MAX-PLANCK-INSTITUT

FUR
INFORMATIK

Minimal Resolution

Christoph Weidenbach

MPI-1-94-227 December 1994

- J

an=i

INFORMATIK

Im Stadtwald
D 66123 Saarbrucken

Germany

Author’s Address

Christoph Weidenbach (weidenb@mpi-sb.mpg.de),
Max—Planck—Institut fir Informatik

Im Stadtwald

D-66123 Saarbriicken
Germany

Publication Notes

This report has been submitted for publication elsewhere and will be copyrighted if accepted.

Acknowledgements

Thanks to Ulrich Hustadt and Andreas Nonnengart for their comments on earlier versions of this
report.

Abstract

Minimal resolution restricts the applicability of resolution and factorization to minimal literals.
Minimality is an abstract criterion. It is shown that if the minimality criterion satisfies certain
properties, minimal resolution is sound and complete. Hyper-resolution, ordered resolution and
lock resolution are known instances of minimal resolution. We also introduce new instances
called list resolution and tuple resolution. In addition, we investigate the compatibility of some
important redundancy criteria with minimal resolution.

1 Introduction

The idea of minimal resolution is to restrict resolution steps and factorization steps to
steps on “minimal” literals. Minimality is defined with respect to clauses. We can think
of minimal resolution as a selection strategy for resolution. There are several of these
strategies known, including hyper-resolution [13], ordered resolution [2, 3], lock resolution
[5] and many others (see [6, 10]). Hyper-resolution and ordered resolution can be proved
complete by using an ordering on the literals. A literal is minimal in a clause if there is
no smaller literal in the clause with respect to the ordering. For hyper-resolution negative
literals are always smaller than positive literals and for ordered resolution an arbitrary total
(well-founded) ordering on ground literals is needed. For lock resolution the situation is
different. Lock resolution assigns integers as indexes to literals and a literal is minimal in
a clause if it has lowest index. This allows the minimality criterion to distinguish between
literals which are syntactically equal.

Minimal resolution unifies and refines all these approaches. Therefore additional struc-
ture on the literals is needed, because we must be able to distinguish literals which are
syntactically equal. We call this additional structure literal occurrences. A literal occur-
rence is a pair (literal, natural number). Then a clause is a multiset of literal occurrences.
Now we assume a quasi-ordering < on occurrences. An occurrence is minimal in a clause
if there is no smaller occurrence in the clause with respect to <. Minimal resolution
and minimal factorization are restricted to minimal literals. Soundness of the calculus
is guaranteed by mapping a multiset of occurrences to the respective multiset of literals.
Completeness of the resulting calculus is proved by ground completeness and lifting. In
order to prove ground completeness, induction on the k-parameter [1] is used. In the in-
duction step of the k-parameter proof, the current clause is split into two disjoint clauses.
Then the proofs for the corresponding clause sets are combined to a proof including the
current clause. For minimal resolution this combination is not a priori possible. The split-
ting has to be compatible with the minimality criterion and the minimal resolution and
minimal factorization rule. Lifting is also not a priori possible, because < must be stable
with respect to ground instantiations of occurrences. If < is a stable quasi-ordering, then
minimal resolution is complete. The required properties on < are minimal in the sense
that if < does not satisfy any of these properties minimal resolution is not complete.

Now the paper is organized as follows. In section 2 we introduce the needed notions
and prove soundness and completeness of minimal resolution. Then in section 3 we show
that most of the known ordering refinements are instances of this result. Although some of
these approaches are defined with respect to a maximality criterion, for better readability
we present them with respect to a minimality criterion. We also correct some flaws in
existing literature and give some new insights in known results. Section 4 is devoted
to instances of minimal resolution which are new or refinements of results presented in
section 3. For many of the known strategies only completeness results have been presented.
In section 5 we investigate the compatibility of several reduction criteria with minimal
resolution. Subsumption and tautology deletion in the usual [6] sense are not compatible
with minimal resolution. However, a restricted version of subsumption is compatible with
minimal resolution. We end the paper with a discussion of the achieved results, section 6.

2 2 MINIMAL RESOLUTION

2 Minimal Resolution

A multiset over a set A is a function m from A to the natural numbers. Intuitively, m(a)
specifies the number of occurrences of a in m. We say that a is an element of m, a € m, if
m(a) > 0. A multiset m is finite if m(a) # 0 only for finitely many a € A. Two multisets
mq, mg are equal, m; = mg, if my(a) = ma(a) for all @ € A. The union, intersection,
difference, and subset relationship of multisets are defined by the identities m; U mo: =
mi(x) + ma(x), mi Nma: = min(my(z), ma(x)), mi \ ma: = max(0, m;(z) — ma(z)), and
m1 C mg if my(a) < mao(a) for all @ € A. The cardinality of a multiset is given by
|m|:= > m(x). Specific multisets are written in a set like notation, e.g. {a,a} is the
multiset m with m(a) = 2 and m(b) = 0 for all b # a.

A reflexive, transitive relation < over a set A is called a quasi-ordering. If a < b or
b= a for all a,b € A it is called total over A.

The standard syntax and semantics of first-order logic are used. Terms, literals, for-
mulae and substitutions are defined in the usual way. L is the set of all first-order literals.
We call a substitution o ground for some literal L, if Lo is ground. We call a substitution
o in the variables of some literal L, if the domain of and the codomain variables of o are
contained in the variables of L. These two definitions can be naturally extended to literal
occurrences, clauses (see below).

Now we define literal occurrences. A literal occurrence o is a pair (L,n) where L € £
and n € IN. £* = £ x IN is the set of all occurrences. The two functions lit, id defined by
lit((L,n)) = L and id((L,n)) = n map an occurrence to its literal and natural number,
respectively. If id(o) = n then we say that o has identification n. Two occurrences o, p
are equal, o = p, if lit(o) = lit(p) and id(o) = id(p). Instantiation of occurrences by a
substitution o is given by (L,n)o = (Lo,n). An occurrence o is called ground if lit(o) is
ground. Two occurrences are called complementary (unifiable) if their respective literals
are complementary (unifiable).

We assume a quasi-ordering =< over L£*. If o < p we say that o is smaller than p.
We define o < p for o,p € L* if o < p and not p =< 0. Clauses are finite multisets over
L*. For C = {} we write O. If |C| = 1 we call C a unit clause!. C* is the set of
all clauses over L£*. Instantiation of clauses is defined in the usual way. Since clauses
are multisets instantiation cannot cause mergings between occurrences. The function Iit
can be extended to clauses in the usual way. Thus lit(C) is the multiset m over £ with
m(L) = > C(o) where lit(o) = L. An occurrence o is called minimal in a set (multiset) A
of occurrences if there is no occurrence p € A with p < 0. o is called mazimal in A if there
is no occurrence p € A with o < p. A quasi-ordering =< over L£* is called stable, if 0 < p
implies oo < po for any two occurrences o, p € L* and any ground substitution o for o, p.

Assumption 2.1 From now on we assume that < is a stable quasi-ordering over L£*

Lemma 2.2 (Properties of <)

Let o be a ground substitution for a clause C. If oo is minimal in C'o, then o is minimal
in C.

