a minimal unsat�
is�able set of Horn clauses� Let S be a minimal unsatis�able set of Horn clauses�
The proof dag D�S� of S has as vertices the predicates appearing in S� Since S is
minimal unsatis�able� for every positive literal P in S there is a unique clause C
in S containing P positively� and there will be one or more clauses containing �P �
Suppose C is P� � P� � ���� Pn 	 P � Then the proof dag D�S� has edges from Pi
to P for all such i� Given a predicate P in S� de�ne its subgraph D�P � to be the
vertices v in D�S� from which there is a path to P � together with edges beween
such vertices� These are the predicates that contribute to a proof of P and their
dependencies� Note that a clause is a set of literals� and this can often be associated
with a set of vertices of the proof dag� This can in turn be regarded as a pebbling of
the graph� that is� we can think of some of the vertices as having pebbles on them�
The inference procedure on a clause will often correspond to natural ways of mov�
ing these pebbles around the graph� This helps to explain and to understand the
performance of the various strategies� For all�negative resolution� we can think of
a clause C as a pebbling in which the predicates appearing in C are pebbled� Thus
if C is f�P��Qg� then the pebbling corresponding to C would include the vertices
P and Q in the proof dag� An all�negative resolution corresponds to the removal of
a pebble from a vertex and the addition of pebbles to its predecessors� For exam�
ple� a resolution of an all�negative clause f�P��Qg with the clause f�P���P�� Pg
corresponds to a removal of a pebble from P and the addition of pebbles to the
predecessor vertices P� and P�� For hyper�resolution� each resolvent is a positive
unit clause� and we place a pebble on each vertex P for which the corresponding
positive unit clause P has been derived� Though formally adding nothing new� this
terminology sometimes helps to clarify the underlying ideas�

��



De�ne the proof complexity cp�P � to be the number of vertices in D�P �� For
example� suppose S is the set of clauses containing fPg� f�P�Qg� and f�Qg� Then
the proof dag D�S� has two vertices P and Q and an edge from P to Q� Also� cp�P �
is � and cp�Q� is �� Now� if Q�� ���� Qn are the vertices of D�S� with no outgoing
edges� then these are goal vertices and there must be a goal clause f�Q�� �����Qng
in S� In our example� Q is a goal vertex� Also� a vertex with no incoming edges is
a fact �a positive unit clause�� like P in our example� It is convenient to use proof
dags because it is often convenient to specify orderings on predicate symbols in
terms of their structure and thereby derive bounds on the performance of resolution
strategies� For example� if we choose an A�ordering in which literals with small
cp values are resolved on �rst� then we can cause A�ordering to simulate forward
reasoning� that is� P� deduction with ordering of negative literals� This yields
polynomial behavior on minimal unsatis�able sets of Horn clauses�

��	 Other properties of clause sets

Proof dags are only de�ned for minimal unsatis�able clause sets� However� we would
like to use the machinery of proof dags even on satis�able sets of clauses� We can do
this as follows� We say that a set S of Horn clauses is well�ordered if there is a partial
ordering � on the predicate symbols such that if P �� P�� ���� Pn is a clause in S
then Pi � P for all i� Note that minimal unsatis�able Horn sets are well�ordered�
We call the minimal such ordering the well�ordering of the predicate symbols� We
say that a set S of Horn clauses is deterministic if for every predicate symbol P
there is at most one clause C in S such that P appears positively in C� that is�
P � C� We note that minimal unsatis�able Horn sets are both well�ordered and
deterministic� Also� many of the results that are stated for minimal unsatis�able
clause sets apply equally well to well�ordered� deterministic clause sets� In order to
apply well�orderings to A�ordering and all�negative resolution� it is convenient to
extend these orderings to total orderings on S� and we typically assume that this is
done in some manner� especially for A�ordering�

��
 All�negative resolution

All�negative resolution is like P��deduction with signs reversed� One of the parent
clauses in a resolution must be all�negative� As explained earlier� this strategy does
poorly on S�n and S�n� generating exponentially many combinations of subgoals�
However� the search depth for all�negative resolution is still linear� and there is no
�i�e�� constant� duplication by case analysis� To see that the search depth is linear�
suppose that S is minimal unsatis�able and consider a proof dag D�S� for S� Each
resolution involves a literal �P from an all�negative clause C and a literal P from
another clause D� Now� the e�ect of the resolution is to replace the literal �P in
C by the other literals in D� However� these other literals �Q in D will satisfy
cp�Q� � cp�P �� Therefore� if one always chooses the literal �P such that cp�P � is
maximal� each resolution will reduce the maximum cp�P � value of predicates P in
the clause� and a proof will be found after a linear number of resolutions� Or it may
be necessary to perform a sequence of resolutions to e�ect this� if there are more than
one negative literal with the same maximum cp value� If S is unsatis�able but not
minimal unsatis�able� this reasoning can still be applied to a minimal unsatis�able
subset of S� If S is satis�able� then we can still show that the duplication by
iteration is linear� but the argument is a little more complicated� as follows�

Theorem ��� Suppose S is a propositional Horn set containing n di�erent pred�
icate symbols� Let C be some clause generated from S by all�negative resolution�
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Then there is some clause C� generated from S by not more than n all�negative
resolutions such that C� is a subset of C�

Proof� Suppose C�� C�� ���� Cp is a minimal�length all�negative resolution proof of
C� This means that Cp is C and every clause in the sequence is either in S or is
an all�negative resolvent of two earlier clauses in the sequence� It is not hard to
see that in this proof� at most one all�negative input clause is involved� Suppose
without loss of generality that this clause is C�� Now� from this proof� we construct
a proof D�D����Dk of length at most n of a clause C� such that C� subsumes C� We
choose D� to be C�� For each literal L that does not appear in C� let last�L� be the
maximum i such that L � Ci� We obtain Di�� from Di by applying the following
rule� Pick a literal �P of Di to resolve such that last��P � is as small as possible�
Let j be last��P �� This literal was removed from Cj by resolving with some clause
D of S containing P to give Cj��� We resolve Di with D on the literals P and
�P to obtain Di��� This has the e�ect of replacing the literal �P of Di with other
literals of D� We note that these other literals of D appear in Cj��� Therefore their
last appearance in the proof of C is later than the last appearance of �P � Each
step of this proof increases the minimum value of last�L� for literals L in the clause
Ci� This means that the literal �P will never be reintroduced into a clause Dm for
m � j� Therefore� after n such resolutions� all literals that can be resolved on will
have been� so that there are no resolutions left to do� This implies that a clause
Cj has been derived containing only literals of C� so Cj subsumes C� and we can
choose C� to be Cj�

�

Corollary ��� After n rounds of all�negative resolution� all such C� will be gen�
erated� and so every clause C that can be generated by all�negative resolution will
be subsumed by an already�generated clause� Then the search will stop� assuming
that subsumed clauses are deleted� Thus the duplication by iteration is linear for
all�negative resolution�

��� All�negative resolution with ordering

We can specify an ordering on the predicate symbols for all�negative resolution�
This means that in an all�negative clause C� the predicate symbol P of C that
is maximal in the ordering is the only one that is resolved on� Typically a total
ordering is used� but one can just as well use a partial ordering� One would expect
that this use of an ordering would improve the behavior of the strategy� since fewer
resolutions are possible� However� if an ordering on predicate symbols is speci�ed�
it can actually make the behavior much worse� It is only necessary to order the
predicates so that the predicates P with smaller values of cp�P � are resolved on
�rst� This corresponds to moving the pebbles �rst that are farthest from the goal
clause� For example� on T �

n � this can cause each subgoal to be completely solved
before working on the others� if we order the predicate symbols so that the Pj and
Qj with high j are resolved �rst� This can lead to exponential search depth �and
duplication by iteration�� and still allows exponential duplication by combination
on T �

n and T �
n� We give an example of a sequence of moves in a pebbling for T

�
n�

We note that this only gives a portion of the search� since other clauses also can be
used� First we remove a pebble from P� and place pebbles on P� and P�� say� This
corresponds to deriving the clause f�P���P�g� �We could also have chosen Q� and
Q��� Then we remove the pebble from P�� and place pebbles on P� and P�� Then
we remove the pebble from P� and place pebbles on P� and P�� Eventually we solve
P�� removing the pebble from P� and all lower pebbles� We then remove the pebble
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from P� and add pebbles on P� and P	� Eventually P� and P	 are solved� Then
pebbles are left on Q�� P�� and P�� Next we remove the pebble from P� and place
pebbles on P� and P�� and so on� The fact that the lowest pebble is always moved
means that subgoals are solved repeatedly�

