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Abstract 

In this paper we present and compare some classical problem solving methods for 
computing the stable models of logic programs with negation. In particular linear 
programming, propositional satisfiability, constraint satisfaction, and graph algorithrns 
are consi<lered. Central to our approach is the representation of the logic program by 
means of a graph. 
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1 Introduction 

Over the last years, a large body of research has been devoted to the semantics 
of logic programs with negation. One of the most prominent proposals is the 
stable model semantics, introduced in [GL88]. Th.is semantics is closely related 
to Default Logic introduced in [Rei80], in the sense that the stahle models of 
a logic program can be faithfully captured by the extensions of an associated 
Default Theory. 
Unfortunately both Default Logic and stahle models semantics, turned out to 
be intracta.ble, even in very simple cases. Despite their computational hard­
ness, a relatively small effort has been expended on deriving effective ways 
for reasoning with these formalisms. 'Recently, some classical problem solving 
methods for computing the semantics of logic programs and default theories 
have been proposed ( (BED91], [BED92a] , [BED92b], [BNNS92], [BNNS93], 
[DM94] , [DMP93], [DT93]). These include linear programming, propositional 
satisfiability, constraint satisfaction, and graph algorithms. It is now evident 
that techniques emerging from these problem solving paradigms can be used in 
Nonmonotonic Reasoning. 

In this paper we are concemed with methods for computing the stahle model 
semantics of propositionallogic programs. We fust investiga.te the case of normal 
logic programs, and later we show how these ,methods can be extended to the 
case of disjunctive logic programs. Central to out approach is the representation 
of the logic program by means of a graph. The idea was introduced in [DM94] 
for the case of disjunction free default theories, and it is only briefl.y presented 
here. The set of stahle models of a logic program corresponds to a subset of 
the kernels of the associated graph. The graph model gives rise to four different 
methods for computing the stahle models of a normallogic program. 

The fust alternative is algorithms that explicitly enumerate the kernels of 
the graph. Apart from the algorithm for the general case, we show that for logic 
programs with no odd eycles a su bset of their stahle models can be e:fficiently 
computed. The second possibility is to express the graph structure in terms of 
propositionallogic, and use a classical sa.tisfiahility algorithm. The models of 
the resulting theory, which are in direct correspondence with the kemels of the 
associated graph, are a superset of the stahle models of the program at hand. It 
turns out that this set of models coincides with the set of models of the Clark's 
completion of the program. As an alternative, a variant of the Davis-Putman 
method that computes exactly the stable models, is presented. 

The third method considered is a formnlation the problem as a Linear Pro­
gramming one, which can be solved with any of the known methods for this class 
of problems. This method is compared to the linear programming formulation 
of the problem presented in [BNNS93}. The last possibility is to use some of 
the constraint satisfaction algorithms. We show that one of these algorithms is 
closely related to the graph algorithm considered in the paper. 

To extend these methods to the case of the disjunctive logic programs we fust 
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transform such a program to anormal one, and show that the set of models of 
the completion of the the latter is a superset of th~ stable models of the former. 

Finally, we present our computational experience with some implementations 
of satisfiability, lin~r programming and graph methods. 

2 Preliminaries 
A disjunctive logic program (DLP) Pisa finite set of rules of th~ form 

A 1 IA21·· ·IAm +- B 1,B2 , ••• ,Bk, ..... C1, .•• , "",Cn 

where every Ai, Bj, Cl is an atom. If for every rule of P, n = 0 (k = 0) holds, 
we call P positive (negative) while if m = 1 we call P normaL 

Definition 2.1 Let P be a logie program and M an interpretati.on. We define 
GM{P) to be the logic program obtaine.d by 

o 

• Deleting every rule with a nega4ve literal that occurrs in it.s lxxJy and does 
not belong to M 

• Deleting all negative literals from the remaining rules 

See that GM{P) is a positive disjunctive logic program (PDLP) and may 
have many minimal models. 

Definition 2.2 ([GL91]) Let P be a logie program and M an interpretation. 
Then M is a stahle model Jor P iJ one oJ the minimal models oJ GM(P) coin­
eides with M. 0 

If Pisa DLP, the reduce.d Jorm of P, denote by P-, is the normal logic 
program that is obtained form P by replacing every rule A1 IA2 ] ••• IAm +­
B ll B2 , ••• , Bk, ..... Cl, ... , "",Cn of P by the set of rules 

One of the early attempts to define the semantics of normallogic programs 
is Clark's predicate completion ([Cla78]). Given a propositional normallogic 
program P, its completion, denoted by comp(P) is obtained in two steps 

• Replace every rule of the form 

3 



by the implication 

A ~ BI A ••. A Bn A '" Cl A •.. ..., Cm 

where '" denotes classical negation . 