Proof: By contradiction. Assume oo is minimal in C'o, but o is not minimal in C'. Then
by the definition of minimality there is a ¢ € C' with ¢ < 0. As < is stable, Assumption 2.1,
we have qo < oo which contradicts that oo is minimal in Co. |

Definition 2.3 (Minimal Resolution and Factorization) The rules are

'Remember that clauses are multisets and we defined the cardinality of multisets.

{o1,-..yon} {p1,- -, Pm}

Resolution
{02,...,0n}0 U{p2,...,Dm}0o
where o is the mgu such that 010 and p;o are complementary, 010 is minimal in {0y, ..., 0, }0o,
pio is minimal in {p1,...,pn}o.

We define two variants of factorization. One variant which deletes the minimal occur-
rence in the parent clause and one which deletes the occurrence unified with the minimal
occurrence.

Factorization I {o1,...,0n}

{09,...,0n}T
o 01,50
Factorization II {o1 nt
{01, <0305 -1,0541, - - ,On}T
where 7 the mgu of 01 and o0; (2 < j < n), 017 is minimal in {o1,...,0,}7. Any variant
of the factorization rule is called strict, if both o017 and oj7 are minimal in {o1,...,0,}7.

Lemma 2.4 (Soundness) Minimal resolution and minimal factorization are sound.
Proof: By definition, Iit is a homomorphic embedding into the usual definitions of reso-
lution and factorization. O

For completeness the choice of one variant of the factorization rule (strict or not) is
sufficient. This will be proved in the following. The two versions of the factorization
rule are introduced, because the ordering of occurrences in the factor may be different
depending on the deleted literal. As usual, if R is a minimal resolvent (or minimal factor)
of some clauses C, D, then C (or D) is called a parent of R.

A minimal derivation of a clause C™ with respect to a clause set CS is a finite sequence
of clauses C', ..., C™ such that:

1. For all i either C? is a minimal factor of some clause C' € (CSU{C7 | j < i}) or C!
is a minimal resolvent of some clauses Cy, Cy € (CS U {C7 | j < i}).

2. For all i < n, C'is a parent clause of some C7, j > i.
3. For all i, C* ¢ CS.

We call a minimal derivation C*,...,C™ strict if in addition to the above requirements we
have for all 1 <7 < n:

4. Only strict factorization is used.
5. No C' is the strict factor of some clause C' € CS.

6. If C* is the strict factor of some clause C7, j < 4, using the occurrences o,p € C7,
where wlog. o is removed from C7, then the next step applied to C" is either a strict
factorization step using p or is a minimal resolution step using p.

7. If a sequence of strict factorization steps is applied to a clause C? using the occur-
rences o1, ...,o0, € C*, then all o; are minimal in C*.

A (strict) minimal refutation is a (strict) minimal derivation of O.

4 2 MINIMAL RESOLUTION

Lemma 2.5 (Ground Derivations) Let CS be a set of ground clauses and let C*, ... C"
be a minimal derivation of C™ with respect to C'S. Let o be a maximal occurrence with
respect to all clauses D € CS with |D| > 2 and let 0o be maximal with respect to all
occurrences of some clause C' € CS. If we define C' = C U {0}, CS" = (CS\ {C}) U {C"},
then there is a minimal derivation C'!,...,C" from CS’ such that C'* = C"U{o,...,0}.
In addition, if Ct,...,C™ is a strict derivation, then C'!, ..., C™ is strict, too.

Proof: First, we show that the derivation of C" can be repeated using CS’ instead of CS.
This can be proved by an induction argument on the length n of the derivation. Since
o is maximal with respect to C, if some occurrence p is minimal in C' then p is minimal
in C’. It remains to show that if an occurrence p is minimal in some clause C? then p is
also minimal in the clause C”*. But this is obvious, because the extra occurrence o is also
maximal for all clauses D € CS with |D| > 2 and all other unit clauses D play no role,
because their occurrences disappear after the application of minimal resolution. Thus we
can repeat the derivation of C™ using C” instead of C. It is easy to see that the resulting
derivation is a minimal derivation, that C"* = C? U {o,...,0} and that if C',...,C" is
strict, then C1, ..., C'™ is strict, too. O

Lemma 2.6 (Ground Completeness) If CS is a finite unsatisfiable set of ground clauses,
then there is a minimal refutation from CS.

Proof: By induction on the k-parameter, k(CS):= > {(|C|—1) | C € CS}. If K(CS) =0
then there are two clauses C, Cy with C; = {01}, Ca = {02}, lit(0o1) = =P(t1,...,t,) and
lit(o2) = P(t1,...,t,). By definition o7 is minimal in Cj and o2 is minimal in Cy. Thus
the minimal resolution step between C; and Cs yields a minimal derivation of the empty
clause.

If £(CS) > 0 then there exists at least one clause C' € CS with |C| > 2. Now we
select a clause C, |C| > 2 such that C contains a maximal occurrence o with respect
to all occurrences in clauses D € CS with |D| > 2. Now we split C into the clauses
Cy = C\{o} and Cy = {0} and CS into the clause sets CS; = (CS \ {C}) U{C;} and
CSe2 = (CS\ {C}) U {C2}. By induction hypothesis there are minimal refutations for
CS1 and CSa, because k(CS1) < k(CS) and k(CS2) < k(CS). These are combined to
a minimal refutation for CS. First, the refutation of CS; is performed using C' instead
of C'1. This is possible by lemma 2.5. The result is either the empty clause or a clause

D = {o,...,0}. If the result is the empty clause, we are done. Otherwise we apply any
variant of the factorization rule D(o) — 1 times? and get the clause {o}. Second, the
refutation of C'S5 is repeated yielding a minimal refutation for CS. |

Corollary 2.7 (Strict Ground Completeness) If CS is a finite unsatisfiable set of
ground clauses, then there is a strict, minimal refutation from CS.

Proof: In the proof of lemma 2.6 we actually constructed a strict, minimal refutation.
The base case is solved by a minimal resolution step between clauses in C§, thus yielding
a strict, minimal refutation. In the induction step, factorization is only used to derive a
clause {0} from some clause D = {o,...,0}. All 0 are minimal in D and afterwards o is
used by a minimal resolution step. |

Lemma 2.8 (Lifting) Let C;, Cy be two clauses with no common variables, o be a
ground substitution in the variables of C7, Cs, oo minimal in Cy0, pc minimal in Ceo, oo
and po complementary. Let C5 be a clause and 7 be a ground substitution in the variables

*Remember that clauses are multisets. Thus D(o0) denotes how often o occurs in D.

of C3, r17 minimal in C37, ro7 € Cs7 and lit(r17) = lit(re7). Then there exists a minimal
resolvent R of C and Cy and a minimal factor F' (F”) of C3 such that

1. (C1\ {o})oU(Cs\ {p})o) is an instance of R
2. (C5\ {r1})7 is an instance of F' ((C3 \ {r2})7 is an instance of F”)

Proof: 1. By lemma 2.2 we have o is minimal in C and p is minimal in C5. There exists
an mgu A in the variables of C] and (5 such that o\ and pA are complementary. Now we
select R = (C1 \ {o})AU (C2 \ {p})A. As X is an mgu and A, o are substitutions in the
variables of C; and Cy, we have 0 = Ao. Therefore (C1\ {0})oU(C2\ {p})o is an instance
of R by o.

