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Further Improvements of Steiner Tree Approximations 

Marek Karpinski* Alexander Zelikovskyt 

Abstract 

The Steiner tree problem requires to find a shortest tree eonneeting a given set of terminal 
points in ametrie space. We suggest a better and fast heuristie for the Steiner problem in graph! 
and in rectilinear plane. This heuristie finds aSteiner tree at most 1.757 and 1.267 times longer 
than the optimal solution in graph! and rectilinear plane, respeetively. 

Keywords: Algorithms, approximations, Steiner tree 

1 Introduction 

Consider a metric space with distance function d. For any set of terminal points Sone can efficiently 
find MST(S), a minimum spanning tree of S. Let mst(S, d) be the cost of this tree in metric d. 
ASteiner tree is a spanning tree of a superset of the terminal points (the extra points are called 
Steiner points). It was already observed by Pierre Fermat that the cost of aSteiner tree of S may be 
smaller than mst(S, d). The Steiner tree problem asb för the Steiner minimum tree, that is, for the 
least cost Steiner tree. However, finding such a tree is NP-bard for almost all interesting metrics, 
like Euclidean, rectilinear, Hamming distance, shortest-path distance in a graph etc. Because these 
problems have many applications, they were subject of extensive research [10]. 

In the last two decades many approximation algorithms for finding Steiner minimum trees ap­
peared. The quality of an approximation algorithm is measured by its performance ratio: an upper 
bound of the ratio between the achieved length and the optimal length. 

The Network Steiner tree problem (NSP) asb for the Steiner minimum tree for a vertex subset 
Sc V of a graph G(V, E, d) with cost function don edges E. 

In the rectilinear metric, the distance between two points is the sum of the differences of their 
:):- and y-coordinates. The rectilinear Steiner tree problem (RSP) got recently new importance in 
the development of techniques for VLSI routing [11]. 

The most obvious heuristic for the Steiner tree problem approximates aSteiner minimum tree 
of S with MST(S). While in all metric spaces the performance ratio of this heuristic is at most 2 
[13] (it can be implemented for NSP in time O(IEI + IVI log IVI) [12~), Hwang [8, 9] proved that this 
heuristic in the rectilinear plane has the performance ratio exact1y 1.5 and can be implemented in 
time O(ISllog ISI). 

Zelikovsky [14, 16] and Berman/Ramaiyer [2] gave two better heuristics for NSP. Perfomance 
ratios ofthese heuristics are ~ :::::: 1.84 and 1: :::::: 1.78 and thier runtimes are O(ISI(IEI+IVllog IVI) + 
IVIISI2) and O(a + 1V121S13 . ), respectively. Here a means time complexity of finding of all pairs 
shortest paths. 

In the recent paper Berman et al [3] gave a more precise (than in the first papers [15,2] ) analysis 
of the performance ratio of these heuristics for RSP. They proved that thier performance ratios are 
at most 1.3125 and :i :::::: 1.271, respectively. The parametrized versions of these heuristics have a 
runtime O( n log2 n) [3, 5]. 

Here we present a new heuristic which adds a prelimenary phase to Berman/Ramaiyer's heuristic. 
This heuristic decreases the known performance ratios by 4~ :::::: 2% for NSP and achieves ~~ :::::: 1.266 
for RSP. Moreover, this improvement can be achieved in the same order of runtime. 
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marekQcs.uru-bonn.de. Research partially supported by the International Computer Science Institute, Berkeley, Cal­
ifornia, by the DFG Grant KA 67314, by the ESPRIT BR Grant 7097 and by ECUS030 

tInstitute of Mathematics, Akademiei 5, Kishinev, 277028, Moldova, email: 17azzCmathem.moldova.su. Research 
partially supported by Volkswagen Stiftung 
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In the next section we provide a synopsis of Berman/Ramaiyer's approach In Seetions 3 we 
describe our new heristic and derive some estimates for its performance ratios. Sections 4 and 5 
deals with the applications of this heuristic to NSP and RSP, respeetively. 

2 Berman/ Ramaiyer's Heuristic 

ASteiner tree T of a set of terminals S is full if every internal node of T is aSteiner point, i.e., not 
a terminal. If T is not full , it can be deeomposed into full Steiner trees for subsets of terminals that 
overlap only at leaves. Such subtrees are called luD Steiner components of T [7]. A full Steiner tree 
with k terminals is named k-tree. 