• Let 

Q~BodYl 

Q ~BodYk 

be a.ll the clanses with Q in the head. If the clause I Q ~' belongs to this 
set then repl.ace this set by Q. Otherwise repl.ace the set of cl.auses by 

Q +7 BodYl V •.. V BodYk 

If Q occurs nowhere in the head of the implica.tions add ..., Q in romp(P). 
o 

Let G = (N, E) be a directed graph, where N is the set of nodes and E 
the set of edges. Then for ~ E N, we define r+(no) = {njl(no, nj) E E} and 
r-(ni) = {njl(nj,no) E E}. The basic graph theoretic concept used. in this 
paper is that of the kerne! of a directed graph. 

Definition 2.3 Let G = (N, E) be a ~irected graph. A set of nodes K ~ N is a 
kernel forG iffor every two nodes no, nj E K, the edges (no , nj) and (nj, no) do 
not belong to E (such a set is caIled independent), and for every node nj E N - K 
there is anode ni E K such that no E r- (nj ). 0 

3 Graphs for Normal Logic Programs 

3.1 The basic Construction 

Throughout this and the next section we refer exdusively to normallogic pro­
grams. If not otherwise stated, we assume that for every literal p or ""'P which 
occurs in the body of a rule of a program P, the corresponding positive litera! 
p occurs in the head of same rule in P. We call this dass of programs complete 
logic programs. It is easy to see that every logic program can be transformed 
to a complete one. 

We now briefly introduce the way the rule graph Gp = (N, E), of a logic 
prograrn P is constructed (for a detailed discussion see [DM94]). The set of 
nodes is N = Ru A, R = {TiiTi is a rule of P} and A = {<li I for each atom <li 
that occurs in P}. The set E = {(Ti, Tj)1 ""p E body{rj) and P E head(T;)} U 
{(ai, Tj)lai E bodYb)} U {(Ti,aj)laj =head(T;)}. 
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We can prove that every stable model of P corresponds to a kerne! of Gp. 
Namely, if M is a stable model for a program P, then there is a kernel K for 
the rule graph Gp such that for every pE M+ ( M+ denotes the set of positive 
litera.ls in a set of literals M) there is anode Ti in K such that head(Tä) = p. 
However the converse is not true. This is because of possible circular support 
between the rules. For example consider the program P = {a .f- b, b .f- a}. Its 
rule graph is depicted in figure 1. The graph has two kernels K 1 = {Tl, TZ} and 
K 2 = {a, b}. See that only the second kerne! corresponds to the stable model 
of P, namely M = {-.a,..,b}. 

Figure 1 

For a kernel K to correspond to a stable model, it mllSt be the case that for 
the set K n R, there exists a nonnegative integer function q, called sequential 
valuation such that q,r. = mazj(mink(q,rj~))' where Tjk, Ti E K n R, far every 
aj E A. such that (Tjk' aj), (aj, Ti) E E. Obviously if r- (1"i) n A = 0 then 
= <Pr. = o. We call the kernels complying with this property sequential kernels. 
Intuitively speaking, the value q,ri denotes the earliest step at which the rule Ti 
can be applied. 

3.2 Relation to Program Completion 

The graph model is equivalent to Clark's completion, in the sense that the 
kernels of the rule graph are in dired correspondence with the models of the 
completed program. 

Theorem 3.1 Let P be a normallogic program, K a kernel of Gp, and 5 = 
{P;13ri , Pi E head{rö) , Ti E K nR}. Then the valuation V(Pi) = true iffpi E 5, 
is a model fOTcomP(P). 

Proof (sketch): Let V(Pi) = true because Pi E head(Ti), Ti E K. Since 
1"i E K nR then for every n.; E r- (Ti), n.; (j. K holds. If n.; E Athen ni E r+ (Tj), 
Tj E K nR, which means that an the positive atoms in the body of Ti are assigned 
the value true in V. On the other band all the nodes n.; E r-(Ti)nR are assigned 
the value false which means that every negative literal in Ti is assigned the value 
false in V. Hence the implicationpi -+ E l V Ez V ... V En is satisfied because of 
some Ei corresponding to Ti. On the other hand an implications Ej -+ Pi are 
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trivially satisfied. 
Nowassumethat V(Pi) = 'alse. ThenalltheimplicatioosPi --+ E1VEZV . .. VB" 
are trivially satisfied. Since Pi is assigned the value false then none of the nodes 
that have Pi in their heads is included in K. Since K is a dominating set this 
means that the negation of some litera! in the body of each rule which has Pi in 
its head is included in V, which in turn means that all the implication Eij --+ Pi 
are satisfied. 0 

The following theorem states that the convesre also holds. 

Theorem 3.2 Let P be a normallogic program and V a model of com.p(P). 
Then the set K = {TiiTi ER, VIi E body(ri), V(l;) = true} U {ailGi E A, V(Gi) = 
'alse} is a kernel fOT Gp. 
Proof (sketch): We fust show that K is an independent set. Assume that 
(Ti, Tj) E E, Ti, Tj E K n R. Then every literal in the body of Tj is true, 
including the litera! the negation of which occurs in the head of Ti. But since 
the literals in the body of Ti are all true while the head is false, V is not a model 
of com.p(P) , a contradiction. Assume now that (aj, ri) E E, Ti E K n Rand 
aj E KnA. Then aj E bodY(Ti) and therefore V(a;) = 'alse and V(Gi) = true 
at the same time, a contradiction. Finally assume that (Ti, aj) E E, ri E K n R 
and aj E K n A. Since every literal in the body of Ti is true the head of Ti has 
to be assigned true as weIl, while since aj E K nA, V(a;) = false. Hence V is 
not a model for com.p(P), agam contradiclion. 
We now show that K is dominating as well. Assume that T; E R, Ti fI. K. Then 
there must be a litera! in the body of Ti having assigned the value false. If this 
literal is an atom, say ai, then the node ai belongs to K and dominates ri. If 
the literal is the negation of an atom, theu there is a rule the head of that is 
is true in V, and heuce the literals in its body are all true. Then this rule is 
included in K and dominates Ti. 

