MAX-PLANCK-INSTITUT
FUR
INFORMATIK

Classical Methods in Nonmonotonic
Reasoning

Yannis Dimopoulos

MPI-1-94-229 August 1994

B

INFORMATIK

Im Stadtwald
66123 Saarbriicken

Germany

Classical Methods in Nonmonotonic
Reasoning

Yannis Dimopoulos

MPI-1-94-229 August 1994

Author’s Address

Yannis Dimopoulos
Max-Planck-Institut fir Informatik
Im Stadtwald,

66123 Saarbrucken, Germany,
e-mail: yannis@mpi-sb.mpg.de

Abstract

In this paper we present and compare some classical problem solving methods for
computing the stable models of logic programs with negation. In particular linear
programming, propositional satisfiability, constraint satisfaction, and graph algorithms
are considered. Central to our approach is the representation of the logic program by
meaus of a graph.

Keywords

Logic Programming, Semantics, Graph Theory, Algorithms.

1 Introduction

Over the last years, a large body of research has been devoted to the semantics
of logic programs with negation. One of the most prominent proposals is the
stable model semantics, introduced in [GL88]. This semantics is closely related
to Default Logic introduced in [Rei80], in the sense that the stable models of
a logic program can be faithfully captured by the extensions of an associated
Default Theory.

Unfortunately both Default Logic and stable models semantics, turned out to
be intractable, even in very simple cases. Despite their computational hard-
ness, a relatively small effort has been expended on deriving effective ways
for reasoning with these formalisms. - Recently, some classical problem solving
methods for computing the semantics of logic programs and default theories
have been proposed ([BED91], [BED92a), [BED92b], [BNNS92], [BNNS93],
[DM94], [DMP93], [DT93]). These include linear programming, propositional
satisfiability, constraint satisfaction, and graph algorithms. It is now evident
that techniques emerging from these problem solving paradigms can be used in
Nonmonotonic Reasoning.

In this paper we are concerned with methods for computing the stable model
semantics of propositional logic programs. We first investigate the case of normal
logic programs, and later we show how these methods can be extended to the
case of disjunctive logic programs. Central to our approach is the representation
of the logic program by means of a graph. The idea was introduced in [DM94]
for the case of disjunction free default theories, and it is only briefly presented
here. The set of stable models of a logic program corresponds to a subset of
the kernels of the associated graph. The graph model gives rise to four different
methods for computing the stable models of a normal logic program.

The first alternative is algorithms that explicitly enumerate the kernels of
the graph. Apart from the algorithm for the general case, we show that for logic
programs with no odd cycles a subset of their stable models can be efficiently
computed. The second possibility is to express the graph structure in terms of
propositional logic, and use a classical satisfiability algorithm. The models of
the resulting theory, which are in direct correspondence with the kernels of the
associated graph, are a superset of the stable models of the program at hand. It
turns out that this set of models coincides with the set of models of the Clark’s
completion of the program. As an alternative, a variant of the Davis-Putman
method that computes exactly the stable models, is presented.

The third method considered is a formulation the problem as a Linear Pro-
gramming one, which can be solved with any of the known methods for this class
of problems. This method is compared to the linear programming formulation
of the problem presented in [BNNS93]. The last possibility is to use some of
the constraint satisfaction algorithms. We show that one of these algorithms is
closely related to the graph algorithm considered in the paper.

To extend these methods to the case of the disjunctive logic programs we first

W

transform such a program to a normal one, and show that the set of models of
the completion of the the latter is a superset of the stable models of the former.

Finally, we present our computational experience with some implementations
of satisfiability, linear programming and graph methods.

2 Preliminaries

A disjunctive logic program (DLP) P is a finite set of rules of the form
A11A2E---1Am ¢ B1,Bs,..., Bk, =Cy,-..,=Cp

where every A;, Bj, C; is an atom. If for every rule of P, n = 0 (k = 0) holds,
we call P positive (negative) while if m = 1 we call P normal.

Definition 2.1 Let P be a logic program and M an interpretation. We define
Gur(P) to be the logic program obtained by

e Deleting every rule with a negative literal that occurrs in its body and does
not belong to M

e Deleting all negative literals from the remaining rules

See that Gar(P) is a positive disjunctive logic program (PDLP) and may
have many minimal models.

