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Preface

This text contains the lecture notes for the course Ausgew�ahlte Kapitel aus Datenstruk�
turen� which was given by the author at the Universit�at des Saarlandes during the winter
semester �������	 The course was intended for �rd��th year students having some basic
knowledge in the 
eld of algorithm design	 The course was accompanied by �Ubungen	
The �Ubungsaufgaben are given in Chapter �	 The author thanks Stefan Denne for typing
the manuscript and for producing the 
gures	
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Chapter �

Skip Lists� a randomized dictionary

We consider the dictionary problem� Given a set S of real numbers store them in a data
structure such that the following three operations can be performed e
ciently�

Search�x
� Given a real number x� report the maximal element of S � f��g that is at
most equal to x	 �By introducing ��� this operation is always well�de
ned	�

Insert�x
� Given a real number x� insert it into the data structure	 �Hence� we set
S �� S � fxg	�

Delete�x
� Given a real number x� delete it from the data structure	 �Hence� we set
S �� S n fxg	�

The standard data structure for this problem is the balanced binary search tree	 It
solves the dictionary problem with O�log n� worst�case time for each of the three opera�
tions and it uses O�n� space	 �Here� n denotes the size of the current set S	� Well known
classes of balanced binary search trees are AVL�trees� BB����trees and red�black�trees	
Since these trees solve the dictionary problem optimally� we may think that the story
ends here	 However� anyone who has implemented a speci
c class of balanced trees will
have noticed that especially the update algorithms are not trivial to code at all	 Usually�
the tree is rebalanced by means of rotations and double rotations	 Moreover� each of these
has a left and a right version	 That is� we have to distinguish between di�erent cases and�
therefore have to be careful	

This leads to the question whether there is an optimal data structure for the dictionary
problem that is easy to implement and that is also fast in practice	 In this chapter� we will
introduce such a data structure� the Skip List 	 These were invented by William Pugh	
Skip lists use randomization� i	e	 � they use the outcomes of random coin �ips	 As we will
see� we �the programmer� do not have to worry about balancing� the coin �ips take care
that the data structure is balanced� at least with very high probability	

The rest of this chapter is organized as follows	 We 
rst de
ne skip lists and give the
algorithms that work on them	 Then we give the intuition why skip lists are e
cient	
Finally� we give complete proofs of the complexity	 Our proofs will use various notions
from probability theory	 These notions are recalled in Section �	�	

�



� �� Skip Lists� a randomized dictionary

��� Skip Lists

Throughout this chapter� we assume that we can generate random independent bits	 Each
bit can be generated in unit time	 Put it di�erently� we have a fair coin	 If we �ip it�
then we obtain a one �heads� with probability ��� and a zero �tails� with probability ���	
The outcome of a coin �ip is independent of previous outcomes	 By �ipping the coin
repeatedly� we obtain a sequence of independent bits	

Let S be a set of n real numbers	 We construct a sequence S�� S�� � � �� of sets� as
follows�

�	 S� � S	

�	 Let i � � and assume that Si has been constructed already	 Flip the coin indepen�
dently for each element of Si	 Then Si�� is the set of all elements of Si for which
the coin �ip produced a one	

�	 The construction stops as soon as a set Si is empty	

Let h be the number of sets that are constructed	 Then

� � Sh � Sh�� � � � � � S� � S� � S�

The Skip List for S consists of the following�

�	 For each � � i � h� the elements of Si �f��g are stored in a sorted linked list Li	

�	 For each � � i � h� and each element x in Li� there is a pointer from x to its
occurrence in Li��	

Here is an example	 Suppose S � f�� �� �� �� �� �� ��� ��� ��� ��� ��� ��g	 Flipping coins
might lead to the sets S� � S� S� � f�� �� �� �� ��� ��� ��g� S� � f�� �� ��� ��g� S� � f��g
and S� � �	 The corresponding skip list is shown in Figure �	�	
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Figure �	�� A skip list	