A good ordering can lead to a linear search depth� We obtain a good ordering by
resolving �rst on the predicate symbols P with a high value of cp�P �� For example�
on S�n and T

�
n � this means that we resolve the Pj and Qj with low j �rst� Then we

obtain linear search depth and polynomial behavior� For S�n and T
�
n this corresponds

to a pebbling as follows� The pebble on P� is removed and pebbles are placed on
P� and P� �say�� Then the pebble on Q� is removed and replaced by pebbles on
P� and Q�� say� But there is only one pebble kept on P� even though it has been
pebbled twice� Then the pebble is removed from P� and pebbles are added to P�
and P�� Then the pebble is removed from P� and replaced by pebbles on P� and
P�� at this stage there are pebbles on Q�� P� and P�� In a small number of steps
we will reach the bottom and the search will end�

In general� if S is deterministic and well�ordered� and we use the well�ordering �
on S� then all�negative resolution with ordering may not have polynomial behavior�
The reason for this is that the ordering � may not be total� so an all�negative clause
may have many maximal literals that are not ordered with respect to each other�
Therefore many resolutions may be possible� an exponential number of clauses may
be generated� and the duplication by combination may be exponential� However�
if we extend the well�ordering � to a total ordering ��� then the behavior will
be polynomial for deterministic� well�ordered clause sets� This is because every
resolution will replace a maximal literal �P in an all�negative clause by other literals
�Q such that Q �� P � and therefore the maximal negative literal in an all�negative
clause will decrease in the ordering with every resolution operation� Note that this
result applies to minimal unsatis�able Horn sets� too� since they are deterministic
and well�ordered�

However� a good �even total� ordering cannot always reduce the duplication
by combination to a polynomial amount� if S is not deterministic� On S�n� there
is exponential duplication by combination regardless of the ordering on predicate
symbols chosen� but the proof is somewhat subtle� The reason for this is that we
have to consider all possible orderings of predicate symbols and show that for all of
them� the duplication by combination is exponential�

Theorem ��� All�negative resolution with an ordering on the negative literals pro�
duces an exponential search space on S�n� regardless of the ordering used�

Proof� We construct a set E of �n�� interpretations I of the set fPi�j� Qi�j �
� � i � j � ng� We consider an interpretation as a function from predicate
symbols to truth values� such that I assigns P a value of True i� I j� P � For an
arbitrary ordering � on the predicate symbols� we show that there exists a set of
�n�� critical clauses CI � one for each interpretation I � E� such that all the critical
clauses will be generated by all�negative resolution with the ordering �� The set
E of interpretations is de�ned as the set of interpretations that are models of the
following set of formulae�

P��n

��Pi�j 
 Qi�j�� � � i � j � n

Pi�j 
 �Pi���j 
 Pi�j���� � � i � j � n

These de�ne Pi�j and Qi�j in terms of literals with smaller values of j � i� The
entire interpretation is therefore determined by the assignments to Pi�i and Qi�i�
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However� Qi�j is de�ned in terms of Pi�j� hence the entire interpretation is de�ned
by the �n possible assignments to Pi�i for � � i � n� The formula P��n also
constrains these interpretations� However� one can show by a simple induction that
if I and J are two interpretations agreeing on the literals of form Pi�i for i � �
but disagreeing in their assignment to P�� then I and J will assign di�erent truth
values to P��n� Thus half of the �n interpretations of the Pi�i will result in P��n
being assigned true� so there are a total of �n�� interpretations in E�

De�ne the weight of a literal Pi�j or Qi�j to be j � i� and the weight of �L
to be equal to the weight of L� Let w�L� be the weight of L� De�ne the weight
w�C� of a clause C to be  L�C�w
L�� We note that the type � clauses are all of
the form L �� M��M� where w�M�� � w�M�� � w�L�� Thus� each all�negative
resolution replaces a literal of weight w with two literals of weight w � �� Now�
�w�� � �w�� � �w� It follows that each all�negative resolution produces a clause
smaller than its all�negative parent in the weight ordering� Eventually a clause will
be produced with two literals of weight zero� Call such a clause a critical clause� We
show that for each interpretation I � E� a critical clause CI will be generated� all
of whose literals are false in I� Also� we show that no two such critical clauses are
identical� and none of them will be supersets of other clauses generated� This means
that none of these clauses will be deleted by subsumption deletion� Therefore there
will be at least �n�� clauses generated� regardless of the choice of the ordering�

We now show that if C is an all�negative clause and I is in E and C is false
in I �that is� �I �j� C��� and L is a literal in C� and w�L� � �� then there is
an input clause C� and a resolvent D of C and C� such that D is false in I and
w�D� � w�C�� Note that this result is independent of which literal L is chosen� so it
holds for an arbitrary ordering of literals� Suppose L is �Pi�j for some i and j� Let
D� be �C�fLg��f�Pi���j� �Pi�j��g and let D� be �C�fLg��f�Qi���j� �Qi�j��g�
These are the only two all�negative resolvents on L� using the structure of S�n� Since
�I �j� L�� we have that I j� Pi�j� Thus I j� �Pi���j 
 Pi�j��� since I was de�ned
to satisfy the formulae Pi�j 
 �Pi���j 
 Pi�j���� � � i � j � n� Therefore either
I j� Pi���j �Pi�j�� or I j� Qi���j �Qi�j��� In the former case� we can let D be D�

and in the latter case we can let D be D�� The argument is similar if L is �Qi�j�
For now� let�s assume that the type � clauses are omitted� In the beginning�

�P��n is in S�n� and this clause is false in all I � E� It follows that all�negative
resolution will generate clauses C of smaller and smaller weight� for all I � E� such
that �I �j� C�� Eventually� for all I � E� there will be a critical clause CI that is
false in I� We need to show that none of these clauses will be identical� For this we
consider S�n as a graph� in the following way�
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The nodes of this graph are ordered pairs of integers called positions� and the edges
are the arrows� Each all�negative resolution replaces a literal by a literal in a posi�
tion immediately below it� We call the i� �� j and i� j � � positions the children of
the i� j position� The weight of a position i� j is j� i� De�ne a complete path in this
graph structure to be a path starting at the root �the �� n position� and extending
down to some i� i position following the arrows� there will be exponentially many
such paths� Note that each all�negative resolvent will contain a literal on each such
path� since each all�negative resolution replaces a literal at the i� j position with
literals at the i� �� j and i� j � � positions �its children�� and any path that passes
through the i� j position must also pass through either the i � �� j position or the
i� j � � position� Therefore� the critical clauses will also have literals on all such
paths�

Finally� we show that there is a function from critical clauses that maps CI onto
I� This implies that if I di�ers from J then CI is di�erent from CJ as desired�
This is given by a kind of geometric argument� Namely� suppose that I is in E�
Suppose that two of the three assignments of I for the literals Pi�j� Pi���j� and
Pi�j�� are given� We claim that the third is uniquely determined� We call this the
triangle property� A simple way to see this is that an odd number of the statements
I j� Pi�j� I j� Pi���j� and I j� Pi�j�� must be true� by the way E is de�ned� since
all interpretations in E satisfy the formulae Pi�j 
 �Pi���j 
 Pi�j���� � � i � j � n�
In general� we say that a position �a� b� is determined by a set �a�� b������ �an� bn� of
positions if for all pairs I� J of elements of E� ��I j� Pa��b�� 
 �J j� Pa��b��� � ����
��I j� Pan�bn� 
 �J j� Pan�bn�� implies ��I j� Pa�b� 
 �J j� Pa�b��� We say a clause
C determines a position �a� b� if the positions of the literals in C determine �a� b��

Lemma ��� If C is an all�negative clause generated from S�n by all�negative reso�
lution not using the type � clauses� then for every literal L in C there is a path from
the root to L such that every position on this path is determined by C�
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Proof� To begin with� �P��n is the only all�negative clause� and the lemma holds
for this clause� Assume by induction that a negative clause C is generated by all�
negative resolution and the lemma holds for it� Let D be a clause generated by
one all�negative resolution from C� Then some literal L of C is replaced by literals
L�� L� at the two children positions� to obtainD� Now� the positions of Li are inD�
hence they are determined by D� Therefore� by the triangle property� the L position
is also determined by D� Since the other literals of C are in D� D determines the
positions of all the literals of C� By induction� C determines paths to all its literals�
Hence D determines paths to all the literals of C� D has the two new literals Li�
We obtain paths to these literals by adding their positions to the end of the paths
to L�

�

Lemma ��	 A critical clause determines every position�

Proof� Suppose C is a critical clause� Then C has two literals L�� L� of weight
zero� By the preceding lemma�C determines paths L� and L�� We show that these
paths determine all the other positions� Suppose to the contrary that some position
is not determined by these paths� We say two positions p and q are neighbors if there
is some position having both p and q as children� Let w be the largest weight of an
undetermined position� Now� the paths to L� and L� are complete paths and so will
contain some position of weight w� So there must be some undetermined position
p� which has a neighbor p� of weight w such that p� is determined� Thus p� and p�
are children of some other position p� Now� p is determined since w�p� � w� By the
triangle property� p� is also determined� since p� is� This contradicts our inference
that p� is undetermined� Therefore we conclude that all positions are determined
by C�

�

Corollary ��
 The critical clauses CI and CJ for I di�erent from J are di�erent�
hence there are �n�� critical clauses and the search space is exponential�

Proof� Suppose CI and CJ are critical clauses for I di�erent from J � Both CI and
CJ determine all positions� Hence they determine the positions of weight �� Hence
they determine di�erent truth values for some position of weight �� since I and J
are di�erent� Hence CI and CJ are di�erent� Since E has �n�� elements� there
are �n�� critical clauses generated at some time during the search� and all�negative
resolution with ordering on S�n has exponential behavior� regardless of the ordering
chosen�

�

The preceding discussion has not considered deletion of subsumed clauses� For
this we note that if C subsumes D and C and D are di�erent then w�C� � w�D��
For each interpretation I � E� we consider the clause C of minimal weight such
that I �j� C� Each round of all�negative resolution will reduce the weight of such a
clause� until a critical clause is produced� Subsumption will not a�ect this� since if
I �j� C and D subsumes C then I �j� D� Therefore such minimal clauses will not be
deleted by subsumption�

We now consider the type � clauses� though it is not strictly necessary to do
so to demonstrate the exponential behavior of ordered all�negative resolution� A
simple way to consider the type � clauses is just to restrict attention to the top part
of the graph� that is� the clauses all of whose vertices are of weight larger than n���
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These clauses are una�ected by the type � clauses or their resolvents� The structure
of this top part of the graph is similar to that of the whole graph� and the same
arguments can be applied to it�

�

We note that this exponential bound applies also to all�negative resolution with�
out an ordering on negative literals� and provides a rigorous proof for that case�
Many of our other exponential lower bounds are based on this one� so we have also
established them� We recall that S�n has polynomial behavior for all�negative res�
olution with a good ordering� This shows a signi�cant di�erence between S�n and
S�n� since even with a good ordering we obtain exponential behavior for all�negative
resolution on S�n�

We now state these results in a slightly di�erent way� which is closer to the
search space formalism of �KBL����

De�nition ��� A proof path from S is a sequence C�C�C� � � � of clauses such that
each Ci is either in S or is a resolvent of previous clauses Cj and Ck� with j� k � i�
We also require that if i �� j then Ci �� Cj� A proof path is maximal if it cannot be
extended� that is� there is no other proof path having it as a proper pre�x�

The question we would like to address is how long these proof paths are� For
this we assume that the resolution strategy used is all�negative resolution with an
ordering on the negative literals� and that subsumed clauses are deleted� This means
that every clause Ck must have two parent clauses Ci and Cj such that neither one
is properly subsumed by another clause among the �rst k�� clauses in the sequence�

Theorem ���
 Let C�C�C� � � � be a maximal proof path from S�n� in which the
resolution strategy is all�negative resolution with an ordering on the negative literals�
Then the length of this path is at least �n��� regardless of the ordering used�

Proof� The proof is essentially the same as that given above� Namely� we
construct the same set E of interpretations and show that for each one a distinct
critical clause will eventually be produced�

�

This result was �rst presented in �Pla�
�� We think that this latter version of
the result is more striking� because the simplicity of the formulation eliminates the
need to describe the search space formally� Note that we are considering all possible
orderings and also all possible choices of sequences of resolution operations� and that
for all these possibilities the search is still exponential� The question then arises� can
such behavior also be produced for unsatis�able clause sets� What if breadth��rst
search is speci�ed� We do not have the answers at present�

Returning to our usual search space formalism� we don�t know whether a good
ordering can always lead to linear duplication by iteration for all�negative resolution
with ordering� If S is deterministic and well�ordered� then totally ordering the
literals according to proof complexity will cause all�negative resolution with ordering
to have polynomial behavior �and therefore polynomial duplication by iteration��
The problematic case is satis�able clause sets that are not deterministic or not well�
ordered� The reason that the proof of theorem 
�� for the unordered case does not
work is that it imposes an ordering that depends on the proof being considered� For
ordered resolution� the order has to be global� It�s interesting to see that for the set
S�n� using unrestricted ordering and just limiting the size of the resolvents to four or
fewer literals will lead to good behavior� though this is not a complete restriction in
general� Another interesting open problem is whether all�negative resolution with a
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good ordering has exponential behavior on unsatis�able Horn sets� We only showed
this for S�n� which is satis�able� We show later that A�ordering with a good ordering
has exponential behavior on �some� satis�able clause sets� These results indicate
that sometimes even a good ordering cannot help the ordering strategies to perform
well on easy problems�

���� A�ordering and proof dags

We now return to develop additional properties of A�orderings in relation to proof
dags and minimal unsatis�able sets of clauses� This will reveal some additional
advantages of A�orderings and perhaps help to explain the success of term�rewriting
based methods� On the other hand� the weaknesses of this strategy will also be more
clearly delineated�

First� we note that if S is a minimal unsatis�able Horn set� and if we use
resolution with A�ordering where the ordering on literals L is according to their
proof complexity cp�L�� that is� literals with larger proof complexity are resolved
away �rst� then A�ordering is goal�sensitive and has polynomial behavior� For
this we assume that the proof complexity ordering is extended to a total ordering
in some way� The goal�sensitivity follows because A�ordering mimics all�negative
resolution in this case and the polynomial behavior follows from the polynomial
behavior of all�negative resolution on minimal unsatis�able clause sets using the
proof complexity ordering� This suggests that A�ordering is good when there are no
irrelevant clauses� In fact� we can say even more� If S is a minimalunsatis�able set of
clauses� then A�ordering with an arbitrary literal ordering has polynomial behavior�
This is easiest to see for uniform A�ordering resolution� The number of clauses that
can participate in future resolutions never grows� clauses containing eliminated
predicate symbols cannot again produce new resolvents� �A predicate symbol is
considered as eliminated when it is the largest literal of resolution in a round��
The reason that the number of clauses does not grow� is that minimal unsatis�able
clause sets are deterministic� so that each negative literal can be eliminated from a
clause in exactly one way� If we could resolve a negative literal �P against two other
clauses� then there would have to be two clauses containing P � and so S would not
be deterministic� this property is preserved among the clauses that can participate
in future resolutions� Also� the number of literals in each clause is bounded by
the number of predicate symbols in S altogether� Finally� after all the predicate
symbols have been eliminated� the search will stop� This result holds even if no
subsumption deletion is done� therefore it follows by theorem 
�� that the search
space for breadth��rst A�ordering is also polynomial� regardless of the ordering�

This is a good result� indicating that if there are no irrelevant clauses then
A�ordering performs well� regardless of the ordering� The behavior is even better
�at least� goal�sensitive� if we choose the ordering so that literals with high proof
complexity resolve �rst� Unfortunately� it does not always su�ce to use the proof
complexity ordering in this way� even for unsatis�able clause sets� Consider the set
T �
n � if A�ordering resolution is applied to this set with the proof complexity ordering�
then the behavior is exponential� as noted before� There does not seem to be any
natural way to overcome this problem� because the symmetries in T �

n make it hard
to justify a preference for one of Pij and Qij over the other one� This shows that
if there are enough redundancies in the input� then it can be impossible to �nd a
natural ordering that is e�cient and goal�sensitive� for resolution with A�ordering�

Note that minimal unsatis�able clause sets are deterministic� The above result
concerning minimal unsatis�able clause sete can easily be extended to all deter�
ministic clause sets� That is to say� A�ordering on deterministic clause sets has
polynomial behavior regardless of the ordering�
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We can give another positive result for A�ordering� without goal�sensitivity� Re�
call that minimal unsatis�able sets of clauses are well�ordered� We now consider
well�ordered sets in general� and show that A�ordering with a suitable ordering has
polynomial behavior� Suppose S is well�ordered� and suppose we perform resolution
with A�ordering where the literal of resolution is chosen as the smallest literal in
the well�ordering� that is� the literal farthest away from the goal �or goals�� Note
that if a positive literal in a clause C is minimal in the well�ordering� then there
must not be any negative literals in C� so C must be a positive unit clause� This
means that every A�ordering resolution will involve a positive unit clause and an�
other clause� and so we will simulate P��deduction� which has polynomial behavior�
This result� in constrast to that for P��deduction� does not require that parent
clauses be subsumed after each resolution� since A�ordering will impose an ordering
on the negative literals automatically� This result applies both to satis�able and
unsatis�able clause sets�

From the above result� it follows that if there is a clause set S for which A�
ordering �with a good ordering� has exponential behavior� then S must not be
well�ordered� We now exhibit such a set of clauses� In particular� we show that
the following set An of clauses will produce exponential behavior for A�ordering
resolution� regardless of the ordering�

Pi�j �� Pi�j��� Pi���j��� � � i� j � n

Pi�j �� Pi�j��� Qi���j��� � � i� j � n

Pi�j �� Qi�j��� Pi���j��� � � i� j � n

Pi�j �� Qi�j��� Qi���j��� � � i� j � n

Qi�j �� Pi�j��� Pi���j��� � � i� j � n

Qi�j �� Pi�j��� Qi���j��� � � i� j � n

Qi�j �� Qi�j��� Pi���j��� � � i� j � n

Qi�j �� Qi�j��� Qi���j��� � � i� j � n

Here we assume that Pi�n and Pi�� are identi�ed� for all i� and that Pn�j and P��j are
identi�ed� for all j� and similarly for Q� Thus we have a kind of a !torus" structure�
This set of clauses is not deterministic or well�ordered� and is trivial for forward
and backward chaining strategies� due to the lack of positive and negative clauses�
However� for the A�ordering strategy� larger and larger clauses will be generated�
and the larger the clauses become� the more combinations of P and Q are possible�
Therefore� there is exponential behavior for A�ordering� regardless of the ordering�
This clause set should be an interesting set to test A�ordering based theorem provers
on� The structure is reminiscent of S�n in some ways� One could obtain unsatis��
able clause sets hard for the A�ordering strategy by considering An �T

�
�n �with the

predicate symbols in T �
�n renamed� or by adding some other unsatis�able clause set

with a su�ciently long proof to An� We now prove the exponential bound on search
space size �duplication by combination��

De�nition ���� A position of An is an ordered pair �i� j� of integers from the
set f�� �� ���� ng� where the positions �i� �� and �i� n� are identi�ed for all i� and the
positions ��� j� and �n� j� are also identi�ed� for all j� We consider these positions
as nodes of a graph� there is an edge from �i� j� to �i� j � �� and an edge from �i� j�
to �i� �� j� �� for all i and j such that these ordered pairs are valid positions� We
call the node �i� j ��� the left child of �i� j� and we call �i� �� j� �� the right child
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of node �i� j�� A path is a sequence of positions ��� � � � � �k of An such that for all
a� �a�� is either a left or a right child of �a� that is� there is an edge from �a to
�a��� The length of this path is k� The distance from position � to position � is
the length of the shortest path from � to �� If � is �i� j� then P� denotes Pi�j and
Q� denotes Qi�j�

De�nition ���� If P is a set of positions �i�� j��� � � � � �ik� jk� of An then a cluster
of clauses for P is the set of clauses of the form fR�

i��j�
� � � � � Rk

ik�jk
g where each Ra

is either �P or �Q� except for one of the positions �ib� jb�� for which R
a is either P

or Q� We call this position �ib� jb� the distinguished position of the cluster� Thus
all the clauses in a cluster are Horn clauses� the positive literals all appear at the
same position� and if P has k elements� a cluster for P consists of �k clauses� The
area of a cluster for P is the number of elements of P� The height of a cluster A
for P is the maximum distance 	of length n or less
 from the distinguished position
� of A to some other position � of A� Note that An is the union of n� clusters� all
of area � and height ��

De�nition ���� A cluster A for set P of positions has the path property if for
every path of length n or less from the distinguished position � of P there is a non�
distinguished position � in P on the path� A cluster A has the clear path property
if it has the path property and if for every non�distinguished position � in P there
is a path x from the distinguished position � to �� such that none of the interior
nodes of x are positions in P� Only the �rst and last nodes in the path are in P�
Such a path is called a clear path for A� We can also de�ne what it means for a
	de�nite
 Horn clause to have the 	clear
 path property� in a similar way� Note that
An is the union of n� clusters� all of which possess the path property and the clear
path property�

De�nition ���� Suppose A is a cluster for P of height h with distinguished position
�� A position � of A is exterior if there is some path x of length h from � that
passes through � such that no other positions on this path besides � and � are in
P� Such a path is called an exterior path for �� A position is interior if it is not
exterior� The frontier of a cluster is the set of positions at maximal distance from
the distinguished position� Note that the height of a cluster is the maximum distance
from the distinguished position of the cluster� to a frontier position� Also� a frontier
position is exterior�

Lemma ���� Suppose A is a cluster that has the clear path property� and has
height h� Then A has area at least h� �� and has at least h exterior positions�

Proof� Suppose � is the distinguished position of A and � is some frontier
position� Then there is a clear path x from � to �� Now� for each position 	 in x�
we construct two paths 	� and 	�� one by taking left children repeatedly and the
other by taking right children repeatedly� Both 	� and 	� must contain positions
of A� since their initial positions can be reached by a clear path� However� among
all the paths 	i that can be constructed in this way for various 	� at least h of
them must be mutually disjoint� as a simple geometric argument shows� �The ones
to choose depend on how x goes from positions to left or right children�� Since
each of these h mutually disjoint paths contains a position of A� there must be
h distinct such positions altogether� In fact� each of these paths must contain an
exterior position� since we can take the last position of A encountered on that path�
Thus there are at least h exterior positions� as claimed� This does not count the
distinguished position� giving a total of h�� positions and thus an area of h�� or
more� as asserted in the theorem�

�
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Lemma ���� Suppose A is a cluster that has the clear path property� and has
height h� Suppose B is another cluster that has the path property and �subsumes

A� in the sense that its positions are a proper subset of those of A� Then B also
has height h and contains all the exterior positions of A�

Proof� Since B subsumes A� it must have the same distinguished position �� Let
� be a frontier position of A� and let x be a clear path from � to �� Note that
the length of x is h� Since B subsumes A� B cannot have any positions anywhere
else on the path x besides at � and �� Since B has the path property� it must have
� as one of its positions� Since the distance from � to � is h� B has height h or
more� However� the height of B cannot be greater than h� so it must be exactly h�
Now� the same argument �except for height considerations� applies to any exterior
position 	 of A too� There must be an exterior path passing through 	� Any cluster
having the path property must contain some position on this exterior path� and so
B must also� But since B subsumes A� it must contain the position 	�

�

The same argument applies to subsumptions between individual clauses� which
shows that the clauses eliminated from consideration by a cluster resolution �de�ned
below� cannot cause trouble�

De�nition ���	 Suppose A� for P� and A� for P� are two clusters� Suppose that
there is a non�distinguished position � of A� which is also the distinguished position
of A�� Suppose that P� or Q� is the maximal predicate symbol in both clusters� in
an ordering � on predicate symbols� We de�ne a cluster resolution that resolves on
this maximal predicate symbol 	P� or Q�
 in all possible ways among the clauses
in these two clusters according to A�ordering with the ordering �� Afterwards� the
clauses in the clusters A� and A� are deleted� It turns out that the clauses produced
by a cluster resolution are themselves a cluster for the set of positions P��P��f�g�

The reason for the de�nition of cluster resolution and the associated deletion of
clusters is that since P� or Q� has e�ectively been eliminated� due to the way that A�
ordering resolution works� the clusters A� and A� no longer e�ectively have all their
clauses� such !partial clusters" complicate the analysis� We show an exponential
lower bound even with them deleted� which implies an exponential lower bound if
they are retained� Clauses that have been deleted will still have the path property�
by reasoning similar to that in the following lemma� this is enough to show an
analogue of lemma 
��� for individual clauses�

Lemma ���
 Suppose A� for P� and A� for P� are two clusters� of heights h� and
h�� respectively� where h� � h� � n� Suppose that there is a frontier position � of
A� which is also the distinguished position of A�� Suppose that P� or Q� is the
maximal predicate symbol in both clusters� in an ordering � on predicate symbols�
Then in one round of breadth��rst A�ordering resolution using this ordering� we
can resolve on P� or Q� and generate a cluster A of height h� � h� � �� Also� A
satis�es the 	clear
 path property if A� and A� do� The set of positions for A is
P� � P� � f�g�

Proof� The height will be h��h�� � since a path of this length may be obtained
by joining longest paths from A� and A�� One of these paths will end at � and
the other will begin there� This will create a cluster� because one can obtain all
combinations of literals at the various positions by resolving on appropriate clauses
from the respective clusters� The path property is easy to verify� by piecing together
paths in A� and A�� The clear path property can be veri�ed with a little geometric
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insight by considering the fact that � is a frontier position of A�� so that the paths
in A� and A� are disjoint �except for position ���

�

For this result� even if � is not a frontier position ofA�� predicates that have been
eliminated by A�ordering resolution cannot again be introduced� which prevents
existing clear paths of A� from being blocked by new positions from A�� This
means that A will have the clear path property in this case� too� This is necessary
to know� because cluster resolutions involving non�frontier positions may also be
performed� and it is necessary to know that the clear path property is preserved�

Lemma ���� Suppose uniform A�ordering resolution is done� starting from the set
An of clauses� Suppose cluster resolution is done� so that clusters are deleted when
some predicate in them is resolved on� Then� if the maximum area of any cluster is
less than n��� after every resolution� every predicate symbol will appear positively
in one cluster and negatively in another cluster� Thus additional resolutions will
always be possible� as long as the areas of the clusters are small�

Proof� If the property is true before a round of uniform A�ordering resolution� it
will be true after the round� since the e�ect of a round is to remove some clauses
and generate new clusters� All predicate symbols that occurred positively and
negatively in di�erent clusters before the round� will still do so� because only one
predicate symbol is eliminated per round� and that symbol will no longer appear
in the remaining clauses� The limitation on height insures that the cluster will not
border on itself� which could happen if it were so large that it could intersect all
rows or columns of An� If a cluster bordered on itself� it would contain tautologous
clauses �clauses that contain both a predicate symbol and its negation� for some
predicate symbol��

�

Theorem ���
 Uniform A�ordering resolution on An will produce an exponential
number of clauses� regardless of the ordering�

Proof� Each cluster resolution increases the maximum height of a cluster by
a factor of less than two� Also� if the maximum height is less than n��� then
eventually a cluster resolution will be done that increases the height of a cluster�
since eventually some frontier literal will be the largest literal and will be chosen
for resolution� Thus eventually a cluster with height h will be produced� where
n�� � h � n� A cluster of height h has area at least h � � and therefore at least
�h�� clauses� for h � n�� this is exponential in n� Now� if subsumptions occur� they
only replace clusters by others of the same height� and having the same exterior
positions� Any cluster of height h has at least h exterior positions� enough to give
the exponential bound� so the argument is not a�ected� A subsumed clause is
replaced by a clause having exactly the same exterior literals� which is all that we
are concerned with anyway�

�

We note that this result is not a�ected by tautology deletion� since the heights
remain less than n�

Corollary ���� Breadth��rst A�ordering resolution on An with an arbitrary order�
ing� will generate an exponential number of clauses�
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Proof� We note that the search space for breadth��rst and uniform A�ordering
resolution are essentially the same� except for subsumption deletion� However� as
long as the heights are less than n� we have shown that subsumption deletion will
not a�ect the exponential bound�

There is a subtlety that has to be dealt with in order to carry this through� and
we indicate it here� That is� there are resolvents that do not correspond to cluster
resolutions� these may involve clauses deleted in cluster resolution� Now� these
!spurious" resolvents might conceivably increase in height much faster than the
cluster resolvents� and then create clauses that would subsume the cluster resolvents
and thereby reduce the search space� We sketch how this possibility can be excluded�
First� it is not di�cult to show that even the large spurious resolvents have to satisfy
an extended path property that applies to paths of arbitrary length� not just n or
less� Now� we are only concerned about the case when the maximum size of a
cluster resolvent is less than n��� since otherwise we know that the search space is
exponential� The only problem is if there is a cluster A and some spurious clause
C generated that properly subsumes some of the elements of A� in particular� lacks
some of the exterior nodes of A� This can only happen if the !height" of C is larger
than n� that is� it has wrapped around the torus� However� if this happens� then one
can without much trouble construct an in�nite path starting at the distinguished
position of C that contains no other position of C� contradicting the extended path
property� Such a path is obtained by going through the missing exterior position of
A� then taking enough right children until one can take a cycle of left children and
never again encounter A� This is always possible because A can be at most n��
!wide�" and an in�nite path in wrapping around the torus can move to the right
far enough to avoid A altogether�

As a consequence of this� the A�ordering resolutions can be done in an arbitrary
fashion� not necessarily breadth��rst� and we still can guarantee an exponential
search space� Thus we can obtain an anologue of theorem 
��� for A�ordering
resolution� too� even with a good ordering�

�

We now continue a line of investigation begun earlier in section 
�
 about sim�
ulating P��deduction by A�ordering for unsatis�able sets of clauses� It can happen
that S is unsatis�able but not well�ordered� In this case� it may not be possible
to simulate P��deduction by A�ordering� since some of the A�ordering resolutions
may involve positive literals from non�unit clauses� �This can happen if a clause
contains only literals that are not derivable by positive unit resolution�� This is ad�
ditional evidence that irrelevant clauses can cause combinatorial problems for the
A�ordering strategy�

���� SLD�resolution

SLD�resolution is essentially the same as all�negative resolution with ordering of
the negative literals� and has similar complexity properties� We do not explicitly
mention it in the chart for this reason� However� because of its importance for
Prolog� we make some comments concerning it� There are actually some di�erences
between SLD resolution and all�negative resolution� One di�erence is that for each
all�negative clause C� one of the literals L of C is chosen in an arbitrary way and
all resolutions of C must resolve on the literal L� This is more �exible than all�
negative resolution with ordering of the negative literals� Also� the search is typically
performed depth��rst rather than breadth��rst as in our formalism� This can make
Prolog programs faster than our analysis would indicate� because the ordering of
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clauses can cause the proof to be found early in the search� However� the proof depth
is still a bound for the worst�case execution time� even with depth��rst search�

The actual execution of Prolog programs is more restrictive than SLD�resolution�
there is less �exibility in which literals can be resolved� Literals must be chosen for
resolution in a last�in �rst�out manner� Subject to this� a Prolog program speci�es
the ordering by the order of the �negative� literals in the body of the clauses�
Another di�erence between SLD�resolution and Prolog is that duplicate subgoals
will be deleted from a clause but not from the Prolog execution� Thus if we have
the clause f�P��Qg and resolve with fQ��P��Rg we obtain f�P��P�Rg and the
two occurrences of �P merge into one� However� in Prolog execution� the procedure
P would be called twice�

The last�in �rst�out restriction for SLD�resolution means that the literal of an
all�negative clause C chosen to resolve on must be one of the literals most recently
added to C� It turns out that the complexity properties of this !last�in �rst�out"
SLD�resolution are di�erent than those of SLD�resolution in general on some clause
sets� For example� any Prolog program for T �

n will have exponential proof depth�
even though there is a polynomial length all�negative resolution proof� The same
subgoals will be created and solved repeatedly� Another kind of exponential be�
havior occurs for the satis�able Horn set S�n� even though none of the subgoals
will be successfully solved� This suggests a possible de�ciency in the current meth�
ods of logic programming implementation� One would expect Prolog programmers
to choose good literal orderings� which should help the complexity in most cases�
However� on unstructured problems� ine�ciencies might occur� Some method of
caching successes and failures is necessary to overcome these ine�ciencies� It might
make Prolog more convenient in some cases if it were automatic� One strategy that
appears to overcome the problems with SLD resolution is mentioned in �Lyn�
��
Actually� that paper considers a more general framework than just SLD�resolution
and gives a fairly general mechanism for reducing the search space�

Since Prolog is e�cient in practice� we look for special cases where SLD�resolution
performs well� For deterministic� well�ordered clause sets� there is an ordering that
causes breadth��rst SLD�resolution to have polynomial search depth and duplica�
tion by iteration and also polynomial duplication by combination� For such clause
sets� A�ordering and all�negative resolution with a good ordering of the predicate
symbols also have polynomial search depth and duplication by iteration and poly�
nomial duplication by combination� For all these strategies� the good behavior can
be obtained by always resolving on the predicate symbols that are largest in the
well�ordering �or some total extension of it�� The polynomial duplication by combi�
nation occurs because there is always only one such resolution possible from a given
all�negative clause� since the clause set is deterministic� and the linear duplication
by iteration follows because the ordering prevents predicate symbols that have been
resolved away� from being reintroduced� Recall that minimal unsatis�able Horn sets
are deterministic and well�ordered�

For arbitrary unsatis�able Horn sets� these results continue to hold if depth��rst
search is speci�ed and the proper ordering of clauses and literals is used� To see this�
suppose S is an unsatis�able Horn set� and let T be a minimal unsatis�able subset
of S� Note that T is deterministic and well�ordered� Suppose we order the clauses
so that the clauses in T are used before those in S� Also� suppose we choose the
ordering for SLD�resolution so that the literals with the highest proof complexity
are resolved on �rst� Then each SLD resolution will replace a negative literal by
negative literals of smaller proof complexity� Assuming that duplicates of a given
literal are deleted� this will result in a proof in a linear number of steps� In general�
of course� depth��rst search can lead to in�nite loops and sacri�ces completeness�
We note that Prolog cannot always achieve this good behavior �proofs in a linear
number of steps� because last�in �rst�out SLD resolution does not always permit the
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desired ordering of literals and because a given subgoal may be solved repeatedly�
If each literal occurs at most once in the body of a clause �that is� negatively� then
even Prolog can achieve polynomial behavior since subgoals will be solved at most
once�

���� Set of support

The set�of�support restriction �WRC�
� initially chooses some subset of the input
clauses as the support set� This should have the property that the remaining clauses
�not chosen� are unsatis�able� A clause is supported if it is in the support set�
or if it is the resolvent of two clauses� at least one of which is supported� The
support strategy restricts resolutions to those in which one of the parent clauses
is supported� The behavior of resolution with the set�of�support restriction and
a negative set of support is the same as all�negative resolution� for Horn clauses�
For Horn clauses� a resolvent of an all�negative clause and another clause is always
all�negative� Therefore all�negative resolution produces the same search space as
set of support� If the set of support is chosen as the set of positive clauses� then the
behavior is like P��deduction except that additional resolvents can be generated� If
some other support set is chosen� it is conceivable that the behavior could be worse�
We note that there is no way to get polynomial behavior and goal sensitivity with
set of support� regardless of the choice of support set� In order to get goal sensitivity�
the set of support has to consist only of the negative clauses� This means that the
behavior is the same as all�negative resolution� which has exponential duplication by
combination� We view this as evidence that set�of�support is also combinatorially
ine�cient� though in practice it is one of the better traditional strategies�

���� Model elimination

For Horn sets� assuming that a negative clause is chosen to start the search� model
elimination �Lov��� and the MESON strategy �Lov	�� behave essentially the same as
SLD�resolution or all�negative resolution with an ordering on the negative literals�
These strategies follow Prolog�s execution model fairly closely for Horn clauses�
and so they actually correspond to last�in �rst�out SLD�resolution� However� they
permit duplicate literals to be deleted� unlike actual Prolog execution� Also� the
search formalism is di�erent because this strategy in the general �non�Horn� case is
still an input strategy� that is� each inference involves a !chain" and an input clause�
Therefore� what appears as duplication by combination in all�negative resolution
with ordering� appears as duplication by case analysis in model elimination and
the MESON strategy� There is another di�erence� namely� the MESON strategy
and model elimination have a feature that prevents in�nite loops� For example�
we might have clauses �P � P � � Q� Q � � R� and R � � Q� Now� letting P
be the starting subgoal� we successively generate Q� R� then Q again� and can get
into an in�nite loop in Prolog� This cannot happen with model elimination and the
MESON strategy� The reason is that their data structures �chains� keep information
corresponding to the stack of subgoals activated� Whenever it is detected that a
subgoal has been attempted from within a call of the same subgoal� that particular
chain can be deleted�

By considering these strategies in terms of SLD�resolution in this way� we can
analyze them and see that they are goal�sensitive �if a negative clause is chosen to
start the search�� have no �i�e�� constant� duplication by combination� since each
node in the search space consists of a single chain� and have exponential duplication
by case analysis� The exponential behaviors are from the clause sets S�n� S

�
n� T

�
n� and

T �
n � and the reason for this is essentially the same as that for all�negative resolution
with a bad ordering� The search depth �and therefore the duplication by iteration�
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is exponential� because the last�in �rst�out restriction causes subgoals to be solved
repeatedly in T �

n � This is true even with a good ordering� since even with an ordering
the strategy is subject to the last�in �rst�out restriction� These results hold even
for minimal unsatis�able clause sets� as witnessed by a minimal unsatis�able subset
of T �

n� For satis�able� deterministic� well�ordered clause sets with a good ordering�
the behavior can be made polynomial� This is because there must be at least one
subgoal that is not derivable� and by properly guessing which one it is one can fail
quickly� For clause sets that are not well�ordered� it is not clear what happens in
general� even with a good ordering�

���� Lemmas and caching

It is possible to use a lemma mechanism with model elimination and the MESON
strategy� This makes use of the fact that when a negative literal �P is eliminated
by resolution� and all literals descending from �P are also eliminated� then we
have essentially derived a proof of P � This corresponds to a successful return from
a call to the procedure P in Prolog� This means that any further occurrences
of �P can also be eliminated by the !lemma" P � That is� further calls to the
procedure P will also return successfully� so the computation does not need to be
repeated� When using lemmas� we have to modify the search space structure� since
the chains interact� This makes the search linear� and so instead of duplication by
case analysis we now have duplication by combination� Therefore the duplication
by case analysis is O���� The search depth is now linear� because of the lemmas� as
is the duplication by iteration� To see this� note that whenever a subgoal is called�
it increases the length of the procedure stack by one� This stack is linearly bounded
in length� because a chain can be deleted if some procedure appears twice on the
stack� Whenever a procedure returns� the stack reduces in length by one but the
fact that this procedure has successfully returned is added as a lemma� Therefore�
each call to a non�lemma procedure and each return from a non�lemma procedure
either increase the size of the stack or increase the number of lemmas Let N be
the sum of the stack size and twice the number of lemmas� Then N increases by �
whenever a non�lemma procedure is called or returns successfully� The maximum
value of N is three times the number of predicates in the original set of clauses�
This shows that the search depth and the duplication by iteration are linear� We
are not counting the procedure calls that are already lemmas� Each such call only
leads to a constant amount of additional search depth� and the number of such
calls is bounded by the sum of the sizes of the clauses in the set of input clauses�
Therefore the linear bounds are still valid� The duplication by combination is still
exponential� as veri�ed by S�n and S

�
n� where no lemmas are generated�

We now consider caching� By this we mean that failures as well as successful
returns from a procedure are remembered� If a procedure was called and failed
before� then the computation does not have to be repeated when it is called again�
This caching of failures only helps reduce the search space if the search is done in
a depth��rst manner as in Prolog� because then there are no two calls to the same
procedure operating in parallel� or if parallel calls to a procedure are combined in
some way� Depth��rst search can be done because the loop�detecting feature of these
strategies prevents in�nite chains of procedure calls� However� this loop�detection
makes the search space dependent not only on the current procedure being called but
also on procedure calls earlier in the stack� This means that the caching is unsound
unless this dependence on the stack is eliminated by removing loop�detection� and
thereby losing �rst�order completeness� We assume that some kind of depth��rst
iterative deepening �Kor�
� ST�
� search is done to avoid in�nite loops and help
organize the caching� Then� with each subgoal� we cache not only whether it returns
successfully� but how much depth of search it was permitted� Assuming the search
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is done in this way� each failing return from a procedure increases the size of the
cache� and so reasoning as above we can show that the duplication by combination
is linear� as well as the search depth and duplication by iteration� However� since
there are a number of stages of depth��rst iterative deepening� each one taking a
linear amount of duplication� it may be more accurate to say that the duplication
is quadratic� But our search formalism is not really adapted to consider depth��rst
iterative deepening in a natural way� so we just assume an optimal depth bound
and state the duplication as linear�

���� The MESON strategy

The MESON strategy has behavior like model elimination for Horn clauses� so the
bounds are the same� For the MESON strategy� unit lemmas result in behavior
like that of model elimination with unit lemmas� The MESON strategy with unit
lemmas and caching has behavior like model elimination with unit lemmas and
caching�

���� Problem reduction formats

The simpli�ed and modi�ed problem reduction formats �Pla��� Pla��� simulate Pro�
log�s back chaining mechanism� but are complete for �rst�order logic� The simpli�ed
problem reduction format �Pla��� without caching is much the same as model elim�
ination� for Horn clauses� The simpli�ed problem reduction format generates for�
mulae called decompositions� For Horn problems� all the decompositions generated
are input Horn clauses� so the number of them is linear �if caching is done�� The in�
ference mechanism essentially simulates hyper�resolution� once a su�cient number
of decompositions are generated� Thus� the search depth and duplication by itera�
tion are linear� The duplication by combination is linear as for hyper�resolution� if
caching is done� As with model elimination and the MESON strategies� the orga�
nization of the search for depth��rst iterative deepening may mean that the dupli�
cation should really be considered as quadratic� However� for simplicity we assume
an optimal depth bound and thus have linear duplication� Actually� it is possible
to obtain these good bounds without caching or lemmas� it is only necessary to
eliminate duplicate decompositions� The reason for this is that the decompositions
are !local" and contain all necessary information about the chain of procedure calls�
This makes it possible to cache without losing �rst�order completeness or e�ciency
for Horn problems� This is an advantage over MESON and model elimination� The
behavior of the modi�ed problem reduction format �Pla��� for Horn clauses is the
same as that of the simpli�ed problem reduction format� both with and without
caching� since the two methods di�er only in how non�Horn clauses are treated�

���	 Clause linking

The clause linking method �LP��� reduces �rst�order logic to propositional calculus�
and then applies a Davis and Putnam�like procedure �DP���� This reduction to
the propositional calculus is done by successively instantiating the clauses using
uni�cation with literals of other clauses� A propositional decision procedure is
then periodically applied to the resulting clauses� We consider the application of
this method to propositional Horn clauses� For the clause linking method with
forward support� we note that this method behaves essentially the same as hyper�
resolution� and the same bounds apply to it� For backward support� we note that
no new clauses are generated� and it is only the support status that gets changed�
If S is unsatis�able� then eventually an unsatis�able subset of S will be marked
as backward supported� After a linear number of rounds� all the clauses that can
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be backward supported� will be� and the search will terminate� Then the Davis�
and�Putnam�like decision procedure will terminate in polynomial time� since S is
a Horn set� Thus the search depth and duplication by iteration are linear� The
duplication by combination is linear� since no new clauses are generated �except by
unit simpli�cation�� The duplication by case analysis is O��� because each state
has one successor� Caching is not necessary� because clauses are never combined
except brie�y in the Davis�and�Putnam�like decision procedure� Thus we obtain
goal�sensitivity and good behavior without requiring caching or losing �rst�order
completeness� These are advantages over the simple and modi�ed problem reduction
formats as well as over MESON and model elimination�

���
 Connection calculi

As for connection calculi �Bib�	�� there are many of them� The connection calculi
make use of connections between literals in �possibly� di�erent clauses to control
the search� The chart is only intended to show that they can be implemented to
simulate forward reasoning� like hyper�resolution� or the backward chaining resolu�
tion strategies� It is also of course possible that connection calculi with behavior
like that of the clause linking method exist�

���� Caching

Several of these strategies perform similarly on Horn sets� They are model elim�
ination and the MESON strategy with caching of unit subgoals and lemmas� the
simpli�ed and modi�ed problem reduction formats with caching� and clause link�
ing with backward support� We refer to these collectively as backward chaining
methods with caching �or� as caching strategies�� Though clause linking does not
cache� we include it here because the behavior is similar and because the deletion
of duplicate copies of a clause can be regarded as caching�

� Preventing Unit Simpli�cations

We now give modi�cations of these clause sets that still display the same exponen�
tial behavior� even for strategies used together with unit simpli�cation� For some of
these clause sets� we do not know how well the various theorem proving strategies
will perform� First we give a transformation within propositional calculus that de�
feats unit simpli�cation by introducing non�Horn features� A second transformation
prevents unit simpli�cation by introducing �rst�order features but retains the Horn
property�

The following transformation eliminates unit simpli�cations for back chaining
methods� For each Horn clause L � � L�� ���� Ln where L and all Li are positive
literals� delete this clause and replace it by the clauses L�P � � L�� ���� Ln and
L � � P � where P is a new predicate symbol� Note that the �rst of these is
a non�Horn clause� since both L and P are positive literals� This eliminates the
possible unit simpli�cations for back chaining methods� but produces a non�Horn
set of clauses� For forward chaining methods� the unit L can be rederived and some
unit simpli�cation can still occur� Let U �S� be S transformed in this way� Later
we discuss the search space sizes of various strategies on clause sets produced by
the U operator�

We now give alternative methods to avoid unit simpli�cation e�ciencies� which
introduce �rst�order features but retain the Horn property� Also� these transfor�
mations often produce unsatis�able sets of Horn clauses� this answers the question
whether such exponential behavior can be produced in unsatis�able Horn sets� Of
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course� such behavior cannot be produced in unsatis�able propositional Horn sets if
unit simpli�cation is allowed� since that will in itself �nd a contradiction� However�
by allowing limited �rst�order features� we can still obtain exponential behavior
for Horn sets� Formally� if S is a set of propositional clauses� let M �S� be a set
of monadic �rst�order clauses with positive unit clauses P in S replaced by P �a��
and other clauses in S transformed by replacing positive literals P by P �x� and
negative literals �P by �P �x�� Thus a clause fP��Q��Rg would be replaced by
fP �x���Q�x���R�x�g� but fPg would be replaced by fP �a�g� Then M �T �

n� and
M �T �

n� are unsatis�able Horn sets and have exponential behavior for back chaining
strategies without caching� and unit simpli�cation doesn�t remove the exponential
behavior� During the proof search� some generated clauses will have the variable x
bound to a� but this only has the e�ect of replacing some of the unit resolutions on
these clauses with unit simpli�cations� and does not signi�cantly a�ect the search
space�

� Additional Hard Sets of Clauses

In addition to these transformations� we give some more hard clause sets� We give
a set of clauses that is hard for forward chaining methods but easy for backward
chaining methods� We also give an example that is hard for both forward and back�
ward chaining methods� but for which clause linking still has polynomial behavior�
For some of the clause sets� we do not know which strategies exhibit polynomial
behavior� We give non�Horn propositional examples� and Horn non�propositional
examples�

We �rst give an example of a �rst�order Horn set that is hard for forward�
chaining methods but easy for back chaining methods� Consider the set containing
the clause P �x����xn� �� Q��x��� ���� Qn�xn�� together with the unit clauses Qi�a�
and Qi�b�� for all i� Suppose the goal is �� P �a� a� ���� a�� Call this set S�n� Then
there are exponentially many hyper�resolvents� but back chaining is linear� Note
that back chaining methods will bind the variables to a and then limit the use of
the Qi� but forward chaining strategies will generate many bindings of variables to
combinations of a and b�

We now exhibit a Horn set that is hard for all the non�caching strategies consid�
ered here� Given a set S of propositional clauses� let N �S� n� be S with clauses P �
� P�� ���� Pm form � � replaced by P �x����xn� �� P��x����xn�� ���� Pm�x����xn�� Also�
a positive unit clause fPg is replaced by P �x����xn� �� Q��x��� ���� Qn�xn�� In addi�
tion� negative clauses �� P����Pm are replaced by �� P��a� a� ���� a�� ���� Pm�a� a� ���� a��
Finally� the unit clauses Qi�a� and Qi�b� are added� Then the sets N �T �

n� n� and
N �T �

n � n� are unsatis�able �rst�order Horn sets that produce exponential behavior
for backward chaining strategies �except the caching strategies� because T �

n and
T �
n do� They also produce exponential behavior for forward chaining strategies be�
cause there are exponentially many combinations of a and b for the n variables�
This includes clause linking with forward support� However� these can be solved
in polynomial time by strategies with caching because the backward chaining from
the goal binds variables to a� and eliminates the exponentially many combinations
of a and b� This includes clause linking with backward support� In addition� unit
simpli�cation for these clause sets does not help� it only replaces some of the unit
resolutions with unit simpli�cations�

We now consider the operation of reversing the signs of all the literals in a clause�
Equivalently� we could consider leaving the signs unchanged but reversing the way
the strategies treat the signs� This causes hyper�resolution to become negative
hyper�resolution� which means that all the positive literals in a clause are resolved
in one operation� For Horn clauses� each clause has only one positive literal� and
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so negative hyper�resolution is the same as all�negative resolution� with the same
search space complexities�

If S is a set of clauses� let S be S with the signs of all predicate symbols changed�
and predicate symbols systematically renamed to new predicate symbols� Note that
this causes forward chaining strategies to behave like backward chaining strategies�
and vice versa� Let Sym�S� be S�S� Note that Sym�S�n� and Sym�S