Definition 2.2 (/GL91]) Let P be a logic program and M an interpretation.
Then M is a stable model for P if one of the minimal models of Gy (P) coin-
cides with M. O

If P is a DLP, the reduced form of P, denote by P, is the normal logic
program that is obtained form P by replacing every rule A4;|Az|... |A;m
By, Bs,...,Bx,Ci,...,~Cyp of P by the set of rules

Al <'—BI:B21---aBka_’Cly"-v—'cna—'AZVH—’Am

Am +—B19st "'7Bk7—'CI,--.,ﬂCn, ﬁAl’---_‘Am-l

One of the early attempts to define the semantics of normal logic programs
is Clark’s predicate completion ([Cla78]). Given a propositional normal logic
program P, its completion, denoted by comp(P) is obtained in two steps

e Replace every rule of the form

A+ BiA...AB, A-CiA...=Cp,

by the implication
ABiA...AB,A~CiA...~Cn,

where ~ denotes classical negation.
o Let

Q = Body;
Q — Bodyk

be all the clauses with Q in the head. If the clause 'Q «’ belongs to this
set then replace this set by Q. Otherwise replace the set of clauses by

Q <> Body, V ...V Body

If Q occurs nowhere in the head of the implications add ~ @ in comp(P).
=}

Let G = (N, E) be a directed graph, where N is the set of nodes and E
the set of edges. Then for n; € N, we define I'*(n;) = {n;|(ni, n;) € E} and
I'"(n;) = {nj|(nj,n;) € E}. The basic graph theoretic concept used in this
paper is that of the kernel of a directed graph.

Definition 2.3 Let G = (N, E) be a directed graph. A set of nodes K C N isa
kernel for G if for every two nodes n;,n; € K, the edges (ni,n;) and (nj,n;) do
not belong to E (such a set is called independent), and for every noden; € N—K
there is a node n; € K such that n; € T~ (n;). O

3 Graphs for Normal Logic Programs

3.1 The basic Construction

Throughout this and the next section we refer exclusively to normal logic pro-
grams. If not otherwise stated, we assume that for every literal p or —p which
occurs in the body of a rule of a program P, the corresponding positive literal
p occurs in the head of some rule in P. We call this class of programs complete
logic programs. It is easy to see that every logic program can be transformed
to a complete one.

We now briefly introduce the way the rule graph Gp = (N, E), of a logic
program P is constructed (for a detailed discussion see [DM94]). The set of
nodes is N = RU A, R = {r;|r; is a rule of P} and A = {a;| for each atom a;
that occurs in P}. The set £ = {{r;,r;)| ~p € body(r;) and p € head(r;)} U
{(a:,r;)la; € body(r;)} U {(r;, a;j)la; =head(r;)}.

We can prove that every stable model of P corresponds to a kernel of Gp.
Namely, if M is a stable model for a program P, then there is a kernel K for
the rule graph Gp such that for every p € M+ (M+ denotes the set of positive
literals in a set of literals M) there is a node r; in K such that head(r;) = p.
However the converse is not true. This is because of possible circular support
between the rules. For example consider the program P = {a + b,b « a}. Its
rule graph is depicted in figure 1. The graph has two kernels Ky = {r;, 2} and
K = {a,b}. See that only the second kernel corresponds to the stable model
of P, namely M = {-a,—b}.

Figure 1

For a kernel K to correspond to a stable model, it must be the case that for
the set K N R, there exists a nonnegative integer function ¢ called seguential
valuation such that é,, = maz;(mink(¢,,)), where rjr, 7 € K N R, for every
a; € A such that (rj,a;),(aj,r) € E. Obviously if I™(r;) N 4 = 6 then
= ¢,, = 0. We call the kernels complying with this property sequential kernels.
Intuitively speaking, the value ¢,, denotes the earliest step at which the rule ;
can be applied.

3.2 Relation to Program Completion

The graph model is equivalent to Clark’s completion, in the sense that the
kernels of the rule graph are in direct correspondence with the models of the
completed program.

Theorem 3.1 Let P be a normal logic program, K a kernel of Gp, and S =
{p;|3r;, pi € head(r;),r; € K N R}. Then the valuation V(p;) = true iff p; € S,
is a model for comp(P).

Proof (sketch): Let V(p;) = true because p; € head(r;), r; € K. Since
r; € KN R then for every n; € I~ (r;), n; € K holds. If n; € A then n; € T¥(ry),
r; € KNR, which means that all the positive atoms in the body of 7; are assigned
the value true in V. On the other hand all the nodes »; € I'™(r;)N R are assigned
the value false which means that every negative literal in r; is assigned the value
false in V. Hence the implicationp; — E, V E; V...V E,, is satisfied because of
some E; corresponding to 7;. On the other hand all implications E; — p; are

trivially satisfied.

Now assume that V(p;) = false. Then all the implicationsp; — E1VE,V...VE,
are trivially satisfied. Since p; is assigned the value false then none of the nodes
that have p; in their heads is included in K. Since K is a dominating set this
means that the negation of some literal in the body of each rule which has p; in
its head is included in V, which in turn means that all the implication E;; — p;
are satisfied. O

The following theorem states that the convesre also holds.

Theorem 3.2 Let P be a normal logic program and V a model of comp(P).
Then the set K = {r;|r; € R,VL; € body(r:), V(L) = true} U {a;la; € A,V (a;) =
false} is a kernel for Gp.

