
MAX-PLANCK-INSTITUT

FÜR
INFORMATIK

 	

� �
Logic Frameworks for Logic Programs

David A. Basin

MPI–I–94–218 April 1994

���
�

�� k

I N F O R M A T I K

Im Stadtwald

D 66123 Saarbrücken

Germany

Authors’ Addresses

David Basin Max-Planck-Institut für Informatik Im Satdwald, D-66123 Saarbrücken, Germany
basin@mpi-sb.mpg.de

Publication Notes

A version of this paper will appear at the Fourth International Workshop on Logic Program Synthesis and
Transformation (LOPSTR’94), 19 – 21 June, 1994, Pisa, Italy.

Acknowledgements

I thanks Tobias Nipkow and Larry Paulson for their advice on Isabelle. I also thank Alan Bundy, Ina
Kraan, and Sean Matthews for discussions on this work and collaboration on related work. This research
was funded by the German Ministry for Research and Technology (BMFT) under grant ITS 9102. The
responsibility for the contents lies with the author.

Abstract

We show how logical frameworks can provide a basis for logic program synthesis. With
them, we may use first-order logic as a foundation to formalize and derive rules that
constitute program development calculi. Derived rules may be in turn applied to
synthesize logic programs using higher-order resolution during proof that programs
meet their specifications. We illustrate this using Paulson’s Isabelle system to derive
and use a simple synthesis calculus based on equivalence preserving transformations.

1 Introduction

Background

In 1969 Dana Scott developed his Logic for Computable Functions and with it a model of functional
program computation. Motivated by this model, Robin Milner developed the theorem prover LCF whose
logic PPλ used Scott’s theory to reason about program correctness. The LCF project [13] established a
paradigm of formalizing a programming logic on a machine and using it to formalize different theories of
functional programs (e.g., strict and lazy evaluation) and their correctness; although the programming logic
was simple, within it complex theories could be developed and applied to functional program verification.

This paradigm can be characterized as formal development from foundations. Type theory and higher-
order logic have been also used in this role. A recent example is the work of Paulson with ZF set theory.
Although this theory appears primitive, Paulson used it to develop a theory of functions using progressively
more powerful derived rules [24].

Most work in formalized program development starts at a higher level; foundations are part of an
informal and usually unstated meta-theory. Consider, for example, transformation rules like Burstall and
Darlington’s well known fold-unfold rules [7]. Their rules are applied to manipulate formulas and derive
new ones; afterwards some collection of the derived formulas defines the new program. The relationship of
the new formulas to the old ones, and indeed which constitute the new program is part of their informal
(not machine formalized) metatheory. So is the correctness of their rules (see [18, 8]). In logic programming
the situation is similar; for example, [30, 29] and others have analyzed conditions required for fold-unfold
style transformations to preserve equivalence of logic programs and indeed what “equivalence” means.

Development from Foundations in Logic Programming

We propose that, analogous to LCF, we may begin with a programming logic and derive within it a program
development calculus. Derived rules can be applied to statements about program correctness formalized in
the logic and thereby verify or synthesize logic programs. Logic programming is a particularly appropriate
domain to formalize such development because under the declarative interpretation of logic programs as
formulas, programs are formalizable within a fragment of first-order logic and are therefore amenable to
manipulation in proof systems that contain this fragment. Indeed, there have been many investigations
of using first-order logic to specify and derive correct logic programs [9, 10, 11, 17, 19]. But this work,
like that of Burstall and Darlington, starts with the calculus rather than the foundations. For example in
[17] formulas are manipulated using various simplification rules and at the end a collection of the resulting
formulas constitutes the program. The validity of the rules and the relationship of the final set of formulas
(which comprise the program) to the specification is again part of the informal meta-theory.

Our main contribution is to demonstrate that without significant extra work much of the informal
metatheory can be formalized; we can build calculi from foundations and carry out proofs where our notion
of correctness is more explicit. However, to do this, a problem must be overcome: first-order logic is too
weak to directly formalize and derive proof rules. Consider for example, trying to state that in first-order
logic we may replace any formula ∀x.A by ¬∃x.¬A. We might wish to formulate this as ∀x.A→ ¬∃x.¬A.
While this is provable for any instance A, such a generalized statement cannot be made in first-order logic
itself; some kind of second-order quantification is required.1 In particular, to formalize proof rules of a
logic, one must express rules that (in the terminology of [15]) are schematic and hypothetical. The former
means that rules may contain variables ranging over formula. The latter means that one may represent

1First-order logic is too weak, but it is possible to formalize powerful enough first-order theories to express such rules by
axiomatizing syntax, e.g., [32, 3, 23]. However, such approaches require some kind of reflection facility to establish a link
between the formalized meta-theory and the desired theory where such rules are used. See [4] for a further discussion of this.
Moreover, under such an approach unification cannot be used to identify program verification and synthesis.

1

logical consequence; in the above example consequence has been essentially internalized by implication in
the object language.

Rather than moving to a more powerful logic like higher-order logic, we show that one can formalize
program development using weak logics embedded in logical frameworks such as Paulson’s Isabelle system
[25] or Pfenning’s ELF [28]. In our work, a programming logic (also called the object logic) is encoded
in the logic of the logical framework (the meta-logic). For example, the meta-logic of Isabelle, which we
use, is fragment of higher-order logic containing implication (to formalize hypothetical rules) and universal
quantification (to formalize schematic rules). Within this meta-logic we formalize a theory of relevant
data-types like lists and use this to specify our notion of program correctness and derive rules for building
correct programs. Moreover, Isabelle manipulates rules using higher-order unification and we use this to
build programs during proof where meta-variables are incrementally instantiated with logic programs.