The method described here can be applied with an arbitrary metric d. Without loss of generality, 
we may assume that the metric d on the set of terminals S is the shortest-path distance for the 
weighted edges D conneeting S. This way, MST(D) is the minimum spanning tree of the graph 
< S, D >, we denote this tree with MST(D), and its cost with mst(D). If we increase the set 
of edges D by some extra edges, say forming a set E, the shortest-path distance may decreasej 
MST(D U E) is the minimum spanning tree for the modified metric. 

Let z be a set of k terminals (k-tuple). Let T(z) be the minimum k-tree with the terminal set z, 
d(z) is the cost of T(z) and Z(z) is a spanning tree of z consisting of some sufficiently short edges, 
i.e. MST(D U Z(z)) contains Z(z). 

At first, assume that Z(z) = Zo(z) consists of zero-cost edges. If we decide to use T(z) as a 
part ofthat tree, the remaining part can be computed optimally as MST(D U Zo(z)), !rom which we 
remove zero-cost edges of Zo(z). The improvement of the tree cost due to this decision is the gain 
of z, denoted g(z, D). It is easy to see that g(z, D) = mst(D)-mst(D U Zo(z))-d(z). 

We denote by t,. = max{mst(D U E) : g(z, D U E) $ 0 for any z C s, Izl $ r}. In other words, 
t,. denote the the maximum possible MST-cost if any k-tuple, k $ r has a nonpositive gain. Let 
t2 be the length of MST(D) and 8 = t oo be the length of optimal Steiner tree. It was proved that 
ts $ ~8 [14], t4 $ ~8 [1] and t,. -+ 8 while r -+ 00 [4] for arbitrary metries. For the reetilinear metrie, 
t,. $ 2;~l for r 2: 3, moreover, t2 + t4 $ ~8 and 3t2 + 4ta $ 98 [3]. 

Before we describe Berman/Ramaiyer's heuristic (BRk) [2], we have to look doser at the way 
how to obtain MST(DUZ(z)) !rom M = MST(D). Say that Z(z) = {el' ... , e;}. When el is inserted, 
the longest edge e~ in the path joining the ends of el with cost c~ is removed !rom M. Then we do 
the same with e2 and so on. 

The idea of BR is to make the initial choices (performed in the Evaluation Phase) tentative, and 
to check later (in the Selection Phase) for better alternatives. 

Evaluation Phase. Initially, M = MST(D)and b2 denotes its cost. For every tripie z considered, 
find 9 = g(z, M). If 9 $ 0, z is simply discarded. Otherwise we do the following for every edge e 
of some spanning tree Z (z): find e' and c', make the cost of e equal to c - g, replace in M edge e' 
with e, put e in a set BneVl ande' in Bold. Once this spanning tree of z is processed, we place the 
tuple < z, BneVl , Bald> on a Stack (for the future inspection in the second phase). Repeat this while 
there are tripies with positive gain. For later analysis, we define ba to be the cost of M at this point, 
continue the process with quadrupies and get b4 as the cost of M, and so on till all k-tuples being 
proeessed. 

Se1ection Phase. We initialize D = M. Then we repeatedly pop< z, BneVl , Bold > !rom the 
Stack, and insert Bald to D. If BneVl $;MST(D), then the correspondig minimum i-tree T(z) is 
placed in a List, otherwise we remove all edges of BneVl !rom D. 

All i-trees, i = 3, ... , k, !rom List with the rest of MST-edges form the output Steiner tree of 
BRk. Its length is at most 

~ b'- l - b. ~ bo b1c 
b2 - L...J . 1 = L...J '(' ) + -k-' .=a ' - .=2 ' , - 1 - 1 

It is easy to see that b. $ t., i = 2,3, .... Therefore, BRk has the following upper bound on the 
output cost: 

1c 1c-l 
" t'- l - to "t. t1c t2 - L...J. = L...J . . + --. • =a ,- 1 .=2 * -1) k - 1 

(1) 
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3 Combined algorithm 

Berman/Ramaiyer's heuristic tries to find tuples of terminals with the largest possible total gain. 
But every time it accepts a k-tree, it also accepts all its Steiner points. This may increase the cost of 
the cheapest solution achievable at the current step. The main idea of our heuristic is to minimize 
this possible increase. 

Let T be a k-tree and V(T) be its Steiner point set. A forest T' C T is called spannmg if for any 
11 E V(T), there is a path in T' connecting 11 with S. The cost oft he minimum spanning forest in T 
is called a 10ss of T and denoted by I(T). The value g'(T) = g(T) - I(T) will be called a relative gain 
of T. A relative gain of a k-tuple z is the maximum relative gain of a k-tree on terminals of z. 