Proof (sketch): We first show that K is an independent set. Assume that
(rs,7r5) € E, riyr; € KN R. Then every literal in the body of r; is true,
including the literal the negation of which occurs in the head of r;. But since
the literals in the body of r; are all true while the head is false, V' is not a model
of comp(P), a contradiction. Assume now that (a;,r;) € E, r; € KN R and
a; € KN A. Then a; € body(r;) and therefore V(a;) = false and V(a;) = true
at the same time, a contradiction. Finally assume that (r;,a;) € B, € KN R
and a; € K N A. Since every literal in the body of r; is true the head of r; has
to be assigned true as well, while since a; € K N A, V(a;) = false. Hence V is
not a model for comp(P), again contradiction.

We now show that K is dominating as well. Assume that r; € R, r; € K. Then
there must be a literal in the body of r; having assigned the value false. If this
literal is an atom, say a;, then the node a; belongs to K and dominates r;. If
the literal is the negation of an atom, then there is 2 rule the head of that is
is true in V, and hence the literals in its body are all true. Then this rule is
included in K and dominates r;.

Let now o; € A and a; € K. Then V(a;) = true which means that there is at
least one rule r; which contains q; in its head and all the literals its body are
true. Then r; € K, and »; dominates ¢;. O

4 Different Methods for Normal Programs

We describe four different methods for computing the stable models of a normal
logic program. Whereever the term logic program is used, it refers to normal
logic programs. In all the methods we present the input is a representation of
the rule graph of the logic program at hand, and the problem to be solved is to
compute the kernels of this graph.

4.1 Satisfiability Algorithms

I this section we show how the problem of computing the stable models of a
logic program can be expressed in terms of propositional logic. Let Gp = (N, E)
be the graph associated with a logic program P. The task is to compute the
kernels of Gp. Our purpose is to construct a propositional theory Tp such that
its atoms correspond to the nodes of Gp and its satisfying truth assignments to
the kernels of Gp. The convention is that every set of nodes assigned the value
true in a satisfying truth assignment of Tp must form a kernel for the associated
graph and vice versa. If K is a kernel, then every node adjacent to some node
n; € K must not belong to the kernel, which in terms of propositional logic
can be expressed by the implication n; — —n3 A... A —mny (or the set of clauses
-n; V -y, ...,on; V -my), for all n; € P (n;), 1 € j < k. On the other hand
if a node n; does not belong to K then some node n; € I'"(n;) must be in
K. This can again be expressed by the proposition —n; — n1 V...V ng for
all n; €T (n;), 1 <7 < k. A clause of this form is said to be indezed by n;.
‘Then the theory Tp is defined to be the smallest set of clauses that subsumes
the above set of implications. It is easy to prove every model of Tp will induce
a kernel for the associated graph G, and vice-versa. Consequently, we can use
a classical propositional satisfiability algorithm to compute the kernels of the
graph. The size of Tp is given by the next proposition.

Proposition 4.1 Let Tp be the propositional theory of a logic program P. The
size of Tp, denoted as || Tp ||, is less than (rp +2)x || P || + || By ||, where rp
is the mazrimum number of literals in the body of any rule in P, and By, is the
set of propositional atoms occurring in P.

Proof (sketch): Let a; be 2 literal node of the rule graph Gp. Then I'"(a;) =
{r1,72,-..,7%} is the set of rule nodes with edges incoming to a;. See that the
size of I'"(a;) is equal to the number of rules that contain @; in their head,
denoted as numcl(a;). Then Tp contain a set of numcl(a;) clauses with two
negative literals and one clause of size numel(a;) + 1, which makes a total of
numcl(a;) + 1 clauses, so far.

Now consider the set of nodes M; = {kjm|kjm € I'"(r;)}, for every r; €
I~ (a;). See that || M; || is equal to the number of literals in the body of
the rule r;, which is smaller or equal to rp. Hence each node r; € I'"(a;)
leads to at most rp + 1 clauses and since there are numcl(a;) such nodes then
numcl(a;) X (rp + 1) clauses.

If we add to this number the numci(a;)+1 encountered in the beginning, we
end up with a total of numdcl(a;) X (rp+2)+1 clauses. Then the size of Tp will be
thesum 3°, o, (numel(a;) x (rp+2)+1) = (rp+2) X3, oy numcl(a;)+ || B ||
Since 3", 5 numel(e:) =|| & ||, we get || Ze [I= (v + 9% | R + || Bz II- O

However, the interesting satisfying truth assignments are only those which
correspond to sequential kernels. In order to obtain this subset of models we
can employ two different methods.

-~

The first, and most straightforward method, is to compute all models of Tp
by using a satisfiability aigorithm, and then test them for stability. It is easy to
see that this test takes time polynomial in the size of the program.