���� Skip Lists �

Observation ����� The construction of the sets Si� i � �� de�nes a probability dis�
tribution on skip lists� In our example� the probability that the skip list of Figure ���
is obtained is exactly the probability that the coin �ipping process gives the sets S� �
f�� �� �� �� ��� ��� ��g� S� � f�� �� ��� ��g� S� � f��g and S� � ��

We can search in a skip list as follows	 Let x 	 IR	 Recall that we want to 
nd
the maximal element of S � f � �g that is at most equal to x	 The search algorithm
successively locates x in the lists Lh� Lh��� � � �� L��

�	 Let yh be the only element of Lh	

�	 For i � h� h� �� � � � � ��

�a� Follow the pointer from yi in Li to its occurrence in Li��	

�b� Starting in yi� walk to the right along Li��� until an element is encountered that
is larger than x or the end of Li�� is reached	 Let yi�� be the last encountered
element in Li�� that is at most equal to x	

�	 Output y�	

See Figure �	� for an example	 There� we search for the number �	 The search path
consists of the dashed arrows	 The y�variables have values y� � ��� y� � ��� y� � ��
y� � �� y� � �	
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Figure �	�� Searching for �	

Exercise ����� Convince yourself that the search algorithm is correct	

Before we turn to the insert and delete algorithms� we give an alternative construction
of the sets Si�

�	 For each element x in S� �ip the coin until a zero comes up	

�	 For i � �� Si is the set of all elements in S for which we �ipped the coin at least i
times	



� �� Skip Lists� a randomized dictionary

Note that the sets Si� i � �� completely determine the skip list	 The alternative construc�
tion also de
nes a probability distribution on skip lists	

Exercise ����� Convince yourself that the two given constructions of the sets Si de
ne
the same probability distribution on skip lists	 �Hint� In both constructions� the coin �ips
are independent	�

The alternative construction immediately suggests the following insert algorithm	 Let
x 	 IR be the element to be inserted	

�	 Run the search algorithm on x	 Let yh� yh��� � � � � y� be the elements of Lh� Lh��� � � � � L��
respectively� that are computed by this algorithm	 If x � y�� then x 	 S and nothing
has to be done	 So assume that x 
� y�	

�	 Flip the coin until a zero comes up	 Let l be the number of coin �ips	

�	 For each i� � � i � min�l� h�� add x to the list Li� immediately after yi	

�	 If l � h� then create new lists Lh��� Lh��� � � �� Ll�� storing the sets Sh�� � f ��g�
Sh���f��g� � � � � Sl���f��g� where Sh�� � Sh�� � � � �� Sl � fxg and Sl�� � �	

�	 For each � � i � l� give x in Li a pointer to its occurrence in Li��	

�	 If l � h� then for each h � � � i � l� �� give �� in Li a pointer to its occurrence
in Li��	

�	 Set h �� max�h� l � ��	

In Figure �	�� the skip list that arises by inserting �� into that of Figure �	� is depicted	
The dashed pointers are the new ones	
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Figure �	�� Inserting ��	 The 
rst �ip gives a one� the second a zero	 Hence� �� is added
to the 
rst two levels	

The delete algorithm is similar	 Suppose we want to delete element x	

�	 Run the search element on x	 Let yh� yh��� � � � � y� be the elements of Lh� Lh��� � � � � L��
respectively� that are computed by this algorithm	 If x 
� y�� then x �	 S and nothing
has to be done	 So assume that x � y�	



���� Why Skip Lists are e�cient� the intuition �

�	 For each � � i � h such that x � yi� delete yi from the list Li	

�	 For i � h� h� �� � � � � if Li�� only stores ��� delete the list Li and set h �� h� �	

Exercise ����� Delete �� from the skip list of Figure �	�	

This concludes the description of the algorithms for searching and updating a skip list	
Note that the word �balance� does not occur anywhere� as mentioned already� our coin
takes care of this� we do not have to worry about it	