Below we describe a combined algoritbm CA(l,k), which uses the notion introduced. It consists 
of two applications of Berman/Ramayer algorithm with papameters land k. 

At first we apply the algorithm BRl but for the relative gain function instead of the usual gain 
function. (We denote this algorithm BRl-). Actually, we use only the evaluation and selection 
phases of BRl. As an output we obtain a List of selected i-trees, i = 3, ... , l. Then we extend the 
initial terminal set S adding all Steiner points of i-trees !rom List. Now we apply usual BRk to the 
modified terminal set S'. 

It is easy to see that the minimum spanning forest for any k-tree can be found exactly by the 
greedy algorithm. So finding the k-trees of maximum gain or maximum relative gain for a k-tuple 
has the same time complexity. Moreover, any k-tuple with positive relative gain has a positive usual 
gain. This implies 

Remark 1 The combined algorithm C(l,k) can be implemented in the same order 0/ runtime as 
BRm, where m =max{l, k}. 

In the rest of the paper we derive performance ratios claimed for the combined algorithm. 
Let tk and tk denote the output Mst-cost of the evaluation phase of BRkapplied to the terminal 

set S and S', respectively. Note that bound (I) for BRk can be represented in the following way: 

10 10-1 10-1 
" t'-1 - t, t2 2: t, tk 2: t2 + t, t2 + tk 

t2 - L..J = - + + -- = + --. i-I 2 . (i - I)i k - I . (i - I)i k - I 
0=3 0=3 0=3 

(2) 

Denote by G and L the total gain and loss of all trees of List, respectively. Also, G' = G - L. 
Note, that t; = t2 - G, t~ :5 tt + Land, therefore, t; + t~ ~ t2 + t, - G'. Let t~ = t2 - G'. Thus, (2) 
implies the following performance guarantee for the combined algorithm: 

(3) 

Note, that bound (3) for the combined algorithm beats bound (2) for usual BRk by the value 
G' /2. Since G' might be zero, we will estimate the value t~ directly. 

Denote by t' the output Mst-cost of the evaluation phase of BRi-, e.g. t 2 = t2' Then, similarly 
to the usual BRl, we obtain 

, t'-1 t' 
t' < t 2 

- " -
2_ L..J i-I ,=3 

The last inequality shows that we need to bound t'. Note that a relative gain of any tripie cannot 
be positive, i.e. t 3 = t 2 = t2' Moreover, 

(4) 

since 3G' = t 2 - t 4 for this case. 
To bound the values oft', i 2:: 4, we use the following property ofthe output MST ofthe evaluation 

phase of BRi· : 

(i) for any i-tuple T, g(T):5 I(T). 

Of course, abound for t' depends on metric space. The next two sections deaIs with the cases of 
the Steiner tree problem in graphs and rectilinear metric. We will prove that t4 is at most I; and i 
for NSP and RSP, respectively. 

3 



11 

Figure 1: A full component 

4 The Steiner Trees in Graphs 

Theorem 1 Given an instance of the Steiner tree problem in graphs, if for any 4-tree T, g(T):::; 
'eT), then the minimum spanning tree cost is at most 15/8 of the minimal Steiner tree cost. 

Proof. We may prove Theorem for each full Steiner component separately. We transform such a 
component to the form of the complete binary tree by replicating certain vertices, so that copies of 
the same vertex are connected with zero-cost edges. Note that all terminals are leaves of this tree. 

Let k be the depth of this tree. We label its vertices with words !rom B" = {o: E B" : 10: 1 :::; k}, 
where B = {O, I}. Let p be the root and 0: have children 0:0, 0:1. The set of terminals with the 
common anchestor 0: is denoted by 0: also. 

Some more denotations: Let s = s(p) denote the cost of the Steiner minimal tree, t = t(p) be the 
cost of MST for the whole terminal set, Si(O:) = LIßI=i,bEB d(o:ß, o:ßb) , H = H(p) = so(p) + Sl(p), 
P(o:) denote the cost ofthe cheapest path !rom 0: to S. 

An average patb cost is defined to be 

~*-1 *-i () *-1 
P = Pcp) = LJi=l 2* Si P = 2: Tisi(P) 

2 i=l 

This cost has the following two obvious properties: 

P(o:) ~ P(o:) (5) 

2P(0:) = so(o:) + P(o:O) + P(o:l). (6) 

Since P ~ Jf, the following inequality is slightly stronger than Theorem. 