The secord possibility is to enhance a given propositional satisfiability al-
gorithm with metarules that restrict the search to the interesting assignments.
In the sequel of this section we present such a set of metarules for the Davis-
Putman procedure and show that the method is sound and complete wrt the
set of sequential kernels and consequently the set of stable models.

The Davis-Putman algorithm (see [CL73]) is a sound procedure for propo-
sitional satisfiability consisting of the following 4 rules, which can be applied
iteratively to simplify a set of clauses C:

1. Tautology Rule: Delete all clauses in C which are tautologies.

2. One-literal Rule: If there is a unit clause L in C, then assign the value
true to L and delete all clauses in C containing L. If the resulting set of
clauses, C’, is empty then the C is satisfiable. Otherwise delete form the
clauses in C’ all occurrences of —L.

3. Pure-literal Rule: If a literal L occurs in a clause of C and the literal ~L
does not occur in any clause of C, then assign L the value true and delete
all clauses containing L.

4. Splitting Rule: If the set C can be expressed in the form
(A1VID)A(AVI)A. . A(AmVL)A(BLV-L)A(BoV=L)A. . A(BpV-L)AR

where R does not contain any of the L or —L, then split the search space
into two, the first being A1 A A2 A ... A A R and the second By A B; A
... By A R. The first branch corresponds to the value assignment true to
L while the second to the assignment false.

If the above rules are applied iteratively, starting from a set of clauses C,
and at each point where the splitting rule is used one of the two possible assign-
ments to L is chosen then, if the empty set is derived the corresponding value
assignment obtained is a model of C. If at some point a contradiction is derived
the algorithm backtracks to an earlier splitting point and considers a different
assignment. If all of the search paths fail then the set of clauses C is unsatis-
fiable. Since only some of the models of a given set of clauses Tp correspond
to the stable models of P we need to restrict the search space by augmenting
Davis-Putman method with metarules.

Given a logic program P we can easily obtain its positive counterpart P¥, by
deleting all negative literals from the body of the rules. Then by constructing the
rule graph of P*, denoted as Gp+, we can identify the strongly connected com-
ponents of Gp+ and the associated directed acyclic graph G3+. The graph Gf,+

induces an ordering on the components, such that O(C;) = maz{O0(C;)|C; €
I'~(C;)} + 1 (all nodes with in-degree 0 are assigned the value 1). We call
this value depth of the component. Hence, every atom can be considered as
parameterized by the depth of the component to which it belongs.

On the other hand Davis-Putman method is supplied with a priority among
the four rules it consists of. The first three rules have equal priority which is
higher than the priority of the splitting rule. This means that the splitting rule
will be applied if none of the other three rules can be applied. Furthermore, the
splitting rule is applied to a literal in the current top component C; induced by
the depth ordering. A particular literal from C; is chosen as follows. If there
exists a rule node r; € RU C;, such that the clause indexed by r; does not
contain any literal associated to a node a; € A, then the splitting is performed
upon r;. If no such atom exists, then an atom r; € RU C; is chosen and is
assigned the value false, while the branch which assigns true to r; is omitted.

Given a set of clauses C, at each point the above method imposes a truth
assignment to a subset of atoms occuring in C. This partial value assignment
is called @ MDP-valuation of C. A complete MDP-valuation for C that leads to
the empty set, and consequently is a model for C, is called 2 MDP-model for C.

Example 4.2 Consider the following logic program P

¢+ =d (r) d « = (r2)
a +d (r3) b a(rq)
a«b (7’5)

Figure 2

The rule graph of this program is depicted in Figure 2. The associated proposi-
tional theory (the value of the atom ¢ is not considered) is

=ry V =y, =rg Vd,

~dV —r3, =rzV —a, ~aV ry,

=rg V =b, =bV —ry, =15 V a,

riVrsy, dVirs,

r3Vd,aVrzVrs, r3Va,

bVvry, rsVb.

A possible ordering of the components is (C, C1,C3,Cy, Cs), where C1 = {r1},
Cy = {r2}, C3 = {d}, Cs = {r3}, Cs = {a,r4,b,rs}. First the value true
is assigned to ro which leads to the MDP-model {re,—r1,—d, r3,—a, r4, b, rs}
with no further use of the splitting rule. When the algorithm backtracks to the
splitting point it will assign the value false to the literal ro. Then, by using the
first three rules, Davis-Putman method assigns the values {—ry, r1,d, -rs} which
leads to the simplified theory

—a 'V —ory, -y V b,

=bV —rg, —rs V g,

aVrs, rqaVa,

bVry, rs Vb ;

At this point the atom r4 is chosen by the splitting rule, which after been as-
signed the value false leads to the MDP-model {—ry,r1,d,—rs, o1y, b, =rs, a} and
the procedure terminates. The two stable models of P are M; = {a,b,—c,d},
and My = {—a,—b,c,~d}. O

The following theorem demonstrates the correctness and completeness of the
method wrt the sequential kernels, and consequently wrt the stable models.