In the next sections� we will analyze the complexity of the skip list	 Of course� we
have to say what we mean by that	 First consider the size of the data structure	 It
is clear that this size depends on the results of the coin �ips that are made during the
construction of the skip list	 There is no worst�case upper bound on the size	 Given a set
S of real numbers� the size of a skip list for S is a random variable	 We are interested in
the expected value of this variable	

The running time of the search algorithm is also a random variable	 The expected
search time is the expected value of this variable	 The expectation is computed by aver�
aging over all possible outcomes of the coin �ips	

Exercise ����� Suppose an adversary generates search and update operations	 He wants
to construct a sequence of operations that take much time to process	 Assume the ad�
versary knows the outcomes of our coin �ips	 Show that he can generate a sequence of
update operations� followed by one search operation� such that this 
nal operation takes
linear time	

As a 
nal remark� we have given two constructions of the sets Si� i � �	 Both con�
structions de
ne the same probability distribution on skip lists	 Therefore� if we analyze
the skip list� we can use properties of both constructions	 As we will see� depending on
what we want to prove� the properties of one construction may be more appropriate than
those of the other one	

��� Why Skip Lists are e�cient� the intuition

We start with considering the number of sets Si� i	e	� the value of h	 According to the

rst construction� we get the set Si�� by taking all elements of Si for which the coin �ip
produced a one	 Hence� we expect that the size of Si�� is about half the size of Si	 From
this� we expect that the value of h is O�log n�	

Let x be any element of S	 How many sets Si contain x According to the second
construction� we �ip a coin until a zero comes up	 We expect that this happens after a few
�ips	 Hence� we expect that x is contained in only few sets Si	 That is� each element of S
is expected to be stored in only few lists and� therefore� the size of the skip list is O�n�	
This also follows from the fact that jSi��j � jSij�� �at least� we expect this�� because this
implies that the size of the skip list is proportional to

P
i jSij �

P
i n��

i � O�n�	
Next let us consider the costs of searching for a real number x	 Let Ci be the number

of elements in the list Li that are inspected by the algorithm	 Then the search cost is
proportional to

Ph
i��Ci	 Consider a 
xed i	 What value of Ci do we expect Recall that yi

and yi�� are the largest elements of Li and Li�� that are at most equal to x� respectively	



� �� Skip Lists� a randomized dictionary

Let y�i�� be the successor of yi�� in Li��	 �We assume for simplicity that yi�� is not the
maximal element of Li��	� Note that y�i�� � x	 Moreover� Ci is equal to the number of
elements in Li that are to the right of yi�� and to the left of the successor of yi �including
this successor�	 See Figure �	�	 The dashed arrows form a part of the search path	

Li � � �

Li	� � � �

yi	�

yi	�

yi

y�
i	�

Figure �	�� The search algorithm at level i	

Assume that Ci is large� say ���	 Our 
rst construction algorithm implies that all coin
�ips for the �� elements of Li that are to the right of yi�� and to the left of yi �including
yi� produced a zero	 Moreover� the coin �ip for yi�� produced a one	 But this is extremely
unlikely to happen� the probability is ��������	 Hence� we expect Ci to be small	 That
is� the search cost in the list Li is small	 Since we expect to have O�log n� such lists� the
entire search algorithm should take O�log n� time	 �Here� we multiply two expectations�
which is in general not allowed	 But remember that this section only gives intuition� not
real proofs	�

The costs of the insert and delete algorithms are proportional to the number of lists Li

plus the cost of the search algorithm	 Therefore� we also expect these costs to be O�log n�	
Note that in this section� we only gave the intuition why skip lists are expected to be

e
cient	 In Section �	�� we will give rigorous proofs	 First� in the next section� we recall
and develop some notions from probability theory	

��� Some notions from probability theory

We assume that the reader has some elementary knowledge about probability theory	 We
recall the basic notions	

Let U be a sample space	 The elements of U are called elementary events	 They can
be viewed as possible outcomes of an experiment	 An event is a subset of U 	 Two events
A and B are called mutually exclusive if A �B � �	

A probability distribution Pr on U is a function that maps events to real numbers such
that