�
n� have expo�

nential behavior for hyper�resolution� since negative hyper�resolution �all�negative
resolution� is exponential for S�n and S�n� These satis�able propositional sets of
clauses have exponential behavior for all strategies �and re�nements� discussed ex�
cept clause linking and possibly MESON� model elimination� and the two problem
reduction formats� all with caching� The reason these clause sets are easy for clause
linking is that the Davis and Putnam�like decision procedure will quickly �nd a
model and detect satis�ability� This is because the Davis and Putnam method is
polynomial time on Horn sets �GU���� and these clause sets are similar enough to
Horn sets to exhibit the same behavior� These sets will probably be quite a challenge
for most theorem provers� However� they are not Horn sets� To obtain unsatis��
able propositional sets of clauses with this property� we can use Sym�U �T �

n �� and
Sym�U �T �

n ��� discussed below� Even for the simpli�ed and modi�ed problem reduc�
tion formats� the behavior is probably exponential� because many combinations of
literals will be generated� It is possible that clause linking has polynomial behavior�
but that depends on how the Davis and Putnam�like decision procedure works�

Consider U �T �
n� and U �T �

n�� These are unsatis�able propositional non�Horn
sets which have polynomial behavior for P��deduction and hyper�resolution� even
though unit simpli�cation will not decide these clause sets� To show this� recall
that in these clause sets we have clauses of the form L�P � � L�� ���� Ln and
L � � P � where P is a new predicate symbol� We can show that the literals Li
will eventually be derived� and then the clause L�P will be derived by a sequence
of unit resolutions �unit simpli�cations�� Finally� a resolution operation between
the clauses L�P and L � � P will produce the resolvent L� and the proof will
proceed further� U �T �

n� has exponential behavior for all the back chaining methods
even with unit simpli�cation� except possibly the caching strategies� since T �

n does�
U �T �

n� can be solved in polynomial time by all�negative resolution with a proper
ordering of negative literals� It is possible that U �T �

n� and U �T �
n� can be decided

in polynomial time by a Davis�Putnam�like method with lemmas� as described in
�Pla���� We don�t know how fast they can be solved by the ordinary Davis�Putnam
method�

To defeat forward chaining methods� consider the clause sets Sym�U �T �
n �� and

Sym�U �T �
n ��� These still have exponential behavior for back chaining methods

except possibly the caching strategies� In addition� they have exponential behavior
for forward chaining methods� since the Sym operation causes forward chaining
strategies to behave like backward chaining strategies� However� it is possible that
a modi�ed Davis�Putnam method with lemmas� as described in �Pla���� will decide
these in polynomial time� If so� clause linking will also have polynomial behavior
on these clause sets�

	 Discussion

Since our chart only considers propositional Horn sets� the results are somewhat
limited� Still� even here some unexpected behavior occurs� In addition� we present
other clause sets that are non�Horn or �rst�order and discuss the behavior of strate�
gies on them� However� a more formal analysis for non�Horn propositional logic
and for �rst�order logic would be interesting and probably di�cult� Also� these
results do not say how a theorem prover will perform on real theorems� However�
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we believe that strategies having a large amount of search duplication often per�
form badly� Since the successes of a prover are usually more widely publicized than
the failures� the poor performance of some provers on certain problems may not
be well known to those outside of the theorem proving community� Our experience
has been that on simple set theory problems� logic puzzles� and even propositional
calculus problems� most of the strategies listed in the chart perform very badly�
Also� we have found that on typical theorems� back�chaining strategies that do not
use caching perform badly on Horn sets� and even back�chaining strategies that do
cache �except for clause linking� perform badly on non�Horn sets� Forward chaining
strategies generally seem to do well on Horn sets� but badly on non�Horn sets� Of
course� forward chaining strategies are typically not sensitive to the theorem being
proved� and function somewhat like blind search�

The methods of this paper are in a way more discriminating than the results
of Haken �Hak�
�� who showed that resolution is exponential for any re�nement�
This tends to suggest that all strategies are the same� Our methods discriminate
between strategies more �nely� and support the argument that some strategies are
better than others� Eder �Ede��� analyzed the sizes of proofs in di�erent strategies�
In contrast� we analyze the size of the entire search space�

We now consider brie�y the behavior of clause linking in �rst�order logic� For a
description of this strategy see �LP���� The question arises whether clause linking
is exponential on any �rst�order clause set for which other methods are polynomial�
This is unlikely for any clause set for which the term sizes are small� since the
behavior approximates propositional logic in that case� We note that for typical
theorems� if the term sizes get large� often the proofs are too di�cult to obtain� So�
if a small bound on term size is set� then clause linking will probably be e�cient�
even for �rst�order logic� However� �Zam	�� Zam��� Tam��� Tam��� have some �rst�
order examples where a particular re�nement of resolution similar to A�ordering
is a decision procedure� but clause linking may generate an in�nite search space�
On the other hand� it is possible to construct simple �rst�order examples where
clause linking generates a �nite search space but resolution generates an in�nite
search space� For example� clause linking has a �nite search space on clause sets
containing variables and constant symbols but no function symbols� Thus clause
linking is a decision procedure for this class� However� resolution can generate
an in�nite search space on these clause sets� For example� consider the following
clause set� f�X � Y��Y � Z�X � Zg� f�a � bg� All�negative resolution generates
an in�nite search space on this clause set� For almost any two theorem proving
strategies� it�s possible to �nd examples where one performs better than the other�
We would at least hope to have a good understanding of where this occurs and
why� Also� we would like to �nd strategies that have polynomial behavior on the
examples presented here and also decide the clause sets decidable by resolution with
A�ordering�


�� Adequacy

We have given a theoretical analysis of a number of strategies on propositional Horn
sets and some �rst�order clause sets� We do not suggest that all theorem proving
methods should be analyzed theoretically in this manner� since that would require all
researchers to be theoreticians to some extent� Another acceptable alternative is to
run a theorem prover on the clause sets given above and estimate the growth rate of
the time taken� We propose that all new strategies be analyzed this way� analytically
where possible and also by running them on these clause sets for all n up to say 
�
�subject to time and space limitations#�� The clause sets that seem most signi�cant
for this are S�n� S

�
n� T

�
n� T

�
n � An� Sym�S�

n �� Sym�S
�
n�� U �T

�
n�� U �T

�
n��M �T �

n��M �T �
n��

Sym�U �T �
n ��� Sym�U �T

�
n ��� Sym�M �T �

n ��� Sym�M �T �
n ��� N �T

n
� � n�� and N �T

n
� � n��

�	



Note that some of these clause sets are easy for standard methods� this helps to
distinguish between methods that have exponential behavior on the harder clause
sets� The performance of a strategy on these examples doesn�t tell everything
about the strategy� but does tell something� We say a strategy is adequate if it runs
in polynomial time on all these clause sets� as well as propositional Horn sets� and
satis�es the following additional requirements� It should be complete� goal�oriented�
and natural� Natural means that the strategy is not speci�cally designed to do well
on these clause sets� It is possible that a good theorem prover may behave poorly
on these examples� However� we believe that a strategy that performs well on these
example clause sets will also do well on typical theorems� We don�t know if any
existing strategy is adequate� but clause linking may be� We note that clause linking
has polynomial behavior on all the above clause sets� because the time taken by
the Davis and Putnam procedure is not re�ected in the search space size� However�
since adequacy is de�ned in terms of running time� clause linking could still fail to
be adequate�


�� Extensions

It would also be possible to extend this analysis to renameable Horn sets� that
is� sets of clauses that can be transformed into Horn sets by changing the signs
of some predicate symbols� Such an analysis would treat forward chaining and
backward chaining strategies the same� and both would have exponential behavior�
However� clause linking and maybe some of the other caching strategies would still
have polynomial behavior� Note that UR�resolution has polynomial behavior on
renameable Horn sets� However� this is not a complete strategy in general� Still� its
good performance in practice tends to con�rm its favorable theoretical properties�

We now brie�y discuss a general analysis for �rst�order logic� For this case� it�s
not possible to bound search space size in the same way� since there is no recursive
bound on the length of proofs and hence on the search space size� However� what
we can do is analyze how e�cient a strategy is on the structures it generates� For
resolution� if the same literals are generated over and over again and combined in
many di�erent ways� then this may indicate an ine�ciency� We can analyze this
behavior for a general strategy by associating with each generated clause a set of
instances of the input clauses that were used to generate it� We can then consider
how often a given input instance contributes to the di�erent clauses in a state� on
a path of states� or in a set of states no two of which are on the same path� In this
way� we might learn something about the various types of search space duplication
that occur in �rst�order logic theorem proving�
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