2. The proof of the second case is a variant of the first case. F' is the result of an
application of Factorization I and F’ is the result of an application of Factorization II.
Note that if 797 is minimal in C57, then r9 is minimal in C3 (lemma 2.2). Therefore strict
factorization steps can be lifted, too. |

Theorem 2.9 (Minimal Resolution is Complete) If CS is an unsatisfiable clause set,
then there exists a minimal refutation from CS.

Proof: As CS is unsatisfiable, there exists a finite, unsatisfiable set of ground clauses.
Now lemma 2.6 and lemma 2.8 imply the existence of a minimal refutation from CS. O

Corollary 2.10 (Strict Minimal Resolution is Complete) If CS is an unsatisfiable
clause set, then there exists a strict, minimal refutation from CS.

Proof: As CS is unsatisfiable, there exists a finite, unsatisfiable set of ground clauses.
Now corollary 2.7 and lemma 2.8 imply the existence of a strict, minimal refutation from
CS. O

3 Known Ordering Refinements of Resolution

In this section we show that various refinements of resolution are instances of minimal
resolution. If we define < to be the trivial quasi-ordering o < p for all o,p € L*, even
standard resolution [14] is an instance of minimal resolution.

Some of the calculi presented here are based on a maximality criteria, i.e. resolution
and factorization are restricted to maximal literals in a clause. In order to avoid confusion
these calculi are translated into a form where resolution and factorization are defined with
respect to minimal literals. Of course, the two formulations are equivalent.

In examples, we use a specific format to present resolution and factorization steps, for
example

(@)1, R, (9)2] (11) [R,~P]

names a minimal resolution step between the first literal of the second clause and the
second literal of the ninth clause, yielding clause number eleven which is [R, = P].

3.1 Ordered Resolution

For ordered resolution [2, 3] a stable, reduction ordering <" on atoms which is total on
ground atoms (or an ordering which can be completed to a total ordering on ground atoms)
is required. This ordering is lifted to literals. Literals are first compared with respect to

6 3 KNOWN ORDERING REFINEMENTS OF RESOLUTION

their atoms and if their atoms are syntactically equal and the literals have different signs,
the negative literal is smaller than the positive literal.

This ordering can be simulated by occurrences. We define id(o) = 1 if lit(o) is positive
and id(o) = 0 if lit(o) is negative. Assume a function atom which maps a literal to its
atom. Then we define o < p if atom(lit(0)) <" atom(lit(p)) or atom(lit(o)) = atom(lit(p))
and id(o) < id(p). Since <" is a reduction ordering, =< is a stable quasi-ordering.

The ordered factorization rule is exactly the minimal factorization rule. But the or-
dered resolution rule is slightly more restrictive than the minimal resolution rule, because
the ordered resolution rule requires the positive literal of the resolution step to be strictly
minimal. A literal is strictly minimal in a clause, if there is no smaller literal and no syntac-
tically equal literal. Of course, several syntactically equal minimal literals can be merged
to one literal by factorization steps with identity substitutions. Then the remaining literal
is strictly minimal. As all substitutions are identity substitutions the factorization rule can
always be prefered to the resolution rule, not affecting completeness. Therefore minimal
resolution is also complete with this refinement.

Theorem 3.1 (Ordered resolution is sound and complete) If CS is an unsatisfi-
able clause set, then there is a ordered refutation from CS.

Proof: By theorem 2.9, since < is a stable quasi-ordering and the above argumentation
on strict minimal literals shows that minimal resolution can simulate ordered resolution.
Od

3.2 Lock Resolution

The idea of lock resolution [5] is to attach a natural number as an index to each literal of
a clause. Then the minimal literals of a clause are the literals of lowest index. The literals
in resolvents inherit their indices from their parent clauses.

Lock resolution is an instance of minimal resolution. Lock resolution uses the second
variant of factorization. The index of a lock literal is the identification of the respective
literal occurrence. Then we define p < r if id(p) < id(r).

Theorem 3.2 (Lock resolution is sound and complete) If CS is an unsatisfiable clause
set, then there is a lock refutation from CS.
Proof: Assumption 2.1 is satisfied. O

3.3 Hyper-Resolution

Hyper-resolution was introduced by Robinson [13, 6]. In contrast to minimal resolution,
hyper-resolution is not a binary rule, i.e. a hyper-resolvent has more than one parent
clause, in general. Nevertheless we can show that minimal resolution can simulate hyper-
resolution in a binary way. This gives completeness of hyper-resolution.

Definition 3.3 (Hyper-Resolution) Let Cy,...,C, be positive clauses, C! a factor of
Cia K’L € C{a

Ciy...,Cpy{L1,..., L}
CI\{K1}U...CI\{K,} U{Lpt1,...,Lin}o

Wlog. we assume o the mgu such that each K; and L; are complementary and the L; are
exactly the negative literals of {Li,..., Ly} (1< i <mn).

Hyper-Resolution

3.4 Semantic Resolution 7

For hyper-resolution the identification of occurrences plays no role, e.g. we choose
id(o) = 1 for all o € L£*. The ordering < is o < ¢ if lit(o) is negative and lit(p) is
positive. It is easy to verify that < is a quasi ordering and satisfies Assumption 2.1. Note
that factorization of positive clauses is not restricted by the minimality criteria. Minimal
resolution with respect to =< is exactly what Robinson [13] called Pj-resolution. Thus the
completeness of Pj-resolution is an instance of minimal resolution. The completeness of
hyper-resolution is a straightforward consequence of the completeness of Pj-resolution. In
fact, P;-resolution simulates hyper-resolution in a binary way.

Theorem 3.4 (Hyper-Resolution) Hyper-resolution is complete.

Proof: For every unsatisfiable set of clauses there exists a minimal refutation (where <
is defined as above) C1,...,C, with C,, = O. We define that C,, has depth 0, the parent
clauses of C,, have depth 1 and so on. Using an induction argument it is sufficient to show
that there is always a clause in the refutation which can be obtained by hyper-resolution.
Fach positive clause in the refutation derived by resolution and which has maximal depth
can be obtained by hyper-resolution. O

3.4 Semantic Resolution

Sematic resolution was proposed by Slagle [15]. It is a generalization of hyper-resolution
[13] (see Section 3.3).

Definition 3.5 (Semantic Resolution) Let Z be an interpretation. Let A be an or-
dering of predicate symbols. A finite set of clauses {Fi, ..., E,,N}, n < 1, is called
a semantic clash with respect to A and Z if and only if Fy, ..., B, and N satisfy the
following conditions:

1. By, ..., B, are false in 7

2. Let R{ = N. For each i = 1,...,n there is a resolvent R;+1 of R; and F; or a
resolvent of factors R and E! of R; and F;, respectively.

3. The literal in F;, which is resolved upon, contains the largest predicate symbol in
E; (E)),1<i<n

4. Ry4q is falsein 7

R, +1 is called a semantic resolvent of the semantic clash {Ey, ..., E,, N}.

In general, minimal resolution cannot simulate semantic resolution. But if Z has the
property that if some clause C'is true in Z then there is a literal L € C' which is true in Z,
then semantic resolution can be simulated by minimal resolution. In this case we define
id(o) = 0 if lit(o) is true in Z and id(o) = 1 otherwise, for any occurrence o. The ordering
= is given by o < ¢ if id(0) < id(q) or id(0) = id(q) and the predicate of lit(o) is smaller
than the predicate of lit(p) with respect to A. Now it is easy to verify that < is a stable
quasi-ordering (Assumption 2.1). It is stable because if lit(o) is true in Z, then lit(oo)
is also true in Z for any o. Similar to hyper-resolution this proves the completeness of a
binary simulation of semantic resolution. However, this result can again be lifted.