Let now Gi E A and Gi fI. K. Then V (a;) = true which means that there is at 
least one rule Ti which contains a; in its head and all the literals its body are 
true. Then ri E K, and Ti dominates a;. 0 

4 Different Methods for Normal Programs 

We describe four different methods for computing t~ stable models of anormal 
logic program. Whereever the term logic prograID is used, it refers to normal 
logic programs. In all the methods we present the input is a representation of 
the rule graph of the logic program at hand, and the problem to be solved is to 
compute the kernels of this graph. 
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4.1 Satisfiability Algorithms 

In this section we show how the problem of computing the stable models of a 
logic program can be expressed in terms of propositionallogic. Let G p = (N, E) 
be the graph associated with a logic program P. The task is to compute the 
kernels of Gp. Our purpose is to construct a propositional theory Tp such that 
its atoms correspond to the nodes of G p and its satisfying truth assignments to 
the kernels of Gp. The convention is that every set of nodes assigned the value 
true in a sati.sfyin.g truth assignmeni of Tp must form a kernel for the associated 
graph and vice versa. If K is a kernel, then every node adjacent to some node 
nj E K must not belong to the kernel, which in terms of propositional logic 
can be expressed by the implication n; ~ ...,nI Ä ••• Ä -mk (or the set of c1auses 
...,ni V ""nI, ... , ""ni V ...,nk), for alJ ni E r+(n;), 1:$ j :$ k. On the other hand 
if anode n; does not belong to K then some node nj E r- (n;) must be in 
K. This can again be expressed by the proposition ...,ni ~ nl V ••. V nk for 
all ni E r-(n;), 1 :$ j :$ k. A clause of this form is said to be inde:z:ed by ni. 
Then the theory Tp is defined to be the smallest set of clauses that subsumes 
the above set of implications. It is easy to prove every model of Tp will induce 
a kernel for the associated graph G, and vice-versa. Consequently, we can use 
a classical propositional satisfiabilityalgorithm to compute the kernels of the 
graph. The size of Tp is given by the.next proposition. 

Proposition 4.1 Let Tp be the propositional theory ola logic program P. The 
size oITp, denoted as 11 Tp [I, is less than (rp + 2)x 11 Pli + 11 BL 11, where rp 
is the maximum number 01 literals in the body 01 any rule in P, and BL is the 
set 01 proposition al atoms occurring in P. 

Proof (sketch): Let ~ be aliteral node ofthe rule graph Gp. Then r-(ai) = 
{rl' 1'2, •.. , rk} is the set of rule nodes with edges incoming to ai. See that the 
size of r-(ai) is equal to the number of rules that contain ~ in their head, 
denoied as numcl(a;). Then Tp contain a set of numcl(~) clauses with two 
negative literals and one clause of size numcl(~) + 1, which makes a total of 
numcl(~) + 1 clauses, so far. 

Now consider the set of nodes Mj = {kjm Ikjm E r- (Tj)}, for every ri E 
r-(ai)' See that 11 Mj 11 is equal to the number of literals in the body of 
the rule ri, which is smaller or equal to rp. Hen<:e each node ri E r-(~) 
leads to at most rp + 1 clauses and since there are numcl(~) such nodes then 
numcl(~) x (rp + 1) clauses. 

Ifwe add to this number the numcl(~)+l encountered in the beginning, we 
end up with a total of numcl(~) x (rp+2)+1 clauses. Then the size ofTp will be 
the sum I:aiEL(numcl(a;) x (rp+2)+1) = (rp+2) x I:aiEL numcJ(ai)+ 11 BL 11· 
Since Ea.EL numd(a;) =11 R 11, we get 11 Tp 11= (rp + 2) x 11 R 11 + " BL 11. 0 

However, the interesting satisfying truth assignments are only those which 
correspond to sequential kernels. In order to obtain this subset of models we 
can employ two different methods. 
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The first, and most straightforward method, is to compute all models of Tp 
by using a satisfiability algorithm, and then test them for stability. It is easy to 
see that this test takes time polynomial in the size of the program. 

The second possibility is to enhance a given propositional satis'fiability al­
gorithm with metarules that restrict the search to the interesting assignments. 
In the seque1 of this section we present such a set of metarules for the Davis­
Putman procedure and show that the method is sound and complete wrt the 
set of sequential kernels and consequently the set of stahle models. 