We illustrate this development paradigm by working through a particular example in detail. Within
an Isabelle theory of first-order logic we formulate and derive a calculus for reasoning about equivalences
between specifications and representations of logic programs in first-order logic. The derived calculus can
be seen as a formal development of a logic for program development proposed in Wiggins (see Section 3.4).
After derivation, we apply these rules using higher-order unification to verify that logic programs meet
their specifications; the logic programs are given by meta-variables and each unification step during proof
incrementally instantiates them.

Our experience indicates that this development is quite manageable. Isabelle comes with well-developed
tactic support for rewriting and simplification. As a result, our derivation of rules was mostly trivial
and involved no more than typing them in and invoking the appropriate first-order simplification tactics.
Moreover, proof construction with these rules was partially automated by the use of Isabelle’s standard
normalization and simplification procedures. We illustrate this by developing a program for list subset.

2 Background to Isabelle

What follows is a brief overview of Isabelle [25, 26, 27] as is necessary for what follows. Isabelle is an
interactive theorem prover developed by Larry Paulson. It is a logical framework: its logic serves as a meta-
logic in which object logics (e.g., first-order logic, set theory, etc.) are encoded. Proofs are interactively
constructed by applying proof rules using higher-order resolution. Proof construction may be automated
using tactics which are ML programs in the tradition of LCF that construct proofs.

Isabelle provides a fine basis for our work. Since it is a logical framework, we may encode in it the ap-
propriate object logic, first-order logic (although we indicate in Section 5 other possible choices). Isabelle’s
metalogic is based on the implicational fragment of higher-order logic where implication is represented by
“==>” and universal quantification by “!!”; hence we can formalize and derive proof rules which are both
hypothetical and schematic. Rules, primitive and derived, may be applied with higher-order unification
during higher-order resolution; unification permits meta-variables to occur both in rules and proofs. We
use this to build logic programs by theorem proving where the program is originally left unspecified as a
higher-order meta-variable and is filled in incrementally during the resolution steps; the use of resolution
is similar to the use of “middle out reasoning” to build logic programs as demonstrated in [20, 21, 6, 33].

Isabelle manipulates objects of the form2 [|F1; ...; Fn|] ==> F. A proof proceeds by applying rules to
such formulas which result in zero or more subgoals, possibly with different assumptions. When there are
no subgoals, the proof is complete. Although Isabelle proof rules are formalized natural deduction style,
the above implication can be read as an intuitionistic sequent where the Fi are the hypotheses. Isabelle
has resolution tactics which apply rules in a way the maintains this illusion of working with sequents.

2We shall use typewrite font to display concrete Isabelle syntax.

2

3 Encoding A Simple Equivalence Calculus

We give a simple calculus for reasoning about equivalence between logic programs and their specifications.
Although simple, it illustrates the flavor of calculus and program development we propose.

3.1 Base Logic

We base our work on standard theories that come with the Isabelle distribution. We begin by selecting
a theory of constructive first-order predicate calculus and augment this with a theory of lists to allow
program development over this data-type (See IFOL and List in [27]). The list theory, for example,
extends Isabelle’s first-order logic with constants for the empty list “[]”, cons “.”, and standard axioms
like structural induction over lists. In addition, we have extended this theory with two constants called Wfp

(well-formed program) and Def with the property that Wfp(P) = Def(P) = P for all formulas P; their role will
be clarified later.

The choice of lists was arbitrary; to develop programs over numbers, trees, etc. we would employ
axiomatizations of these other data-types. Moreover, the choice of a constructive logic was also arbitrary.
Classical logic suffices too as the proof rules we derive are clearly valid after addition of the law of excluded
middle. This point is worth emphasizing: higher-order unification, not any feature of constructivity, is
responsible for building programs from proofs in our setting.

In this theory, we reason about the equivalence between programs and specifications. “Equivalence”
needs clarification since even for logic programs without impure features there are rival notions of equiv-
alence. The differences though (see [22, 5]) are not so relevant in illustrating our suggested methodology
(they manifest themselves through different formalized theories). The notion of equivalence we use is
equivalence between the specification and a logic program represented as a pure logic program in the above
theory. Pure logic programs themselves are equivalences between a universally quantified atom and a for-
mula in a restricted subset of first-order logic (see [6] for details); they are similar to the logic descriptions
of [12].

For example, the following is a pure logic program for list membership (where cons is “.”).3

∀x y.p(x, y) ↔ (x = [] ∧ False) ∨ (∃v0 v1.x = v0.v1 ∧ (y = v0 ∨ p(v1, y))) (1)

Such programs can be translated to Horn clauses or run directly in a language like Gödel [16].

3.2 Problem Specification

As our notion of correctness is equivalence between programs and specifications, our proofs begin with
formulas of the form ∀x.(spec(x) ↔ E(x)). The variables in x represent parameters to both the specification
spec and the logic program E; we do not distinguish input from output. spec is a first-order specification
and E is either a concrete (particular) pure logic program or a schematic (meta) variable standing in for
such a program. If E is a concrete formula then a proof of this equivalence constitutes a verification proof
as we are showing that E is equivalent to its specification. If E is a second-order meta-variable then a
proof of this equivalence that instantiates E serves as a synthesis proof as it builds a program that meets
the spec. If spec is already executable we might consider such a proof to be a transformation proof.

An example we develop in this report is synthesizing a program that given two lists l and m is true
when l is a subset of m. This example has been proposed by others, e.g., [17, 33]. Slipping into Isabelle
syntax we specify it as

ALL l m. (ALL z. In(z,l) --> In(z,m)) <-> ?E(l,m).