Theorem 4.3 Let P a logic program, Gp = (N, E) its rule graph, and Tp the
associated propositional theory. Then a valuation V to the literals is ¢ MDP-
model iff V induces a sequential kernel for Gp.

Proof (sketch): (=) It is easy to see that every MDP-model V induces a
kernel K = {n;|n; € N,V (n;) = true}, for Gp. We will show, inductively on
the depth of G5, that this kernel is sequential.

Let r; be a literal which is assigned the value true in V and belongs to a strongly
connected component C; of depth 1 in Gf,+. See that it must be the case that
|C;| = 1, otherwise the splitting rule would be applicable, assigning to every
such node the value false. In turn, |[C;| = 1 means that there are no positive
literals in the body of r;, hence ¢,, = 0.

Assume that there exists a nonnegative function ¢ which assigns a value to all
nodes r; € R, for which V(r;}) = true and r; belong to a strongly connected
component of depth less or equal to &.

We will show that the literals »; € R for which V (r;) = true and r; belong to a
strongly connected component of depth £ + 1, can be assigned an appropriate
¢-function value.

Let r; € C; be such a literal, where C; is a component in depth k+1. If |C;| = 1
then all the nodes a; € T~ (r;) N A are assigned the value false and all the nodes

10

ri € T~ (a;) belong to components of depth less than k£ + 1. Hence a value ¢,;
can be assigned according to the definition of ¢.

We consider now the case [C;| > 1. Let R; be the set defined B; = {r|r €
CiN R,V(r) = true}. Assume that for every r; € R;, there is a; € A, such that
(aj,7;) € E and for each rr, €T (a;) N R, ' € Cp, V() = false, where 7,
belongs to a component Cy, of depth less than k¥ + 1. Then the splitting rule
would be applied assigning to all nodes r; the value false which contradicts the
assumption V(r;) = true. Hence there must be a set of rule literals R;; C RB;
the members of which can be assigned a ¢ function value. If r; € R;; we are
done. Otherwise we can apply again the same argument for the nodes R; — R;j.
This can be iterated until r; is encountered.

(<=) Let K be a sequential kernel of Gp. We show, inductively on the depth
of G, that there is a MDP-model V, such that V(m) = true iff m € K.
Let Cy1,Ci2,--.,Cim be the components in depth 1. Define Ry = RN {(Cy; U
Ci2U...U Cyy). First consider the case r; € R; and r; € Cy;, where |Cyi| = 1.
If T (r;) = @ then r; € K, while in Tp there is the unit clause r;, which means
that V(r;) = true. If I'~(r;) # 0, then in the clause indexed by r; in Tp, no
atom a; € A occurs. Hence any of the values V(r;) = true, V(r;) = false
can be assigned by Davis-Putman to each of these literals. Hence for these
literals V(r;) = true iff r; € K is a MDP-valuation. On the other hand in every
component Cy;, with [Cy;| > 1 all nodes a; € AU Cyj, belong to K, while none
of the nodes r; € RUCy; belongs to K. For these literals Davis-Putman method
assign V(a;) = true and V(r;) = false. Hence for every literal k; in depth 1,
V(k;) = true Hf k; € K is 2 MDP-valuation.
Assume that for all literals 7 in components of depth less than k, V(m) = true
iff m € K is a MDP-valuation.
Let Cki,Ck2,-- ., Crm be the components in depth k. For the literals m; such
that Ci; = {m;} see that a value V(m;) = true if m; € K and V(m;) = false
fm; € K. -
Let Cki be a component and |Cg;| > 1. Then there are two possible cases.
1. If for every a; € Ck; N A there is an edge (r4,a;), r; € Cki, then all of the
nodes a; € Ci; N A will belong to K, while none of the nodes r; € Cx; N R
will belong to K. See that in this case, V(a;) = true and V(r;) = false is a
MDP-valuation.
2. If Ck; i1s a component, |Ck;| > 1, and the conditions of 1 above do not hold,
then define L}; = {aila; € Cii N A,Y(ri,a:) € E,r; & Cki}- Then for every
a; € L};, the assignment V(a;) = true ifa; € K and V(a;) = false ifa; ¢ K, is
a MDP-valuation. Now define R}, = {ri[r; € Cii N R,V(ai, ;) € E,a; € L},}.
Then if r; € R}; and there exists a; € I'™ (r;)NK then r; € K and V(r;) = false
as well. On the other hand if for some r; € R}, the previous condition does not
hold, still the clause indexed by r;, at this point, does not contain any literal
from A hence any value can be assigned any value depending on whether r; € K
or not.

11

Iterating the arguments outlined above for the nodes in Ci; — (L}; U RE;) 1t
can be proved that for every literal k; in depth k, V{(k;) = true iff k; € K is
a MDP-valuation. This concludes the proof that V(k;) = true iff k; € K is a
MDP-valuation for Tp.