The Davis-Putman algorithm (see [CL73]) is asound procedure for propo­
sitional satisfiability consisting of the following 4 rules, which can be applied 
iteratively to simplify a set of clauses C: 

1. Toutology Rule: De1ete all clauses in C which a.re tautologies. 

2. One-literal Rule: If there is a unit clause L in C, then assign the value 
true to L and de1ete all clauses in C containing L. If the resulting set of 
clauses, C', is empty then the C is satisfiable. Otherwise delete form the 
clauses in C' all occunences of ..... L. 

3. Pure-literal Rule: If a litera! L occurs in a clause of C and the literal ...,L 
does not occur in a.ny dause of C, then assign L the value true and de1ete 
all clauses containing L. 

4. Splitting Rule: If the set C can be expresSed in the form 

(Al V L)J\(A2 V L)A •. . J\(Am V L)J\(B1 V ..... L)A(B2 V ..... L)J\ •. .J\(Bn V...,L) AR 

where R does not contain any of the L OT ...,L, theri split the search space 
into two, the fust being Al J\ A2 A ... Am J\ Rand the second BI J\ B2 J\ 
... Bm J\ R. The frrst branch corresponds to the value assignment true to 
L while the second to the assignment faJse. 

If the above rules are applied iterative1y, starting !rom a set of clauses C, 
and at each point where the splitting rule is used one of the two possible assign­
ments to L is chosen then, if the empty set is derived the corresponding value 
assignment obtained is a model of C. If at some point a contrad.iction is derived 
the algorithm backtracks to an ea.rlier splitting point and considers a different 
assignment. If all of the search paths fail then the set of clauses C is unsatis­
fiable. Since only some of the models of a given set of clauses Tp correspond 
to the stable models of P we need to restrict the search space by augmenting 
Davis-Putman method with metarules. 

Given a logic program P we can easily obtain its positive counterpart P+, by 
deleting all negative literals !rom the body of the rules. Then by constructing the 
rule graph of P+, denoted as G p+, we can identify the strongly connected com­
ponents of G p+ and the associated directed acyclic graph G~+. The graph G~+ 
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induces an ordering on the components, such that O(Ci) = max{O(Cj)/Cj E 
r-(C;)} + 1 (all nodes with in-degree 0 are assigned the value 1). We call 
this value depth of the component. Hence, every atom can be considered as 
parameterized by the depth of the component to which it belongs. 

On the other hand Davis-Putman method is supplied with a priority among 
the four rules it consists of. The fust three rules have equal priority which is 
higher than the prionty of the splitting rule. This means that the splitting rule 
will be applied if none of the other three rules can be applied. Furthermore, the 
splitting rule is applied to a literal in the current top component Ci induced by 
the depth ordering. A particular literal from Ci is chosen as follows. If there 
ex:ists a rule node ri E Ru Ci, such that the clause indexed by ri does not 
contain any literal associated to anode Gi E A, then the splitting is performed 
upon Ti. H no such atom exists, then an atom Tj E Ru Ci is chosen and is 
assigned the value false, while the branch which assigns true to Tj is omitted. 

Given a set of clauses C, at each point the above method imposes a truth 
assignment to a subset of atoms occuring in C. This partial value assignment 
is ca11ed a MDP-valuation of C. A complete MDP-valuation for C that leads to 
the empty set, and consequently is a model for C, is called a MDP-mode1 for C. 

Example 4.2 Consider the following logic program P 

a +- d (rs) 

a +-- b (rs) 

Figure 2 

The rule graph of this progrom is depicted in FiguTe 2. The associated proposi­
tional thecry (the value of the atom c is not considered) is 
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..,rl V..,r2 , ..,r2 v-.d, 
-.d v -.r3, ..,r3 V """1(1, """1(1 V....,r4 , 
-'r4 V ..,b, ..,b v "'rs, "'rs V """1(1, 
rl V r2, d v r2, 
r3 V d, a V T3 V rs, r4 Va, 
bVr4, rs vb. 
A possible ordering of the components is (C2, Cl, C3, C41 Cs), where Cl = {rl}, 
C2 = {r2}, C3 = {d}, C4 = {r3}, Cs = {a, r41 b, rs}. First the value true 
is assigned to r2 which leads to the MDP-mode1 {1"2, -.rl, -.d, rs.,"""1(1, r4, ..,b, rs} 
with no further use of the splitting rtde. When the algorithm backtracks to the 
splitting point it will assign the value false to the literal r2. Then, by using the 
firn three rtdes, Davis-Putman method assigns the values {....,r2, rl, d, -'T3} which 
leads to the simplified theory 
"""1(1 V -.r4, -'r4 v--.b, 
....,b V ....,rs, ..,rs V """1(1, 
a V rs, r4 Va, 
bVr4,rsVb. 
At this point the atom r4 is chosen by the splitting role, which after been (15-

signed the value false Leads to the MDP-mode1 {-.r2' rl, d, -.rs, -.r4, b, "'rs, a} and 
the procedure terminates. The two stable models of P are MI = {a, b, --.c, d}, 
and M 2 = {"""1(1, ....,b, c, -.d}. 0 

The following theorem demonstrates the correctness an.d completeness of the 
method wrt the sequential kernels, and consequently wrt the stahle models. 