3Unfortunately, “.” is overloaded and also is used in the syntax of quantifiers; e.g., ∀x y.ϕ which abbreviates ∀x.∀y.ϕ.

3

Note that ALL, --> and <-> represent first-order universal quantification, implication, and equivalence, and
are declared in the definition of first-order logic. The “?” symbol indicates metavariables in Isabelle. Note
that ?E is a function of the input lists l and m but z is only part of the specification. Higher-order unification,
which we use to build an instance for ?E will insure that it is only a function of l and m.

3.3 Rules

We give natural deduction rules where the conclusion explains how to construct ?E from proofs of the
subgoals. These rules form a simple calculus for reasoning about equivalences and can be seen as a
reconstruction of those of the Whelk system (see Section 3.4). Of course, since A <-> A is valid, the synthesis
specification for subset can be immediately proven by instantiating ?E with the specification on the left
hand side of the equivalence. While this would lead to a valid proof, it is uninteresting as the specification
does not suggest an algorithm for computing the subset relation. To make our calculus interesting, we
propose rules that manipulate equivalences with restricted right-hand sides where the right hand side can
be directly executed.

Specifically, we propose rules that admit as right hand sides formulas like the body of the membership
predicate given above, but exclude formula like ALL z. In(z,l) --> In(z,m). To do this we define inductively
the set of such admissible formulas. They are built from a collection of (computable) base-relations and
operators for combining these that lead to computable algorithms provided their arguments are computable.
In particular, our base relations are the relations True, False, equality and inequality. Our operators will be
the propositional connectives and existential quantification restricted to a use like that in the membership
example, i.e., of the form ∃v0v1.x = v0.v1 ∧ P where P is admissible. This limited use of existential
quantification is necessary for constructing recursive programs in our setting; it can be trivially compiled
out in the translation to Horn clauses.

Note that to be strictly true to our “foundations” paradigm, we would specify the syntax of such well-
formed logic programs in our theory (which we could do by recursively defining a unary well-formedness
predicate that captures the above restrictions). However, to simplify matters we capture it by only deriving
rules for manipulating these equivalences where the right-hand sides meet these restrictions. To ensure
that only these rules are used to prove equivalences we will resort to a simple trick. Namely, we wrap all
the right hand sides of equivalences in our rule, and in the starting specification with the constructor Wfp.
E.g., our starting goal for the subset proof would really be

ALL l m. (ALL z. In(z,l) --> In(z,m)) <-> Wfp(?E(l,m))).

As Wfp was defined to be the identity (i.e., Wfp(P) equals P) it does not effect the validity of any of the rules.
It does, however, affect their applicability. That is, after rule derivation we remove the definition of Wfp

from our theory so the only way we can prove the above is by using rules that manipulate equivalences
whose right hand side is also labeled by Wfp. In particular, we won’t be able to prove

ALL l m. (ALL z. In(z,l) --> In(z,m)) <-> Wfp(ALL z. In(z,l) --> In(z,m)).

Basic Rules

Figure 1 contains a collection of typical derived rules about equivalences. Many of the rules serve simply
to copy structure from the specification to the program. These are trivially derivable, for example

A↔ Wfp(ExtA) B ↔ Wfp(ExtB)

A ∧B ↔ Wfp(ExtA ∧ ExtB)
.

Translating this into Isabelle we have

[| A <-> Wfp(ExtA); B <-> Wfp(ExtB) |] ==> A & B <-> Wfp(ExtA & ExtB).

4

RAllI: [| !!x. A(x) <-> Wfp(Ext) |] ==> (ALL x.A(x)) <-> Wfp(Ext)

RAndI: [| A <-> Wfp(ExtA); B <-> Wfp(ExtB) |] ==> A & B <-> Wfp(ExtA & ExtB)

ROrI: [| A <-> Wfp(ExtA); B <-> Wfp(ExtB) |] ==> A | B <-> Wfp(ExtA | ExtB)

RImpI: [| A <-> Wfp(ExtA); B <-> Wfp(ExtB) |] ==> (A --> B) <-> (Wfp(ExtA --> ExtB))

RTrue: [| A |] ==> A <-> Wfp(True)

RFalse: [| ~A |] ==> A <-> Wfp(False)

RAllE: [| ALL x.A(x) <-> Wfp(Ext(x)) |] ==> A(x) <-> Wfp(Ext(x))

ROrE: [| A ==> (C <-> Wfp(ExtA)); B ==> (C <-> Wfp(ExtB)); A | B |] ==> C <-> Wfp(ExtA | ExtB)

EqInstance: A = B <-> Wfp(A = B)

Figure 1: Examples of Basic Rules

This rule is derivable (recall that Wfp(P) = P) in one step with Isabelle’s simplification tactic for intuitionistic
logic, so it is a valid rule. The rule allows us essentially to decompose synthesizing logic programs for a
conjunction into synthesizing programs for the individual parts. Note that this rule is initially postulated
with free variables like A and ExtA which are treated as constants during proof of the rule; this prevents their
premature instantiation, which would lead to a proof of something more specialized. When the proof is
completed, these variables are replaced by metavariables, so the rule may be later applied using unification.

There are two subtleties in the calculus we propose: parameter variables and induction rules. These
are explained below.

Predicate Parameters

Recall that problems are equivalences between specifications and higher-order meta-variables applied to
parameters, e.g., l and m in the subset specification. We would like our derived rules to be applicable
independent of the number of parameters involved. Fortunately, these do not need to be mentioned in
the rules themselves (with one exception noted shortly) as Isabelle’s higher-order unification properly
propagates these parameters to subgoals. This is explained below.