- s-H 
t :::; 2s - 2P - -8 - (7) 

We will prove (7) by induction on k. Indeed, for k :::; 2, (7) is trivially true. Let (7) be true for 
all trees of depth at most k. We will prove it for a tree of depth k + 1 (Fig. 1). 

Further assume that st{O) ~ sl(1). 
Now we partition s(p) into five subtrees: 

s(p) = 2: 8(0:) + D, 
aE.A. 
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where a E A = {OOO, 001, 01,1} and D = so(p) + so(O) + so(OO) (thick lines on Fig. 1). 
These five parts correspond to some spanning tree: 

t(p) ~ ~ t(a) + t', (8) 
aEA 

where t' is the cost of three cheapest edges connecting four MST for the sets a E A. By induction, 
inequality (7) holds for every a E A: 

- s(a) - H(a) 
t(a) ~ 2s(a) - 2P(a) - 8 (9) 

Substituting (9) into (8) we obtain 

t(p) ~ 2(s - D) _ 2 ~ P(a) _ ~ s(a) ~ H(a) +t' 
aEA aEA 

and, therefore, 

- s - H , - s - H " - " s(a) - H(a) t(p) - (2s - 2P - -8-) ~ t + 2P + -8- - 2D - 2 L..t P(a) - L..t 8 . 
aEA aEA 

To prove (7) it is sufficient to show that the RRS of the last inequality is nonpositive, which is 
equivalent to the following inequality 

~ (s - H - ~ (s(a) - H(a») ~ 2D + 2 ~ P(a) - (t' + 2P) 
aEA aEA 

(10) 

Claim 1 The RHS 0/ (10) is at least P(O) - d(O, 00). 

Proof. Consider an arbitrary 4-tree q with Steiner points 0 and 00 and four terminals achievable 
from 000, 001, 01 and 1, respectively. Note, that t' ~ t(q), where t(q) = d(q) + g(q) is the cost 
of three corresponding longest edges on paths connecting treminals of q. Let terminals of q be the 
nearest to the corresponding vertices of A. Since g(q) ~ l(q) ~ d(O, 00) + P(OO), we obtain 

t' ~ D + ~ P(a) + d(O, 00) + P(OO) 
aEA 

Now Claim can be proved straitforward using properties (5) and (6) ofthe average path cost: 

2D + 2 ~ P(a) - (t' + 2P) ~ 
aEA 

2D + 2 ~ P(a) - (D + ~ P(a) + d(O, 00) + P(OO) + so(p) + P(O) + P(l» ~ 
aEA aEA 

so(O) + so(OO) + P(OOO) + P(001) + P(Ol) - P(OO) - P(O) - d(O, 00) ~ P(O) - d(O, 00) 0 

The LRS of(10) equals to 

1 1 
8(D + ~ H(a) - H) = 8(Sl(1) + so(01) + sl(Ol) + so(OO) + Sl(OO) + S2(00» 

aEA 

By Claim and our assumption of so(OO) + so(Ol) = 81(0) ~ sl(1), (10) follows from the following 
inequality 

1 -
8(2so(01) + 81(01) + 2so(00) + Sl(OO) + S2(00» ~ P(O) - d(O, 00) (11) 

Similarly, the corresponding partition of the Steiner minimal tree induced by the 4-tree with 
Steiner points 0 and 01 implies that it is sufficient to prove 
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Figure 2: Two types of a full component 

1 -
8(2s0 (00) + Sl (00) + 2so(01) + sd01) + s2(01)) $ P(O) - d(O, 01) (12) 

Thus to prove (7) we may show that one of inequalities (11) or (12) is true. This follows !rom 
the fact that their sum is true. Indeed, summing (11) and (12) we obtain 

1 - --
8(4so(00) + 2S1(00) + S2(00) + 4so(01) + 2S1(01) + s2(01)) $ 2P(0) - so(O) = P(OO) + P(Ol), 

which trivially follows !rom the definition of the average path cost. 0 

Theorem 1, bounds (3) and (4) imply 

Theorem 2 The output cost of CA{4,k) is bounded with the 'Value which is smaller than bound (2) 
for BRie by 

T2 - T4 1 
6 = 48 s, 

where T2 and T4 are the upper bounds for t 2 and t4, s is the cost of the optimal Steiner tree.O 

Bounds for t3 and t4 imply 

Corollary 1 The performance ratio of CA{4,4) is at most ~!: ~ 1.757. 0 

5 Approximating Rectilinear Steiner Trees 

Hwang [8] proved that there is aSteiner minimum tree where every full component has one of the 
shapes shown in Fig. 2. It was suggested in [3] some partition of a full component into so called 
Steiner segments. Below we breifly describe this useful technique. 