Finally, since K is a kernel this MDP-valuation satisfies all the clauses in Tp, it
is a MDP-model. O :

4.2 Linear Programming Algorithms
4.2.1 A Straightforward Translation of the Problem

Given that the kernel problem can be formulated in terms of propositional
logic, the corresponding satisfiability problem can be solved by an integer linear
programming algorithm. Axny satisfiability problem can be express as a integer
linear programming one where, to every literal A in the set of clauses a binary
variable X4 is associated, the objective function is empty, while the set of
constraints is the following:

1. For every clanse py Vpy ...V pa V =k V=k; ...V =kny, where p;, k; atoms,
we add the constraint Y - (1 — Xp,) — Sy Xi; 2> 1.

2. For every variable X 4 we add the constraints that it is a binary variable,
that is, X4 can be only assigned the values 0 and 1.

Every solution for this set of constraints is a model for the associated set of
clauses.

Formulating Tp in linear programming takes (rp +2)x || P || + || Bz ||
constraints to represent each clause in Tp, plus 2x || P || +2x || By || more to
express the fact that these are 0-1 variables. This gives us 2 total of (rp +4)x ||
P || +3x || Bg ||, and leads to 2 simplex tableau of size ((rp+4)x || P || +3x ||
Br) x (|| PIl + || Bz ||)- We denote the set of constraints formalizing Tp,
as ct(P). Again, not all of these assignments correspond to stable models. The
following proposition determines a subset of models of Tp that include all stable
models of P.

Proposition 4.4 Let K be a sequential kernel for the rule graph Gp of a pro-
gram P. Then K is a minimal kernel wrt the set of the rule nodes it contains.

Proof (sketch): It can be proved inductively on the depth of the G5, graph.
a

Since the sequential kernels are in direct correspondence with the stable
models, the models which are minimal wrt to the literals associated to rules,
will include the stable models of the program P. Hence the objective function
in this case becomes the minimization of the sum 3 , . o X4 . This is not exactly
what we need, since only the assignments with the smallest number of variables
from R will be computed, i.e. the assignments with the minimal cardinality.

12

Our aim is to compute all the minimal assignments wrt set inclusion. Hence,
similar to what is proposed in [BNNS93], we have to iterate this process adding
at each step the constraint) p 5 Xp < (k—1), where M is the set of variables
from R which have been assigned the value true during the last iteration, and
k is the cardinality of M. This procedure will compute all the minimal models
in order of non-decreasing cardinality.

However, the converse of proposition 4.4 does not always hold, and the
minimal models computed by this procedure must be tested for stability.

4.2.2 An Alternative Approach

In this section we discuss the approach presented in [BNNS93], which is based
on the method for computing the minimal models of logic programs presented
in [BNNS92]. The authors present three algorithms for computing the stable
models. We discuss here only two of them, which are briefly introduced in the
sequel.

Given arule R, A < BiA... By A=Cy...=Cp, if(R) denotes the constraint
Xa>1-Y 1 ,(1-X5;) Z:;’;l Xc,. If Pis a logic program then i f(P) denotes
the set {if(R)|R is a rule in P} U {0 < X < 1} for every atom K}.

Let now comp(P) be the completion of a program P and C a formula in
P. Then if C is of the form —A, the constraint version of C, denoted by lc(C),
isXA = 0. On the other hand if C is of the form 4 < E; V...V E; where
E; = L; iA. . ALj m;, then the constraint version l¢(C) of C is given by the set of
constraints {if(A < E;)} together with the constraint X4 < Zf__l H;"_ Xr, ;-
Since the second set of constraints is not linear, this set is linearized, resulting
in the constraint version of the comp(P) which is denoted by lecomp(P).

Given this constraint representation of the problem the task then is to iter-
atively optimize the function Y X4, where A is an atom, subject to the con-
straints ¢f(P) U AC or lccomp(P) U AC, where AC, initialized to the empty
set, is a set of additional constraints added at each iteration. These constraints
are identical to those described in the previous section, and are of the form
2 pem XB < (k—1) where M is an optimal solution computed during the last
iteration.

These two algorithms compute the minimal models of if(P) and lecomp(P)
respectively, in order of non—decreasmg cardinality. The models are then tested
for stability.

Theorems 3.1 and 3.2 ensure that the satisfying assignment of lecomp(P)
coincide with those satisfying ¢£(P). We now prove that the optimal solutions
of the two corresponding minimization problems also coincide.

Proposition 4.5 Let P be a logic program, Tp the associated propositional
theory, and comp(P) its completion. Then if Sy is a model of Tp minimal in
the set of literals associated with rules then S; = {p;|3r; € S1NR, p; € head(r;)}
s a minimal model for comp(P).

