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Abstract

This paper deals with methods of faithful transformations between logical systems	
Several methods for developing transformations of logical formulae are de�ned which
eliminate unwanted properties from axiom systems without losing theorems	 The ele�
mentary examples we present are permutation� transitivity� equivalence relation prop�
erties of predicates and congruence properties of functions	 Various translations be�
tween logical systems are shown to be instances of K�transformations� for example the
transition from relational to functional translation of modal logic into predicate logic�
the transition from axiomatic speci�cations of logics via unary provability relations to
a binary consequence relations� and the development of neighbourhood semantics for
nonclassical propositional logics	

Furthermore we show how to eliminate self resolving clauses like the condensed de�
tachment clause� resulting in dramatic improvements of the performance of automated
theorem provers on extremely hard problems	 As by�products we get a method for
encoding some axioms in Prolog which normally would generate loops� and we get a
method for parallelizing some closure computation algorithms	
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� Introduction

The development and investigation of logical and mathematical systems has various aspects	 One
aspect is of course the possibility to prove theorems about this system	 Another even more impor�
tant aspect is the possibility to understand a new system in terms of a well known old system	 For
example Stone�s representation theorem �Sto��� for Boolean algebras correlates Boolean algebras
�BA� with set theory	 Every BA theorem can be proved by interpreting the BA connectives set
theoretically and proving the formula in the algebra of sets	

Another example is the correlation between an axiomatic speci�cation of a logic and its model
theoretic semantics	 The model theoretic semantics is usually described in terms of sets� functions
and relations� and the interpretation function relates the properties of the logic with the intrinsic
properties of the semantic structure	 Again� the purpose is to describe a complex new system in
terms of a simple� well known� standardized and therefore easy to communicate old system	

In all these cases we have two logical or mathematical systems L� and L� and a transformation
�
 L� � L�	 The minimal property� � should have is that it allows us to solve a problem of system
L� by solving a corresponding transformed problem in L�	 That means if we have a problem in L��
and we use � to transform the problem into L�� �nd a solution there� and transform the solution
back into L�� then it must be guaranteed that this is in fact a solution of the original problem	
This is the soundness requirement for �	 Completeness of �� on the other hand� means that we
can solve all L� problems this way	 If the problem is a theorem proving problem this means that
the following must be guaranteed


L�
 Assumption � Conclusion
i�

L�
 ��Assumption� � ��Conclusion�	
���

A further requirement for � should be that it simpli�es matters in some sense� but in what
sense� In order to get a �rst idea what can be simpli�ed by a transformation� consider the well
known correspondence between syntax and semantics of predicate logic	 In every logic textbook
you �nd de�nitions of logical connectives as for example

� j� A �B i� � j� A and � j� B

i	e the formula A � B with top�level connective ��� is true in an interpretation i� both A and B

are true	 The key point is that we map the connective � � � to the meta logical word �and� which
everybody understands	 A consequence is that by this de�nition� ��� inherits all the properties of
�and�� in particular commutativity� idempotence and associativity of �and�	

By mapping a component � of the system L� to a component ���� of L�� it is no longer
necessary to mention the properties� � can inherit from ���� any more	 They are automatically
true	 And this illustrates the �simplicity criterion�
 a transformation �
 L� � L� is better if more
explicit properties of a component � of the system L� are true for ����	

All properties of � which are not automatically true for ���� require that the target system L�
has to be restricted such that these extra properties hold� and this usually complicates matters	
A concrete example where this happens is Kripke�s possible worlds semantics for modal logic	 All
axioms of the system K �� L�� are automatically true in all Kripke frames �� L��	 Here we have
an optimal transition from the syntactic system K to the semantic system	 Any additional axiom�
however� requires extra conditions on the frames� which makes this semantics less and less useful	

The guideline for �nding good transformations from L� to L� is therefore the intention to
�eliminate� �or �kill�� therefore the name Killer Transformation� properties � from L� in the sense
that ���� is either just a tautology or in some other sense redundant or useless in L�	

The transformations we are going to present take place in the framework of predicate logic	
Using predicate logic as a meta logic for other systems� however� the same ideas work for many other
logics as well	 In predicate logic� theorems can be proved by refutation	 That means instead of
proving that Assumption� Conclusion is a tautology� we prove that Assumption � �Conclusion
is unsatis�able	 When we transform the problem this means that we have to make sure that

�



L�
 Assumption � �Conclusion is unsatis�able
i�

L�
 ��Assumption � �Conclusion� is unsatis�able	
���

The important observation is now that it is not necessary that the transformation is equivalence
preserving	 It is su�cient to be faithful	 That means if the original problem formulation has a
model then so has the transformed problem �soundness of the transformation� and vice versa
�completeness of the transformation�	

This relatively weak condition on the transformation opens a door to a whole universe of
possibilities for transformations of which only a tiny fragment has been routinely exploited so far	
Skolemization of existential quanti�ers during conjunctive normal form generation is an example
for a routinely applied faithful transformation which is not equivalence preserving	

In this paper we present general methods� a kind of recipe� for developing faithful transforma�
tions of logical systems and provide some general soundness and completeness results	 With a lot
of examples we demonstrate that� following our recipes� the development of particular transforma�
tions together with the necessary proofs becomes almost trivial	

Three stages of transformation methods will be considered	 In Section � we focus on transfor�
mations which eliminate formulae � from formula sets  by using equivalences �� � and replacing
every instance of � with a corresponding instance of �� or� if � also occurs in � by some more
complex operations	 While the transformation itself is trivial in most cases� the main problem we
consider is where to get these equivalences from	 It turns out that not the elimination of � itself is
the important part� but to �nd the right � such that� as we mentioned earlier� particular axioms
� in �� � become tautologies	 The elimination of � is therefore only the vehicle for eliminating �	

A number of examples for formula transformations are listed in Section �	 The elimination of
properties like symmetry� transitivity� permutation properties� and the equivalence relation prop�
erty are simple cases� but with sometimes surprising applications	 As we shall see� the elimination
of re�exivity and transitivity of a binary relation� in particular the binary consequence relation
of an axiomatic speci�cation of a logic very naturally leads to the introduction of possible worlds
semantics	

There are more examples which turn out to be instances of our transformation technique	 One
is the transformation of n�ary relations to binary relations� a standard trick in relational database
applications	 A further example is of quite di�erent nature	 It describes the transition from the
relational translation of modal logic to predicate logic� to the functional translation	 That means in
this case we show with our technique how to transform transformations	 Even more surprising are
the last two examples we give	 We can explain the transition from a Hilbert style axiomatization of
a logic with a unary theoremhood predicate to an axiomatization in terms of a binary consequence
relation	 And �nally in the last example we derive neighbourhood semantics for non�classical logics
as the result of the elimination of certain congruence properties of logical connectives	

In Section � we focus on the elimination of given clauses from a clause set� in particular
those clauses which usually give automated theorem provers a hard time� self resolving or recursive
clauses	 One of the clauses we consider as examples is the condensed detachment clause� a predicate
logic encoding of the Modus Ponens rule


P �i�x� y�� � P �x�� P �y�� ���

As we shall demonstrate� the elimination of this clause can lead to dramatic improvements of the
performance of theorem provers on some of the hardest challenge problems discussed in the theorem
proving literature	 One e�ect we observed was that the elimination of clauses like condensed
detachment may reveal great redundancies implicitly contained in the original formulation	 The
transformed clause set can be simpli�ed before the proof search starts and this reduces the search
space considerably	

A by�product of the method for elimination of clauses is a method for transforming Prolog
programs in order to eliminate certain loops	 As another by�product we obtained a method for
parallelizing certain closure computation algorithms and proving their correctness	

Finally in the last section we investigate the elimination of particular literals	 For exam�
ple� given a literal like subset�x� y�� can we detect and use a de�nition of the subset predicate
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subset�x� y����z z 	 x� z 	 y�� which is not explicitly given� but hidden in the anonymous
literal set of a clause normal form� This method supports Beth�s de�nability theorem in a con�
structive way	

Notions and Notation

Some notions and notations are needed in this paper which are taken from the theorem proving
literature	 Letters from the end of the alphabet usually denote variables	 Letters from the begin�
ning of the alphabet denote constant symbols and letters f� g� h� i denote function symbols	 s and
t usually denote arbitrary terms	

A clause is a disjunction of literals	 If Ai are the negative literals and Bj are the positive literals�
we can write clauses in three di�erent ways� either as a disjunction� �A� 
 � � � 
 �An 
 B� 
 � � � 
 Bm

or as an implication A� � � � � � An�B� 
 � � � 
 Bm or as a set f�A�� � � � ��An� B�� � � � � Bmg	 We
shall use all three versions	 The variables in clauses are always considered universally quanti�ed	
Two di�erent clauses are always considered as variable disjoint	 If they are not� take variable
renamed copies	 A unit clause or unary clause is a clause with one literal only	

If L is a literal then L denotes its complement� i	e	 the atom is the same� but the sign is
exchanged	

A substitution � is an endomorphism in the free term algebra which changes only �nitely
many variables	 We write substitutions as sets � � fx� �� s�� x� �� s�� � � �g	 The variables
xi form the domain and the terms ti form the codomain of �	 A renaming substitution is a
substitution mapping variables to variables such that the codomain and the domain are disjoint
and the codomain variables are all di�erent	 An example is fx �� u� y �� vg	 fx �� u� y �� ug is
not a renaming substitution	 s� denotes the application of the substitution � to the term s	 ��
denotes the composition of the two substitutions � and � 	

mgu�s� t� is the most general uni�er for the two terms or atoms s and t	 That means if
� � mgu�s� t� then s� � t�	 Since we do not consider theory uni�cation� there is� up to variable
renaming� at most one most general uni�er for two terms	 Two literals are complementary uni�able
if they have di�erent signs and the atoms are uni�able	 A substitution 	 is a matcher for the two
terms s and t i� s	 � t	

A clause C subsumes a clause D i� C	 � D for some substitution 	 and C has less or equally
many literals as D	 Subsumption is a weaker version of implication	

Resolution is the standard inference rule for many theorem provers �Rob��b�	 The de�nition of
the resolution rule is

C�
 L� 
 L� 
 � � � 
 Ln L� and K� are complementary uni�able	
C�
 K� 
K� 
 � � � 
Km � is the most general uni�er

��L� 
 � � � 
 Ln 
K� 
 � � � 
Km�

L� and K� are the resolution literals	 We say that we resolve the clauses C� and C� upon the
resolution literals L� and K�	

Self resolution is a resolution operation between two variable renamed copies of the same clause	
For example a self resolution with the transitivity clause is

�P �x� y� 
 �P �y� z� 
 P �x� z�
j

�P �x�� y�� 
 �P �y�� z�� 
 P �x�� z��
�P �x� y� 
 �P �y� z� 
 �P �z� z�� 
 P �x� z��

Hyperresolution is the combination of several resolution steps into one step	 It was developed by
John Alan Robinson �Rob��a� and is described by the following schema
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electrons
 p p p p p p p p p p p p p pp p p p p p p p p p p p p pp p p p p p p p p p p p p pp p p p p p p p p p p p p p
K� � � � Kn p p p p p p p p p p p p p pp p p p p p p p p p p p p pp p p p p p p p p p p p p pp p p p p p p p p p p p p p

� � �
resolvable with
simultaneous
uni�er �

nucleus
 �L� � � � �Ln Ln�� � � � Ln�m

hyper�
resolvent
 �p p p p p p p p p p p p p pp p p p p p p p p p p p p pp p p p p p p p p p p p p pp p p p p p p p p p p p p p

� � � �p p p p p p p p p p p p p pp p p p p p p p p p p p p pp p p p p p p p p p p p p pp p p p p p p p p p p p p p
�Ln�� � � � �Ln�m

Here a clause with at least one negative literal serves as �nucleus�	 For every negative literal of
the nucleus� a so�called �electron� is needed� a clause containing only positive literals	 The nucleus
is resolved with all electrons simultaneously� resulting in a purely positive clause� which in turn
can be used as an electron for the next positive hyperresolution step	

� Elimination of Formulae

In order to illustrate the basic idea of this section� suppose we have some �rst order predicate logic
axioms  which� among other things� axiomatize a re�exive and transitive relation R� i	e	

�x R�x� x� ���

�x� y� z R�x� y� � R�y� z�� R�x� z� ���

is either contained in  or derivable from  � and we want to get rid of the re�exivity and transitivity
of R	

In order to show that a formula C is entailed by  � one usually tries to refute  � �C	 Before
the refutation is actually started� every faithful transformation of  � �C� i	e	 a transformation
preserving satis�ability and unsatis�ability� is allowed	

The translation we propose for faithfully eliminating re�exivity and transitivity of R exploits
that these two properties together imply

�x� y R�x� y�� ��w R�w� x�� R�w� y��� ���

To see this� suppose R�x� y� and R�w� x� hold	 By transitivity� R�w� y� also holds� i	e	 the ����part
is shown	 For the �
��part� take w � x and use the re�exivity of R to derive R�x� y�	

Since ��� is entailed by  � we could add it to  � �C without losing satis�ability or unsatis��
ability	 However� instead of ���� we add

�x� y R�x� y�� ��w R��w� x��R��w� y�� ���

to  � �C where R� is a new predicate symbol	 Clearly� if  � �C is satis�able then  � �C � ���
is also satis�able
 the interpretation of R� can be chosen to be the same as the interpretation of R	
In this case ��� is equivalent to ���� which follows from  	 Thus� ��� is also true in the extended
interpretation	 On the other hand� if  � �C � ��� is satis�able then certainly  � �C is satis�able
as well	

But now we have a de�nition of R in terms of R� where R� is an uninterpreted new predicate
symbol	 In the next step� ��� is used as a rewrite rule from left to right� replacing all occurrences
of R in  � �C by the formula with R�	 We obtain the transformed formula  � � �C � � ��� with
R� in place of R	 This is a terminating equivalence preserving transformation	

What happens to the re�exivity and transitivity of R� �x R�x� x� becomes

�x �w R��w� x��R��w� x�

�



which is a tautology �by the re�exivity of ����	 The transitivity ��� becomes

�x� y� z ��w R��w� x�� R��w� y�� � ��w R��w� y�� R��w� z��� ��w R��w� x��R��w� z��

which is also a tautology �by the transitivity of ����	 Thus� R� needs neither be re�exive nor
transitive	

Nothing would have been gained if the de�nition of R� ���� could not be removed afterwards	
In order to justify removing the transformer we have to show that  � � �C � � ��� is satis�able if
and only if  � � �C � is satis�able	 Since  � � �C � does not contain R any more� we can always
�nd an interpretation for R� using ��� as de�nition	 Therefore each model for  � � �C � can be
extended to a model for  � � �C � � ���	 Thus� ��� can be eliminated	  � � �C � is the �nal result
of our transformation	

What has actually happened is that the role of the re�exivity and transitivity of R has been
taken over by the re�exivity and transitivity of the implication connective	 Many of the other
examples we present in the paper are of a similar kind	 The built�in properties of predicate logic
take over the role of special properties of non�logical symbols	

The �rst procedure for transforming formulae  � typically axioms and a negated theorem� in a
faithful way� i	e	 without losing satis�ability or unsatis�ability� consists of the following sequence
of steps

extension transformation elimination
 �  � transformer �  � � transformer �  �

where �transformer� is a formula of the kind

Left�Right� �
�

The �extension� step involves �nding the transformer	 In general this is still a creative step�
but we shall give some heuristics and more concrete procedures for �nding the transformers	 The
actual transformation is done in the �transformation� step	 In the simplest case the transformation
strategy is just de�nitional replacement where �
� is used as rewrite rule from left to right	 It can�
however� also be a much more complex combination of rewriting� inferencing and deleting formulae	
In the simplest case the transformation strategy is just de�nitional replacement where �
� is used
as rewrite rule from left to right	 It can� however� also be a much more complex combination
of rewriting� inferences and deletions	 In the elimination step we delete the transformer	 Since
removing formulae can turn unsatis�able formula sets into satis�able sets� this is also a non�trivial
step which has to be justi�ed	

In the sequel we call these transformations formula K�transformations	 They are determined by
the transformer Left � Right and the transformation strategy	 To ensure that the transformation
is satis�ability preserving� which is su�cient to do theorem proving by refutation� the following
lemmas have to be proved	