Theorem 4.3 Let P a logic program, Gp = (N, E) iLs rtde graph, and Tp the 
associated propositional theory. Then a valuation V to the literals is a MDP­
mode1 iff V induces a sequential kernel for G p. 

Proof (sketch): ( =» It is easy to see that every MDP-mode! V induces a 
kernel K = {n;In; E N, V(n;) = true}, for Gp. We will show, inductive!y on 
the depth of GJ.+ that this kerne! is sequential. 
Let ri be a literal which is assigned the value true in V and belongs to a strongly 
connected component Ci of depth 1 in GJ.+ . See that it must be the case that 
ICil = 1, othernise the splitting rule would be applicable, assigning to every 
such node the value false. In turn, ICil = 1 means that there are no positive 
literals in the body of ri, hence <Pri = O. 
Assume that there exists a nonnegative function 4> which assigns a value to all 
nodes ri E R, for which V(ri) = true and ri belong to a strongly connected 
component of depth less or equal to k. 
We will show that the literals ri ER for which Vb) = true and ri belong to a 
strongly connected component of depth k + 1, can be assigned an appropriate 
~function value. 
Let ri E Ci be such a literal, where Ci is a component in depth k + 1. If ICi I = 1 
then all the nodes Gi E r- (ri) nA are assigned the value false and all the nodes 
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rk E r- (ai) belong to components of depth less than k + L Hence a value 4>r i 

<:an be assigned according to the definition of 4>. 
We consider now the case ICil > L Let R; be the set defined R; = {rlr E 
Ci n R, Ver) = true}. Assume that for every rj ER;, there is aj E A, such that 
(aj, rj) E E and for each rm E r-(ai) nR, rm E Cm, V(rm ) = false, where rm 

belongs to a component Cm of depth less than k + L Then the splitting rule 
would be applied assigning to all nodes rj the value false which contradicts the 
assumption Ver;) = true. Henre there must be a set of rule literals .R;l ~ R; 
the members of which can be assigned a 4> function value. If Ti E R;l we are 
done. Otherv.-1se we can apply agam the same argument for the nodes .R; - R;l' 
This can be iterated until ri isencountered. 

( <=) Let K be a sequential kernel of Gp. We show, inductively on the depth 
of G~+, that there is a MDP-model V, such that V(m) = true üf mE K. 
Let Cll , C12, ... , Clm be the components in depth L Define Rl = Rn (Cu u 
C12 U ... U Clm). First consider the case Ti E R1 and ri E Cli, where ICHI = L 
If r- (ri) = 0 then ri E K, while in Tp there is the unit clause ri, which means 
that V(ri) = true. If r-(Ti) ::f:. 0, then in the clause indexed by ri in Tp, no 
atom a; E A occurs. Henre any of the values Ver;) = true, V(ri) = false 
can be assigned by Davis-Putman to each of these literals. Henre for these 
literals V(ri) = true üf ri E K is a MDP-valuation. On the other hand in every 
component 01j, with IClj! > 1 all nodes aj E AUOlj, belong to K, while none 
ofthe nodes rj E RUClj belongs to K. For these literals Davis-Putman method 
assign V(aj) = true and V(rj) = false. Hence for every literal ki in depth 1, 
V(ki) = true üf ki E K is a MDP-valuation. 
Assume that for allliterals m in components ofdepth less than k, V(m) = true 
iff' m E K is a MDP-valuation. 
Let Ck1, Ok2,"" Ckrn be the components in depth k. For the literals ~ such 
that Oki = {~} see that a value V(~) = true if ~ E K and V(~) = false 
if~ ~ K. , " 
Let Olei be a component and IOkil > L Then there are two possible cases. 
1. If for every a; E CIe; nA there is an edge (ri,a;), ri E Oki, then all of the 
nodes a; E Clei n A will belong to K, while none of the nodes ri E Clei n R 
will belong to K. See that in this case, V(ai) = true and Vh) = false is a 
MDP-valuation. 
2. If CIe; is a component, ICkil > 1, and the conditions of 1 above do not hold, 
then define L~i = {a;la; E Cle. n A, V(ri,a;) E E, r. ~ CIe.}. Then for every 
a. E Ll., the assignment V(a;) = true if ai E K and V(a;) = false if a; ~ K, is 
a MDP-valuation. Now define R~i = {rilri E CIe; n R, V(a., Ti) E E,a; E Lt}. 
Then if r. E Ri. and there exists a; E r- (r.)nK then ri ~ K and Ver;) = false 
as weIl. On the other band if for some ri E Rki the previous condition does not 
hold, still the clause indexed by ri, at this point, does not contain any litera! 
from A hence any value <:an be assigned any value depending on whether r; E K 
or not. 
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Iterating the arguments outlined above for the nodes in Cki - (Lli U Rli ) it 
can be proved that for every literal ki in depth k, V(ki) = true i:ff ki E K is 
a MDP-valuation. This concludes the proof that V(ki) = true iff ki E K is a 
MDP-valuation for Tp. 
Finally, since K is a kernel this MDP-valuation satisfies all the clauses in Tp, it 
is a MDP-model. 0 