Isabelle automatically lifts rules during higher-order resolution (see [25, 26]); this is a sound way of
dynamically matching types of meta-variables during unification by applying them to new universally
quantified parameters when necessary. This idea is best explained by an example. Consider applying the
above conjunction rule to the following (made-up) goal.

ALL l m. ((ALL z. In(z,l)) & (Exists z. ~In(z,m))) <-> Wfp(?E(l,m)))

In our theory, we begin proving goals by “setting up a context” where initial universally quantified variables
become eigenvariables.4 Applying ∀-I (∀-intro of first-order logic) twice yields the following.

!! l m. ((ALL z. In(z,l)) & (Exists z. ~In(z,m))) <-> Wfp(?E(l,m)))

Now if we try to apply the above derived rule for conjunction, Isabelle will automatically lift this rule to

4By eigenvariables, we mean variables universally quantified outermost in the context. Recall universal quantification is
the operator “!!” in Isabelle’s meta-logic. See [26] for more details.

5

!! l m. [| ?A(l,m) <-> Extract(?ExtA(l,m)); ?B(l,m) <-> Extract(?ExtB(l,m)) |] ==>

?A(l,m) & ?B(l,m) <-> Extract(?ExtA(l,m) & ?ExtB(l,m)),

which now resolves (by unifying the conclusion) with ?A(l,m) = ALL z. In(z,l), ?B(l,m) = Exists z. ~In(z,m),
and the program is instantiated with ?E(l,m) = ?ExtA(l,m) & ?ExtB(l,m). As the proof proceeds ?ExtA and
?ExtB are further instantiated.

Recursive Definitions

Our calculus so far is trivial; it copies structure from specifications into programs. One nontrivial way of
transforming specifications is to admit proofs about equivalence by induction over the recursively defined
data-types. But this introduces a problem of how predicates recursively call themselves.

We solve this by proving theorems in a context and proof by induction can extend this context with
new predicate definitions.5 In particular, the context will contain not only axioms for defined function
symbols (e.g., like In in the subset example) but it also contains a meta-variable (“wrapped” by Def) that
is instantiated during induction with new predicate definitions.

Back to the subset example; our starting goal actually includes a context which defines the axioms for
In and includes a variable ?H which expands to a definition or series of definitions. These will be called
from the program that instantiates ?E.

[| ALL x. ~In(x,[]); ALL x h t. In(x,h.t) <-> x = h | In(x,t) |]

==> Def(?H) --> (ALL l m. (ALL z. In(z,l) --> In(z,m)) <-> Wfp(?E(l,m)))

The wrapper Def (recall this, like Wfp is the identity) also serves to restrict unification; in particular, only
the induction rule which creates a schematic pure logic program can instantiate Def(?H).

Definitions are set up during induction. Consider the following rule corresponding to structural in-
duction over lists. This rule builds a schematic program P(x,y) contained in the first assumption. The
second and third assumption correspond to the base case and step case of a proof by induction showing
that this definition is equivalent to the specification formula A(x,y). This rule is derived in our theory by
list induction.

[| Def(ALL x y. P(x,y) <-> (x = [] & EA(y)) | (EX v0 v1. x = v0.v1 & EB(v0,v1,y)));

ALL y. A([],y) <-> Wfp(EA(y));

!!m. ALL y. A(m,y) <-> Wfp(P(m,y)) ==> ALL h y. A(h.m,y) <-> Wfp(EB(h,m,y)) |]

==> A(x,y) <-> Wfp(P(x,y))

As in [2] we have written a tactic that applies induction rules. Resolution with this rule yields three subgoals
(corresponding to the three assumptions above) but the first is discharged by unifying against a Def(?H) in
the context which sets up a recursive definition. This is precisely the role that Def(?H) serves. Actually, to
allow for multiple recursive definitions, the induction tactic first duplicates the Def(?H)6 before resolving
with the induction rule. Also, it thins out (weakens) the instantiated definition in the two remaining
subgoals.

There is an additional subtlety in the induction rule which concerns parameter arguments. Other
rules did not take additional parameters but this is the exception; P takes two arguments even though the
induction is on only one of them. This is necessary as the rule must establish (in the first assumption) a
definition for a predicate with a fixed number of universally quantified parameters and the number of these

5The ability to postulate new predicate definitions can, of course, lead to inconsistency. We lack space here for details,
but it is not hard to prove under our approach that defined predicates are defined by well-founded recursion and may be
consistently added as assumptions.

6This follows as Def(?H) equals ?H and if we have an hypothesis ?H then we can instantiate it with ?H1 & ?H2. Instantiation
is performed by unification with &-elimination and results in the two new assumptions ?H1 and ?H2 which are rewrapped with
Def. This “engineering with logic” is accomplished by resolving with a derived rule that performs the all these manipulations.

6

cannot be predicted at the time of the induction. Our solution to this problem is ad hoc; we derive in
Isabelle a separate induction rule for each number of arguments needed in practice (two are needed for the
predicates synthesized in the subset example). Less ad hoc, but more complex, solutions are also possible.

3.4 Relationship to Other Calculi

The derived calculus, although very simple, is motivated by and is similar to the Whelk Calculus developed
by Wiggins in [33]. There Whelk is presented as a new kind of logic where specifications are manipulated
in a special kind of “tagged” formal system. A tagged formula A is of the form [[A]]P (x)↔ϕ. Both formulas
and sequents are tagged and the tag subscript represents part of a pure logic program. The Whelk logic
manipulates these tags so that the tagged (subscripted) program should satisfy two properties. First, the
tagged program should be logically equivalent to formula it tags in the appropriate first-order theory. To
achieve this the proof rules state how to build programs for a given goal from programs corresponding to
the subgoals. Second, the tagged program should be decidable, which means as a program it terminates in
all-ground mode. One other feature of Whelk is that a proof may begin with a subformula of the starting
goal labeled by a special operator ∂ . At the end of the proof the Whelk system extracts the tagged program
labeling this goal; hence Whelk may be used to synthesize logic programs.