�	 Pr�A� � � for any event A�

�	 Pr�U� � ��

�	 for any 
nite or countably in
nite sequence A�� A�� � � � of events that are pairwise
mutually exclusive� Pr�

S
iAi� �

P
i Pr�Ai�	



���� Some notions from probability theory �

The real number Pr�A� is the probability of event A	 Two events A and B are called
independent if Pr�A �B� � Pr�A� � Pr�B�	

Exercise ����� Prove the following statements�
��� The empty event � has probability Pr��� � �	
��� If A and B are events such that A � B� then Pr�A� � Pr�B�	
��� For any event A� Pr�U nA� � �� Pr�A�	
��� For events A and B� Pr�A�B� � Pr�A��Pr�B��Pr�A�B� � Pr�A��Pr�B�	

If A and B are events such that Pr�B� � �� then the conditional probability of event
A given that event B occurs is de
ned as

Pr�A j B� ��
Pr�A �B�

Pr�B�
�

Lemma ����� Let B�� B�� � � � be a �nite or countably in�nite sequence of events that are
pairwise mutually exclusive such that Pr�Bi� � � for all i and

P
i Pr�Bi� � �� Let A be

any event� Then�
Pr�A� �

X
i

Pr�A j Bi� � Pr�Bi��

Proof� Let B ��
S
iBi and B� �� U n B	 Since A � �A � B� � �A � B��� we have

Pr�A� � Pr�A � B� � Pr�A � B��	 It follows from our assumptions that Pr�B� � � and�
hence� Pr�B�� � �	 But then� since Pr�A �B�� � Pr�B��� we also have Pr�A � B�� � �	
Therefore�

Pr�A� � Pr�A � B�

� Pr�
�
i

�A �Bi��

�
X
i

Pr�A �Bi�

�
X
i

Pr�A j Bi� � Pr�Bi��

Why did we de
ne the notion of conditional probability One reason is the following�
In some applications� it is di
cult to compute Pr�A� directly	 Then we try to introduce
events Bi� i � �� such that the conditions of Lemma �	�	� are satis
ed� and Pr�A j Bi� is
easy to compute	 Using Lemma �	�	�� we then get a way to compute Pr�a�	

Let U be a 
nite or countably in
nite sample space	 A random variable X is a
function from U to IR	 If x is a real number� then the event �X � x� is de
ned as
fu 	 U � X�u� � xg	 This implies that

Pr�X � x� �
X

u�U 	X
u��x

Pr�fug��

Similarly� if X and Y are random variables� then for any x� y 	 IR�

Pr�X � x 
 Y � y� �
X

u�U 	X
u��x�Y 
u��y

Pr�fug��
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Exercise ����� Convince yourself that

Pr�X � x� �
X

u�U 	X
u��x

Pr�fug��

Exercise ����� Prove that Pr�X � x� �
P

y Pr�X � x
Y � y�	 �Hint� Use Lemma �	�	�	
Convince yourself that the summation has a 
nite or countably in
nite number of terms	�

The random variables X and Y are called independent if

Pr�X � x 
 Y � y� � Pr�X � x� � Pr�Y � y�

for all x and y	
A sequence �Xi�i�� of random variables is called pairwise independent if for all � �

i � j and all x and y�

Pr�Xi � x 
Xj � y� � Pr�Xi � x� � Pr�Xj � y��

The sequence is called mutually independent� if for all n � �� � � i� � i� � � � � � in� and
x�� x�� � � � � xn�

Pr�
n�
j��

�Xij � xj�� �
nY
j��

Pr�Xij � xj��

See also �Ubungsaufgabe �	�	
Given random variables X and Y � we can de
ne new ones� such as X � Y � X � Y � eX�

etc	
The expected value of a random variable X is de
ned as

E�X� ��
X
x

x � Pr�X � x��

provided the series converges absolutely	

Exercise ����� Let X and Y be random variables and let a be a real number	
��� Prove that E�X � Y � � E�X� � E�Y �	
��� Prove that E�a �X� � a � E�X�	
��� Assume that X and Y are independent	 Prove that E�X � Y � � E�X� � E�Y �	