8 3 KNOWN ORDERING REFINEMENTS OF RESOLUTION

Theorem 3.6 (Semantic Resolution) Semantic resolution is complete.

Proof: For every unsatisfiable set of clauses there exists a minimal refutation (where <
is defined as above) C1,...,C, with C,, = O. We define that C), has depth 0, the parent
clauses of C,, have depth 1 and so on. Using an induction argument it is sufficient to
show that there is always a clause in the refutation which can be obtained by semantic
resolution. Each clause in the refutation which is false, derived by resolution and which
has maximal depth can be obtained by semantic resolution. The main reason is that
true literals are always smaller than false literals. Therefore the first false literal is not
accessible until all true literals are resolved away. In addition, false literals are accessed
with respect to A. Thus a clause obtained by minimal resolution and which is false is the
result of a semantic resolution step. O

3.5 II-Orderings

II-Orderings have been introduced by Maslov [11, 12]. Clauses are lists of literals. Maslov
assumes a decidable predicate II on clauses, which is true for at least one permutation of
the literals in the clause. Clauses which satisfy II are called Il-ordered. 11 is called acyclic
if for every IT-ordered clause C' and every clause C’ and substitution o such that C’c is a
sublist of C, the clause C is II-ordered. The minimal literal of a II-ordered clause C' is
the first literal in C'. Now resolution and factorization are restricted to the first literal of
a IT-ordered clause. Maslov stated that if II is acyclic, the resulting calculus is complete
[12]. He calls the resulting calculus the II-strategy. Unfortunately, this result is wrong.
Even if II is acyclic the Il-strategy is not complete. Consider the following unsatisfiable
set of propositional clauses.

Example 3.7 For the following set of clauses we use list notation.

1) [PQ
2) @ R]
3) [R,W]
4) [-R,—P]
®) W, -Q]
(6) [-Q,~R]
(1) [R,~R]
®) [W,~P]
9) [P ~q]
(10) [@,~Q]

There are no two clauses which contain the same literals. All clauses consist of exactly two
literals. Thus there exists an acyclic 1I which is true on exactly the above permutations
for the respective literals of the clauses. However, no factorization step is possible and all
possible resolution steps result in existing clauses.

3.5 1I-Orderings 9

(LR, (9)1] (10) [Q, ~Q]
(LR, (6)1] (7) [R,~R]
[(B)LIR, (4)1] () [W,~P]
[(HLIR, (D] (4) [-R,—~P]
[((G)LIR,)1 (9) [-P, Q]
[(6)L IR, (10)1] ~ (6) [~Q,~R]

Of course, the Il-strategy is not an instance of minimal resolution. The problem is that
the ordering defined by o < p if the clause [lit(0), lit(p)] is II-ordered, is not transitive,
even if II is acyclic. =< is defined on the literal part of the occurrences. Thus we can
choose arbitrary identifications for occurrences, e.g. id(o) = 1 for all o € £*. Then the
IT-ordered clauses (4), (6), (9) introduce the cycle (=Q,1) < (=R, 1) <X (=P, 1) <X (-Q,1).
That means with respect to the transitive closure of <, all literals in the clauses (4), (6),
(9) are minimal. This allows for a proof.

[(2)1, R, (9)2] (11) [R,~P]
(1)1, R, (4)1] (12) [~P,~P)]
[(12)1, F,(12)2] (13) [-P]
[(13)1, R, (1] (14) [Q)]
[(A14)1, R, (6)1] (15) [-R]
[(15)1, &, (3)1] (16) [W]
[(16)1, R, (5)1] (17) [~C)]
[(17)1, R, (14)1] (18) O

Note that the clauses (4), (7) plus transitivity implies (R, 1) < (=P, 1).

Loveland [10] introduced an ordering concept similar to that of Maslov. He assumes
an ordering rule O determining the ordering of the literals of a clause. An O-clause is
a list of literals with the list order in agreement with a given ordering rule O. Res-
olution and factorization are restricted with respect to that ordering. Then Loveland
introduced assumptions about O which allow to lift ground O-refutations to general O-
refutations. However, these assumptions don’t guarantee ground completeness. Many of
the refinements presented in this chapter are also instances of O orderings. But ground
completeness has to be proved for each refinement separately. This was done by Loveland
[10].

Tammet [7, Chapter 4] gives a reformulation of Maslov’s IT-orderings that is complete
and an instance of minimal resolution. Clauses are multisets of literals and a decidable
predicate < is assumed, defined between literals, which satisfies the properties (A), (B)
and (D):

(A) For each clause C' = {L1,..., Ly} there is at least one i such that L; £ L; holds for
all j #14, 1 < j <n.

(B) For all literals L, K, D: L < K and K < D implies L < D

(D) For any literals L, K and any ground substitution o, if L < K then Lo < Ko

10 3 KNOWN ORDERING REFINEMENTS OF RESOLUTION

Now we show that the completeness of a resolution strategy using < is an instance of min-
imal resolution. As < is defined on literals again all occurrences have same identification,
e.g. id(o) =1 for all 0 € £*. Then we define 0 < p if 0o = p or lit(o) < lit(p). By definition
and property (B), < is a quasi-ordering. Property (D) implies Assumption 2.1. It remains
to show that a literal is minimal in a clause C' with respect to = if there is no literal in
lit(C') which is smaller with respect to <. This follows by the definition of < and the
definition of minimality. Therefore condition (A) is superfluous. The problem is that the
fact that there is no literal which is smaller is confused with the fact that there is a literal
which is greater or equal.

3.6 A-orderings

A-orderings were suggested by Slagle, Kowalski and Hayes [15, 9]. Given a set of clauses
CS an A-ordering for CS is a total ordering < on some subset of the set of literals
{Lo | L € C for some clause C' € CS} such that

(i) if L < K then Lo < Ko for all substitutions o
(ii) if L and K are alphabetic variants or complements then L < K and K < L

Now resolution is restricted to minimal literals with respect to <. In order to get the
completeness of resolution with respect to A-orderings the identification of occurrences
are not needed, e.g. id(0) = 1 for all o € £*. Then we define o < p if lit(o) < lit(p). As <
is a stable ordering < is a quasi-ordering and satisfies Assumption 2.1.

Theorem 3.8 Resolution with respect to A-orderings is complete. O

3.7 Sequencing

Sequencing is a refinement not based on an ordering but on the structure of the clauses
in a given clause set. It was first suggested by Genesereth and Nilsson [8]. Clauses are
sequences of literals. Then only the first literal of a clause can be used for a factorization
or resolution inference step.

Definition 3.9 (Sequencing) Let [Ly1,..., Ly,], [Ki,...,Kpy] and [Dy,..., D] be three
clauses.

Positive Sequencing [[

Negative Sequencing

(D1, ..., Dy
[Dl, .. ,Djfl,DjJrl’ .. .,Dh])\

Factorization

L1 is a positive literal, o the mgu such that Lio and Ko are complementary, A the mgu
such that D1\ and D;A\ are equal.