The rules I give can be seen as a reinterpretation of the rules of Whelk where tagged formulas are
formulated directly as equivalences between specifications and program schemas (for full details see [1]);
hence, seen in this light, the Whelk rules constitute a simple calculus for manipulating equivalences. For
example, the Whelk rule for reasoning about conjunctions is

∂ ∧-I
[[Γ ⊢ ∂ A]]P (E)↔ϕ [[Γ ⊢ ∂ B]]P (E)↔ψ

[[Γ ⊢ ∂ (A ∧B)]]P (E)↔ϕ∧ψ

and can be straightforwardly translated into the rule RAndI given in Section 3.3 (ϕ and ψ play the role of
ExtA and ExtB and P and its paramters E are omitted.) Our derivation of many of these rules provides
a formal verification that they are correctness preserving with respect to the above mentioned equivalence
criteria. Interestingly, not all of the Whelk rules given could be derived; the reinterpretation led to rules
which were not derivable (counter models could be given) and hence helped uncover mistakes in the original
Whelk calculus (see [1]). This confirms that just as it is useful to have machine checked proofs of program
correctness, it is also important to formally certify calculi.

4 Program Development

We now illustrate how the derived rules can be applied to program synthesis. Our example is synthesizing
the subset predicate (over lists). We choose this as it is a standard example from the literature. In
particular, our proof is almost identical to one given in [33].

Our proof requires 15 steps and is given in Figure 2 with comments. Here we replay Isabelle’s response
to these proof steps, i.e., the instantiated top-level goal and subgoals generated after each step. The output
is taken directly from an Isabelle session except, to save space, we have combined a couple steps, “pretty
printed” formulas, and abbreviated variable names.

The proof begins by giving Isabelle the subset specification. Isabelle prints back the goal to be proved
(at the top) and the subgoals necessary to establish it. As the proof proceeds, the theorem we are proving
becomes specialized as ?H is incrementally instantiated with a program. We have also given the names
inbase and instep to the context assumptions that define the membership predicate In.

Def(?H) --> (ALL l m. (ALL z. In(z, l) --> In(z, m)) <-> Wfp(?E(l, m)))

1. Def(?H) --> (ALL l m. (ALL z. In(z, l) --> In(z, m)) <-> Wfp(?E(l, m)))

val inbase = "ALL x. ~ In(x, [])"

val instep = "ALL x h t. In(x, h . t) <-> x = h | In(x, t)"

7

val [inbase,instep] = goal thy

" [| ALL x. ~In(x,[]); \

\ ALL x h t. In(x,h.t) <-> x = h | In(x,t) |] \

\ ==> Def(?H) --> (ALL l m. (ALL z. In(z,l) --> In(z,m)) <-> Wfp(?E(l,m)))";

(* After performing forall introductions, perform induction *)

by SetUpContext;

by (IndTac WListInduct2 [("x","l"),("y","m")] 1);

(* Base Case *)

br RAllI 1;

br RTrue 1;

by (cut_fast_tac [inbase] 1);

(* Step Case *)

by(SIMP_TAC (list_ss addrews [instep,AndImp,AllAnd,AllEqImp]) 1);

br RAndI 1;

(* Prove 2nd case with induction hypothesis! *)

by (etac allE 2 THEN assume_tac 2);

(* First Case --- Do an induction on y to synthesize member(h,y) *)

by (IndTac WListInduct2 [("x","y"),("y","h")] 1);

br RFalse 1; (* Induction Base Case *)

by(SIMP_TAC (list_ss addrews [inbase]) 1);

by(SIMP_TAC (list_ss addrews [instep]) 1); (* Induction Step Case *)

br ROrI 1;

br EqInstance 1;

by (etac allE 1 THEN assume_tac 1); (* Apply induction hypothesis *)

Figure 2: Isabelle Proof Script for Subset Proof

The first proof step, invoked by the tactic SetUpContext, moves the definition variable ?H into the as-
sumption context and, as discussed in the previous section, promotes universally quantified variables to
eigenvariables so our rules may be used via lifting.

Def(?H) --> (ALL l m. (ALL z. In(z, l) --> In(z, m)) <-> Wfp(?E(l, m)))

1. !!l m. Def(?H) ==> (ALL z. In(z, l) --> In(z, m)) <-> Wfp(?E(l, m))

Next, we invoke our induction tactic that applies the derived list induction rule, specifying induction
on l. The execution of the tactic instantiates our schematic definition ?H with the first schematic definition
?P and a placeholder ?Q for further instantiation. Note too that ?E has been instantiated to this schematic
program ?P.

Def((ALL x y. ?P(x, y) <-> x = [] & ?EA10(y) | (EX v0 v1. x = v0 . v1 & ?EB11(v0, v1, y))) &

?Q) -->

(ALL l m. (ALL z. In(z, l) --> In(z, m)) <-> Wfp(?P(l, m)))

1. !!l m y. Def(?Q) ==> (ALL z. In(z, []) --> In(z, y)) <-> Wfp(?EA10(y))

2. !!l m ma h y.

[| Def(?Q); ALL y. (ALL z. In(z, ma) --> In(z, y)) <-> Wfp(?P(ma, y)) |] ==>

(ALL z. In(z, h . ma) --> In(z, y)) <-> Wfp(?EB11(h, ma, y))

We now prove the first case, which is the base-case (and omit printing the step case in the next two
steps — Isabelle maintains a goal stack). First we apply RAllI which promotes the ∀-quantified variable

8

z to an eigenvariable. The new subgoal becomes (as this step does not instantiate the theorem we are
proving, we omit redisplaying it) the following.