13

Proof (sketch): Let S; be a model of Tp which is minimal in the set of literals
associated to rules. Then by theorem 3.1, the set S defined above is a model
for comp(P). Let now S, be another model of comp(P), such that 5; C S>.
Then by theorem 3.2 there exists a kernel for Gp (and consequently a model
for Tp), say S}, that includes more literal nodes than S;. This means that for
the associated models §; N R C S; N R. Hence S; is not minimal in the set of
literals associated with rules, which is a contradiction. O

Proposition 4.6 Let P be a logic program, Tp the associated propositional
theory, and comp(P) its completion. Then every minimal model of comp(P)
induces a model for Tp which is minimal in the literals associated with rules.
Proof (sketch): Let S; be a minimal model for comp(P). Then by theorem 3.2
there is a corresponding model for Tp, say S2. Assume that S is not minimal
in the set of literals associated with rules, because S; is a model of Tp and
S35 N R C S;NR. By theorem 3.1 there is a model for comp(P) associated
with S3, say 57, such that §; C §;. Then §; is not minimal for comp(P), a
contradiction. O

Hence, minimizing either c¢f(P) wrt the literals corresponding to rules, or
lccomp(P) wrt to the atoms, leads to the same set of minimal models, namely
the minimal models of comp(P). However ct(P) offers an advantage. Namely,
the size of the problem to be optimized is smaller. As it is show in [BNNS93],
the size of the simplex tablean for lccomp(P) is, in the worst case, ((rp+3)x ||
Pl +2x || By ||) x ((rp +6)x || P || +3x || B ||), which is obviously larger
than the size of the ct(P) problem.

Furthermore, in the same paper the proposed algorithms are compared, by
using some benchmark databases, and it is argued that computing the minirmal
models of i f(P) overall performs better than computing the minimal models of
comp(P). In the next section we show that computing the minimal models of
if(P), in the case of negative logic programs, amounts to computing the mirimal
dominating sets of the rule graph, the number of which can be exponential in
the size of the graph (the size of the program).

4.2.3 A graph-theoretic characterization of minimal models

In this section we investigate the case of negative logic programs, that is, pro-
grams with rules that contain only negative literals in their body. K P is a
negative program, then if(P) is a set of implications of the form ~Cj A ~C3 A
...AN-Cy, — A, while Gp contains only rule nodes. In this section we drop
the restriction that the programs are complete, or in other words, that for every
negative literal in the body of a rule; its negation occurs in the head of some
rule.

A dominating set for a directed graph G = (N, E), is a set of nodes D C NV,
such that for every node n; ¢ D, there is a node n; € D, such that (n;,n;) € E.

14

Proposition 4.7 If P is a negative program then, every dominating set for Gp
induces a model for if (P).

Proof (sketch): Let D be a dominating set for Gp and M = {p;|p; is the
consequent of an implication r; € if(P),r; € D}. See that all implications for
which their consequents belong to M are satisfied. On the other hand every
implication r; with a consequent that does not belong to M is dominated by
an implication of .D, which means that at least one of its antecedents is false,
hence 7; is also satisfied. O

It turns out that the minimal dominating sefs correspond to minimal models.

Proposition 4.8 If P is a negative program then, every minimal dominating
set for Gp induces a minimal model for if(P).

Proof (sketch): Let D be a minimal dominating set for Gp and M = {p;|p;
is the consequent of an implication r; € if(P),r; € D} its associated model for
if(P). For any node r; € D there are two possibilities. The first is that r; is not
dominated by any other node in D. In this case the set M —{p;}, where p; is the
consequent of the implication r;, is not a model for if(P) since the implication
r; is not satisfied. The second possibility is that »; dominates a node r; which
is not dominated by any other node in D. Then the set M — {p;}, where p; is
the consequent of the implication r;, does not satisfy the implication ;. Hence
M is a minimal model. O

The converse of proposition 4.7 does not hold in general. However, in the case
of complete negative program every model of P corresponds to a2 dominating
set.

Proposition 4.9 Let P be a complete negative program. Then every model of
P induces a dominating set for Gp.

Proof (sketch): Let M be a model for P. We will prove that D = {r;[r; is an
implication and the consequent of r; belongs to M} is a dominating set. If the
rule associated with an implication 7; does not belong to D, then one of the
negative literals in the antecedent of r; is assigned the value false, and hence
the corresponding atom is true. Given that P is complete there must be an
implication r; € D such that the edge (r;,7;) belongs to Gp. Therefore D is a
dominating set. O

Any method based on the computation of the minimal models of if(P) is
confronted with the fact that the number of the minimal dominating sets can be
exponential in the number of the nodes of the graph as the following example
demonstrates.

Example 4.10 Consider n disconnected copies of the graph with 4n nodes,
shown in Figure 8. The associated negative logic program is P = {gi; +
“Pi4, Giz & TPi1, €i3 ¢ TPi2, Gis — Pz Apis}, for 1< i< n.