De�nition ��� �Transformation Lemmas

The extension lemma proves that satis�ability of  implies satis�ability of  � transformer	
The transformation lemma proves that  � transformer is satis�able if and only if  � � transformer
is satis�able� where  � is the transformed version of  	
The elimination lemma proves that satis�ability of  � implies satis�ability of  � � transformer	 


Lemma ��� �Faithfulness

A K�transformation for which the extension lemma� the transformation lemma� and the elimina�
tion lemma have been proved� preserves satis�ability and unsatis�ability	 We call this a faithful
transformation	 It is sound and complete	

Proof 
 The other direction of the extension lemma� satis�ability of  � transformer implies satis�
�ability of  is obvious� which is also the case for the other direction of the elimination lemma�  �

� transformer implies satis�ability of  �	 Thus� the three lemmas guarantee that all three steps
preserve satis�ability	 


�



This lemma holds for every monotonic logical system with a suitable notion of satis�ability	
There are standard cases which occur quite frequently	 For these cases we can prove some of the
lemmas once and for all	 In an actual case� it has only to be checked whether the transformer is
one of these standard types	

De�nition ��� �Renamed Transformer

A transformer Left�Right is called a renamed transformer for a formula  i� there is a formula
Left� Right� entailed by  and Right is obtained from Right� by renaming constant� function�
predicate symbols and sorts with new symbols not occurring in  so far	 Di�erent occurrences of
the same symbol in Right may be renamed di�erently	 Left� Right� is called the basis of the
transformer	 


Lemma ��	 �Extension Lemma for Renamed Transformers

The extension lemma �Def	 �	�� holds for renamed transformers	

Proof 
 We show that every model � of  can be extended to a model �� for  � �Left�Right�
where Right is a renamed variant of some Right�	 We interpret in �� all the new symbols in Right
exactly like the original symbols in � and �nd that Right and Right� are equivalent under ��	
Since Left� Right� is entailed by  � and �� is an extension of �� �� satis�es Left� Right�� and
therefore it satis�es Left�Right as well	 


The proof of the extension lemma for this type of transformers amounts to proving that the
basis Left� Right� follows from  	 This is a standard theorem proving task which can be done
with automated theorem provers	

Remark

In the new interpretation �� the renamed symbols have been interpreted like the original ones	 In
this interpretation all the properties of the old symbols also hold for the renamed symbols	 This
means that axioms describing these properties for the new symbols could also be added without
changing the satis�ability or unsatis�ability	 They are not necessary for �nding proofs� but they
can shorten proofs and they can be helpful in successive transformations	 In our standard example�
re�exivity and transitivity of R� this means that we could add for example the transitivity clause
for the new predicate R� to the transformed formula set	 In this particular case this does not make
much sense� but we shall present other examples where this is quite useful	 We summerize this
observation in a corollary	

Corollary ��
 �Optional Axioms

After a transformation with a renamed transformer� all formulae describing properties of the orig�
inal symbols may be renamed in the same way as in the renamed transformer and added to the
transformed set without changing satis�ability and unsatis�ability	 


The transformer ��� for the elimination of re�exivity and transitivity is an example for a
renamed transformer	 The proof of Left�Right�� i	e	 ��� is trivial in this case	

In the class of transformers speci�ed in the next de�nition� the transformation process itself is
reduced to a simple rewriting operation	

De�nition ��� �Rewriting Transformers

A transformer �x�� � � � � xn R�x�� � � � � xn��Right where R does not occur in Right� is called a
rewriting transformer	 The transformation strategy for rewriting transformers is just de�nitional
replacement� i	e	 all occurrences R�s�� � � � � sn� are replaced with the corresponding instances of
Right	 


Lemma ��� �Transformation Lemmas for Rewriting Transformers

The transformation lemma and the elimination lemma �Def	 �	�� hold for rewriting transformers	






Proof 
 The transformation lemma holds because rewriting with an equivalence is an equivalence
preserving operation	 The elimination lemma holds as well because the transformed formula  � does
not contain the predicate R any more	 Therefore the transformer itself can be taken as a de�nition
for R	 Each model of  � can be extended to a model for  � � �x�� � � � � xn R�x�� � � � � xn�� Right

by de�ning the interpretation of R according to just this equivalence	 


Renamed rewriting transformers are the simplest transformers at all	 The only thing which
has to be proved for this class of transformers is that the basis Left� Right� for the transformer
follows from  	 The transformer ��� turns out to be of this simple type	

The next class of transformers is of a more general nature	 It allows us to exploit completeness
results for special inference strategies� as for example ordered resolution	 ���� is an example for a
transformer of this kind	

De�nition ��� �Saturation Transformers

A transformer Left�Right is called a saturation transformer for the formula  if there is a
refutation complete deduction strategy which allows one to draw inferences between the transformer
and  only �nitely many times	
 is transformed by drawing inferences between the transformer and  according to this strategy
exhaustively and removing all formulae in the transformed version of  which are redundant� i	e	
no longer necessary for �nding a contradiction	 


Lemma ��� �Transformation Lemmas for Saturation Transformers

The transformation lemma and the elimination lemma �Def	 �	�� hold for saturation transformers	

Proof 
 Adding derived formulae preserves satis�ability and unsatis�ability	 Removing redundant
formulae also preserves satis�ability and unsatis�ability	 Therefore the transformation lemma
holds	
Since the deduction strategy which is applied during the transformation is refutation complete�
and� according to the strategy� there are no further inferences with the transformer possible�
the transformer is no longer necessary for �nding a refutation	 It becomes redundant	 If the
transformed formula together with the transformer is unsatis�able then the transformed formula
without the transformer is still unsatis�able� and vice versa	 Thus� the elimination lemma holds
as well	 


Notice that there are refutation complete strategies which may deactivate a formula A at a
certain point during proof search and activate it later on again	 That means there is no inferences
possible with A� but later on after operations in other parts of the formula set� inferences between
A and newly generated formulae may become possible again	 In order to show that a transformer
is of saturation type one has therefore to show that after the initial operations the transformer
never again are activated	

The formula  which is transformed usually consists of the two parts� Assumption and �Conjecture	
At the time of the development of the K�transformation� usually only the assumption is known	
Therefore the transformation lemma has to be proved for all potential conjectures	 Alternatively
one can specify the class of admissible conjectures for which the K�transformation works	

� Examples for Formula Transformations

The transformation technique with formula K�transformations is illustrated with various exam�
ples	 We also show that some well known transformations are actually instances of formula K�
transformations	

��� Symmetry and Permutations

In the introduction we have shown how the re�exivity and transitivity of a relation R is absorbed
by the re�exivity and transitivity or the predicate logic implication connective	 Once this idea has
become clear� it is quite trivial to develop K�transformations for other basic properties of relations	
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The symmetry of a predicate R for example can be mapped to the commutativity of ��� or �
� by
exploiting that symmetry implies

�x� y R�x� y�� �R�x� y� � R�y� x�� and ���

�x� y R�x� y�� �R�x� y� 
 R�y� x��� ����

Renaming R to R� we get the two possible admissible transformers

�x� y R�x� y�� �R��x� y� �R��y� x�� ����

�x� y R�x� y�� �R��x� y� 
R��y� x��� ����

The transformer is a renamed �Def	 �	�� rewriting �Def	 �	�� transformer and therefore faithful	
To give an intuitive example for ����� suppose R � � and R� � �	 Then ���� reads as

x � y� �x � y � y � x��

which could for example be a part of the de�nition of an equivalence relation from an ordering
relation	

We can even eliminate more complex permutations as symmetry	 For example the permutation

�x� y� z R�x� y� z�� R�y� z� x� ����

implies

�x� y� z R�x� y� z�� �R�x� y� z� � R�y� z� x� �R�z� x� y�� ����

which yields the transformer

�x� y� z R�x� y� z�� �R��x� y� z� � R��y� z� x� � R��z� x� y��� ����

This transformation rewrites ���� to a tautology� i	e	 R� needs not have the permutation property
any more	 It is quite obvious how the transformation idea can be applied to other permutations	
The equivalence corresponding to ���� simply lists all the permutation cases explicitly	

From a theorem proving point of view� however� this particular transformation of permutation
properties is not optimal	 In Section �	� it is shown that only positive instances of R�literals need
to be transformed	

��� Re�exivity and Transitivity

The method for eliminating re�exivity and transitivity has been explained in the introduction	 A
transformer is

�x� y R�x� y�� ��w R��w� x�� R��w� y��� ����

But we can go a step further and introduce a new sort W for the variable w


�x� y R�x� y�� ��w
W R��w� x�� R��w� y�� ����

which is still a renamed rewriting transformer and therefore faithful	
An example where this kind of transformer occurs very naturally is the correspondence between

the subset relation � for R� and the membership relation 	 for R�


�x� y x � y� ��w
W w 	 x� w 	 y�

Another example for this kind of transformer is the correspondence between a re�exive and
transitive binary consequence relation � �for R� of a logic and a satis�ability relation j� �for R��


�x� y x � y� ��w
W w j� x� w j� y��

The intended interpretation of this equivalence is
 y is a consequence of x if and only if� whenever
x is true in a world w �w j� x� then y is true in w �w j� y�	 This can be seen as the origin of the
possible worlds framework of many non�classical logics	 In �Ohl��� this idea is further developed	
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Besides ���� there is a dual transformer for re�exivity and transitivity	 These two properties
also imply

�x� y R�x� y���z R�y� z�� R�x� z� ��
�

which gives rise to the transformer

�x� y R�x� y���w
W R��y� w�� R��x�w�� ����

An example for this transformer is the de�nition of the superset relation in terms of a �contains�
relation	

The transformer ���� and ���� implicitly encode the re�exivity of R	 If R is only transitive and
not re�exive� we must change it a bit	 The transitivity of R alone implies

�x� y R�x� y�� �R�x� y� � �w R�w� x�� R�w� y�� and ����

�x� y R�x� y�� �R�x� y� � �w R�y� w��R�x�w�� ����

which gives rise to the transformers

�x� y R�x� y�� �R��x� y� � �w
W R��w� x��R��w� y�� ����

�x� y R�x� y�� �R��x� y� � �w
W R��y� w��R��x�w��� ����

We do not propose to use these transformations for theorem proving purposes	 As we shall see
in Section �	� there are more e�cient versions for the re�exive and transitive case	

��� Equivalence Relations

For equivalence relations� i	e	 re�exive� transitive and symmetric relations� we �nd a very sim�
ple transformer because the ��� connective represents an equivalence relation	 From re�exivity�
symmetry and transitivity of R we can prove

�x� y R�x� y�� ��w R�w� x��R�w� y�� ����

which is turned into the transformer

�x� y R�x� y�� ��w
W R��w� x��R��w� y��� ����

��� n�ary Relations

It is well known that n�ary relations can be replaced by n binary relations	 This is a standard
technique for example in relational database applications	 We show that this transformation also
�ts into our framework	 The transformer for eliminating ternary relations is


�x� y� z R�x� y� z�� ��w
T R��w� x� � R��w� y� � R��w� z��� ����

This is a rewriting transformer� but not a renamed transformer	 Therefore we have to prove
the extension lemma �Def	 �	��	 That means we must be able to extend every interpretation � for
R to an interpretation for the new sort T and the new predicates R�� R� and R� such that ����
becomes true	

Suppose we have an interpretation � for R	 Let D be the domain of �	 In the extended
interpretation �� we interpreted the sort symbol T as the set of triples in D�	 If in addition the
new predicates are interpreted

���R�� � f��x� y� z�� x� j �x� y� z� 	 ��R�g
���R�� � f��x� y� z�� y� j �x� y� z� 	 ��R�g
���R�� � f��x� y� z�� z� j �x� y� z� 	 ��R�g�

it is straightforward to show that the extended interpretation satis�es ����	 Thus� the extension
lemma holds	 The elimination of arbitrary n�ary relations for n � � is now obvious	
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��	 Functional Representation of Binary Relations

Via their possible worlds semantics� a number of non�classical logics can be translated into predi�
cate logic	 For example the semantics of the modal operators �Che
��

x j� �P i� �y R�x� y�� y j� P ����

x j� �P i� �y R�x� y� � y j� P ��
�

gives rise to the relational translation of propositional modal logic	

trr�P�w� � P ��w� P a predicate symbol
trr����w� � �v R�w� v�� trr��� v�
trr����w� � �v R�w� v� � trr��� v��

The relation R occurs only in the typical patterns

�v R�w� v�� trr��� v�
�v R�w� v� � trr��� v�

in the translated formulae	 Additionaly it may occur in some characteristic axioms axiomatizing
properties of R itself	 Since this is a quite typical pattern which appears not only in this application�
it is worthwhile to look for a K�transformation to eliminate this relation	 The transformation we
need depends on whether the relation is serial �i	e	 �x�y R�x� y� holds� or not	 For the serial case
the transformer is

�x� y R�x� y����
AF y � apply��� x� ����

and for the non�serial case it is a bit more complicated

�x� y R�x� y�� End�x� 
 ��
AF y � apply��� x�� ����

Intuitively� the sort AF denotes the set of accessibility functions� i	e	 functions mapping worlds to
accessible worlds	 apply is the application function and the End predicate marks worlds without
successor literals	

Both are rewriting transformers �Def	 �	��	 Therefore we need only to prove the extension
lemma �Def	 �	��	

Lemma ��� �Extension Lemma for ���
 and ���


Every interpretation � can be extended to a model for ���� and ����	

Proof 
 Suppose there is a model � for the formula  to be transformed	 We construct an extension
�� of � satisfying ���� or ���� respectively as well	 If D is ��s domain we de�ne

non�serial case
 ���AF � �deff� 	 D � D j �x R�x� ��x��g
serial case
 ���AF � �deff� 	 D � D j �x R�x� ��x��� � is totalg

both cases
 ���apply� �def apply function� i	e	 ���apply��� x�� � ���������x��
���End� �deffx 	 D j ��y R�x� y�g	

Obviously� �� satis�es ���� and ����� which proves the extension lemma	 


The interpretation of the sort AF as the set of �accessibility functions� i	e	 the set of functions
mapping worlds to accessible worlds �in modal logic terminology� means that we can write ��x�
instead of apply��� x�� but this is to be understood as an abbreviation	 Notice that in the proof of
the elimination lemma �Def	 �	��� instantiated for our case� the interpretation of R is reconstructed
from an arbitrary interpretation of AF and apply	 There need not be functions at all	

From ���� we can prove

�w �v R�w� v�� ��v� � ��
AF ����w�� ����

�w �v R�w� v� � ��v� � ��
AF ����w�� ����
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and from ���� we can prove

�w �v R�w� v�� ��v� � End�w� 
 ��
AF ����w�� ����

�w �v R�w� v� � ��v� � �End�w� � ��
AF ����w��� ����

The transformation strategy is now not just simple de�nitional replacement with ���� and
����	 Instead we use the derived equivalences ���� ��� ��� ��� wherever possible �rst to rewrite
quanti�cations as a whole	 Since they are equivalences� this is of course again an equivalence
preserving transformation	

The original transformers ���� and ���� have to be applied to the characteristic axioms of R	
We give some examples� always assuming seriality	

�x R�x� x� �re�exivity�
� �x �� x � ��x�

�x� y R�x� y��R�y� x� �symmetry�
� �x� y ��� y � ��x��� ��
 x � 
�y��
� �x� y �� �
 y � ��x�� x � 
�y�
� �x �� �
 x � 
���x��

�x� y� z R�x� y� � R�y� z�� R�x� z� �transitivity�
� �x� y� z ��� y � ��x�� � ��
 z � 
�y��� ��� z � ��x��
� �x� y� z ��� 
 �� y � ��x� � z � 
�y�� z � ��x�
� �x� z ��� 
 �� z � 
���x��� z � ��x�
� �x ��� 
 �� 
���x�� � ��x�

�x� y� z R�x� y� � R�x� z��R�y� z� �euclideanness�
� �x� y� z ��� y � ��x�� � ��
 z � 
�x��� ��� z � ��y��
� �x� y� z ��� 
 �� y � ��x� � z � 
�x�� z � ��y�
� �x� y� z ��� 
 �� 
�x� � ����x��
Applied to the modal logic case� our K�transformation turns the relational translation of modal

logic into predicate logic into the functional translation �c	f	 �Wal
�a� Ohl

a� JR

� Her
�� AE���
Ohl��� Gas��� Ohl��� Zam
���


serial
 trf ����w� � ��
AF trf ��� ��w��
trf ����w� � ��
AF trf ��� ��w��

non�serial
 trf ����w� � End�w� 
 ��
AF trf ��� ��w��
trf ����w� � �End�w� � ��
AF trf ��� ��w��	

The transformer ���� can be used in exactly the same way for optimizing the treatment of
varying�domains in the translation of quanti�ed modal logics	 The normal translation rules for
the quanti�ers in the varying�domain case are

trr��x ��x�� w� � �x Exists�w� x�� trr���x�� w�

trr��x ��x�� w� � �x Exists�w� x� � trr���x�� w�

where Exists�w� x� intuitively means that x is in the domain of the world w	 Since each domain
contains at least one element� Exists is serial	 The transformer ���� now yields an optimized
translation

trf ��x ��x�� w� � ��
M trf �����w��� w�

trf ��x ��x�� w� � ��
M trf �����w��� w��

The sort M� denotes the set of functions mapping worlds to their domain elements� i	e	 ��w� 	
domain�w�	 Quanti�cation over all � exhausts the domain of w	 In quanti�ed modal logic we
distinguish increasing domain and decreasing domain systems	

�We choose M to distinguish it from AF in case both transformers are applied simultaneously�
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Increasing domain
 �x� u� v Exists�u� x� � R�u� v��Exists�v� x�
Decreasing domain
 �x� u� v Exists�v� x� � R�u� v��Exists�u� x�	

The transformer rewrites these two formulae to
Increasing domain

�x� u� v ��

M x � 
�u�� �R�u� v�� ���
M x � ��v��
� �u� v �

M ��
M R�u� v�� 
�u� � ��v�
Decreasing domain

�x� u� v ��

M x � 
�v� � R�u� v�� ��� x � ��u��
� �u� v �

M ��
M R�u� v�� 
�v� � ��u�
The transformers can be applied to the Exists predicate and to the R predicate simultaneously	
The �nal versions of the axioms are then
Increasing domain

�u� v �

M��
M ���
AF v � ��u��� 
�u� � ��v�
� �u ��
AF �

M ��
M 
�u� � ����u�� �compare the translation of the euclideanness axiom�
Decreasing domain

�u� v �

M ��
M ���
AF v � ��u��� 
�v� � ��u�
� �u ��
AF �

M ��
M 
���u�� � ��u� �compare the translation of the transitivity axiom�

In this section we have demonstrated that using K�transformations� with a minimum of e�ort
and a few lines of proof we can reconstruct the functional translation for modal logic and extend it to
an optimized translation of varying�domain systems	 We composed an existing translation� namely
the relational translation from modal to predicate logic with the new de�ned K�transformation	
This is an example for a general method to modify translations	 The pattern is


L�

L� L�

Old Translation New Translation

K�Transformation

Axioms for Free

In corollary �	� we have noticed that renamed transformers allow us in principle to transfer proper�
ties of the original symbols to the renamed symbols	 Assuming extra properties is not only possible
for renamed transformers� but in general for all newly introduced symbols	 For example for the
sort AF and the apply�function introduced in the transformer ���� we could add the extensionality
axiom


��� 

AF ��x apply��� x� � apply�
� x��� � � 
� ����

The justi�cation for adding this axiom is implicitly contained in the proof of the extension lemma
�	� for the transformers ���� and ����	 In this proof we constructed a particular interpretation for
the sort AF and the function symbol apply	 AF denotes a set of functions� and the interpretation
of apply is really the �apply� function	 But in this particular interpretation the extensionality axiom
���� is certainly true	 Therefore� together with the transformer we could add this axiom	

Of course we would not add axioms like this for theorem proving purposes� but for enabling
further transformations and simpli�cations	 An axiom which can be simpli�ed considerably with
help of ���� is the inclusion axiom for two binary relations

�x� y Ra�x� y�� Rb�x� y�� ����

This axiom describes the correspondence property of the multi�modal logic axiom schema �b�p� �a�p	
We translate ���� with two copies of the transformer ���� �with di�erent sorts AFa and AFb for
the two di�erent relations� but with the same apply�function� and simplify the result
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�x� y ���
AFa y � apply��� x��� ��

AFb y � apply�
� x��
� �x� y ��
AFa �y � apply��� x�� ��

AFb y � apply�
� x��
� �x� y ��
AFa �

AFb apply��� x� � apply�
� x�
� �x� y ��
AFa �

AFb � � 


i� AFa v AFb�

The �rst two simpli�cations are standard predicate logic transformations	 The third simpli�cation
exploits the extensionality axiom ���� and the last modi�cation expresses that the �nal equation
de�nes nothing else than the subset relationship	 In a sorted logic� this can be represented as a
subsort relationship between the two sorts AFa and AFb	

Thus� as an example for exploiting axioms� we get for free during K�transformations� we demon�
strated how to use the extensionality axiom for transforming the inclusion axiom ���� for two binary
relations into a simple subsort declaration	 For theorem provers with sorted uni�cation �Wal
�b�
this is the optimal representation of the information contained in the inclusion axiom	

��
 From Unary to Binary Consequence Relations

Logics can be speci�ed in various ways	 Quite often� a unary consequence relation �� is used	 ���
is to be understood as �� is a theorem	� For example� !Lukasiewicz has shown that one axiom in
addition to Modus Ponens and �

����p� q�� r� � ��r � p�� �s� p�� ����

From �� p and �� p� q derive �� q ��
�

axiomatize the implicational fragment of propositional logic �!Luk��� p	 ����	 Using predicate logic
as meta logic� the axiom and the Modus Ponens rule can be written as Horn clauses


�r� p� q� s ���i�i�i�p� q�� r�� i�i�r� p�� i�s� p���� ����

�p� q ���p� � ���i�p� q��� ���q� ����

and the theorems of the logic can be derived using deduction in ordinary predicate logic	
Alternatively one can specify a logic via a binary consequence relation ��	 ���� means that � is

derivable from �� derivable in the so speci�ed logic	 It turns out that K�transformations describe
precisely the relation between unary and binary consequence relations	

In the sequel� let  be a predicate logic �as meta logic� axiomatization of a logic L in terms of
a unary consequence relation ��	 There must be a distinguished term ��x� y� in  which is some sort
of implication	 The term is distinguished in the sense that all theorems of the form ��� � � provable
from  are actually of the form ����� � � � � � ��	 Moreover� the ground proof of these theorems must
contain also only atoms of the form ����� � � � � � ��	 In the !Lukasiewicz example this distinguished term
is just i�x� y� denoting x� y	 Only atoms of the form ��i�� � � � � � �� occur in proofs of the theorems
we are interested in	 In general� � need not be a function symbol	 It can for example be a term
o�n�x�� y� encoding �x 
 y	 In most cases� however it will be just an implication symbol	

The following transformer turns unary into binary consequence relations


����x� y�� x �� y� ����

The extension lemma �Def	 �	�� is proved by taking ���� as the de�nition of ��	
All atoms in  of the form ����� � � � � � �� can be rewritten with this transformer	 This is an

equivalence preserving transformation	 Unfortunately the transformer is not a rewriting trans�
former �Def	 �	�� in the general sense	 For example the Modus Ponens clause cannot be rewritten
directly	 However� the transformer can be turned into a saturation transformer �Def	 �	
�	 As
inference strategy� ordered resolution with redundancy elimination in the sense of Bachmair and
Ganzinger is used �BG���	 The ordering is chosen such that literals with the ��predicate are bigger
than the literals with the �� predicate	 Since in ordered resolution only resolutions with the maximal
literals in a clause are allowed� this prevents resolutions with the right hand side of the transformer
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����	 Ordered resolution now derives new clauses where instead of the unary consequence relation
�� the binary predicate �� appears	 Since we assumed that all ground proofs of theorems we are in�
terested in contain only atoms of the form ����� � � � � � ��� on the non�ground level ordered resolution
needs to be applied only to literals ��x where x is a variable	 All other literals are either of the
form ����� � � � � � �� and are destructively rewritten� or they are not necessary at all for proving our
theorems	 For example the clauses ���� and ���� become

�r� p� q� s i�i�p� q�� r� �� i�i�r� p�� i�s� p�� ����

�p� q� r� s p �� q � i�p� q� �� i�r� s�� r �� s� ����

Unfortunately ordered resolution is not destructive	 That means the old clauses� in the !Lukasiewicz
case the Modus Ponens clause� is still contained in the formula set	 Let A be an old clause and A�

be the new clause which is derived from A and the transformer in a sequence of ordered resolutions
until all occurrences of ��are eliminated	 All necessary instances of A are of the form ����� � � � � � ��	 But
these instances are implied by A� and the transformer	 Moreover� these instances of A are bigger
in the corresponding multiset ordering than A� and the transformer	 Therefore A is redundant and
can be deleted without losing completeness	 After deleting all the old clauses� there is no further
ordered resolution with the transformer possible	 Thus� it can also be eliminated without losing
completeness	 This shows that the transformer is of the saturation type	 Lemma �	� is applicable
which proves the two remaining transformation lemmas	

��� Congruence Properties

So far we we have considered mainly properties of relations	 We can� however� also transform
properties of functions	 Suppose we are given a re�exive and transitive relation R and some n�ary
congruent functions	 That means for the function symbols f one can prove

��p� �q
V
i�R�pi� qi� � R�qi� pi���R�f��p�� f��q�� ����

where �p abbreviates p�� � � � � pn	 We show how to eliminate these congruence properties	
The transformer ���� for re�exivity and transitivity translates the congruence properties ����

for the connectives f into

��p� �q
V
i��w
W R��w� pi��R��w� qi��� ��w
W R��w� f��p���R�w� f��q���� ����

A straightforward proof yields

��p �w
W R��w� f��p�� � ��x
W R�w� f��x�� �
V
i �v
W R��v� xi�� R��v� pi� ����

as the basis for the next K�transformation� which is for all �p� w


R��w� f��p�����x
S Nf �w� �x� �
V
i �v
W R

��i
f �xi� v��R��v� pi�� ����

Here we take advantage of the fact that a predicate may well be renamed in di�erent ways in a
renamed transformer	 It is easy to check that ���� in fact turns the congruence properties ����
into tautologies	

Lemma ��� �Faithfulness of the Transformer �	�


Let A be the result of the transformation with the transformer ���� for re�exivity and transitivity	
If ���� operates on A and as transformation strategy rewriting as long as possible is chosen� then
the extension� the transformation and the elimination lemmas �Def	 �	�� hold	

Proof 
 Extension Lemma
 This lemma holds because the sort symbol S can be interpreted like
W � Nf �w� �x� can be interpreted as R

��w� f�w� �x��� R
��if�xi� v� can be interpreted as R

��v� xi� and
then ���� is true in the extended model because ���� is	

Transformation Lemma
 Unfortunately the transformers ���� are no longer a simple de�nition for
a predicate	 The left hand side is of the form R��w� f��p�� where w and the pi are variables	 Since�
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by the �rst transformer ����� all R��literals in A are of the form R��v� f��s�� where v is a variable
and the si are terms� the transformers can nevertheless be applied as rewrite rules	 Due to the
structure of the transformers� right hand sides� each rewrite step eliminates one occurrence of a
function at a time	 We end up with formulae A� containing no R��literals which are instances of
the left hand side of the transformers	 So far� this is an equivalence transformation which does not
a�ect the models at all	
Elimination Lemma
 Although there are further inferences possible from the transformers and A��
we can delete the transformers now without changing the satis�ability or unsatis�ability	 The
argument is proof theoretic	 We show that there is a complete inference strategy which does not
allow to draw any further inferences with the transformers in this particular case	 The completeness
of the strategy then guarantees that the transformers are useless	
The strategy we use is ordered resolution with elimination of redundant clauses �BG���	 Ordered
resolution requires the de�nition of an ordering on literals	 Only resolvents between the biggest
literals in a clause need to be generated and we still have a complete procedure	 The redundancy
criterion� Bachmair and Ganzinger have shown to be complete is
 inferences are redundant if the
inferred clause follows from smaller �in the given ordering� clauses	
If we choose the ordering such that literals with the function f are bigger than the other literals�
we immediately see that no resolvents with literals at the right hand side of the transformers are
generated	 These literals are smaller than the literal at the left hand side	
But there are still resolutions possible between the literals R��w� f��p�� from the left hand sides
of the transformers and literals R��v� p� in A�� where p is a variable	 We can assume that these
variables are of some basic domain sort� say D	 That means there are quanti�cations �p
D � � �	 It
is well known that sorts can be written as one�place predicates	 Instead of �p
D � � �� one writes
�p D�p�� � � �	 Now we assume this syntactic form for A� and extend the ordering by requiring
that literals D�f������ are bigger than any other literals	 Rewriting with the transformers did not
instantiate any variables in A�	 Therefore there are no literals D�f�� � ��� in A�� but only literals
of the form D�p�	 Each resolution between R��w� f��p�� and R��v� p� in some clause in A� now
instantiates p to f�� � ��	 That means the resolvent contains literals D�f�� � ��� and is therefore
bigger than the parent clauses	 This resolvent is redundant and needs not be generated	
Thus� we �nd that all resolvents with the transformers are redundant� which �nally licenses their
deletion	 


In order to match the transformer ���� with a quite familiar structure� we change its right hand
side a little bit	 All R��i

f �accessible points are collected in sets Xi and the relation Nf is replaced
with a relation N �

f that takes these sets Xi as arguments	 With this interpretation of the new
relation N �

f one can show that the following equivalence holds	

��x
S Nf �w� �x� �
V
i��v
W R

��i
f �xi� v�� ��v� pi��

� ��
�
� �X N �

f �w�
�X� �

V
i��v
W v 	 Xi� ��v� pi��

where ��v� pi� is any formula in terms of v and pi and 	 is really the membership relation	
For a one�place function f a graphical illustration looks like
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Composing the transformer ���� with the transformation de�ned by ��
�� we obtain

R��w� f��p���� �X N �
f �w�

�X� �
V
i��v
W v 	 Xi�R��v� pi��� ����

What have we got here� If as indicated in Section �	�� R is the binary consequence relation
�� and R� is the satis�ability relation j� and f is the modal ��operator satisfying the so called
ME�rule


�p � q � q � p���p � �q

which is nothing else than the congruence property then ���� represents the so called neighbourhood
semantics �minimal model semantics� �Che
��


w j� �p��X N �
�
�w�X� � �v
W v 	 X � v j� p�

or in words �p is true in a world w i� the truth set of p� i	e	 the set fv j v j� pg is a neighbourhood
of w	 N �

�
is the neighbourhood relation	

Thus� the elimination of the congruence properties by means of K�transformations yields the
well known neighbourhood semantics	 Faithfulness of the transformer means soundness and com�
pleteness of neighbourhood semantics for arbitrary axiomatizations of logics satisfying the re�ex�
ivity and transitivity of � and the congruence properties	 In �Ohl��� it is shown how these ideas
can be carried further to generate stronger semantics for logics satisfying more properties than just
the congruence properties	

��� A Heuristic for Finding Transformers

The �rst heuristic for �nding transformers which eliminates a property � was simply to look for
connectives in the meta system� PL� in our case� which have the same or a similar property	 This
way we found transformers for simple properties like transitivity or symmetry because predicate
logic has connectives with these properties	 If � has no immediate counterpart in PL�� however�
it becomes much more di�cult to �nd a suitable transformer	

We now present a heuristic which may help in these cases	 Suppose we are given a relation
R with a certain property �	 We are looking for a de�nition R�x�� � � � � xn�� ��x�� � � � � xn� of R�
where � is a formula with a relation R� that has not the property �� but which entails that R has
the property �	 As an example� let � be density


�x� y R�x� z���y R�x� y� � R�y� z� ����

The de�nition R�x� z�� ��R��� we are looking for� has to reconstruct density of R from a relation
R� which is not necessarily dense	 The heuristic for �nding � is
 � must express the process of
extracting the parts of R� which actually have the property �	 The heuristic can also formulated in
a more active way
 � must express the process of imposing the property � to R��

For the density example this means� ��x� z� must extract the dense parts of R�� or in the active
formulation� � must generate the dense closure of R�	 That means� we must enforce density of R�

between two points x and z	 How can we enforce this� Well� �rst of all� we must generate a point
between x and z	 i	e	 �y R��x� y� � R��y� z� must be part of �	 But this is not enough	 The process
must be iterated in�nitely often	 That means we must ensure that for any two points between x

and z� including the borderline points x and z itself� there is a third point in between	 With this
condition� the �rst point we introduced� triggers an in�nite generation of new points� and we get
density	 With this idea in mind� the de�nition of � is now obvious	

R�x� z� � R��x� z� � ����

�y R��x� y� � R��y� z� � ����

�v �R��x� v� �R��v� z��� ��y R��x� y� � R��y� v� �

�y R��v� y� � R��y� z�� � ����

�v� u �R��x� v� � R��v� u� �R��u� z����y R��u� y� � R��y� v�� ����

�




���� inserts the �rst point between x and z	 ���� treats the borderline cases with x and z and ����
recursively generates a point between all points in the middle	 Without ����� we would get as a
side e�ect that the relation R is closed in the sense that it describes closed intervals	 This has to
be avoided	 This de�nition works only under the assumption that R� is transitive� otherwise the
recursion is not possible	

What we have got now is a renamed K�transformer for a transitive and dense relation which
eliminates the density of R	 The version of this equivalence where R� is replaced with R is the
basis of the transformer	 Density of R implies that this equivalence is true	 Given the transitivity
of R�� the transformation of the density axiom becomes a tautology �the proof is not easy	� In
Section �	� we use this heuristic to �nd a transformer for euclideanness �Ex	 �	���	

� Elimination of Clauses

In this section we specialize to the clause based setting and investigate the problem
 given a
particular clause C in a clause set  � is it possible to �nd a faithful transformation �� � such that
the clause C becomes super�uous�

We give an abstract characterization of this kind of transformation and then consider more
concrete de�nitions	 With some challenging examples from the theorem proving literature we
show that we can obtain dramatic improvements of the performance of theorem provers	 These
examples are predicate logic encodings of Hilbert axiomatizations of certain logics	 Improving the
performance of theorem provers on this kind of examples supports the development of new logics	

��� Clause K�Transformations

A very �rst idea for a transformation that makes C super�uous could come from the following
consideration	 A clause C � A� � � � � �An� B can be seen as a procedure that� given instances
of the premises Ai as input� computes corresponding instances of B as output	 Well� if the only
thing� we are interested in� is to produce B from the Ai� an alternative way to obtain this �output�
is to ensure that the transformed �input� ��Ai� implies B� i	e	

V
i��Ai�� B is a tautology	 If we

transform  such that instead or in addition to Ai itself� ��Ai� is available� we don�t need C any
more	

Unfortunately it may be the case �and necessary� that the �output� B of the clause C needs to
be used as �input� for C again	 This is typical for self resolving clauses like transitivity	 But after
eliminating C� B is not transformed	 Thus� the �output� B is not available any more as input	
Therefore our �rst guess for a condition on � has to be strengthened
 We must ensure that the
transformed �input� implies the transformed �output� ��B�	 That means

V
i��Ai����B� must

be a tautology	
On the technical level this condition must be re�ned because for non�ground clauses where

variables may become instantiated you cannot just transform clauses by transforming their literals
separately	 The next de�nition gives the precise conditions	

De�nition 	�� �Clause K�Transformation

A function � mapping clauses to clause sets �possibly in�nitely large� is called a K�transformation
for a clause C � A� � � � � � An�B� 
 � � � 
 Bm i�

�	 D 	 ��D� for all clauses D�

�	 C �D���D� for all clauses D	

�	 ��D� 
D�����D�� 
��D�� for all ground clauses D� and D�	

�	 For every clause D
 if D� is a ground instance of a transformed ground instance of D then
D� is also a ground instance of a clause in ��D�	

�	 For all ground instances C� of C

Vn
i��

����Ai���
Wm
j��

����Bj��	

����� � �� means that all variables introduced by � are universally quanti�ed	

��



For a clause set  let �� � �def f��D� j D 	  g	 


The �rst condition deals with the fact that the transformation � is intended to eliminate the
need for inferences with C	 However� D need not be involved directly in inferences with C� but in
inferences with other clauses in  	 Therefore the original clauses D might still be necessary	

On the other hand� if it can be guaranteed that the original clauses D can be derived from
�� �nfDg then D can be deleted	 This can be seen as a further optimization of �� �
 all inferred
clauses can be deleted without changing satis�ability and unsatis�ability	 Therefore we do not
treat this kind of optimization in the clause K�transformation formalism	

The second condition guarantees soundness of the transformation
 the transformed clauses are
consequences of the original ones	 Therefore satis�ability is preserved	

The next two conditions are structural conditions	 Number � relates the transformation of
single literals or parts of clauses with the transformation of the whole clause	 If � computes more
than one clause� ��D�� 
��D�� is to be understood as the conjunctive normal form� i	e	 the
list of clauses fE� 
 E� j Ei 	 ��Di�g	 On the ground level this condition means that one can
transform literals individually and combine the results to get the transformation of the clause	
This is usually not the case for the non�ground level because transformation of single literals with
variables occurring also in the other literals of the clause may involve instantiations which a�ect
the other literals as well	

The fourth condition is a kind of lifting property	 It relates transformations on the ground level
with transformations on the non�ground level	

The last condition is responsible for making C super�uous	 It is the precise formulation of the
condition we have mentioned above� the transformed premises of C must imply the transformed
conclusion	 Unfortunately it requires a test for all ground instances of C� and these are usually
in�nitely many	 In the second part of this section we therefore reduce this condition to a more
feasible and automatizable test	

Before we come to the soundness and completeness proof for clause K�transformations� let us
illustrate the technique with two examples	 The actual class of clause K�transformations we have
in mind transforms clause sets by adding resolvents with C	 � is represented by a set S� of clauses�
usually C itself together with some of its consequences� for example self resolvents	 For each of
these clauses S 	 S�� there is a selected literal LS 	 S to be resolved upon	

For a unary clause L we de�ne

��L� � fE j E � Res�L� S� LS�� S 	 S�g � fLg

where Res�L� S� LS� denotes the resolvent between the clauses L and S upon the selected literal
LS 	 S	 For an arbitrary clause D we de�ne ��D� as the set of all simultaneous resolvents
between subsets of literals in D and clauses in S� with the selected literals LS �together with D

itself of course�	 The examples show how this is to be understood	 See also def	 �	�� for the exact
de�nition	

The conditions ��� of de�nition �	� are ful�lled by this class of clause K�transformations� for
example condition � is a consequence of the lifting lemma for the resolution rule	

Example 	�� �Transitivity

C � P �x� y� � P �y� z�� P �x� z�
S� � fCg� LC � P �x� y�	
That means
��P �s� t�� � fP �s� t��

�z P �t� z�� P �s� z�g

��P �s� t� 
 P �q� r��
� fP �s� t� 
 P �q� r��

��z P �t� z�� P �s� z�� 
 P �q� r�� �� ��P �t� z� 
 P �s� z� 
 P �q� r���
P �s� t� 
 ��z P �r� z�� P �q� z��� �� �P �s� t� 
 �P �r� z� 
 P �q� z���
��z P �t� z�� P �s� z�� 
 �P �r� z�� P �q� z��g �� ��P �t� z� 
 P �s� z� 
 �P �r� z�� 
 P �q� z�����

��



Notice that in the presence of the re�exivity axiom P �x� x�� only the last clause needs to be
generated because all other clause can be derived from the last clause and the re�exivity axiom	
This is one of the post optimizations possible in particular cases	 For re�exivity and transitivity
this results in precisely the transformation Brand used in his modi�cation method to eliminate the
transitivity of the equality predicate �Bra���	
In order to check the main condition� condition � of �	�� suppose P �a� b� � P �b� c�� P �a� c� is a
ground instance of C	

����P �a� b�� � ����P �b� c��� ����P �a� c��

becomes
�P �a� b� � �z P �b� z�� P �a� z��
� �P �b� c� � �z P �c� z�� P �b� z��
� �P �a� c� � �z P �c� z�� P �a� z��

which is in fact a tautology	
The transformation is independent of the structure of a� b and c	 Therefore the condition holds for
all ground instances of C	 This is one of the rare cases where this condition is easy to check	 The
reason is that resolution with transitivity requires only matching� no uni�cation	 This makes the
structure of a� b and c irrelevant	 


Example 	�� �Condensed Detachment

The condensed detachment clause is a predicate logic encoding of the Modus Ponens rule	 It is
the key clause for many predicate logic formulations of Hilbert axiomatizations of logics	 Many of
the really hard challenging problems found in the Automated Reasoning literature use this clause	

C � P �i�x� y�� � P �x�� P �y�

S� � fP �i�x� y�� � P �x�� P �y��
P �i�x� i�z�� z���� � P �x� � P �z��� P �z���
			�
P �i�x� i�z�� i�� � � zi��� � P �x� � P �z�� � � � � � P �zi���� P �zi��
			 g

S� consists of resolvents between the �rst and last literal of C	 The �rst literal P �i�x� i�z�� i�� � � zi���
is the selected literal in all clauses	
An example for the translation of a �unary� clause

��P �i�i�i�x� y�� z�� i�i�z� x�� i�u� x�����

� fP �i�i�i�x� y�� z�� i�i�z� x�� i�u� x�����
P �i�i�x� y�� z�� P �i�i�z� x�� i�u� x����
P �i�i�x� y�� z� � P �i�z� x��� P �i�u� x���
P �i�i�x� y�� z� � P �i�z� x�� � P �u�� P �x��
P �i�i�i�u�� u��� y�� z� � P �i�z� i�u�� u���� � P �u� � P �u��� P �u���
			 g

Notice that from the �fth clause onwards we have to instantiate into the clause to be transformed	
This causes the transformation to become in�nite	 �Predicate logic would be decidable if we did
not encounter such an e�ect somewhere	�
Checking condition � of def	 �	� is also no longer �nite	 But we shall see below that not all ground
instances� but only those of the structure P �i�a� i�b�� i�� � � bi��� need to be tested	

��P �i�a� b���� ���P �a�����P �b���
becomes �P �i�a� b��� � �P �a�� P �b��� � P �a��� P �b��
which is a tautology	

��P �i�a� i�b�� b����� ���P �a�����P �i�b�� b����
becomes �P �i�a� i�b�� b����

� �P �a�� P �i�b�� b���� � �P �a� � P �b��� P �b���
� P �a��
� P �i�b�� b��� � �P �b��� P �b���

which is also a tautology	 In all cases the structure of a is irrelevant	 Therefore other instantiations
for x need not be tested	

��



The schema should be clear	 It can be proved for all i � �	 


Soundness and completeness of a transformation can be proved either on the semantic level by
transforming models� or on the syntactic level by transforming proofs or representations of proofs	
The actual de�nition of clause K�transformations is such that a semantic completeness proof is� if
not impossible� extremely complicated	 Therefore we choose to prove it on the syntactic level	 The
key part of the proof is to show that a refutation with the original clause set can be transformed
into a refutation of the transformed clause set	 To this end we need a represetnation of a refutation	
The most abstract and for our purposes the most suitable representation of refutations of clause
sets are refutation graphs as developed by Shostak �Sho��� and further investigated by Norbert
Eisinger �Eis���	

A refutation graph for a clause set consists of clause nodes and polylinks	 Clause nodes represent
ground instances of the clauses	 They consist of literal nodes labelled with the corresponding ground
instances of the literals	 Polylinks consist of two shores� the postive and the negative shore	 The
members of the positive shore are connected to literal nodes labelled with a positive literal L and
the members of the negative shores are connected to the literal nodes labelled with the negative
literal �L	 Each literal node is connected to only one shore	 The shores of polylinkls represent
potential factoring operations and the link itself represents a potential resolution operation	

For example the clause set ffP�Qg� f�P�Qg� f�Q�Pg� f�Q��Pgg is unsatis�able and has the
follwing two refutation graphs	
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P Q �Q P
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B
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Each box is a literal node and sequences of boxes are clause nodes	 �Sometimes we also align
literal nodes vertically to clause nodes	� In the left graph the upper and lower link are mono�links	
Both shores consist of one element only	 The link in the middle� however� is a polylink	 Its positive

shore consists of the two upper parts connected to the P literal nodes and its negative part

consists of the two lower parts connected to the �P literal nodes	
The left graph represents a resolution refutation where at �rst the two resolutions between the

Q�literals are performed	 The results are P and �P which resolve to the empty clause	 The right
graph represents a resolution refutation where at �rst the P�literals are resolved and then the
Q�literals	 Notice that in both cases the order in which the �rst two resolvents are generated is
irrelevant	 This is re�ected in the symmetry of the graph	 Thus� refutation graphs abstract from
irrelevant orderings of resolution steps	

A very important notion in the refutation graph theory is the notion of a path through the
graph	 A path is a sequence of literal nodes and polylinks such that no polylink occurs twice and
polylinks �entered� at one side must be �left� at the opposite side	 That means entering a link at
one shore and leaving it at the same shore is forbidden	 A cycle is a path starting and ending at
the same literal node	 A very important property of refutation graphs is
 they are cycle free	 The
following graph for example contains a cycle	 It is therefore not a refutation graph	

�P Q �Q R �R P
� �

�

Theorem 	�	 �Shostak

A clause set  is unsatis�able if and only if there is a �cycle free� refutation graph whose clause
nodes represent ground instances of the clauses in  	 
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Theorem 	�
 �Soundness and Completeness of �

For every clause set  and every clause K�transformation � for a clause C 	  

 is satis�able if and only if �� n fCg� is satis�able	

Proof 
 Since by condition �Def	 �	�����  � �def �� n fCg� is a consequence of  � it is certainly
satis�able if  itself is satis�able	
Now suppose  is unsatis�able	
In the sequel we assume that without loss of generality C �def�A� 
 � � � 
 �An 
 B� 
 � � � 
 Bm has
at least one positive literal	 If this is not the case� we can just exchange the polarity of all predicate
symbols	 This does not make any di�erence	
Since  is unsatis�able� there exists a refutation graph G� for  	 If G� does not contain any
instance of C we are done	 If it contains instances of C we transform the refutation graph for  
into a refutation graph for  � which shows that  � is also unsatis�able	
First of all� however� we need some auxiliary notions	

�	 If D is a clause or a set of clauses then �D�gr denotes a set of ground instances of D	

�	 If C � �def�A�
� 
 � � � 
 �A

�
n 
 B

�
� 
 � � � 
B

�
m is a ground instance of C then

C �� �def �A�
� 
 � � � 
 �A

�
n 
 E� 
 � � � 
 Em where Ej 	 ���B�

j��gr � j � �� � � � �m is called a �C�
instance	 �Think of �C�instances as instances of C itself or its self resolvents of C	�

C �� is a proper �C�instance if C
�� �� C �	 The E�

j�parts are called the originally positive
literal sets in C �� �because although they may be positive or negative� they originate from
the positive literals in C and they usually consist of more than one literal�	 Correspondingly
the �Ai�parts are called the originally negative literals in C

�� �they never are transformed�	

�	 If for a literal L in a clause D � L 
 S in  we have cnf�L 
��S�� �  � then L is called an
original literal in  �	 �cnf denotes the conjunctive normal form	�

�	 A �C�instance C
�� is called right marginal in a refutation graph i� C ���s originally positive

literal sets are not connected to any other �C�instance	

�	 For a �C�instance C
�� in a refutation graph G there is a distance jC ��jG de�ned as follows


If all originally negative literals of C �� are not connected to any other �C�instance then
jC ��jG �def �	 If D��

� � � � � � D
��
k are �C�instances connected to the originally negative literals of