1. !!l m y z. Def(?Q) ==> (In(z, []) --> In(z, y)) <-> Wfp(?EA10(y))

Next we apply RTrue which states if ?EA10(y) is True, the above is provable provided In(z, []) --> In(z, y)

is provable. This reduces the goal to one of ordinary logic (without Wfp) as it instantiates the base case
with the proposition True.

Def((ALL x y. ?P(x, y) <-> x = [] & True | (EX v0 v1. x = v0 . v1 & ?EB11(v0, v1, y))) &

?Q) -->

(ALL l m. (ALL z. In(z, l) --> In(z, m)) <-> Wfp(?P(l, m)))

1. !!l m y z. Def(?Q) ==> In(z, []) --> In(z, y)

Finally we complete this step by applying Isabelle’s predicate-calculus simplification routines augmented
with base case of the definition for In. Isabelle leaves us with the following step case (which is now the top
goal on the stack and hence numbered 1).

1. !!l m ma h y.

[| Def(?Q); ALL y. (ALL z. In(z, ma) --> In(z, y)) <-> Wfp(?P(ma, y)) |] ==>

(ALL z. In(z, h . ma) --> In(z, y)) <-> Wfp(?EB11(h, ma, y))

We now normalize this goal by applying the tactic

SIMP_TAC (list_ss addrews [instep,AndImp,AllAnd,AllEqImp]) 1

This calls Isabelle’s simplification tactic which applies basic simplifications for the theory of lists, list_ss,
augmented with the recursive case of the definition for In and the following lemmas AndImp, AllAnd and
AllEqImp.

(A | B --> C) <-> (A --> C) & (B --> C)

ALL v. A(v) & B(v)) <-> (ALL v.A(v)) & (ALL v.B(v))

(ALL v. v = w --> A(v)) <-> A(w)

Each of these had been previously (automatically!) proven with Isabelle’s predicate calculus simplifier.
This normalization step simplifies our subgoal to the following.

1. !!l m ma h y.

[| Def(?Q); ALL y. (ALL z. In(z, ma) --> In(z, y)) <-> Wfp(?P(ma, y)) |] ==>

In(h, y) & (ALL v. In(v, ma) --> In(v, y)) <-> Wfp(?EB11(h, ma, y))

We decompose the conjunction with RAndI, which yields two subgoals.

Def((ALL x y. ?P(x, y) <-> x = [] & True | (EX v0 v1. x = v0 . v1 & ?EA21(v1, v0, y) & ?EB22(v1, v0, y))) &

?Q) -->

(ALL l m. (ALL z. In(z, l) --> In(z, m)) <-> Wfp(?P(l, m)))

1. !!l m ma h y.

[| Def(?Q); ALL y. (ALL z. In(z, ma) --> In(z, y)) <-> Wfp(?P(ma, y)) |] ==>

In(h, y) <-> Wfp(?EA21(ma, h, y))

2. !!l m ma h y.

[| Def(?Q); ALL y. (ALL z. In(z, ma) --> In(z, y)) <-> Wfp(?P(ma, y)) |] ==>

(ALL v. In(v, ma) --> In(v, y)) <-> Wfp(?EB22(ma, h, y))

We immediately solve the second subgoal by resolving with the induction hypothesis. I.e., after ∀-E
we unify the conclusion with the induction hypothesis using Isabelle’s assumption tactic. This instantiates
the program we are building by replacing ?EB22 with a recursive call to ?P as follows.

9

Def((ALL x y. ?P(x, y) <-> x = [] & True | (EX v0 v1. x = v0 . v1 & ?EA21(v1, v0, y) & ?P(v1, y))) & ?Q) -->

(ALL l m. (ALL z. In(z, l) --> In(z, m)) <-> Wfp(?P(l, m)))

Returning to the first goal (to build a program for ?EA21), we perform another induction; the base case
is proved as in the first induction except rather than introducing True with RTrue we introduce False with
RFalse and solve the remaining goal by simplification. This leaves us with the step case.

Def((ALL x y. ?P(x, y) <-> x = [] & True | (EX v0 v1. x = v0 . v1 & ?Pa(v0, y) & ?P(v1, y))) &

(ALL x y. ?Pa(y, x) <-> x = [] & False | (EX v0 v1. x = v0 . v1 & ?EB32(v0, v1, y))) &

?Q27) -->

(ALL l m. (ALL z. In(z, l) --> In(z, m)) <-> Wfp(?P(l, m)))

1. !!l m ma h y mb ha ya.

[| ALL y. (ALL z. In(z, ma) --> In(z, y)) <-> Wfp(?P(ma, y));

Def(?Q27); ALL y. In(y, mb) <-> Wfp(?Pa(y, mb)) |] ==>

In(ya, ha . mb) <-> Wfp(?EB32(ha, mb, ya))

As before, we normalize this subgoal with Isabelle’s standard simplifier.

1. !!l m ma h y mb ha ya.

[| ALL y. (ALL z. In(z, ma) --> In(z, y)) <-> Wfp(?P(ma, y));

Def(?Q27); ALL y. In(y, mb) <-> Wfp(?Pa(y, mb)) |] ==>

ya = ha | In(ya, mb) <-> Wfp(?EB32(ha, mb, ya))

Applying ROrI unifies ?EB32(v0, v1, y) with ?EA40(v1, v0, y) | ?EB41(v1,v0, y) and yields a subgoal for
each disjunct.

1. !!l m ma h y mb ha ya.