Let 41, ••• , 4A; and bo = 0, b1 , ••• , bA; be the lengths of horizontal and verticallines of a full Steiner 
component F with terminals so, ... , SA;. The horizontallines form its spine. Moreover, in case (i) 
bA; < bA;-2 holds. In case (ü) assume that bA; = O. Consider the sequences bo, bt, b3, ••• , b2i+l, ... and 
bo, b2, ••• , b2i , •••• Let 

(13) 

be the sequence of 10cal minima of these sequences, i.e. bh(j)-2 ~ bh(j) < bh(j)+2' If h(p) = k - 1, 
we exclude the member bh(p) !rom (13). For the case of h(j + 1) = h(j) + 1, (j = 1, ••• ,p - 1), we 
exclude arbitrarily either bh(j +1) or bh(j). So, we get h(j + 1) - h(j) ~ 3. The elements ofthe refined 
sequence (13) are called hooks. Further we assume that a full Steiner tree nontrivially contains at 
least 4 terminals (k ~ 4). ASteiner segment K is apart ofa full Steiner component bounded by two 
sequential hook terminals. So two neighbouring Steiner segments have a common hook. K contains 
the two furthest terminals below and above the spine called top and bottom, respectively. 

Now we present the main result of this section. 

Theorem 3 Gi'Ven an instance of the Steiner tree problem in rectilinear plane, if for any 4-tree 1', 

g(T) $l(T), then the minimum spanning tree cost is at most 7/5 ofthe minimal Steiner tree cost. 
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Figure 3: The partition of the Steiner segment 

Proof. Further assume that some terminals are connected with short edges such that g(T) ~ Z(T) 
for any 4-tree T. It is sufficient to prove Theorem for a full Steiner component F with a terminal set 
Set. Let F = U:=oKi be a partition of F into Steiner segments. Then d(F) = L:~=o d(Ki) - L:~~11 hi, 
where hö are hooks. Consider some Steiner segment K = Ki of F with terminal set S = Si, hooks 
hl = hi and hr = ~+1 and the length s = d(K) . Similarly to Section 4, denote th.e MST-Iength for 
a terminal set X by t(X) . We intend to prove that 

2 7 
t(S) -s ~ Ss- 10(hZ+hr) (14) 

This inequality yields Theorem, since then 

/c 7 /c 7 /c-l 

t(Set) ~ L: t(Sd ~ s L: d(Ki) - 10 L:(hö + hö+1) ~ 
i=O i=O i=O 

7 /c /c-l 7 
s(L: d(K;) - L: h;) = sd(F) 

i=O ;=1 

Let top of K be to the left of its OOttom. We partition Sinto three parts S = Lu C UR, where L 
is the set of terminals !rom the left hook till the first before top, C contains all terminals !rom the 
the first before top till the next after bottom and R contains ones !rom the next after bottom till 
the right hook. Similarly, we partition F into three corresponding parts 

s = Zelt + center + right, 

where center contains all edges spanning C, and lelt ud right consists of the rest of the Stein er 
segment to the left and right of center (Fig. 3). Denote by vI and tlr the lengths of two vertical 
lines which bound center !rom the left and the right. Note that K should contain center, but lelt 
and right might be empty. 

We have two cases depending on the size of center. 
Gase 1. Let bottom be the next to top (Fig. 4). It was noticed in [3] that 

Lemma 1 There are two trees (Fig . 4(i)) Top (dashed lines) and Bot (dotteded lines) spanning 
terminals 01 K with a total length 

d(Top) + d(Bot) = 3s - 2(hl + hr) - Rest; 

Rest sums the lengths 01 the thin drawn Stein er tree Zines. 