The difference between positive and negative sequencing is the generation of the resolvent.
Positive strict sequencing appends the literals of the clause with the leading positive
literal with the clause with the leading negative literal and negative strict sequencing
just the other way round. A rigid sequencing calculus consists of one of the rules positive,

11

negative sequencing plus factorization. The sequencing calculus consists of all three rules.
Genesereth and Nilsson stated that rigid sequencing is not complete in general, but is
complete on horn clauses and that sequencing is complete. They didn’t give any proof or
counter example as justification for these statements. Example 3.7 is a counterexample for
the general completeness of rigid sequencing. The clause set is saturated under positive
sequencing just as it is saturated under the II-ordering introduced there. Indeed, rigid
sequencing is complete for Horn clauses. This result cannot be obtained by instantiating
minimal resolution. However, we give an extra proof for that.

Theorem 3.10 Rigid sequencing is complete for Horn clauses.

Proof: We show by k-parameter induction the ground completeness of positive sequenc-
ing. Of course, the completeness of negative sequencing is a consequence of this result.
Lifting is straightforward because instantiation does not change the ordering of a clause.
The base case for the k-parameter induction is trivial. For the induction step we select a
Horn-clause C' = [K7,. .., K] such that m > 1. We split C into the clauses C; = [K] and
Cy = [Ka,...,Ky,]. By induction hypothesis the two resulting clause sets are refutable
with positive sequencing. It remains to show that the two refutations using Cy and Co,
respectively, can be combined to a refutation using C.

If K is negative, the refutation using C is repeated with C'. This is possible because
all clauses are Horn, C; contains exactly one negative literal and positive sequencing
appends the clause with the negative leading literal to the clause with the positive leading
literal. The result of the repetition is not the empty clause, but Cs which is refuted by
repeating the second refutation.

If K is positive, the combination of the two refutations is more complicated. We need
an additional induction argument on the number of times C'; is used in the proof. The first
refutation is repeated until C is used. Assume it is resolved with a clause [L1, ..., Ly],
where L; is negative and K; and L; are complementary. Then the resolvent using C
instead of Cy is [Ka,..., K, Lo, ..., Ly]. Now the second refutation is repeated. This is
possible, because all K; are negative, we only consider horn clauses and by the definition
of positive sequencing. The result is [Lo, ..., L,] and now the first refutation is continued.
By interleaving the two refutations this way (this may require several repetitions of the
second refutation) the two refutations are combined to a refutation using C. a

4 New Ordering Refinements on Resolution

4.1 Incrementally Build Orderings

The idea of incrementally built orderings is not to fix < from the beginning but build it
by the way of generating new clauses such that <* is extendable to a stable quasi-ordering
(Assumption 2.1). Therefore < is always the reflexive, transitive, stable closure of the
current <*. We start with the initial clause set CS°. In order to be as general as possible
all occurrences in CS° have different identifications and the initial ordering <° does not
relate occurrences having the same identification. Even with this restriction all occurrences
in CSY can be totally ordered such that there is exactly one minimal occurrence in each
clause. Now the resolution rule of definition 2.3 and one variant of the factorization rule
define as usual the rules of the calculus. However, we want to restrict the extension of the
ordering such that the minimal literals of already generated clauses do not change by the
way new clauses are generated and the ordering is extended. Note that the ordering of a
factor is the same than for its parent, because < is always the stable extension of <¥.

12 4 NEW ORDERING REFINEMENTS ON RESOLUTION

Definition 4.1 (List Resolution and List Factorization) Let Cy = {o1,...,0,}, Ca =

{p1,...,Pm} be two clauses in CS*¥ and R = {0s,...,0,}0 U {pa,...,pm}o a minimal re-
solvent of C7 and Cy with respect to =<k, Then we extend CS* , <k by
cskl .= CS*U{R}
<kl = <Py <R

where < is a minimal extension to <¥ such that R is totally ordered by <k+1 and if
ojo =B pjo (pjo <R 0,0) then there are no occurrences o, p such that or = o;, p\ = pj for
two substitutions 7, A and p < o (0 < p) with respect to <*.

For any variant of the factorization rule CS* is extended by the factor and <k+1==<¥
because the factor is already totally ordered with respect to <*.

Lemma 4.2 (Properties of < for List Resolution) If o < p with respect to <* then
0 < p with respect to all <7, j > k.

Proof: By contradiction. Assume o < p with respect to <* and there is some minimal
7 > k such that p =< ¢ with respect to <J. As 7 is minimal, <I=<J3-1 J <E for some
resolvent R and o < p with respect to </~1. |

Theorem 4.3 (List resolution is sound and complete) If CS is an unsatisfiable clause
set, then there is a list refutation from CS.

Proof: It is sufficient to show that list resolution is an instance of minimal resolution, i.e.
we must verify the assumptions of Assumption 2.1. They are all satisfied by definition of
list resolution. Note that < can always be completed to a total quasi-ordering on ground
occurrences. O

We will now give an example for list resolution. First, we show the example in an
intuitive way, i.e. writing clauses as sequences. Then we show the simulation by minimal
resolution. The example clause set is
[~R(a)]
[=R(b)]

[R(z), P(z), Q(z)]
[_‘P(a)vﬁp(b)}
[-Q(a)]

[~Q()]

The minimal literal is the first literal of a sequence. Resolvents are build by appending
the sequence of the positive complementary literal to the sequence of the negative com-
plementary literal. We call this selection strategy strict sequencing. In order to refer to
clauses and literals the clause number and the position of the literal in the clause are used.

For example (3)2 refers to the literal P(z) of clause (3). The following strict sequencing
(SS) refutation is possible:

[(1)1,RS, (3 (7) [P(a),Q(a)]
[(2)1, RS, (3 (8) [P(b),Q(b)]

[9) [=P(b),Q(a)]
[

—_ — — — " ~—

4.1 Incrementally Build Orderings

13

Now the refutation is simulated by list resolution. Instead of writing pairs, we just index

the literals. The clause set CSY is:

(1) {=R(a)1}

(2) {-R(b)2}

(3) {R(z)3, P(z)s,Q(x)s}
(4) {~P(a)s,~P(b)7}

(5) {~Q(a)s}

(6) {-Q(b)o}

Now < is defined as follows:
<%= {Rla)s = P(a)s, Pe)s = Q)s

The list refutation is (LR means list resolution):
(DLLR,(3)1] (7) {P(a)s,Q(a)s} =
(21, LR, (3)1] (8) {P(b)s,Q()s} =7
(DLLR, (1] (9) {~P(b)7,Qa)s} =™
(DL, LR, (8)1] (10) {Q(a)s,Q(b)s} =*
[(10)1, LR, (5)1] (11) {Q(b)s} =®
[(11)1,LR,(6)1] (12) O

—P(a)s = ~P(b)7}

=<0

=<!

== U{-P(b)7 < Q(a)s}
==3 U{Q(a)s = Q(b)s}
=<1

Note that we achieved an exact simulation of the strict sequencing refutation. In every
clause there is always exactly one minimal literal. The example cannot be simulated by
lock resolution because in clause (10) the literals Q(a) and Q(b) will have the same index.
Therefore both will be minimal using lock resolution. Whence list resolution (minimal

resolution) is a refinement of lock resolution.