15

Figure 3

Each of these disconnected parts has 8 minimal dominating sets, namely Dy =
{ni1, niz}, D2 = {n1, nis} and D3 = {niz, n;4}, which correspond to the min-
imal models M1 = {pi1, Pi2, —Pi3, ~Pis}, Mz = {pi1, piz, —Pi2, ~Pis} and Mz =
{Piz, P4, —pi3, —pir}, respectively. Choosing one of them for every i, leads to a
total of 3™ different minimal dominating sets for Gp and hence to 3® minimal
models for a program consisting of 4n rules. Furthermore P has just one stable
model, namdy M= {pflvpt'Sa P2, _'pl"l}: 1<i<n. D

The above example shows that the minimal models of if(P) may be expo-
pentially many, while only a very small number of them are the actual stable
models.

Notice that in the case of negative logic programs the stable models are in
direct correspondence with the kernels of the rule graph. A kernel is a domi-
nating and independent set. Furthermore, it is 2 minimal dominating set which
is independent. This property implies 2 method that generates all, possibly ex-
ponential, minimal dominating sets first, and then test them for independence.
A successful independence test ensures stability.

On the other hand, a kernel is a maximal independent set (MIS) which
is dominating. Therefore, an alternative method to compute the kernels of a
graph, would be to first generate all maximal independent sets (which, like in
the case of minimal dominating sets, can be exponentially many), and then test
them for dominance. It is important to note that the maximal independent sets
can be generated with polynomial delay (see [JPY88]). That is, the complexity
of computing all MIS is O(p(N)C), where p(N) is a polynomial in the size of
the input, while C is the number of MIS’s. Moreover, the time required between
computing two consecutive solutions is polynomial in the size of the input.

See that the computational model based on the MIS gives us a better charac-
terization of complexity of computing the stable models than the already known
general intractability results. Nevertheless, our computational experience has
shown that for random negative logic programs, this method of generating the
MIS’s, leads to poor performance compared to this of the satisfiability or graph
algorithms (see next section).

16

4.3 Graph algorithms

Another alternative is to solve the kernel problem by a graph algorithm. A first
attempt towards this direction is the algorithm presented in [DMP93]. It is a2
backtracking algorithm with 2 worst time complexity O(p(N)2!¥1), where F is
a feedback vertez set for graph and p(V) a polynomial in the size of the input.
A feedback vertex set is a set of nodes which when removed result in a acyclic
graph. Since computing the feedback vertex set with the minimal cardinality is a
NP-hard problem, approximation algorithms can be used, leading to a, hopefully
small, feedback vertex set. According to this method, given a program P, the
rule graph Gp is constructed and the graph algorithm computes the kernels of
Gp, in order to determine whether they are sequential.

Despite the hardness of the general case, a class of logic programs is easier
to reason with. Namely, in [DMP93] an algorithm for computing a subset of
the kernels of 2 odd cycle free graph is presented. The basic graph-theoretic
property used, is the fact that if G is a strongly connected graph without odd
cycles, then G is bipartite. A graph G = (N, F) is called bipartite if N can be
split into two parts say K, L such that £ C (K x L)U (L X K). See that any of
the two sets K, L is a kernel for G.

An algorithm that computes this set of ”standard” kernels is the following.
Initially K = §. Repeat the following until G is empty: First, find the strongly
connected components of the graph. Since the graph is odd cycle-free, each com-
porent is a bipartite graph, say C; = (N;1, Ni2, F;). For each such component
C; = (Niy, Ni2, E;) with no incoming edges, select 7 € {1,2}, set K := K UN;,
and delete from G Nj1, Njz, and all nodes v which there is an edge (u,v) with
u € Nj;.

A r:mdiﬁcation of the above algorithm leads to a procedure that computes a
sequential kernel of an odd cycle free rule graph Gp of 2 logic program P. Fol-
lowing [PY92], we call a set of literal nodes U an unfounded set if the subgraph
of Gp+ induced by U and their preceding rule nodes has no source.

Compute-Sequential-Kernels(Gp, K);
begin
if Gp = 0 then return(K) else
begin
Compute the top components of the graph Gp, say C,. .., Ck;
For i:=1 to k do;
begin
if for the greatest unfounded set U; of C;, U; # 0 holds then
Add every node n; e U;MAto B
else
begin
if |C;| = 1 then add C; to B else

17

	94-229neu0001
	94-224neu30001
	94-224neu30002
	94-224neu30003
	94-224neu30004
	94-224neu30005
	94-224neu30006
	94-224neu30007
	94-224neu30008
	94-224neu30009
	94-224neu30010
	94-224neu30011
	94-224neu30012
	94-224neu30013
	94-224neu30014
	94-224neu30015
	94-224neu30016
	94-229neu20001
	94-229neu20002
	94-229neu20003
	cover-hinten_2099-2897-300dpi