4.2 Linear Programming Algorithms 

4.2.1 A Straightforward Translation of the Problem 

Given that the kernel problem can be formulated in terms of propositional 
logic, the corresponding satisfiability problem can be solved by an integer linear 
programming algorithm. Any satisfiability problem can be express as a integer 
linear programming one where, to every literal A in the set of clauses a binary 
variable X A is associated, the objective function is empty, while the set of 
constraints is the following: 

L For every dause PI V 1'2 ••• V Pn V -..,kl V ..... k2 • •• V ..... km, where Pi, kj atoms, 
we add the constraint 2::=1 (1 - Xp,) - 2:~ Xk. ~ L 

2. For every variable X A we add the constraints that it is a binary variable, 
that is, XA can be only assigned the values 0 and L 

Every solution for this set of constraints is a model fm the associated set of 
clauses. 

Formulating Tp in linear programming ta.kes (rp + 2)x 11 P 11 + 11 BL 11 

constraints to represent each dause in Tp, plus 2x 11 Pli +2x 11 BL 11 more to 
express the fact that these a.re 0-1 variables. This gives us a total of (r p + 4) x 1I 
Pli +3x 11 BL 11, and leads to a simplex tableau ofsize «rp+4)x 11 P 11 +3x 11 . 
BL 10 x (11 P 11 + 11 BL JI). We denote the set of constraints formalizing Tp, 
as ct(P). Again,not all of these assignments correspond to stable models. The 
following proposition determines a subset of models of Tp that include an stable 
models of P. 

Proposition 4.4 Let K be a sequential kernel fOT the role graph G p of a pro­
gram P. Then K is a minimal kernel wrt the set of the role nodes it contains. 

Proof (sketch): It can be proved inductively on the depth of the G~+ graph. 
o 

Since the sequential kernels are in direct correspondence with the stahle 
models, the models which a.re minimal wrt to the literals associated to mIes, 
will incIude the stable models of the program P. Hence the objective function 
in this case becomes the minimization of the sum LAER X A • This is not exactly 
what we need, since only the assignments with the smalIest number of variables 
from R will be computed, i.e. the assignments with the minimal cardinality. 
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Our aim is to compute all the minimal assignments wrt set inclusion. Hence, 
similar to what is proposed in [B~'NS93], we have to itetate this process adding 
at each step the constraint LBEM XB ::; (k -1), where M is the set of variables 
from R which have been assigned the value true during the last iteration, and 
k is the cardinality of M. This procedure will compute all the minimal models 
in order of non-decreasing cardinality. 

However, the converse of proposition 4.4 does not always hold, and the 
minimal models computed by this procedure must be tested for stability. 

4.2.2 An Alternative Approach 

In this section we discuss the approach presented in [BNNS93], which is based 
on the method for computing the minimal models of logic programs presented 
in [BNNS92]. The authors present three algorithms for computing the stable 
models. We discuss hete only two of them, which are briefiy introduced in the 
sequel. 

Given a rule R, A f- BI /\ ... Bn/\-..CI .·. -..Cm , if(R) denotes the constraint 
X A ~ 1-L:=I(l-XBi)-Li=1 Xc;, If P isalogic progra.m then if(P) denotes 
the set {if(R) IR is a rule in P} U {O::; XK ::; 11 for every atom K}. 

Let now comp(P) be the completion of a program P and C a formula in 
P. Then if C is of the form -..A, the constraint version of C, denoted by lc( C), 
is X A = O. On the othet hand if C is of the form A ++ EI V ... V Ek where 
Ei == Li,I/\" .t..Li,mi' then the constraint version Ic(C) of Cis given by theset of 
constraints {if(A f- Ei)} together with the constraint X A ::; I:=l I1j~1 XLi,,.. 
Since the second set of constraints is not linear, this set is linea.rized, resulting 
in the constraint version of the comp(P) which is denoted by lccomp(P). 

Given this constraint representation of the problem the task then is to iter­
atively optimize the function L X A , where A is an atom, subject to the con­
straints if(P) U AC or lccomp{P) U AC, where AC, initialized to the empty 
set, is a set of additional constraints added at each iteration. These constraints 
are identical to those described . in the previous section, and are of the fonn 
LBEM XB ::; (k -1) where M is an optimal solution computed during the last 
iteration. 

These two algorithmscompute the minimal models of if(P) and Iccomp(P) 
respectiveIy, in order of non-decreasing cardinality. The models are then tested 
for stability. 

Theorems 3.1 and 3.2 ensure that the satisfying assignment of Iccomp(P) 
coincide with those satisfying ct(P). We now prove that the optimal solutions 
of the two corresponding minimization problems also coincide. 