Lemma 1 says that t $ ~s - R;.t - (hZ + hr). It is easy to see that (14) holds if Rest is big 
enough, i.e. Rest ~ i - Hhl + hr). So further assume that 

s 3 
Rest ~ S - S(hl + hr). (15) 
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Figure 4: top besides bottom: the whole segment (i) and its center (ü) 

We may span Rand L with the alternative chains (Fig. 3), therefore, 

t(L) + t(R) ::; lelt + right + Rest - z, 

where z is the horisontal edge length of Rest. 

vr 

(16) 

Let q be the quadruple with terminals from C (Fig. 4 (ü». Theorem assumes that g(q) = 
t(C) - center is at most l(q). But the loss of q is at most z plus the length of the shortest among 
four dotted lines (we may shiIt the eentral edge up or down till dashed lines). Therefore, 

(C) l( ) 
center - (2vl + 2vr + z) s - Rest - (hl + hr) 

t - center< q < z + < z + ----"-----~ 
- - 4 - 4 

(17) 

Thus, we ean prove (14) using (15), (16), (17): 

s - Rest - (hl + hr) 
t(5) - s = (t(C) - center) + (t(L) -lelt + t(R) - right) ::; z + 4 + Rest - z ::; 

.! + ~Rest _hl + hr < .! + ~(.! _ 3hl + hr) _ hl + hr = ~s _ 2-(hl + hr) 
4 4 4 - 4 4 5 5 4 5 10 

Case 2. Let two terminals lie between top and bottom. Now center eontains two quadrupies 
ql and q2 with eentral edges zl and z2 (Fig. 5). We eonstruet 5 spanning trees for the set C. 
Three trees eontain some eonnection of the quadruple ql and pairs of edges spanning the last two 
terminals: thick dotted, dashed, and solid lines, respeetively. Theorem assumes that the eonnection 
ofthe quadruple ql cannot be longer the length of ql (Steiner edges in the dark region) plus the loss 
of ql. Denote by light the length of Steiner edges out of the dark region. Then 

Tl- center::; d(ql) + l(ql) + light + a + h3 - center = l(ql) + a + h3 ::; zl + c + a + h3 

T2 - center::; l(ql) + h2 + d::; hl + b + h2 + d 

T3 - center::; l(ql) + 2a + z2 ::; zl + b + 2a + z2 

The last pair of trees is symmetrie to Tl and T2 

T4 - center::; l(q2) + b + hl ::; z2 + d + b + hl 

T5 - center::; l(q2) + h2 + c ::; h3 + a + h2 + c 

Summing all inequalities we obtain 

5t( C) - 5center ::; 2center - 6( vi + vr) 

8 
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Figure 5: 2 terminals between top and bottom 
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Figure 6: The short (i) and the long (ii) right 
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If there are more terminals between top and bottom then center contains several quadruples qi. 
Three necessary spanning trees contain connections of odd qudruples and two contain connections 
of even quadrupies. Similarly, we obtain (18) using the Theorem assumption that such connections 
are no longer than d(qi) + l(qi). 

To prove (14), we will show that 

5(t(L) + t(R)) - 5(lelt + right) ~ 2(lelt + right) - 4(hl + hr) + 6('V1 + 'Vr), 

which means for the right side of the Steiner segment 

5t(R) - 5right ~ 2right - 4hr + 6'Vr (19) 

If 'Vr is the right hook ('Vr = hr), then (19) is trivial, since t(R) = right = O. 
If the hook is the next after 'Vr (Fig. 6(i)), then we use the solid line five times and two times 

replace the edge ofT1 and T2 (the thick dashed line) with the dotted line. In the laUer case we replace 
'Vr and hr with I, the horizontal edge length. Thus, we obtain 5t(R) - 5right ~ 5'Vr + 21 - 2hr ~ 
2right - 4hr + 6'Vr. 

For a nontrivial R we use the following 5 trees (Fig. 6(ii)) which contain: 
(1) thick solid and dotted lines. It doubles 'Vr and Steiner tree lines crossed by its dotted lines. 
(2-3) thick solid and dashed lines or the thin dashed line if the hook is above the spine (2 times). It 
doubles the Steiner tree lines crossed by its edges and saves the hook hr. 
(4-5) the alternative chain (Fig. 3) (2 times). It doubles all verticallines except 'Vr and hr. 

Thus, these trees double right - hr at most two times, 'Vr only once, and save hr two times. 0 
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Theorem 3, bounds (3) and (4), inequalities 3t2+4tS $ 98, t2+t4 $ ~B imply that the performance 
guarantee ofthe algorithm CA(4,4) can be bounded with the following value 

~t2 + lt4 + ta t2 + t4 it2 + ~t4 + ta t2 + t4 
6 +-3-$ · 6 +-3-= 

3t2 + 4ts t2 + t4 t4 3 5 7 19 
24 + -3- + 24 $ 8"8 + '68 + 120 B = 15 8 

Theorem 4 The performance g'Uarantee of CA(4,4) is at most ~~ ~ 1.2667. 0 
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