In Section 3.2 we have shown that lock

resolution is an instance of minimal resolution. List resolution does not perfectly simulate
rigid sequencing. This is not surprising, because rigid sequencing is not complete in
general. Consider the unsatisfiable propositional example clause set [6, p. 116]:

(1) [PQ]
(2) (@ R]
3) [R,W]
(4) [-R,~P]
(5) [-W,-Q]
(6) [-Q,-R]
Rigid sequencing derives the clauses
[(2)1, RS, (6)1] (7) [R,—R]
[(B)L, RS, (4)1] (8) [W,~P]
(DL, RS, (1] (9) [-R,~P]
(&)L, RS, (5)1] (10) [-P,—=Q)]
[(10)L, RS, (V1] (11) [Q,~Q]

14 4 NEW ORDERING REFINEMENTS ON RESOLUTION

After the generation of clause (11) the set is saturated by rigid sequencing. The possible
resolution step [(11)1, RS, (6)1] results in (6) and the resolution step [(9)1, RS, (7)1] results
in (9).

We refute the clause set by list resolution:

(1) {P1,Q2}

(2) {Q@s, Ra}

(3) {Rs, Ws}

(4) {~Rr7,~Fs}
(5) {~Wy,~Q1o}
(6) {—Q11,Ri2}

We start with the ordering

=0:={P < Q2,Q3 < Ry, Rs = Ws,~Ry < =Ps, =Wy < =Q19, "Q11 =< —Ri2}

[(2)1,LR,(6)1] (7)) {Rs,—Ri2} =1:==0U{R4 < -Ris}
[(3)L, LR, (4)1] (8) {We,~Fs} === U{Ws = ~Fs}
()1, LR,(4)1] (9) {-Riz,~Ps} =3:==<?U{-Rip X ~Ps}
[(8)1,LR,(5)1] (10) {=Ps,~Qio} =*:==U{-P < -Q10}
[(10)1, LR, (1)1] (11) {Q2,-Qu} =*:==*U{Q2 X —Q10}

Now exactly the clauses of the saturated rigid sequencing set are derived. The list resolu-
tion step [(9)1, LR, (7)1] results in (9) because =Rjs < =Py is introduced in <3. But the
list resolution step [(11)1, LR, (6)1] produces {—~R12, ~Q10}, because " R13 < = FP3 < =Q10.
This is the clause needed to refute the clause set.

[(11)1, LR, (6)1] (12) {=Ri2,~Qo} =b:==°
[(12)1, LR, (3)1] (13) {Ws, —Q10} =":=="
[(13)1, LR, (5)1] (14) {-Qi0~Quo} =%:=xT
[(14)1, LF,(14)2] (15) {-=Q10}

[(15)1, LR, (2)1] (16) {R4}

[(16)1, LR, (1] (17) {-Ps}

[(17)1, LR, (1)1] (18) {Q2}

[(18)1, LR, (15)1] (19) O

The example shows that list resolution is very close to the border of complete calculi. In
fact, we have not been able to find a refinement of list resolution which we could prove
complete.

4.2 Tuple Resolution

The idea of tuple resolution is to separate £ into a disjoint partition £ = £, U...U L,
such that each £; (1 < i < n) is closed under instantiation. Then clauses are n-tuples
of multisets, C' = (C1,...,Cy). A literal L is minimal in such a clause C, if L € C;

4.2 Tuple Resolution 15

and Cj = () for 1 < j <4, 1 < i < n. Resolution between two tuples is performed by
removing the complementary literals from the parent tuples and then building the union
of the respective parts.

Tuple resolution can be precisely simulated by minimal resolution. As for list resolution
occurrences are pairs of literals and natural numbers. An occurrence o € L* is a tuple
o= (L,m) where L € L,,,. The ordering < is defined by o < p if id(0) < id(p). As the L;
are closed under instantiation, < is stable. Thus tuple resolution is complete.

Theorem 4.4 (Tuple resolution is sound and complete) If CS is an unsatisfiable
clause set, then there is a tuple refutation from CS.

As for hyper-resolution all negative occurrences (occurrences with a negative literal)
are always smaller than positive occurrences, but neither negative nor positive occurrences
are comparable to each other (except they are ground) hyper-resolution can be further
refined. For example we extend =< according to list resolution for the positive occurrences.
This means in each clause containing negative occurrences all negative occurrences are
minimal. If a clause consists of positive occurrences only the positive occurrences with
respect to list resolution are minimal.

Corollary 4.5 (List Hyper-Resolution is sound and complete) If CS is an unsat-
isfiable clause set, then there is a list hyper refutation from CS.

Proof: As the sets of positive and negative occurrences are disjoint and closed under
substitution soundness and completeness follows from theorem 4.4 and theorem 4.3. O

We refute the following clause set by list hyper-resolution.

(1) {R(z)1,Q(a)2}
(2) {~Q(z)s, R(z)4}
(3) {-R(a)s,~S(a)s}
4) {S(@)7}

According to the definition of hyper-resolution we have <%= {-Q(z)3 < R(z)4}. Thus (1)1
and (1)2 are minimal in (1), (2)1 is minimal in (2), (3)1 and (3)2 are minimal in (3) and
(4)1 is minimal in (4). Extending < according to list resolution for positive occurrences
we get <= {=Q(x)3 < R(x)4, R(x)1 < Q(a)2}. Now only (1)1 is minimal in (1). We get
the following unique refutation:

3) LHR (W14t (5) {[Q(a)ls}

=t = O
(2) LHR (51 (6) {[R(a)]lo}
<2 = <!

(3) LHR (6)1(4)1 (7) O

Applying hyper-resolution to the above clauses the hyper-resolvent (2)HR(1)2 is also
possible. Thus list hyper-resolution is a refinement of hyper-resolution.

16 5 REDUNDANCY

4.3 New Combinations of Known Refinements

There are several possibilities to define new, complete refinements. As an example we
define ordered lock resolution by a combination of lock resolution and ordered resolution.
The quasi-ordering = is given by o =< ¢ if id(0) < id(p) (lock part) or id(o) = id(p) and
atom(lit(o)) <" atom(lit(p)) (ordered part) or o = p. < is a stable quasi-ordering.

Theorem 4.6 (Ordered Lock Resolution is Sound and Complete) If CS is an un-
satisfiable clause set, then there is a ordered lock refutation from CS.

5 Redundancy

For many of the calculi which we showed to be instances of minimal resolution only com-
pleteness results have been known so far. Here we show that a specific form of subsumption
is compatible with minimal resolution. The standard notion of subsumption which is only
based on the literals of occurrences is not compatible with minimal resolution. Consider
the following example [5]:

(1) {P, Re}
(2) {~Rs, Py}
(3) {Rs,~Fs}
(4) {~P7,~Rs}

If we refute this example with lock resolution, i.e. we define o < p if id(0) < id(p), we
generate the clauses

(WL R, (4)1] (5) {R2,~Rs}
(@)L, R, (31] (6) {Ps,~Fs}
[(5)1, R, (2)1] (7)) {Fs,~Rs}
[(6)L, R, (4)1] (8) {~Fs,~Rs}

Now the clauses (5) and

(6) are tautologies and the clauses (7) and (8) are standard
subsumed by the clauses (2)

and (4), respectively. Thus we get the following corollary:

Corollary 5.1 Minimal resolution is not compatible with tautology deletion and deletion
of standard subsumed clauses.