C �� then jC ��jG �
def

maxijD��
i jG	

For clauses D which are no �C�instances let jDjG � �	

j���jG is well de�ned because refutation graphs are cycle free	

�	 There is a measure jGj � �a� b� for refutation graphs de�ned as follows
 If there are no
�C�instances in G at all� then jGj �def ��� ��� otherwise

a �defmaxfjC ��jG j C �� is right marginal �C�instance in Gg and
b �def jfC �� j jC ��jG � agj	

jGj measures the largest chains of connected �C�instances	 Its second component counts the
number of �C�instances sitting at the positive end of chains with the largest length	 This is
well de�ned� again because refutation graphs are cycle free	

The lexicographic ordering 
 on jGj is obviously well founded	

C �� is called a maximal �C�instance in G i� jC ��jG � a	

�maximal �C�instance are right marginal� but not vice versa	�

Starting with G� we de�ne a transformation Gr � Gr�� and show the following invariants

�	 Gr�� has all the standard properties of a refutation graph	

�	 The clauses in Gr�� are either instances of clauses in  
� or they are �C�instances	

�	 The literals connected to the originally negative literals of �C�instances are original literals	

��



If we can further show jGr��j 
 jGrj then the sequence of transformations eventually terminates
with a refutation graph containing no �C�instances at all any more	 This is a refutation graph for
 �� which shows that  � is unsatis�able	
For the transformation of Gr to Gr�� we �rst choose a maximal �C�instance C

��	 By a routine
transformation on refutation graphs we �rstly replace all poly�links connected to C �� by mono�
links	 This gives us a kind of normal form in the C ���part of the graph	 This transformation
consists of two parts	 In the �rst part all multiple shores at the C ���side are replaced by singleton
shores and in the second part all multiple shores at the opposite side of C �� are replaced by singleton
shores	
As the following picture illustrates
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the clauses Si connected to C
�� with links having k shores �k � � in the example depicted above�

at the C �� side are copied k times	 The other links connected to the Si split into k shores� one
for each copy	 The result G�

r is again a refutation graph and it has the invariance properties � �
�	 Furthermore jG�

rj � jGrj because all the Si have smaller distance than the C ��	 We can copy
them as we like without changing the size jGrj	 We do this transformation for all of C

���s links
with multiple shores at the C ���side	
In the second part of the transformation we need to copy C �� itself together with the clauses
connected to C �� in order to get rid of the multiple shores at the opposite side of C ��	 If for a
link l� jlj denotes the number of l�s shores at the opposite side of C ��� and l�� � � � � lr are all the
links connected to C �� then this represents k �def"r

i��jlij mono�links	 That means we need k copies
if C �� and a corresponding number of copies of the adjacent clauses	 For the case of r � � and
jl�j � jl�j � � the transformation is depicted in the next �gure	
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Notice that there can�t be paths between the left group and the right group of the clauses S�i in
the left picture above� because otherwise there would be a cycle	 Therefore there are no paths in
the transformed graph between the clauses adjacent to C ��	 Thus� we have not introduced cycles	
There can� however� be links connecting S�� and S

�
� and links connecting S

�
� and S

�
�	 The shores of

these links are copied as well in order to connect the copies of the S�i clauses	
The resulting graph G��

r still preserves the invariance properties � � � and all copies of C
�� are

still right marginal and their distance has not changed	 But the size of the graph has changed	 If
jGrj � �a� b� then jG��

r j � �a� b # k � ��	 In order to get a smaller graph Gr�� we must therefore
eliminate all k copies of C ��	 We show how to do it for one copy and repeat this operation k times	

��



Now take any of these copies of C �� �def�A�
� 
 � � � 
 �A

�
n 
 E

�
� 
 � � � 
 E

�
m	 The �Ai are the originally

negative literals	 By the third invariance property they are connected to original literals A�
i of some

clauses Si which may or may not be �C�instances	 The E
�
j �
def �E�

j�� 
 � � � 
 E�
j�sj
� 	 ���B�

j��gr are

the originally positive literal sets	 Since C �� is maximal� the E�
j�l are not connected to any other

�C�instance	 A typical situation looks like this
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� z �� �E�
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The literals E
�
j�l are the complement of the literals E

�
j�l	 There are no paths from any S�i to any S

�
j

or R
�
j�l because otherwise we would have a cycle going through this path and C

��	 We show that we

can transform the A�
i� and together with the E

�

j�l�literals we get an unsatis�able clause set whose
refutation graph can replace C ��	
The condition ��	����


Vn
i��

����A�
i��

Wm
j��

����B�
j� implies

����A�
�� � � � � � ����A�

n��
��E� 
 � � � 
 ��Em where E�

j 	 �Ej �gr� Ej 	 ����B�
j�	

Thus� ����A�
�� � � � � � ����A�

n� � ���E� 
 � � � 
 ���Em is unsatis�able	 We can instantiate the uni�

versally quanti�ed variables in ����A�
�� as we like and choose the Skolem constants for the existen�

tially quanti�ed variables such that the Skolemized version of ���Ej is just E
�
j�� � � � � �E

�
j�sj
	

Thus�

A��
� � A

��
n � E

�

��� � � � � � E
�

m�sm
����

is unsatis�able where A��
i is a �nite subset of a ground instance of

����A�
�� �here we use the

compactness of predicate logic�	 LetH be a refutation graph for ����	 The C ���part of the refutation
graph Gr now are replaced as follows
 If A��

i �
def

A��
i�� � � � � �A��

i�oi
then each clause Si � S�i 
 A

�
i

is replaced with the clauses S�i 
 A
��
i��� � � � � S

�
i 
 A

��
i�oi
	 The links connected to the S�i get multiple

shores� one for each copy	 The new literal sets A��
i�l and the literals E

�
j�u are connected by the

refutation graph H 	 The structure of this part of the transformed graph is now

c
cc	
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Repeating this for all copies of C �� we obtain the new graph Gr��	 We have to show the invariance
properties � � � and jGr��j 
 jGrj	

��



�	 First of all� Gr�� has still the structural properties of a refutation graph because H is a cycle
free refutation graph and there are no path from any S�i to any S

�
j or E

�
j�l	 Therefore no path

within H can be completed with paths outside H to a cycle	

�	 In order to show that the new clauses Si�oi are either �C�instances or instances of clauses
in  � we exploit that the literals A�

i are original literals and the homomorphy condition ��	��
��
 ��D� 
D�����D�� 
��D��	

If the Si themselves are �C�instances then the Si�oi are �C�instances as well� by de�nition
of �C�instances and because the A

�
i are original literals �this is important because � does

not transform transformed literals again�	

Now suppose Si � S�i 
 A
�
i is an instance of a clause in  

�	 A�
i as an original literal has never

been transformed	 That means Si 	 ���Fi��gr 
 A
�
i where  i 
 A

�
i is a ground instance of a

clause in  	 Because of condition � in def	 �	�� ��Fi� 
��A�
i����Fi 
 A�

i�� which� by the
lifting condition � means that each Si�oi is a ground instance of a clause in  

�	

�	 The literals connected to the originally negative literals of �C�instances in G��
r are original

literals	 Let Si�oi � S�i 
 A
��
i�oi

be a new �C�instance	 The originally negative literals in Si�oi
are the literals in the S�i part	 But the other sides of the links connected to these literals have
not been changed	 Therefore they are still connected to original literals	 The clauses Rj are
no �C�instances	 Thus� they are not concerned here	

We had jGrj � �a� b� and jG��
r j � �a� b# k � ��	

Case �
 There is another right marginal �C�instance in Gr�� with distance a	 Since we have
removed all k copies of C ��� we get jGr��j � �a� b# k � �� k� � �a� b� �� 
 jGrj	
Case �
 There is no right marginal �C�instance in Gr�� with distance a	
Then jGr��j � �a� �� b

�� 
 �a� b� � jGr j	
This �nishes the proof	 


Notice that in the proof of the theorem the refutation graph for the transformed clauses is
constructed without transforming negative literals	 Since we can exchange the polarity of the
predicates� this means that in general only either the positive or the negative literals need to be
transformed by �	 Transforming positive as well as negative literals usually complicates things
rather than simplifying them	

��� Literal Triggered Clause K�Transformations

The de�nition of clause K�transformations we have given is more general than the class of transfor�
mations we have actually in mind	 With this general de�nition� however� we worked out precisely
those properties which are essential for the soundness and completeness	 A more restricted de��
nition would have forced us to deal with technicalities hiding more of the important aspects than
clarifying things	

Nevertheless in order to give a more �operational� de�nition� that means a de�nition of clause
K�transformations where the in�nite condition � can be tested with �nite e�ort� we need to say
more about the way � operates	 To this end we de�ne a class of so called literal triggered clause
K�transformations	 They are characterized by a set L� of literals and each literal in L� separately
triggers a transformation	 For example in Example �	� and �	�� L� consists of the selected literals	
For this class of transformers� the condition � need not be tested for all ground instances� but only
for certain instances derived from the characteristic literals	 In simple cases as the transitivity and
condensed detachment examples� it is just a single ground instance per characteristic literal which
determines a case to be tested	 In more complicated cases also ground instances of sets of uni�ed
literals in L� are necessary	

De�nition 	�� �Literal Triggered Clause K�Transformations

A function � mapping clauses to clause sets is called a literal triggered K�transformation for a
clause C � A� � � � � �An� An�� 
 � � � 
 Am i� the �rst four conditions of def	 �	� hold and the
�fth condition is replaced by two new conditions


��



��	 There is a set L� of literals and a function �� computing sets of clauses such that for all
ground literals L
 ��L� � fLg �

S
K�L��L�K��

��K�	

�	 In order to formulate the last condition we de�ne ���L� �
def��L����� where � is a ground

substitution replacing variables x by constants ax and �
�� reverses this substitution� i	e	 all

constants ax are replaced by the variables x	 That means �� works like �� but does not
instantiate variables in L	

In the sequel we de�ne for a literal L and a set K of literals� mgu�L�K� as the simultaneous
uni�er for L with all literals in K	

Starting with $� �
def f�g where � is the identity substitution� a set $ of test substitutions is

computed as follows


For i � �� � � � �m
 $i �
def f� � �f�A�

g � fmgu�Ai��K�jAi j K � L�g� j � 	 $i��g

where �Ai is a renaming substitution which renames those variables occurring in Ai which
do not occur in A�� � � � � Ai��� and for a set % of substitutions� � � %jAi denotes the set
f����jAi j � 	 %g	

$ �def$m	

The test substitution set condition to be satis�ed is that for all � 	 $


��������A��� � � � � � �����An��� �����An���� 
 � � � 
 �����Am��� ����

is a tautology� where the inner quanti�er �����Ai�� does not quantify over the variables in
Ai�	 These variables are bound in the outer quanti�er	




The literals in L� are assumed to be available as in�nitely many variable renamed copies� and each
time such a literal is used for something� a new copy is taken	

We illustrate the test with the two previous examples� transitivity and condensed detachment	

Example 	�� �Transitivity

C � P �x� y� � P �y� z�� P �x� z�
L� � fP �u� v�g	
$� � ffx �� x�� y �� y�gg � fmgu�P �x� y�� fP �u� v�g�jA�

g � ffx �� x�� y �� y�gg
$� � ffx �� x�� y �� y�g � �ffz �� z�g�mgu�P �y�� z�� fP �u�� v��g�jA�

gg�
� ffx �� x�� y �� y�� z �� z�gg

$� � $�
The test substitution set condition now simply requires that the variables in C are to be considered
as constants and then
�����P �ax� � ay��� � �����P �ay� � az���� �����P �ax� � az���
is to be proved	 As we have shown in example �	� with the K�transformation de�ned for transitivity�
this formula is in fact a tautology	 


Example 	�� �Condensed Detachment

C � P �i�x� y�� � P �x�� P �y�
L� � fP �i�u� v��� P �i�u� i�v�� v����� P �i�u� i�v�� i�v�� v������ � � �g
The characteristic literals L� form an in�nite chain where each literal is an instance of all previous
literals	 Therefore the simultaneous uni�cation of arbitrary sets of these literals with an external
literal can be done by just unifying the most speci�c one in this set with the external literal	 This
observation �which is not un�typical� simpli�es the computation of the sets $i considerably	

��



$� � ffx �� x�� y �� y�g�mgu�P �i�x� y��� P �i�u� v���jA�
�

mgu�P �i�x� y��� P �i�u� i�v�� v�����jA�
� � � �g

� ffx �� x�� y �� y�g� fx �� u� y �� vg� fx �� u� y �� i�v�� v��g� � � � � g
� ffx �� x�� y �� y�g� fx �� u� y �� i�v�� v��g� � � � � g �an obvious simpli�cation�

$� � fx �� x�� y �� y�g � �f��mgu�P �x��� P �i�u� v���� � � �g�jA�

�fx �� u� y �� i�v�� v��g � �f��mgu�P �u�� P �i�u�� v����� � � �g�jA�
� � � �

� ffx �� x�� y �� y�g� fx �� i�u� v�� y �� y�g� fx �� x�� y �� i�v�� v��g� � � �g
�ffx �� u� y �� i�v�� v��g� fx �� i�v�� v��� y �� i�u�� v��g� � � �g � � � �

$� � $�

� means �equal up to variable renaming�	 It is instructive to see what happens if we rearrange the
literals in the clause C	 Nobody stops us from writing C as C � P �x� � P �i�x� y��� P �y� and the
test still should work	

$� � ffx �� x�g�mgu�P �x�� P �i�u� v���jA�
�mgu�P �x�� P �i�u� i�v�� v�����jA�

� � � �g
� ffx �� x�g� fx �� i�u� v�g� fx �� i�u� i�v�� v���g� � � �g

$� � fx �� x�g � �ffy �� y�g�mgu�P �i�x�� y��� P �i�u� v���� � � �g�jA�

�fx �� i�u� v�g � �ffy �� y�g�mgu�P �i�i�u� v�� y��� P �i�u�� v����� � � �g�jA�
�� � � �

� ffx �� x�� y �� y�g� fx �� x�� y �� i�u� v�g� � � �g
�ffx �� i�u� v�� y �� y�g� fx �� i�u� v�� y �� v�g� fx �� i�u� v�� y �� i�v�� v��g� � � �g � � � �

$� � $�
In both cases we obtain all combinations of instantiations of x and y with terms i�s� t� where s is
a variable and t is either also a variable or again a term of this structure	 


In the transitivity example �	� we saw that the test substitution set is a singleton	 Therefore
only a single ground instance of the clause C needs to be tested in order verify the test substitution
set condition	 A quick examination of the de�nition of the test substitution set $ shows that this
is always the case when the characteristic literals have only variables as arguments	

Corollary 	�� �Characteristic Literals with Variables

If the characteristic literals L� are all of the form P �x�� � � � � xn� with di�erent variables xi then
the test substitution set $ is always a singleton and only a single ground instance of the clause C
needed to be tested in order verify the test substitution set condition	

The following theorem guarantees soundness and completeness of literal triggered clause K�
transformations	

Theorem 	��� �Faithfulness of Literal Triggered Clause K�Transformations

For every clause set  and every literal triggered clause K�transformation � for a clause C 	  

 is satis�able if and only if �� n fCg� is satis�able	

Proof 
 We show condition � of de�nition �	�


����A��� � � � � � ����An��� ����An���� 
 � � � 
 ����Am�� ����

for all ground substitutions � and then apply Theorem �	�	
Before we can start the main part of the proof� a property that correlates � with �� must be
proved	 Suppose for a literal L and two substitutions � and �� L�� is ground and L�� is an
instance of all literals in L� uni�able with �� i	e	

fK 	 L� j L�� � Kg � fK 	 L� j L� � Kg� ��
�

This means if L�� � K	 then L� � K	� where 	 � 	��	 Furthermore

��L��� � fL��g �
S
K�L��L���K��

��K�	

� fL��g �
S
K�L��L��K�� ���K�	��

� �fL�g �
S
K�L��L��K�� ���K�	���

� ���L���� ����

�




For the main part of the proof let � be an arbitrary ground substitution	 � can be decomposed
into � � �� � � � �m where �i � �jvar	A������Ai
	 �i instantiates the variables up to Ai	
Let �� � ��� � �	 For i � �

Let Ki �

def fK 	 L� j Ai�i � K	 for some 	g	
If Ki � �� let �i � ��i � �i���Ai �	 $i��
otherwise let ��i � ��i��mgu�Ai�i���Ki� and �i �

def

��
ijAi

	 $i	
Let �i such that �i�i � �i
��Ai�� � ��Ai�i�
� fAi�ig �

S
K�L��Ai�i�K��

��K�	 �Def	 �	�� ��
� fAi�ig �

S
K�Ki

���K���i�i �since Ai�
�
i � K��i �Ai�

�
i�i � K��i�i �Ai�i � K��i�i

� 	jK � ���i�i�jK�
� �fAi�ig �

S
K�Ki

���K���i��i
� ���Ai�i��i
Notice that Ai�i � Ai�i�i is an instance of all literals in L� uni�able with Ai�i	 Therefore the
condition ���� holds	
We end up with � �def �m �	 $� and � �def �m such that � � ��	 Applying condition ���� and
instantiating the still free variables with � we �nd

�����A���� � � � � � �����An���� �����An����� 
 � � � 
 �����Am���

The construction of � guarantees ��
� for all Ai��	 Therefore we can apply ���� and this proves
condition ����	 


��� Resolution Clause K�Transformations

We now de�ne a concrete class of clause K�transformations	 These resolution clause K�transformations
work by adding resolvents of consequences of C to the clause set  	

De�nition 	��� �Resolution Clause K�Transformations

A resolution clause K�transformations for a clause C is characterized by a set S� of consequences
of C �usually C itself together with some of its self resolvents and subsumed clauses�� and for each
clause S 	 S� a literal LS 	 S is selected	
The de�nition of � is


��D� � fDg � fRes�D�L�� � � � � Ln� S�� � � � � Sn� j L�� � � � � Ln 	 D�S�� � � � � Sn 	 S �g ����

where Res�D�L�� � � � � Ln� S�� � � � � Sn� means simultaneous resolution between D and the clauses
S�� � � � � Sn with resolution literals Li and the selected literals LSi 	 Si �very similar to hyperreso�
lution�	 This is a graphical illustration of the operation

simultaneous uni�er

L� Ln���

LSn

			

Sn

�

LS�

���

S�

D

simultaneous resolvent

Example �	� showed how this works	 


��



We verify that the structural conditions ���� of literal triggered clause K�transformations are
satis�ed by resolution clause K�transformations	 Only the test substitutions set must be checked
individually	

Theorem 	��� �Conditions ��
�

Resolution clause K�transformations for a clause C satisfy the conditions ���� of literal triggered
clause K�transformations	

Proof 


�	 D 	 ��D� for all clauses D

satis�ed by the de�nition of ��D�	

�	 C �D���D� for all clauses D


The characteristic clauses S� are implied by C� and ��D� as a set of resolvents between D
and clauses in S� is therefore also implied by C and D	

�	 ��D� 
D�����D�� 
��D�� for all ground clauses D� and D�


On the ground level� resolvents are formed by concatenating parts of the parent clauses	
Therefore this property is a consequence of the associativity of the concatenation operation	

�	 For every clause D
 if D� is a ground instance of a transformed ground instance of D then
D� is also a ground instance of a clause in ��D�


Let D�� be a ground instance of D and D� an instance of a clause in ��D���� i	e	 D� is an
instance of a simultaneous resolvent with D��	 By the lifting lemma for resolution� D�� is also
a ground instance of a corresponding resolvent with D	

��	 There is a set L� of literals and a function �� computing sets of clauses such that for all
ground literals L
 ��L� � fLg �

S
K�L��L�K��

��K�	


The characteristic literals L� are just the complements LS of the selected literals in S�	

��L� � fLg � fRes�L�L� S� j S � LS 
 S� 	 S�� LS resolvable with Lg
� fLg � fS�	 j S � LS 
 S� 	 S�� L � LS	g
� fLg �

S
K�L��K�K��

��K�	

where ���LS� �
def

S� for S � �LS 
 S�� 	 S�




The structure of resolution clause K�transformations is now clear	 In order to �nd a transfor�
mation for a given clause C we need to de�ne the characteristic clauses and the selected literals	
To this end we start with C itself and choose one or more literals in C as selected literals	 Then
we systemically generate self resolvents and select again one or more literals	 Each time we have
chosen a literal� we check the test substitution set condition until it eventually comes true	

Furthermore the search for relevant self resolvents can be improved by testing whether the
actual version of the transformer is a K�transformation for the self resolvent	 �It may well be the
case that a transformer is not a clause K�transformation for C itself� but for a self resolvent of C	�
In this case this self resolvent and all further self resolvents derived from this one are unnecessary	
For example the self resolvent on the second literal of the condensed detachment clause

�P �i�x� y��� �P �x�� P �y�

�P �i�x�� y�����P �x��� P �y��

�P �i�x� y����P �i�x�� x����P �x��� P �y�

is useless already for a transformer �� where S��
consists only of the condensed detachment clause

itself with the �rst literal selected	
In order to check this we apply the test


��



����P �i�a� b��� ����P �i�c� a��� ����P �c�������P �b��
becomes

�P �i�a� b�� � �P �a�� P �b�� � P �i�c� a�� � �P �c�� P �a�� � P �c��� P �b�
which is a tautology	 It is easy to check that for all further ground instances with i�� � � � � � �� terms
of the structure speci�ed in the example �	
 this test also succeeds	 Therefore this self resolvent is
redundant	 Unfortunately the self resolvents with the �rst literal are not redundant� and we need
the in�nitely many selected clauses listed in example �	�	 In the next example we show how to
deal with this in�nite transfomer and we demonstrate the power of this transformation technique	

Example 	��� �Implicational Calculus

!Lukasiewics has propsed an axiomatisation of the implicational fragment of propositional logic with
Modus Ponens ���� and one single axiom ���� �!Luk��� p	 ����

� x� y and � x implies � y ����

� ��x� y�� z�� ��z � x�� �u� x��� ����

The predicate logic encoding of this Hilbert system consists of the condensed detachment axiom
���� and one unit clause ����	

P �i�x� y�� � P �x�� P �y� ����

P �i�i�i�x� y�� z�� i�i�z� x�� i�u� x����� ����

It has become a famous challenge problem in the automated reasoning literature because some of
the theorems provable from these two axioms are extremely hard to prove	 Only the Otter system
�McC��� McC
�� was able to prove them all	 The proofs took hours and the system had to generate
millions of clauses	
In example �	� we have shown how the transformer for the condensed detachment clause transforms
the clause ����	 We got the in�nitely many clauses

P �i�i�i�x� y�� z�� i�i�z� x�� i�u� x���� ����

P �i�i�x� y�� z�� P �i�i�z� x�� i�u� x��� ����

P �i�i�x� y�� z� � P �i�z� x��� P �i�u� x�� ����

P �i�i�x� y�� z� � P �i�z� x�� � P �u�� P �x� ��
�

P �i�i�i�u�� u��� y�� z� � P �i�z� i�u�� u���� � P �u� � P �u��� P �u�� ����

P �i�i�i�u�� i�u�� u���� y�� z� � P �i�z� i�u�� i�u�� u����� � P �u� � P �u�� � P �u��� P �u�� ����

� � �

This is not yet suitable as input to an automated theorem prover	 But with some standard and
well known tricks we can convert it into a clause set suitable as input to any resolution based
theorem prover	
First of all we notice that the literals P �u� in the clauses from ��
� onwards are super�uous	 They
can be resolved away with the �rst clause ���� without instantiating the other variables	 Therefore
they are simply deleted	 This eliminates a redundancy which is implicitly present in the original
formulation� but which cannot be detected there	 This is one reason why the original formulation
causes millions of subsumed clauses to be generated	
The next observation is that copies of the same literals occur several times	 The usual trick to
avoid the computational overhead caused by multiple copies of the same formulae is to introduce
abbreviations� new predicates which stand for more complex formulae	 We introduce a predicate
q� that abbreviates P �i�i�x� y�� z��	 Notice that the variable y does not occur outside this literal	
Therefore q� needs only depend on x and z	 We obtain the following clause set	

P �i�i�i�x� y�� z�� i�i�z� x�� i�u� x���� ����
P �i�i�x� y�� z�� q��x� z� ����

q��x� z�� P �i�i�z� x�� i�u� x��� ����

q��x� z� � P �i�z� x��� P �i�u� x�� ����

q��x� z� � P �i�z� x��� P �x� ����

q��i�u�� u��� z� � P �i�z� i�u�� u���� � P �u��� P �u�� ����

��



q��i�u�� i�u�� u���� z� � P �i�z� i�u�� i�u�� u����� � P �u�� � P �u��� P �u�� ����

� � �

The fact that q� does not depend on y means that all instances of P �i�i�x� y�� z� which di�er only
in the binding for the variable y are mapped to the same q��literal	 This also eliminates a source
for redundancy	 The literals q��x� z� � P �i�z� x�� also occur several times	 They are abbreviated
by a new predicate q��x�	 We get

P �i�i�i�x� y�� z�� i�i�z� x�� i�u� x���� ����
P �i�i�x� y�� z�� q��x� z� ����
q��x� z�� P �i�i�z� x�� i�u� x��� ����
q��x� z� � P �i�z� x��� q��x� ����

q��x�� P �i�u� x�� ��
�

q��x�� P �x� ����

q��i�u�� u��� � P �u��� P �u�� �
��

q��i�u�� i�u�� u���� � P �u�� � P �u��� P �u�� �
��

� � �

In the next step we use the regularities of the in�nite clauses �
�� onwards for a �nite encoding	
The key observation is that the second argument of f successively is instantiated with new terms
i�ui� ui���	 The e�ect of the clause �
�� is to check whether a literal q��i�u�� u��� is available where
P �u�� is also provable and then to generate P �u��	 If in fact the binding to u� is again a term
of the form i�u�� u�� and P �u�� is provable then the next clause �
�� generates P �u��� etc	 This
iterative schema can be encoded recursively with two further auxiliary predicates q� and q�	

P �i�i�i�x� y�� z�� i�i�z� x�� i�u� x���� ����
P �i�i�x� y�� z�� q��x� z� ����
q��x� z�� P �i�i�z� x�� i�u� x��� ����
q��x� z� � P �i�z� x��� q��x� ����
q��x�� P �i�u� x�� ��
�
q��x�� P �x� ����

q��x�� q��x� �
��

q��i�u� v�� � P �u�� q��v� �
��

q��v�� q��v� �
��

q��v�� P �v� �
��

The clauses �
�� and �
�� realize a recursive loop where the second argument of i�u� v� is subse�
quently instantiated in the way described above and the binding for the �rst argument u is checked
with the P �u� literal	 The clause �
�� is the entry point into this loop and the clause �
�� is the
exit from this loop	 Together these four clauses have the same e�ect as the in�nitely many clauses
we had before	
The clause ��
� is a potential source for an in�nite explosion of the size of terms	 Fortunately
this clause is not independent of the other clauses	 It can be derived from the remaining clauses	
Therefore we can delete it	 This does not mean that this potential in�nite explosion is banned�
but it is reduced considerably	 The �nal result of our transformation is now


P �i�i�i�x� y�� z�� i�i�z� x�� i�u� x���� ����
P �i�i�x� y�� z�� q��x� z� ����
q��x� z�� P �i�i�z� x�� i�u� x��� ����
q��x� z� � P �i�z� x��� q��x� ����
q��x�� P �x� ����
q��x�� q��x� �
��
q��i�u� v�� � P �u�� q��v� �
��
q��v�� q��v� �
��
q��v�� P �v� �
��

On �rst glance these axioms look more complicated than the original two axioms ���� and �����
in particular since the clauses ����� �
�� and �
�� seem to represent a disguised version of the
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condensed detachment clause again	 Therefore we have to demonstrate that theorem provers in
fact can do better with these clauses as with the original ones	 From our experiments with the
Otter �	� theorem prover we got the following results	

theorem original transformed improvement
� P �i�x� x�� �	�� �	�� ��	�
� P �i�x� i�y� x��� �	�� �	�� ��	�
� P �i�i�i�x� y�� x�� x�� �	�� �	�� �	�
� P �i�i�x� y�� i�i�y� z�� i�x� z���� ����	�� ��	�� ��	�
� P �i�x� i�i�x� y�� y��� ��	�� ��	�� �	�

The numbers in the third and fourth column give the total CPU time in seconds� Otter �	� needed
to prove the theorem �on a Solburn machine with Super Sparc processors�� once from the original
two axioms� and then from the transformed axioms� both times with the hyperresolution inference
rule	 The �rst three examples were proved with Otter�s default options	 The theorems � and �
are among the most complicated theorems� current day automated theorem provers can prove	
But they can�t prove them without additional guidance	 The guidance we gave to the system is a
redundancy criterion
 If a clause P �s� has been derived then all other derived clauses containing
instances of s as subterms are deleted�	 �It is an open question whether this deletion strategy
preserves completeness�	 This heuristic was applied to both versions� the proof search with the
original clauses as well as with the transformed clauses	 Therefore the comparison is fair	 �McCune
used a weaker heuristic and reported much longer CPU times� ���� sec	 for example � and ����
sec	 for example � on a Sparc �# machine �MW����	
We also tried problem � without any restriction	 The system had to be stopped after �� hours
of CPU time and the generation of �	� million clauses	 Setting the limit on the size of terms to
��� a proof was found after ���� seconds ��	� million clauses generated�	 With this limit� and in
addition the above mentioned deletion rule activated� ��� seconds were needed to �nd a proof ��	�
million clauses generated�	 With the same settings� the transformed clause set was refuted in ��	�
seconds ��	�� million clauses generated� 


Improving the performance of known solutions is nice� but the real test for a new technique are
examples beyond the current theorem provers capabilities	 William McCune listed in his CADE
article �MW��� a number of theorem proving problems which could not be solved so far	 We tried
some of them	

Example 	��	 �Implicational Calculus with Falsehood

According to Meredith �Mer���� Modus Ponens together with the following single axiom

� ����x � y�� �z � F ��� u�� v�� ��v � x�� �z � x�� �
��

axiomatizes the implicational fragment of propositional logic with falsehood �F �	
The predicate logic encoding of this Hilbert system consists of the condensed detachment axiom�
again together with one unit clause �
��

P �i�x� y�� � P �x�� P �y�

P �i�i�i�i�i�x� y�� i�z� F ��� u�� v�� i�i�v� x�� i�z� x����� �
��

Again we use the transformer for condensed detachment and simplify the resulting clauses with
the same methods as explained in the previous example �	��	 The result is

P �i�i�i�i�i�x� y�� i�z� F ��� u�� v�� i�i�v� x�� i�z� x����
P �i�i�i�i�x� y�� i�z� F ��� u�� v��� q��v� x� z�
q��v� x� z�� P �i�i�v� x�� i�z� x���
q��v� x� z� � P �i�v� x��� q��z� x�

�The dynamic demodulation mechanism in Otter can be used to delete these clauses� Clauses P�s� �� �i�x�s�

� junk�� and P�s� �� �i�s�x� � junk�� are added and the weight of junk is set bigger than the weight limit�

��



q��z� x�� P �i�z� x��
q��z� x� � P �z�� q��x�
q��x�� P �x�
q��i�u� v�� � P �u�� q��v�
q��v�� q��v�
q��v�� P �v�

Unfortunately the transformed clause set of this example did not contain any of the redundancies
we discovered in the previous example	 Therefore we did not expect such signi�cant improvements
due to the transformation and subsequent simpli�cation	
From these axioms we proved with Otter �	� six theorems	 The inference rule was hyperresolution	

theorem original transformed factor
� P �i�i�x� y�� i�i�y� z�� i�x� z���� ���� ���� �
� P �i�x� i�y� x��� �	�� �	�� �
� P �i�i�i�x� y�� x�� x�� �	�� ��	�� �&�	�
� P �i�F� x�� �	�� �	�� �
� P �i�i�i�x� F �� F� x��� �	�
 �	�� �&�	�
� P �i�i�x� i�y� z��� i�i�x� y�� i�x� z���� ���
� ���
� �	�

Again the numbers in the third and fourth column are the total CPU time in seconds needed
to �nd the proof	 Theorems ��� are quite simple	 And in fact� our transformation brought no
improvement at all� at best we got the same CPU times as for the original version	 Theorem � and
theorem �� however� were the really hard ones	 No machine generated proof was known so far	 We
�rst found proofs for both theorems from the transformed axioms	
We did two experiments with the �rst theorem and the transformed clauses	 In the �rst run� we
limited the size of the derived literals to ��	 This was the only restriction on the search space	 The
proof took ����� seconds �� hrs �� min�	 The system generated �������� clauses and kept �
����
clauses	 The proof consisted of ��� hyperresolution steps	 The proof depth �depth in the search
space� was ���	
In the second run we restricted the size of the terms to �
� switched o� backward subsumption
�backward subsumption turned out to be very expensive and completely useless� and applied a
similar deletion rule as in the problems � and � of the implicational calculus example above
 if a
clause P �s� is derived and s is not of the form i�F� t� then all clauses containing instances of s as
subterms are deleted	 The proof now took only ���� seconds ��� min�	 Only �����

 clauses were
generated and ����� clauses were kept	 The proof was a bit shorter than the previous one� �
�
hyperresolution steps� with proof depth ���	
Once we had found a proof in the transformed system we also succeeded to �nd a proof with the
original axioms	 We used the same control heuristics as before	 After � hrs� �� min of CPU time
and after having generated �
����� clauses the system came up with a proof	 The proof was much
shorter� only �� hyperresolution steps	
Similar things happened with the sixth theorem	 This example turned out to be even harder than
the previous one	 We restricted the size of the terms to �
� switched o� backward subsumption
and applied the same deletion rule as before	 The proof took � hrs� �
 min	 The length of the
proof is ��� hyperresolution steps	 The proof depths is �
�	 The system generated ������� clauses
of which ���
� were kept	
With the same control options we then found a proof from the original axioms	 The proof took �
hrs� � min	 
������ clauses were generated and ����� kept	 The proof was again shorter� only ��
hyperresolution steps	
Although the transformation was not useful for the simple examples� and the factors don�t look
impressive for the complex examples� it saved more than � hours of CPU time for both examples
together� and this is the important number	 


��



��� An Operational View of Clause K�Transformations

In order to understand the e�ect of clause K�transformations� a certain operational view on clauses
is very helpful	 A clause like the transitivity clause can serve as a nucleus for a hyperresolution
step	 Hyperresolution with transitivity takes two other clauses� the �electrons� as input partners
and generates the hyperresolvent as output	 For example� the transitivity clause accepts the two
clauses R�a� b� and R�b� c� and generates R�a� c�	 Repeated hyperresolution with the transitivity
clause successively generates the transitive closure of a basic relation	 For example from R�a� b��
R�b� c�� R�c� d� and R�d� e� three hyperresolution steps generate R�a� c�� R�b� d� and R�a� d� and
this describes the full transitive closure of the basic relation	 Thus� the transitivity clause itself can
be identi�ed with a transitive closure computation process	 The transitivity clause is the active
component and the other clauses are the data part	

Now we transform the data part by adding for each positive R�literal the resolvent with the
�rst literal �we could also chose the second one� of the transitivity clause	 In our example this
means R�a� b�� R�b� c� and R�c� d� are transformed into

C� R�a� b�
C� R�b� c�
C� R�c� d�
R� R�b� z��R�a� z�
R� R�c� z�� R�b� z�
R� R�d� z�� R�c� z�

The new clauses can now also serve as nuclei in hyperresolution steps	 For example hyperresolution
with R� takes clauses with literals R�b� s� for an arbitrary s as input and produces R�a� s� as output�
i	e	 it computes a part of the transitive closure of the basic relation	 Thus� we have turned the
passive data C�� C�� C� into active processes	 Instead of the transitivity clause as a single process�
we have now three di�erent processes represented by the clauses R�� R� and R�	 Moreover these
processes can work in parallel	 And in fact we have parallelized the closure computation process for
the particular basic relation consisting of C��C� and C�	

The question is now
 are the new processes su�cient to compute the full transitive closure� In
our simple example this is obviously the case	 R� computes from C� the new fact R�b� d� and R�

computes from this new fact the second part R�a� d� and from C� the remaining part R�b� d� of the
transitive closure	 Our general completeness result and the test described in example �	� con�rm
that this is really su�cient in general	

Notice that our transformation turns only the initial clauses into active processes� not the
derived clauses	 They remain passive data	 In logic terms this means that resolution of the derived
clauses with the transitivity clause is not performed and this in turn means that no self resolvent
is used	

The development of a resolution clause K�transformation for a given clause is a search process
which can in principle be fully automated � at least for the �nite cases	 As always with complicated
search processes� some heuristics may improve the e�ciency and the result	 We illustrate with
another example that the operational view of the transformations can help �nding simple clause
K�transformations	

Example 	��
 �Euclideanness

Let us try to �nd a resolution clause K�transformation for the euclideanness clause

R�x� y� � R�x� z��R�z� y�� �

�

We have to go through a sequence of clauses consisting of the euclideanness clause itself and its
consequences� select for each clause a literal and then check the test substitution set condition	
We start with �� characterized by the clause �

� itself and select the �rst literal	 Since the
selected literal has only variables as arguments� we need to test only a single ground instance	
���R�a� b�� ����R�a� c������R�c� b��
becomes

��



�R�a� b� � ��z R�a� z�� R�z� b�� �R�a� c� � ��z R�a� z��R�z� c���
� �R�c� b� � ��z R�c� z�� R�z� b���	
This is not a tautology	 Now we have a choice	 Either we test the �rst self resolvents� or we take a
copy of the euclideanness clause and select the second literal	 �A fully automated search algorithm
has a branching point here�	 A semantic consideration� however� and the heuristic formulated in
Section �	
 gives us a much better result	
Given the two clauses C� �

def

R�a� b� and C� �
def

R�a� c� for example� �� adds the two resolvents

R� 
 R�a� z�� R�z� b�
R� 
 R�a� z�� R�z� c��

Obviously R� and R� as �active processes� are able to compute the euclidean closure R�c� d� and
R�b� c� of C� and C�	 But a slightly more complicated example shows that this is not su�cient in
general	 Consider the basic relation which is depicted by the following graph
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��
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With these clauses the four additional arrows
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can be derived� but this is not the full euclidean closure	 The remaining two arrows R�b� e� and
R�e� b� cannot be generated	 What we would need for example is a clause

R�a� c� � R�c� z� � R�c� v�� R�v� z�

to compute at least one of the missing arrows from the initial clause R�a� c� and the derived clauses
R�c� b� and R�c� e�	
A candidate for an extension of �� is therefore

R�x� y� � R�y� z� �R�y� v��R�v� z� ����

where the �rst literal is selected	 This clause is subsumed by the euclideanness clause and therefore
of course implied by it	 Now we de�ne �� as the resolution clause K�transformation such that the
characteristic clauses are the two clauses �

� and ����� and both times the �rst literal is selected	
We have to test
���R�a� b�� ����R�a� c������R�c� b��
which becomes
�R�a� b� � ��z R�a� z�� R�z� b�� � ��z� v R�b� z� � R�b� v��R�v� z��
�R�a� c� � ��z R�a� z��R�z� c�� � ��z� v R�c� z� � R�c� v��R�v� z���
� �R�c� b� � ��z R�c� z�� R�z� b��� � ��z� v R�b� z� �R�b� v��R�v� z��	
This is in fact a tautology	 Therefore �� is a sound and complete transformer for the euclideanness
clause	 


��



We have developed a framework for clause K�transformations and we have provided criteria
guaranteeing the faithfulness of the transformers� which can be tested by computer programs	 The
condensed detachment example and the euclideanness example� however show that the development
of a good clause K�transformation for non�trivial examples still requires intuition and a certain
understanding of the operational behaviour of these clauses	 Automating this part of the process
therefore is really non�trivial	 It requires an expert system with suitable heuristics and means for
dealing with in�nitely many clauses	

��	 Further Applications of Clause K�Transformations

We comprise the examples of clause K�transformations we have either developed already or which
are now trivial to obtain	 We leave the veri�cation of these examples as an exercise to the reader	
The transformations are written as a list S� of characteristic clauses

L�

��
�

rest�
rest�
� � �

where L is a common selected literal of all the clauses L� resti	

Symmetry�
R�x� y�� R�y� x� ����

Permutation� �R�x� y� z�� R�y� z� x��

R�x� y� z��

�
R�y� z� x�
R�z� x� y�

����

Transtivity�
R�x� y�� �R�y� z�� R�x� z�� ����

alternatively �the second literal is selected�
R�x� y�� �R�z� x�� R�z� y�� ����

Euclideanness�

R�x� y��

�
R�x� z�� R�z� y�
R�y� z� �R�y� v��R�v� z�

����

Condensed Detachment�
P �i�x� y��� P �x�� P �y�
P �i�x� i�z�� z����� P �x� � P �z��� P �z��
			
P �i�x� i�z�� i�� � � zi��� � P �x� � P �z�� � � � � � P �zi���� P �zi�
� � � ����

	�
�� Prolog Coding Tricks

All the clauses we have mentioned above cannot be used in Prolog programs because they im�
mediatly cause Prolog to loop	 For example the symmetry clause in a Prolog program r�X�Y� 
�
r�Y�X�	 immediately generates an ini�nite loop	 The same happens with more complex permuta�
tion clauses	 Our clause K�transformations provide a simple solution to this problem	

Symmetry

In the symmetry case �r is symmetric�� every Prolog clause

r�s�t� 
� body	
is replaced with the two clauses
r�s�t� 
� body	
r�t�s� 
� body	
and the symmetry clause is not needed any more	

��



Permutation

For the permutation example ��r�Y�Z�X� 
� r�X�Y�Z�� holds�� we replace every Prolog clause

r�s�t�u� 
� body	
with the three clauses
r�s�t�u� 
� body	
r�t�u�s� 
� body	
r�u�s�t� 
� body	

Transitivity

If the transitive relation is the closure of some basic relation� there is no problem in Prolog	 For
example the ancestor relation as transitive closure of the parent relation can be programmed as

ancestor�X�Z� 
� parent�X�Z�	
ancestor�X�Z� 
�parent�X�Y�� ancestor�Y�Z�	

If� however� the relation stands on its own� the transitivity has to be programmed explicitly in
Prolog	 The transitivity clause

r�X�Z� 
� r�X�Y��r�X�Z�	
however� works only for successful queries r�s�t� with ground terms s and t	 In all other cases Prolog
loops	 With clause K�transformations we can either use the transformer ���� or the transformer
���� to solve this problem	

For all clauses
r�s�t� 
� body	

we either add
r�s�Z� 
� r�t�Z��body	 ��rst transformer�

or alternatively
r�Z�t� 
� r�Z�s��body	 �second transformer�

If the relation is transitive and re�exive� we keep the re�exivity clause
r�X�X�	

but remove all other original clauses r�s�t� 
� body	

Whereas these examples were straightforward applications of the K�transformation idea� the
other two examples� euclideanness and condensed detachment� cannot be implemented in Prolog
without further tricks	

	�
�� Indirect Transformations

We gave some examples for formula K�transformations where new symbols where introduced from
nowhere	 The transformation ���� for binary relations is an example of this kind	 Similar manip�
ulations are possible with clause K�transformations	 The trick is to add certain clauses �rst and
then to use them for the transformation	 Of course arbitrary clauses can not be added to a clause
set without extra provisions	 It must always be proved that every model for the original clause set
can be extended to a model for the extended clause set �the other direction is trivial	�	

We give an example for this trick	 For every serial binary predicate R we can add to every
clause set the formulae

�x� y R�x� y����
AF y � apply��� x� ����

�x� �
AF R�x� apply��� x��� ��
�

As shown in Section ��	��� any model for the original clause set  with the predicate R can be
extended to a model for  and the two new formulae
 The sort AF is interpreted as the set of
accessibility functions mapping points to accessible points	 apply is interpreted as the �apply��
functions	 This interpretation satis�es both ���� and ��
�	

These two formulae are now used to generate a clause K�transformation	 The formula ���� is
the characteristic clause and the �rst literal is the selected literal	 In order to get a clause normal
form� we can Skolemize the existential quanti�er in the formula ���� directly or after applying the
transformation	 This makes no di�erence	 The test substitution set check is trivial in this case	
Therefore the transformer is faithful	

�




Applied to the modal logic case in the same way as in Section ��	��� we can turn this transfor�
mation into the so called semi functional translation for modal logic formulae in negation normal
form into predicate logic �Non���	

trs����w� � �v R�w� v�� trs��� v� ����

trs����w� � ��
AF trs��� ��w��� �����

Converted to clauses the result of this transformation does not contain any positive R�literals	
The only positive R�literals are ��
� which has to be added always and positive literals specifying
properties of the accessibility relation	 This can be exploited to transform these properties also	
For example modal logic S� is characterized by the re�exivity and transitivity of the accessibility
relation	 But we have just developed clause K�transformations for transitivity ���� and ����	 The
only formula with a positive literal ��
� becomes either

�x� �
AF �z R�apply��� x�� z��R�x� z� or
�x� �
AF �z R�z� x��R�z� apply��� x���

Each of these formulae together with the re�exivity clause now speci�es S� modal logic in the
semi functional translation	 Compared to the three literal transitivity clause� this clause is much
easier to handle	 The semi functional translation is not as compact as the functional translation for
modal logic� but it allows for an optimized treatement of the theory clauses without extra theory
uni�cation algorithms	

� Elimination of Literals

An important question is whether it is possible to �nd K�transformations automatically	 Un�
fortunately there is not much hope to �nd K�transformations like the decomposition of n�ary
relations into binary relations� see ����� or the functional representation of binary relations� see
���� automatically	 These transformations exploit elemenary properties of relations which are not
represented syntactically in any way	 But in many other cases the essential information for formula
K�transformations is in fact syntactically accessible	 A formula K�transformation is represented
by an equivalence L� C	 That means it represents a de�nition of L in terms of something else	
De�nitions like for example

�x� y subset�x� y�� ��z in�z� x�� in�z� y�� �����

where L is subset�x� y� are easy to spot automatically in a formula set	 Converted to clause form�
however� such de�nitions look much more complicated	 The clause form representation of �����
for example� is

�subset�x� y���in�z� x�� in�z� y�
subset�x� y�� in�f�x� y�� x�
subset�x� y���in�f�x� y�� y�

where f is a Skolem function	 How to reconstruct the original de�nition from these three clauses is
not obvious	 Nevertheless� the information is there and one should be able to dig it out	 Moreover�
according to Beth�s de�nability theorem� if a literal is implictly de�ned� by some  � it is also
explictly de�ned� i	e	  � �L� �� is provable for some �	 Thus� the information about the
de�nition of L is syntactically available	

Suppose L� � is in fact provable from some clause set  �our method works best� but is not re�

stricted to� clauses�	 This means  � �� �L� �� and  � �� ��L����	 Therefore  � �� �L � ���

�The intuitive de�nition of �implicitly de�ned� is� a literal L is implicity de�ned by � i� whenever an interpretation

�xes the semantics of all other symbols in � then there is no choice for the interpretation of L in order to satisfy

�� For example if � 	 P �Q then there is no choice for P as soon as the interpretation of Q is �xed� If
 however

� 	 P �Q then one can satisfy � by making Q true and there is still a choice for P �

��



as well as  � �� ��L � �� are unsatis�able	 Let L� and �� be the Skolemized version of � �L � ��	
L� is a ground literal� �� not necessarily	 Summerizing� both

 � L� � ��� and  � �L� � �� �����

are unsatis�able	
Let C � be all resolvents between L� and clauses in  and let D� be all resolvents between �L�

and clauses in  	 Since L� is ground we have �by the de�nition of the resolution rule�

L�� C � and �L��D�� �����

Furthermore� using the purity deletion principle which says that a clause becomes super�uous as
soon as all resolvents with one literal are generated� we can replace the L� in ����� by the C � or
D� respectively	 That means

 � C � � ��� and  �D� � �� �����

are also unsatis�able	 Thus�  � C ����� and  �D�� �� are tautologies� which entails  
���C � �D��	 Simple propositional consequences of this together with ����� and ����� are now
 � L�� C � and  ��L��D�	 Since the Skolem constants introduced at the beginning are
arbitrary� we �nally get  � ��L� C and  � ���L�D� where the Skolem constants in C � and
D� are replaced by variables	