Exercise ����	 In this exercise� we introduce and analyze the geometric distribution	 Let
� � p � � be a real number	 We have a coin that comes up zero with probability p and
one with probability �� p	 We �ip this coin independently until a zero comes up	 Let X
be the random variable whose value is the number of times we �ip the coin	
��� Prove that Pr�X � k� � p���p�k�� for any k � �	 Any probability distribution

that satis
es this equation is called a geometric distribution	
��� Prove that E�X� � ��p	

The following indentity turns out to be useful	

Lemma ����� Let X be a random variable that takes values in f�� �� �� � � � g� Then�

E�X� �
�X
k��

Pr�X � k��



���� Some notions from probability theory �

Proof� Since Pr�X � k� � Pr�X � k � �� � Pr�X � k�� we get

E�X� �
�X
k��

k � �Pr�X � k�� Pr�X � k � ���

�
�X
k��

k � Pr�X � k��
�X
k��

�k � �� � Pr�X � k�

�
�X
k��

Pr�X � k��

If we want to compute the expected value of X according to the de
nition� then we
have to know the probability that X has value k	 In many applications� it is much easier
to compute the probability that X is at least equal to k	 In such situations� Lemma �	�	�
should be applied	

Exercise ����� Let X and Y be random variables such that X�u� � Y �u� for all u 	
U 	
��� Prove that Pr�X � t� � Pr�Y � t� for any t 	 IR	
��� Assume that X and Y take values in f������� � �g	 Prove that E�X� � E�Y �	

Lemma ����� Let X be a random variable and let f be any function� Then

E�f�X�� �
X
x

f�x� � Pr�X � x��

Proof� Assume that X takes on the values x�� x�� x�� � � � Let y�� y�� y�� � � � be the elements
of the set ff�xi� � i � �g	 Hence� the yi�s are distinct	 Then� by de
nition�

E�f�x�� �
�X
i��

yi � Pr�f�X� � yi��

Since
Pr�f�x� � yi� �

X
k	f
xk��yi

Pr�X � xk��

it follows that

E�f�X�� �
�X
i��

X
k	f
xk��yi

f�xk� � Pr�X � xk��

Since
S�
i�� fk � f�xk� � yig � f�� �� �� � � � g and the set on the left�hand side is a union of

pairwise disjoint sets� we get

E�f�X�� �
�X
j��

f�xj� � Pr�X � xj��

This proves the lemma	
Let X and Y be random variables	 The conditional expected value of X given that

Y � y� is de
ned as

E�X j Y � y� ��
X
x

x � Pr�X � x j Y � y��
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Lemma �����

E�X� �
X
y

E�X j Y � y� � Pr�Y � y��

Proof� We know for Lemma �	�	� that

Pr�X � x� �
X
y

Pr�X � x j Y � y� � Pr�Y � y��

Therefore�

E�X� �
X
x

x � Pr�X � x�

�
X
x

x
X
y

Pr�X � x j Y � y� � Pr�Y � y�

�
X
y

Pr�Y � y�
X
x

x � Pr�X � x j Y � y�

�
X
y

Pr�Y � y� � E�X j Y � y��

��� Why Skip Lists are e�cient� the proofs

After our excursion to probability theory we are ready to analyze skip lists rigorously	
The size of a skip list and the running times of the search and update algorithms are
random variables	 We will prove that their expected values are bounded by O�n� and
O�log n�� respectively	

Recall that h denotes the number of sets Si� i � �� that result from our probabilistic
construction	 �Note that Sh � ��	 We give an upper bound on the expected value of h	

Let x be an element of S and let h�x� be the number of sets Si that contain x	 Our
second construction implies that h�x� is distributed according to a geometric distribution
with p � ���	 �See Exercise �	�	�	� Therefore� Pr�h�x� � k� � �����k and E�h�x�� � �	
That is� element x is expected to be contained only in S� and S�	