If we don’t delete tautologies and standard subsumed clauses, the empty clause can be
derived:

(DL R, (8)1] (9) {~Rs,~Rs}
(9L, F,(9)2] (10) {—-Rs}
(1)L, R, (3)1] (11) {~Fs}
(AL R, (1] (12) {R2}
[(12)1, R, (10)1] (13) O

Nevertheless if we restrict standard subsumption to occurrences having equal identities,
we get a version of subsumption which is compatible with minimal resolution.

17

Definition 5.2 (Minimal Subsumption) A clause C' subsumes a clause D, if there
exists a substitution A such that CA C D.

We will show that minimal subsumption is compatible with minimal resolution. The
basic idea for the proof is that if C' subsumes D, then in any refutation where D is used,
C' can be used instead. However, there are some problems with this idea as the following
lock resolution example shows:

(1) {P1, Ro, P3}
(2) {Ro, Ps}

The clause (2) subsumes clause (1). But if we build a lock factor of (1):

(WL F, W3] 3) {h, R}

this factor cannot be simulated with (2), because the occurrence Pj is not contained in (2).
Unfortunately, (2) does not subsume (3), because the two P occurrences have different
index. Even more seriously, (2) and (3) contain exactly the same literals but have different
minimal occurrences. Therefore refutations where such factorization steps occur cannot
be simulated. Tammet was not aware of this problem. Therefore his completeness proof of
forward subsumption is wrong [7, p. 69, theorem 4.2]. Now we will present a correct proof.
The basic idea is to strengthen the completeness result by showing that subsumption is
compatible with minimal resolution even if we only consider strict, minimal refutations.
As lifting causes no problems we concentrate on ground refutations. Nevertheless, for
some intermediate clauses in the simulated strict refutation we will need a weaker notion
of subsumption.

We say that a clause C' = {0} U Cy weakly subsumes a clause C' = {p} U C1, if there
exists a substitution A, such that C} subsumes C] with substitution A and lit(o) A = lit(p) .

Lemma 5.3 Let C,C’, D, D' be ground clauses such that C' subsumes C’ and D subsumes
D'

1. If F' is a strict factor of C’, then either there is a strict factor F of C such that F
subsumes I or C' subsumes F’ or C' weakly subsumes F”.

2. If R is a resolvent of C’ and D', then either there is a resolvent R of C' and D such
that R subsumes R’ or C subsumes R’ or D subsumes R'.

Proof: 1. Let F’ is the strict factor of some literals o,p € C’ where wlog. p is removed
from C’. We distinguish three cases. Firstly, if o,p € C, then o and p are minimal in C'
and it is straightforward to show that there exists a strict factor F' of C using the literals
o and p, such that F' subsumes F’. Secondly, if o € C but p ¢ C then C subsumes F’.
Thirdly, if p € C but 0 ¢ C then C weakly subsumes F”.

2. Let R’ be the resolvent of some p € C' and o € D’. Here we distinguish four cases.
Firstly, if p € C, o € D, then the resolvent R between C', D using the occurrences p, o
subsumes R’. Secondly, if p € C, but o ¢ D, then D subsumes R’. Thirdly, if p ¢ C, but
0 € D, then C subsumes R’. Eventually, if p ¢ C and o ¢ D, then both C' and D subsume
R O

18 5 REDUNDANCY

Lemma 5.4 Let C = {01} UCy and C' = {0}} U C] be ground clauses such that C4
subsumes C1, lit(o;) = lit(o}), and o; is minimal in C and o) is minimal in C’. Let
D = {p}UD; and D' = {p)} U D] be ground clauses such that D; subsumes D}, lit(p;) =
lit(p}), and p; is minimal in D and p} is minimal in D’. Let F” be a strict factor of C’
using 0} and some other occurrence o € C1. If 0 € C' we assume o minimal in C'.

1. There is a strict factor F of C such that F (weakly) subsumes F’ or C' (weakly)
subsumes F".

2. If R’ is the resolvent of C’, D’ using the occurrences o}, p}, then the resolvent R of
C, D using the occurrences o1, p1, subsumes R’.

Proof: 1. We distinguish two cases. Firstly, if o € C' and o is minimal in C, then if o}
is not in F”, the strict factor F' from C' by removing o; subsumes F’ and otherwise if o
is not in F’, the strict factor F' from C by removing o weakly subsumes F’. Secondly, if
o ¢ C, then C' weakly subsumes F’.

2. Since Cy subsumes C] and D; subsumes D we can conclude R subsumes R'. O

Theorem 5.5 (Subsumption) Let CS be an unsatisfiable clause set. There exists a
strict, minimal refutation from CS, even if subsumed clauses are deleted.

Proof: It is sufficient to show that if we have any strict, minimal refutation, we can
construct a new one where subsumed clauses are deleted. This is done by an induction
argument on the number of subsumed clauses, showing that a refutation using a subsumed
clause D can be simulated by a refutation there D is no longer used. The simulation is
shown by an induction argument on the length of the refutation. It is sufficient to consider
ground refutations, because lifting causes no problems. We only show the non-trivial case
that a strict, minimal ground refutation C'*,... C™ of a ground clause set CS using a
ground clause C’ can be simulated with a strict, minimal ground refutation C!,...,C™,
m < n, where C’ is no longer used, if there is a ground clause C' € CS such that C
subsumes C”.

We show by induction on the length n of the derivation, that the refutation can be simu-
lated, such that for each clause C”* generated by minimal resolution, there is a clause C*
such that C* subsumes C”* and for each clause C"7 generated by strict factorization, there
is a clause C! such that C! subsumes C7 or C' weakly subsumes C7.

If n = 1 then lemma 5.3.2 guarantees the existence of a strict, minimal refutation using
C instead of C’.

For n > 1, let C" be some arbitrary clause in the derivation, generated by minimal
resolution. By induction hypothesis, there is a clause C* which subsumes C”. If the
next step applied to C”* is a minimal resolution step, we distinguish two cases. Firstly, if
the second used clause C"7 is subsumed by some clause C!, then lemma 5.3.2 guarantees
the existence of a clause which subsumes the resolvent between C”* and C7. Secondly,
if the second used clause C"” is weakly subsumed by some clause C!, then lemma 5.4.2
guarantees the existence of a resolvent between C* and C! which subsumes the resolvent
between C”* and C7 or C* subsumes the resolvent between C’* and C7. Note, that in
lemma 5.4 we explicitly use that C'',...,C"™ is a strict, minimal refutation. If the next
step applied to C" is a strict factorization step, then lemma 5.3.1 guarantees the existence
of a clause which (weakly) subsumes the factor built of C".

If C"" is generated by strict factorization, by induction hypothesis there is a clause C*
which (weakly) subsumes C”'. Now if the next step applied to C" is again a strict fac-
torization step, lemma 5.3.1 and lemma 5.4.1 guarantee the existence of a clause which

19

(weakly) subsumes the strict factor of C”*. Again these lemmata are only applicable be-
cause C'', ..., C'™ is a strict, minimal refutation. The case that a minimal resolution step
is applied to C” is symmetric to a case where C”" was generated by resolution.

The simulation results in a derivation of the empty clause where C” is not used. Now we
remove from this derivation all clauses, except the empty clause, which are not the parent

clause of some other clause. This yields a strict, minimal refutation C,...,C™, where C’
is no longer used. This together with the a induction on the number of subsumed clauses
proves the theorem. |

For unit clauses we may refine our notion of subsumption. A unit clause C = {o}
subsumes a clause D if there exists a substitution A such that lit(o) € Ilit(DA). It is
obvious that C' can be substituted for D in any proof, because o is necessarily minimal in

C.