Proposition 4.5 Let P be a logic progrom, Tp the associated propositional 
theory, and comp(P) its completion. Then if SI is a modelofTp minimal in 
the set of literals associated with rules then S2 = {P;13ri E SI nR, Pi E head(r,)} 
is a minimal model for comp(P). 
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Proof (sketch): Let SI be a model ofTp which is minimal in the set ofliterals 
associated to rules. Then by theorem 3.1, the set S2 defined above is a model 
for comp(P). Let now 52 be another model of comp(P), such that 52 C S2' 
Then by theorem 3.2 there exists a kemel for Gp (and consequently a model 
for Tp), say S~, that includes more litera! nodes than SI. This means that for 
the associated models S~ n R C SI n R. Hence SI is not minimal in the set of 
literals associated with rules, which is a contradiction. 0 

Proposition 4.6 Let P be a logic program, Tp the associated propositional 
theory, anti comp(P) its completion. Then every minimal model of comp(P) 
in duces a model for Tp which is minimal in the literals associated with rules. 

Proof (sketch): Let SI be a minimal model for comp(P). Then by theorem 3.2 
there is a corresponding model for Tp, say S2' Assume that Sz is not minimal 
in the set of literals associated with rules, because S2 is a model of Tp and 
52 n R C Sz n R. By theorem 3.1 there is a model for comp(P) a.ssociated 
with S2' say Si, such that ~ C SI' Then SI is not minimal for comp(P), a 
contradiction. 0 

Hence, minimizing either ct(P) wrt the literaJs corresponding to rules, or 
lccomp(P) wrt to the atoms, leads to the same set of minimal models, namely 
the minimal models of comp(P). However ct(P) oRers an advantage. Namely, 
the size of the problem to be optimized is smaller. As it is show in [BNNS93], 
the size ofthe simplex tableau for lccomp(P) is, in the worst case, «rp+3)x 11 

P 11 +2x 11 BL 11) x «rp + 6)x 11 P 11 +3x 11 BL 11), which is obviously larger 
than the size of the ct( P) problem. 

Furthermore, in the same paper the proposed algorithms are compared, by 
using some benchmark databases, and it is argued that computing the minimal 
models of if(P) overall performs better than computing the minimal models of 
comp(P). In the next section we show that computing the minimal models of 
if(P), in the case ofnegative logic programs, amounts to computing the minimal 
dominating sets of the rule graph, the number of which can be exponential in 
the size of the graph (the size of the program). 

4.2.3 A graph-theoretic characterization of minimal models 

In this section we investigate the case of negative logic programs, that is, pro­
grams with rules that contain only negative literals in their body. If Pisa 
negative program, then if(P) is a set of implications of the form ...,C1 /\ ...,C2 /\ 

... /\.....cm -+ A, while Gp contains only rule nodes. In this section we drop 
the restriction that the programs are complete, or in other words, that for every 
negative litera! in the body of a rule; its negation occurs in the head of some 
role. 

A dominating set for a directed graph G = (N, E), is a set of nodes D ~ N, 
such that for every node nj (j D, there is anode ni E D, such that (ni, nj) E E. 
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Proposition 4.7 IJ P is a negative program then, every dominating set Jor G p 

in duces a model Jor iJ(P). 

Proof (sketch): Let D be a dominating set fOT Gp and M = {Pilpi is the 
consequent of an implica.tion ri E iJ(P), ri E D}. See that all implications for 
whlch theix consequents belong to M are satisfied. On the other hand every 
implication ri with a consequent that does not belong to M is dominated by 
an implication of D, which means that at least one of its antecedents is false, 
hence ri is also satisfied.. 0 

It turns out that the minimal dominating sets correspond to minimal models. 

Proposition 4.8 IJ Pisa negative program then, every minimal dominating 
set Jor Gp induces a minimal model Jor iJ(P). 

Proof (sketch): Let D be a minimal dominating set fOT Gp and M = W.IPi 
is the consequent of an implica.tion ri E iJ(P), ri E D} its associated model for 
iJ(P). FOT any node ri E D there are two possibilities. The first is that ri is not 
dominated by any other node in D. In this case the set M - {Pd, where Pi is the 
consequent of the implica.tion ri, is not a model for iJ(P) since the implication 
Ti is not satisfied. The second possibility is that Ti dominates anode rj which 
is not dominated by any other node in D. Then the set M - {Pd, where Pi is 
the consequent of the implica.tion ri, does not satisfy the implication rj. Hence 
M is a minimal model. 0 

The converse ofproposition 4.7 does not hold in general. However, in the case 
of complete negative program every model of P corresponds to a dominating 
set. 

Proposition 4.9 Let P be a complete negative program. Then every model oJ 
P induces a dominating set Jor G p. 

Proof (sketch): Let M be a model fOT P. We will prove that D = {ri lri is an 
implication and the consequent of Ti belongs to M} is a dominating set. If the 
rule associated with an implication Tj does not belong to D, then one of the 
negative literals in the antecedent of Tj is assigned the value false, and hence 
the corresponding atom is true. Given that P is complete there must be an 
implication Ti E D such that the edge (Ti, Tj) belongs to Gp. Therefore D is a 
dominating set. 0 

Any method based on the computation of the minimal models of iJ(P) is 
confronted with the fad that the number of the minimal dominating sets can be 
exponential in the number of the nodes of the graph as the following example 
demonstrates. 