[| ALL y. (ALL z. In(z, ma) --> In(z, y)) <-> Wfp(?P(ma, y));

Def(?Q27); ALL y. In(y, mb) <-> Wfp(?Pa(y, mb)) |] ==>

ya = ha <-> Wfp(?EA40(mb, ha, ya))

2. !!l m ma h y mb ha ya.

[| ALL y. (ALL z. In(z, ma) --> In(z, y)) <-> Wfp(?P(ma, y));

Def(?Q27); ALL y. In(y, mb) <-> Wfp(?Pa(y, mb)) |] ==>

In(ya, mb) <-> Wfp(?EB41(mb, ha, ya))

In the first we apply EqInstance which instantiates ?EA40(v1, v0, y) with y = v0. This completes the first
goal leaving only the following.

Def((ALL x y.

?P(x, y) <-> x = [] & True | (EX v0 v1. x = v0 . v1 & ?Pa(v0, y) & ?P(v1, y))) &

(ALL x y. ?Pa(y, x) <-> x = [] & False | (EX v0 v1. x = v0 . v1 & (y = v0 | ?EB41(v1, v0, y)))) &

?Q27) -->

(ALL l m. (ALL z. In(z, l) --> In(z, m)) <-> Wfp(?P(l, m)))

1. !!l m ma h y mb ha ya.

[| ALL y. (ALL z. In(z, ma) --> In(z, y)) <-> Wfp(?P(ma, y));

Def(?Q27); ALL y. In(y, mb) <-> Wfp(?Pa(y, mb)) |] ==>

In(ya, mb) <-> Wfp(?EB41(mb, ha, ya))

We complete the proof by resolving with the induction hypothesis. Isabelle prints back the following
proven formula with no remaining subgoals.

[| ALL x. ~ ?In(x, []);

ALL x h t. ?In(x, h . t) <-> x = h | ?In(x, t) |] ==>

Def((ALL x y. ?P(x, y) <-> x = [] & True | (EX v0 v1. x = v0 . v1 & ?Pa(y, v0) & ?P(v1, y))) &

(ALL x y. ?Pa(x, y) <-> x = [] & False | (EX v0 v1. x = v0 . v1 & (y = v0 | ?Pa(v1, y)))) &

?Q) -->

(ALL l m. (ALL z. ?In(z, l) --> ?In(z, m)) <-> Wfp(?P(l, m)))

10

Note that the context remains open (?Q) as we might have needed to derive additional predicates. Also
observe that Isabelle never forced us to give the predicates built (?P and ?Pa) concrete names; these were
picked automatically during resolution when variables were renamed apart by the system.

The constructed program can be simplified and translated into a Gödel program similar to the one in
[33]. Alternatively it can be directly translated into the following Prolog program.

p([],Y). pa([],Y) :- false.

p([V0|V1],Y) :- pa(Y,V0), p(V1,Y). pa([V0|V1],V0).

pa([V0|V1],Y) :- pa(V1,Y).

5 Conclusion, Comparisons, and Future Work

The ideas presented here have applicability, of course, outside logic programming. A framework like Isabelle
can be used generally to derive calculi for verification and synthesis. [2, 4] describes other applications of
this methodology. But logic programming seems an especially apt domain for such development due to the
close relationship between the specification and programming language.

Other authors have argued that first-order logic is the proper foundation for reasoning about and
transforming logic programs (e.g., [11, 9]). But there are benefits to using even richer logics to manipulate
first-order, and possibly higher-order, specifications. For example, in this paper we used a recursion schema
corresponding to structural induction over lists. But synthesizing logic programs with more complicated
kinds of recursion (e.g., quick sort) requires general well-founded induction. But providing a theory where
the user can provide his own well-founded relations necessitates formalizing well-foundedness which in turn
requires quantifying over sets or predicates and, outside of set-theory, this is generally second-order. We
are currently exploring synthesis based on well-founded induction in higher-order logic.

Another research direction is exploring other notions of equivalence. Our calculus has employed a very
simple notion based on provability in a theory with induction principles over recursive data-types. There
are other notions of equivalence and ways of proving equivalence that could be formalized of course. Of
particular interest is exploring schematic calculi like that proposed by Waldau [31]. Waldau presents a
calculus for proving the correctness of transformation schemata using intuitionistic first-order logic. In
particular he showed how one can prove the correctness of fold-unfold transformations and schemata like
those which replace recursion by tail recursion. The spirit of this work is similar to our own: transformation
schemata should be proven correct using formal proofs. It would be interesting to carry out the kinds of
derivations he suggests in Isabelle and use Isabelle’s unification to apply his transformation schemata.

We conclude with a brief comparison of related approaches to program synthesis based on unification.
This idea can be traced back to [14] who proposed the use of resolution not only for checking answers to
queries, but also for synthesizing programs and the use of second-order matching by Huet and Lang to
apply schematic transformations. Work in unification based program synthesis that is closest in spirit to
what we described here is the work of [20, 21], which used higher-order (pattern) unification to synthesize
logic programs in a “middle-out” fashion. Indeed, synthesis with higher-order resolution in Isabelle is very
similar as in our work, the meta-variable standing in for a program is a second-order pattern and it is only
unified against second-order patterns during proof. [20, 21] emphasizes, however, the automation of such
proofs via rippling while we concentrate more on the use of logical frameworks to give formal guarantees
to the programming logic itself. Of course, these approaches are compatible and can be combined.

References

[1] David Basin. Isawhelk: Whelk interpreted in Isabelle. Abstract accepted at the 11th International Con-
ference on Logic Programming (ICLP94). Full version available via anonymous ftp to mpi-sb.mpg.de
in pub/papers/conferences/Basin-ICLP94.dvi.Z.