Corollary 5.6 (Refined Subsumption) Let CS be an unsatisfiable clause set. There
exists a strict, minimal refutation from CS, even if subsumed clauses are deleted with
respect to the refined subsumption criterion.

6 Discussion

We have defined minimal resolution. Minimal resolution is sound and complete if < is a
stable quasi-ordering. Hyper-resolution, ordered resolution, lock resolution, II-orderings,
A-orderings are instances of minimal resolution. List resolution and tuple resolution are
new calculi which cannot be simulated by known selection strategies for resolution. We
also discussed ordering refinements which cannot be simulated by minimal resolution,
semantic resolution and sequencing. Semantic resolution cannot be simulated in general,
because the ordering refinement is based on a semantic criterion. Sequencing is the only
calculus I know which is based on a syntactic ordering refinement which is not an instance
of minimal resolution. However, there is no completeness proof for sequencing in the
existing literature. I tried to find either a completeness proof or a counter example for
several weeks, however, without success. Therefore this remains an open question.

We also showed that a specific form of subsumption is compatible with minimal resolu-
tion. This was not known before for some of the instances, as for instance lock resolution.

There are at several applications for minimal resolution. My initial motivation of
minimal resolution was a variant of tuple resolution which allowed to order resolution
proofs in a special way. These ordered proofs can then be transformed into proofs of a
sorted calculus [16]. In addition, several authors now use refined resolution calculi to prove
the decidability of subclasses of first-order logic [4, 7].

References

[1] R. Anderson and W.W. Bledsoe. A linear format for resolution with merging and a
new technique for establishing completeness. Journal of the ACM, 17:525-534, July
1970.

[2] L. Bachmair and H. Ganzinger. On restrictions of ordered paramodulation with
simplification. In 10th International Conference on Automated Deduction, CADE-10),
volume 449 of LNCS, pages 427-441. Springer, 1990.

[3]

[10]

[11]

L. Bachmair and H. Ganzinger. Rewrite-based equational theorem proving with se-
lection and simplification. MPI-Report MPI-1-91-208, Max-Planck-Institut fiir Infor-
matik, Saarbriicken, September 1991.

L. Bachmair, H. Ganzinger, and U. Waldmann. Superposition with simplification as a
decision procedure for the monadic class with equality. In Georg Gottlob, Alexander
Leitsch, and Daniele Mundici, editors, Computational Logic and Proof Theory, Third
Kurt Gédel Collogquium, volume 713 of LNCS, pages 83-96. Springer, August 1993.

R.S. Boyer. Locking: A Restriction of Resolution. PhD thesis, University of Texas at
Austin, August 1971.

C.L. Chang and R.C.T. Lee. Symbolic Logic and Mechanical Theorem Proving. Com-
puter Science and Applied Mathematics. Academic Press, 1973.

C. Fermiiller, A. Leitsch, T. Tammet, and N. Zamov. Resolution Methods for the
Decision Problem, volume 679 of LNAIL Springer, 1993.

M.R. Genesereth and N.J. Nilsson. Logical Foundations of Artificial Intelligence.
Morgan Kaufmann, 1987.

R. Kowalski and Hayes P.J. Semantic trees in automatic theorem proving. In
B. Meltzer and D. Michie, editors, Machine Intelligence 4, pages 87-101. Edingburgh
University Press, 1969.

D. Loveland. Automated Theorem Proving: A Logical Basis, volume 6 of Fundamental
Studies in Computer Science. North-Holland, 1978.

S.J. Maslov. An inverse method for establishing deducibility in the classical predicate
calculus. Dokl. Akad. Nauk SSSR, 159:1420-1424, 1964.

S.J. Maslov. Proof-search strategies for methods of the resolution type. In B. Meltzer
and D. Michie, editors, Machine Intelligence 6, chapter 6, pages 77-90. Edingburgh
University Press, 1971.

J.A. Robinson. Automatic deduction with hyper-resolution. International Journal of
Computer Mathematics, 1:227-234, 1965.

J.A. Robinson. A machine-oriented logic based on the resolution principle. Journal
of the ACM, 12(1):23-41, January 1965.

J.R. Slagle. Automatic theorem-proving with renamable and semantic resolution.
Journal of the ACM, 14:687-697, 1967.

C. Weidenbach. Extending the resolution method with sorts. In Proc. of 15th Inter-
national Joint Conference on Artificial Intelligence, IJCAI-93, pages 60—-65. Morgan
Kaufmann, 1993.

o

INFORMATIK

Below you find a list of the most recent technical reports of the research group Logic of Programming
at the Max-Planck-Institut fiir Informatik. They are available by anonymous ftp from our ftp server
ftp.mpi-sb.mpg.de under the directory pub/papers/reports. Most of the reports are also accessible via
WWW using the URL http://www.mpi-sb.mpg.de. If you have any questions concerning ftp or WWW
access, please contact reports@mpi-sb.mpg.de. Paper copies (which are not necessarily free of charge)
can be ordered either by regular mail or by e-mail at the address below.

Max-Planck-Institut fir Informatik

Library

attn. Regina Kraemer
Im Stadtwald
D-66123 Saarbriicken
GERMANY

e-mail: kraemer@mpi-sb.mpg.de

MPI-1-95-2-005

MPI-1-95-2-002

MPI-1-95-2-001

MPI-1-94-261

MPI-1-94-257

MPI-1-94-254

MPI-1-94-252

MPI-1-94-251

MPI-1-94-246

MPI-1-94-241

MPI-1-94-240

MPI-1-94-239

MPI-1-94-238

MPI-1-94-235
MPI-1-94-234
MPI-1-94-233

MPI-1-94-232
MPI-1-94-230

MPI-1-94-229

F. Baader, H.-J. Ohlbach

H. J. Ohlbach, R. A. Schmidt

S. Vorobyov

P. Barth, A. Bockmayr

S. Vorobyov

P. Madden

P. Graf

M. Hanus

J. Hopf

P. Madden

P. Madden, I. Green

P. Madden

D. A. Plaisted

S. Matthews, A. K. Simpson

D. A. Plaisted

D. A. Plaisted
H. J. Ohlbach

Y. Dimopoulos

A Multi—-Dimensional Terminological Knowledge
Representation Language

Functional Translation and Second-Order Frame
Properties

Proof normalization and subject reduction in
extensions of Fsub

Finite Domain and Cutting Plane Techniques in
CLP(PB)

Structural Decidable Extensions of Bounded
Quantification

Report and abstract not published

A Survey of Program Transformation With Special
Reference to Unfold/Fold Style Program
Development

Substitution Tree Indexing

On Extra Variables in (Equational) Logic
Programming

Genetic Algorithms within the Framework of
Evolutionary Computation: Proceedings of the
KI-94 Workshop

Recursive Program Optimization Through
Inductive Synthesis Proof Transformation

A General Technique for Automatically Optimizing
Programs Through the Use of Proof Plans

Formal Methods for Automated Program
Improvement

Ordered Semantic Hyper-Linking
Reflection using the derivability conditions

The Search Efficiency of Theorem Proving
Strategies: An Analytical Comparison

An Abstract Program Generation Logic

Temporal Logic: Proceedings of the ICTL
Workshop

Classical Methods in Nonmonotonic Reasoning