This means the algorithm for �nding a de�nition for L is quite simple
 Generate resolvents with
L� and �L� and check whether C � andD� together with  is unsatis�able	 The above considerations
are essentially the soundness and completeness proof of this method	

The algorithm given below is a slight modi�cation of this idea with particular emphasis on
using the de�nition as K�transformation afterwards	

De�nition 
�� �Finding De�nitions

Let  be a set of clauses	 Let L be the literal we want to �nd the de�nition for	 Let us indicate the
variables in L by L�x����xp�	 Suppose �fC�� ���� Cmg � fD����Dng �G� �  � where  � is a speci�ed
subset of  	 One of the Ci or Dj may be the tautology L 
 �L	 Let L� be the ground instance
L�c����cp� of L obtained by replacing all variables by distinct new constant symbols c����cp	 Let
C �
����C

�
m be obtained by resolving L� with C����Cm� respectively� and let D

�
����D

�
n be obtained by

resolving �L� with D����Dn� respectively	 We need not include all possible resolvents here� but
only a subset of the possible resolvents of L� and �L� with the clauses Ci and Dj 	 Then we test
if  � � C �

� � ��� � C
�
m �D�

� � ��� �D
�
n is unsatis�able� possibly by searching for a resolution proof of

the empty clause	 This unsatis�ability test is often easy� since many variables in the C �
i and D�

j

have been replaced by new constant symbols	 Let C � be C �
� � ��� � C

�
m	 We sometimes indicate the

occurrences of the new constant symbols in C � by C ��c����cp�	 Similarly� let D
� be D�

� � ��� �D
�
n	

We sometimes indicate the constant symbols in D� by D��c����cp�	 Let C be C
� with the occurrences

of c����cp replaced by new variables x����xp' thus C is C ��x����xp�	 Similarly� let D be D��x����xp�	
If we �nd that  � � C � �D� is unsatis�able� then we have a de�nition of L
 L� C or equivalently
�L�D 


In many cases it is clear which are the clauses Ci and Dj 	 But it is usually not clear which
are the right resolvents with L�	 Therefore this part may involve a search process	 But from the
examples we have checked so far there are only a few choices and the search is really simple	

Lemma 
�� �Soundness of the Method for Finding Transformers

If C and D are found as described in de�nition �	� then  � �L� C� and  � ��L�D�	

Proof 
 First�  � �L�� C �� because C � is derived from  � fL�g by resolution� and therefore
 � L�� C �	 Since the ci are new constant symbols that occur nowhere else in  �  � L� C	
Therefore  � �L� C�	 Similarly�  � ��L�D�	 We also have that  implies �C �D� false�
since  � � C � �D� is unsatis�able and  � �	 Since  � �C �D� false��  � �C ��D� and
 � �D��C�	 Thus  � � �L� C��C ��D� so  � �L � �D�� i	e	  � �D��L�	

��



Similarly�  � ��L��C�	 Since we already have  � ��L�D� and  � �L� C�� we
obtain  � �L� C� and  � ��L�D�	 


The two equivalences L� C and �L�D can be used to replace all occurrences of L with
C and all occurrences of �L with D	 Moreover� it can be shown that the resolution partners
Ci and Dj used to �nd C and D can be removed	 We therefore de�ne an eager version of the
transformation as follows


De�nition 
�� �Eager Transformation

Let  be a clause set and let  �� fC�� ���� Cmg� fD����Dng be the clauses in de�nition �	� used to
�nd the transformation L�A and �L� B	  � is disjoint from �fC�� ���� Cmg � fD����Dng�	
Let (� be  n �fC�� ���� Cmg � fD����Dng � ��	 Let (�� be (� with all instances of L and �L in (�

replaced by corresponding instances of A and B	 We assume that all literals in (�� uni�able with
L or �L are in the instances of A and B introduced by the replacement	 Now ( �def(�� �  � is the
result of the transformation	 


Theorem 
�	 �Soundness and Completeness of the Eager Transformation

If ( is the result of an eager transformation then ( is unsatis�able i�  is unsatis�able	

Proof 
 Note that the �clauses� of ( may have a more complicated structure than usual� that is�
some of their literals may be instances of A or B	 We nevertheless can consider these formulae
as literals	 Suppose ( is unsatis�able	 Now� all clauses of ( are logical consequences of  	
For example� if C � fL�t����tp�g is in  then C � fA�t����tp�g is a logical consequence of  since
 � � L�x����xp�� A�x����xp� for all xi	 Similarly� if C � f�L�t����tp�g is in  then C � fB�t����tp�g is
a logical consequence of  	 Therefore� ( is a logical consequence of  � so if ( is unsatis�able� so
is  	

Now� suppose ( is satis�able	 Then there is a model � of (	 For simplicity we can assume it is a
Herbrand model	 Let �� be a model constructed in the following way
 If � satis�es A�t����tp� then
�� satis�es L�t����tp�� for all ground terms t����tp	 If � satis�es B�t����tp� then �

� satis�es �L�t����tp�	
If � satis�es neither A�t����tp� nor B�t����tp�� then we can choose �

� arbitrarily on L�t����tp� and
�L�t����tp�	 We �rst show that � cannot satisfy both A�t����tp� and B�t����tp�	 This is because  

�

implies �A�x����xp� � B�x����xp�� false� and  � � (	 Therefore such a structure �� exists	
Now we show that �� satis�es the Ci and Dj 	
If there are some occurrences of instances of L or �L remaining in the unmodi�ed part of (� then
it may be that � and �� disagree on some ground instances of L or �L� since the clauses Ci and
Dj implying L�A and �L� B may be removed from  by this transformation	 That is� we may
have � j� N and �� �j� N for some instance N of L or �L	 However� if ( has no such literals
uni�able with L �L� this will not matter	 Also� since � is a model of (� �� is a model of  	 Since
� satis�es at least one literal of each clause in (� �� satis�es at least one literal of each clause in
 	 The only time there can be a di�erence between the way � and �� treat clauses in ( and  �
respectively� is when � fails to satisfy either A�t����tp� or B�t����tp�	 In this case� �� will satisfy one
of L�t����tp� and �L�t����tp�' this will only have the e�ect of possibly making more literals of  true	
However� the remaining construction of �� guarantees that at least one literal of each clause in  
is satis�ed by ��� so this does not matter	 


We can also de�ne a lazy version of the transformation in a slightly di�erent way


De�nition 
�
 �Lazy Transformation

Let ( be  with some or all occurrences of clauses C � fL�t����tp�g replaced by C � fA�t����tp�g
and some or all occurrences of clauses C � f�L�t����tp�g replaced by C � fB�t����tp�g� for all terms
ti	 Thus we replace some or all instances of L and �L by corresponding instances of A and B	
We allow this transformation to be applied to more than one literal of a clause of  	 However�
the clauses C����Cm and D����Dn are retained in ( and not transformed� nor are the clauses in  �

transformed	 The clauses in  � may contain literals that unify with L or �L	 


Theorem 
�� �Faithfulness of the Lazy Transformation

( is unsatis�able i�  is unsatis�able	

��



Proof 
 The proof is much as before in the eager case	 We can show as before that if ( is unsatis�able
then  is unsatis�able	 Suppose ( is satis�able' then it has a model � as before	 From this we
construct a model �� as above	 The di�erence is that we still have the clauses Ci and Dj in  � so
that (� �L� A� � ��L�B�	 This means that for any ground instance N of L or �L� � j� N

i� �� j� N 	 Reasoning as above� �� is a model of  	 


Note that if the eager version of the transformation is used� ( will not contain any instances
of L or �L	 Thus we have simpli�ed the set  � in some sense' this is especially true if L or �L
is of the form P �x����xp� where P is a predicate symbol' in this case� all occurrences of P are
eliminated	 If the clauses Ci and Dj contain other literals uni�able with L and �L� then the lazy
version must be used and we cannot necessarily eliminate all instances of L or �L	 However� in
this case� we can sometimes use complete re�nements of resolution to show that the clauses Ci and
Dj are unnecessary	

If the clauses Ci and Dj are not present in  � or are too di�cult to detect� we can try to create
them	 One way to do this is by resolving clauses of  	 There may be other ways too	

Note that the process of �nding and applying such a transformation is completely automatic �
it could be added as a preprocessing routine to a theorem prover� to search for such literals L and
systematically replace them as indicated above	 This can be made semi�interactive by having the
prover search for such transformations and query the user about whether they should be done	 No
general argument about semantics is necessary for this� just a check whether the C �

i and D�
j are

unsatis�able� which can be done by a limited search for a refutation of some kind	
A slightly similar transformation is used with good results in the paper �PP���	 The value

of replacing predicates in set theory by their de�nitions in improving the e�ciency of a theorem
prover is also shown in a paper by Plaisted and Greenbaum� �PG
��	

We now give some general conditions guaranteeing the existence of the clauses Ci and Dj as
required by this method	 Suppose we have a de�nition in the form L�W where L is a literal and
W is some �rst�order formula	 This could be something like subset�X�Y �� ��Z��Z 	 X � Z 	
Y �	 We consider this as universally quanti�ed� i	e	� ��x����xn��L �W �	 If we convert this to clause
form in the usual way we get clauses for �L�W � and �W � L�	 The clauses for �L�W � will be of
the form �L 
 C ��

i and those for �W � L� will be of the form D��
j 
 L	 Also� the clause form forW is

just 
 iC
��
i and that for �W is 
 jD

��
j 	 Now� if we apply the above idea for automatically detecting

killer transformations to eliminate L� we replace the variables of L and �L by constants� obtaining
L� and �L�� respectively� and do resolutions with L� and �L�	 This gives us the clausesD��

j �from L��
and C ��

i �from �L��� with variables in L and �L replaced by constants' we indicate these by D�
j and

C �
i � respectively	 Then � jD

�
j � � iC

�
i is the clause form for ��x����xn��W � �W �	 This formula is

unsatis�able	 Since the conversion to clause form is satis�ability preserving� � jD
�
j � � iC

�
i is also

unsatis�able	 Thus we could automatically detect these clauses Ci and Dj as indicated above	
The point of this is that if we actually include de�nitions of something in the input clauses�

and translate them into clause form in the usual way� then this method is capable of automatically
extracting them again and using them for de�nitional replacement	 So if we give a collection of
set theory axioms and theorems of set theory� then a prover could automatically �without being
told that the input is set theory� rediscover these de�nitions and replace set operations by their
de�nitions and thus become a much better prover for set theory	 This means the user would not
have to indicate de�nitions in any special way	 Or if the input contained de�nitions �by accident�
that the user didn�t know about� they could be detected	

There is another characteristic that the clauses Ci and Dj often have	 Suppose that Ci is �up
to renaming of variables� C ��

i � f�Lg and Dj is D
��
j � fLg	 Suppose that these occurrences of �L

and L are resolved away to obtain C �
i and D

�
j 	 Then A is C

��
� � ��� � C

��
m and B is D��

� � ��� �D
��
n	 We

do not transform the clauses Ci and Dj in the computation of (	 However� if we were to transform
the clauses Ci and Dj � we would obtain the clauses C

��
i 
 B and the clauses D��

j 
A	 Since A is
C ��
� � ��� � C

��
m and B is D��

� � ��� �D
��
n� we would obtain essentially the clauses C

��
i 
D

��
j for all i and

j	 The conjunction of all these clauses C ��
i 
D

��
j is equivalent to A 
 B	 If A 
 B is a tautology�

then the clauses C ��
i 
D

��
j are tautologies	

We can give some general conditions under which A 
B will be a tautology	 For example�
suppose that S was obtained by converting �rst�order formulae into clause form� and one of these

��



formulae was of the form L�W 	 Then this is equivalent to L�W and W � L	 When this
is converted to clause form� we will obtain clauses of the form �L 
 C ��

i and of the form L 
D��
j

where C ��
� � ��� � C

��
m is the clause form of W and D��

� � ��� �D
��
n is the clause form of �W 	 In this

case� we have that C ��
i 
D

��
j may be a tautology for all i and j� because these clauses arise when

convertingW 
 �W to clause form	 If W contains no quanti�ers� then the transformation to clause
form is equivalence preserving and then C ��

i 
D
��
j will be a tautology for all i and j	 However� if

W contains quanti�ers� then the transformation to clause form is only satis�ability preserving� not
validity preserving	 Therefore� even though W 
 �W is a tautology� it is not necessary that A 
 B
be a tautology	

When we are looking for the clauses Ci and Dj � we can prefer those such that A 
B is a
tautology	 This doesn�t necessarily make the method more powerful� but it does help to �nd
clauses that correspond in a natural way to de�nitions	 Note that this test for tautology and logical
consequence can be done automatically by a theorem prover� in the sense of partial decidability	

For example� if we have the following de�nition
 x 	 �y � z�� �x 	 y � x 	 z�	 Here L is the
formula x 	 �y � z�	 When we convert this to clause form� we obtain the following clauses


x 	 �y � z�� x 	 y

x 	 �y � z�� x 	 z

�x 	 y� � �x 	 z�� x 	 �y � z�
Now� we have L is x 	 �y � z� and �L is ��x 	 �y � z��	 Then A is �x 	 y � x 	 z� and B

is ��x 	 y� 
 ��x 	 z�	 Note that A 
 B is a tautology and that A � B is unsatis�able	 Also� we
have C ��

� is x 	 y and C ��
� is x 	 z and D��

� is ��x 	 y� 
 ��x 	 z�	 We can verify that C ��
i 
D

��
j is a

tautology for all i and j	
Unfortunately� the C ��

i and D
��
j contain literals that unify with L and �L� so we cannot use the

eager version of the transformation here	 This can be helped by introducing a new version of the
�	� predicate� but when this is used it will not create tautologies and so the transformed versions
of the Ci and Dj must still be retained	

Another example comes from the conversion of the de�nition of subset to clause form� as follows

subset�x� y�� ��z��z 	 x� z 	 y�
For this de�nition� there are no occurrences of subset in the right�hand side� so the eager version

of the transformation can be used	 In this way� the set ( will not contain any occurrences of the
subset predicate	 We note that a quanti�er is needed to express the de�nition of subset	 However�
we obtain the e�ect of replacing subset by its de�nition even in a Skolemized setting in which
the quanti�er has been removed	 Since the right�hand side contains a quanti�er� A 
 B is not a
tautology	

A further example of the value of this transformation approach is if the Boolean connectives
are de�ned by statements like true�X� � true�Y �� true�and�X�Y ��� true�and�X�Y ��� true�X��
true�and�X�Y ��� true�Y �� and similarly for other Boolean connectives	 Then using the trans�
formation technique� we can detect that predicates of the form true�and�X�Y �� are de�ned and
can be eliminated in favor of true�X� � true�Y �	 Now� since the de�nitions contain other literals
that unify with L and �L� we cannot use the eager versions of the transformations	 This means
that it is necessary to retain the de�nition of �and� in (	 However� if we use ordered resolution�
then the literals containing �and� will be the largest literals in their clauses	 It is possible that in
( they will not resolve with anything else except other literals in the de�nition of �and	� This will
produce only tautologies� which can be deleted	 In this way� we eliminate all occurrences of �and	�
The same procedure can be applied to the other Boolean connectives	 Note that if  contains no
other function symbols than �and�� �or�� and �not�� and their de�nitions can be eliminated in this
way� then the transformed  will contain no function symbols at all	 In this way we transform a
problem into a simpler one that is in a decidable sublanguage of �rst�order logic	 We note that
the de�nition of x 	 �y � z� may sometimes be eliminated in the same way� if ordered resolution
is used after the transformation to (	 This is possible because A 
 B is a tautology� showing an
advantage of choosing transformations with this tautology property	

��



� Summary

We have presented methods for developing transformations of logical systems which guarantee
that formulae are theorems in the original system if and only if the transformed formulae are
theorems in the transformed system	 With examples from very di�erent areas of classical and
non�classical logics we have demonstrated that the transformations are very easy to apply	 The
proof obligations are extremely simple in most cases	 Finding the transformers also seems to
be quite straightforward	 This makes K�transformations a very powerful tool for generating and
investigating transformations of logical systems and in particular for improving the performance
of automated theorem provers	
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