11

[2] David Basin, Alan Bundy, Ina Kraan, and Sean Matthews. A framework for program development
based on schematic proof. In 7th International Workshop on Software Specification and Design, Los
Angeles, December 1993. IEEE Computer Society Press.

[3] David Basin and Robert Constable. Metalogical frameworks. In Gérard Huet and Gordon Plotkin,
editors, Logical Environments, pages 1–29. Cambridge University Press, 1993.

[4] David Basin and Sean Matthews. A conservative extension of first order logic and its applications
to theorem proving. In 13th Conference of the Foundations of Software Technology and Theoretical
Computer Science, pages 151–160, December 1993.

[5] A. Bundy. Tutorial notes; reasoning about logic programs. In G. Comyn, N.E. Fuchs, and M.J.
Ratcliffe, editors, Logic programming in action, pages 252–277. Springer Verlag, 1992.

[6] A. Bundy, A. Smaill, and G. A. Wiggins. The synthesis of logic programs from inductive proofs. In
J. Lloyd, editor, Computational Logic, pages 135–149. Springer-Verlag, 1990. Esprit Basic Research
Series. Also available from Edinburgh as DAI Re search Paper 501.

[7] R.M. Burstall and J. Darlington. A transformation system for developing recursive programs. Journal
of the Association for Computing Machinery, 24(1):44–67, 1977.

[8] Wei Ngan Chin. Automatic Methods for Program Transformation. Ph. D. thesis, Imperial College
Department of Computer Science, March 1990.

[9] K. L. Clark and S-Å. Tärnlund. A first order theory of data and programs. In B. Gilchrist, editor,
Information Processing, pages 939–944. IFIP, 1977.

[10] K.L. Clark. Predicate logic as a computational formalism. Technical Report TOC 79/59, Imperial
College, 1979.

[11] K.L. Clark and S. Sickel. Predicate Logic: a calculus for deriving programs. In R. Reddy, editor,
Proceedings of IJCAI-77, pages 419–420. IJCAI, 1977.

[12] Pierre Flener and Yves Deville. Towards stepwise, schema-guided synthesis of logic programs. In
T. Clement and K.-K. Lau, editors, Logic Program Synthesis and Transformation, pages 46–64.
Springer-Verlag, 1991.

[13] Michael J. Gordon, Robin Milner, and Christopher P. Wadsworth. Edinburgh LCF: A Mechanized
Logic of Computation, volume 78 of Lecture Notes in Computer Science. Springer-Verlag, 1979.

[14] Cordell Green. Application of theorem proving to problem solving. In Proceedings of the IJCAI-69,
pages 219–239, 1969.

[15] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. Journal of the
Association for Computing Machinery, 40(1):143–184, January 1993.

[16] P. Hill and J. Lloyd. The Gödel Report. Technical Report TR-91-02, Department of Computer Science,
University of Bristol, March 1991. Revised in September 1991.

[17] C.J. Hogger. Derivation of logic programs. JACM, 28(2):372–392, April 1981.

[18] L. Kott. About a transformation system: A theoretical study. In Proceedings of the 3rd International
Symposium on Programming, pages 232–247, Paris, 1978.

[19] Robert A. Kowalski. Predicate logic as a programming language. In IFIP-74. North-Holland, 1974.

12

[20] Ina Kraan, David Basin, and Alan Bundy. Logic program synthesis via proof planning. In Proceedings
of LoPSTr-92. Springer Verlag, 1992.

[21] Ina Kraan, David Basin, and Alan Bundy. Middle-out reasoning for logic program synthesis. In 10th
International Conference on Logic Programming (ICLP93), pages 441–455, Budapest Hungary, 1993.

[22] M.J. Maher. Equivalences of logic programs. In J. Minker, editor, Foundations of Deductive Databases
and Logic Programming. Morgan Kaufmann, 1987.

[23] Sean Matthews, Alan Smaill, and David Basin. Experience with FS0 as a framework theory. In Gérard
Huet and Gordon Plotkin, editors, Logical Environments, pages 61–82. Cambridge University Press,
1993.

[24] Lawrence C. Paulson. Set theory for verification: I. From foundations to functions. Journal of
Automated Reasoning. In press; draft available as Report 271, University of Cambridge Computer
Laboratory.

[25] Lawrence C. Paulson. The foundation of a generic theorem prover. Journal of Automated Reasoning,
5:363–397, 1989.

[26] Lawrence C. Paulson. Introduction to Isabelle. Technical Report 280, Cambridge University Computer
Laboratory, Cambridge, January 1993.

[27] Lawrence C. Paulson. Isabelle’s object-logics. Technical Report 286, Cambridge University Computer
Laboratory, Cambridge, February 1993.

[28] Frank Pfenning. Logic programming in the LF logical framework. In Logical Frameworks, pages 149
– 181. Cambridge University Press, 1991.

[29] Taisuke Sato. Equivalence-preserving first-order unfold/fold transformation systems. Theoretical Com-
puter Science, 105:57–84, 1992.

[30] H. Tamaki and T. Sato. Unfold/fold transformations of logic programs. In Proceedings of 2nd ICLP,
1984.

[31] Mattias Waldau. Formal validation of transformation schemata. In T. Clement and K.-K. Lau, editors,
Logic Program Synthesis and Transformation, pages 97–110. Springer-Verlag, 1991.

[32] Richard W. Weyhrauch. Prolegomena to a theory of formal reasoning. Artificial Intelligence, 13:133–
170, 1980.

[33] Geraint A. Wiggins. Synthesis and transformation of logic programs in the Whelk proof development
system. In K. R. Apt, editor, Proceedings of JICSLP-92, 1992.

13