Example 4.10 Consider n disconnected copies 0/ the graph with 4n nodes, 
shown in Figure 3. The associated negative logic program is P = {qil f­

"'Pi4, qiZ f- "'Pil, qi3 f- "'PiZ, qi4 f- ""PiZ 1\ "'Pi3} 1 Jor 1 ~ i ~ n. 
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Figure 3 

Each oJ these disconnected parts has 9 minimal dominating sets, namely Dl = 
{~l'n.'2}, D2 = {11il,~3} and D3 = {~2,11i.J, which correspond to the min­
imal models M l = {pn,Pi2' ""'Ps3,-'Pi4}, Mz = {Pil,PiS,--.pi2,~} and M3 = 
{Pi2,Pi4, -'Pi3, -'Pit}, respectively. Choosing one oJ them JOT every i, leads to a 
total oJ 3n different minimal dominating sets Jor G p and hence to ~ minimal 
models Jor a program consisting of 4n rules. Furthermore P has just one stable 
model, namely M = {Pil,Pi3, --.p.'2, ""'Pi4}, 1:5 i:5 n. 0 

The above example shows that the minimal models of iJ(P) may be expo­
nentially many, while only a very small number of them are the actual stable 
models. 

Notice that in the case of negative logic programs the stable models are in 
direct correspondence with the kemels of the rule graph. A kernel is a domi­
nating and independent set. Furthermore, it is a mjnimal dominating set which 
is independent. This property implies a method that generates all, possibly ex­
ponential, minimal dominating sets fust, and then test them for independence. 
A successful independence test ensures stability. 

On the other hand, a kemel is a maximal independent set (MIS) which 
is dominating. Therefore, an alternative method to compute the kemels of a 
graph, would be to first generate all maximal independent sets (which, like in 
the case of minimal dominating sets, can be exponentially many), and then test 
them for dominance. It is important to note that the maximal independent sets 
can be generated with polynomial delay (see [JPY88]). That is, the complexity 
of computing all MIS is O(P(N)C), where P(N) is a polynomial in the size of 
the input, while C is the number ofMIS's. Moreover, the time required between 
computing two consecutive solutions is polynomial in the size of the input. 

See that the computational model based on the MIS gives us a better charac­
terization of complexity of computing the stable models than the already known 
general intra.ctability results. Nevertheless, our computational experience has 
shown that for random negative logic programs, this method of generating the 
MIS's, leads to poor performance compared to this of the satisfiability or graph 
algorithms (see next section). 
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4.3 Graph algorithms 

Another alternative is to solve the kernel problem by a graph algorithm. A fust 
attempt towards this direction is the algorithm presented in [DMP93}. It is a 
bacl-traclcing algorithm with a worst time complexity O(P(N)2 IF1 ), where Fis 
a feedback vertex set for graph and p(N) a polynomial in the size of the input. 
A feedback vertex set is a set of nodes which when removed result in a acyclic 
graph. Since computing the feedback vertex set with the minimal cardinality is a 
NP-hard problem, approximation algorithms can be used, leading to a, hopefully 
sm~ feedback vertex set. According to this method, given a program P, the 
rule graph G p is constructed and the graph algorithm computes the kemels of 
Gp, in order to determine whether they are sequentiaL 

Despite the hardness of the general case, a class of logic programs is easier 
to reason with. Namely, in [DMP93] an algorithm for computing a subset of 
the kernels of a odd cyde free graph is presented. The basic graph-theoretic 
property used, is the fact that if G is a strongly connected graph without odd 
cycles, then Gis bipartite. A graph G = (N, E) is called bipartite if N can be 
split into two parts say K, L such that E ~ (K x L) U (L x K). See that any of 
the two sets K, L is a kernel for G. 

An algorithm that computes this set of "standard" kemels is the following. 
lnitially K = 0. Repeat the following until G is empty: First, find the strongly 
connected components of the graph. Since the graph is odd cyde-free, each com­
ponent is a bipartite graph, saY Ci = (Nil, NiZ. Ei). For each such component 
Ci = (Nil, Ni2, Ei) with no incoming edges, select j E {I, 2}, set K := KU Nij, 
and delete from G Nil> NiZ, and all nodes v which there is an edge ('U, v) with 
'U E Nij. 

A modification of the above algorithm leads to a procedure that computes a 
sequential kernel of an odd eyde free rule graph Gp of a logic program P. Fol­
lowing [pY92], we call a set of literal nodes U an unfounded set if the subgraph 
of G p+ induced by U and their preceding rule nodes has no source. 

Compute-Sequential-Kernels( G p, K); 
becin o 
if Gp = 0 then retum(K) else 

begin 
Compute the top components of the graph G p, say Ch ... , Ck; 
For i:=l to k do; 

begin 
if for the greatest unfounded set Ui of Ci, Ui =1= 0 h01ds then 
Add every node 7'I.i E Ui nAto B 
else 
begin 
if ICi I = 1 then add Ci to B eise 
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