Clearly� h � � � maxfh�x� � x 	 Sg	 From E�h�x�� � � for any x 	 S� however� we
cannot conclude that the expected value of h is three	 �See also �Ubungsaufgabe �	�	�

We estimate E�h� as follows	 Again� consider a 
xed element x of S	 It follows from
the second construction that for any k � �� h�x� � k if and only if the 
rst k � � coin
�ips for x produced a one	 That is� Pr�h�x� � k� � �����k��	 It is clear that h � k � � if
and only if there is an x 	 S such that h�x� � k	 Therefore �see Exercise �	�	��

Pr�h � k � �� � n � Pr�h�x� � k� �
n

�k��
�

This estimate does not make sense for k � �� log n	 For these values of k� we can use
the trivial upper bound Pr�h�k � �� � �	 Applying Lemma �	�	�� we get

E�h� �
�X
k��

Pr�h � k � �� �
dlogneX
k��

Pr�h � k � �� �
�X

k���dlogne

Pr�h � k � ���
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The 
rst summation on the right hand side is at most equal to � � dlog ne	 The second
summation is bounded from above by

�X
k���dlogne

n

�k��
� n�����dlog ne�� � n�����log n�� � ��

Hence we have proved that E�h� � � � dlog ne	
The expected size of a skip list can easily be computed� Let M denote the total size

of the sets S�� S�� � � �� Sh	 Then M �
P

x�S h�x� and� by the linearity of expectation �see
Exercise �	�	���

E�M� �
X
x�S

E�h�x�� �
X
x�S

� � �n�

If M � denotes the total number of nodes in the skip list� then M � is equal to M �� the
number of nodes in the lists Li n f��g� � � i � h� plus h �� the number of occurrences
of ���	
Hence�

E�M �� � E�M � h� � E�M� � E�h� � �n � � � dlog ne�
Since each node of the skip list contains a constant amount of information �an element of
S � f ��g and at most two pointers�� this proves that its expected size is bounded by
O�n�	

Next� we estimate the expected search cost	 Let x be a real number	 As in Section
�	�� let Ci denote the number of elements in the list Li that are inspected by the algo�
rithm when searching for x	 �We do not count the element of Li in which the algorithm
starts walking to the right	 Hence� Ci counts comparisons between x and elements of S	
Moreover� Ch � �	� The search cost is proportional to

Ph
i���� � Ci�	

We have to be careful� It is not clear that the expected value of this summation is
equal to

PE
h�
i�� E�� � Ci�	 The reason is that h itself is a random variable� The linearity

of expectation was only proved for the summation of a �xed number of random variables	
�See also �Ubungsaufgaben �	� and �	�	�

The trick is to take a 
xed integer A and analyze the search costs up to level A and
above level A separately	 �Later� we choose A such that we get a good upper bound	�

So let A be a positive integer	 We 
rst estimate the expected search cost above level
A� i	e	� the total cost in the lists LA��� LA��� � � �� Lh	 Since this cost is at most equal to
the total size of these lists� its expected value is at most equal to the expected value of
MA ��

Ph
i�A�� jLij	 �See Exercise �	�	�	�

How do we estimate the expected value of MA We 
rst note that the lists Li�
A � � � i � h� form a skip list for the set SA��	 That is� these lists have the same
properties as a skip list that is built only for SA��	 Here� the notion of conditional
expected value comes in	 According to Lemma �	�	�� we have

E�MA� �
nX

k��

E�MA j jSA��j � k� � Pr�jSA��j � k��

Note that E�MA j jSA��j � k� is the expected size of a skip list for a set of k elements	
We have seen already that this expected value is O�k�	

So it remains to compute Pr�jSA��j � k�	 Since jSA��j � k if and only if out of the n
elements of S exactly k �reach� level A� �� we have

Pr�jSA��j � k� �

�
n

k

�
�����Ak

�
�� �����A

�n�k
�
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Setting p � �����A� we infer that the expected value of MA is proportional to

nX
k��

k �
�
n

k

�
pk�� � p�n�k �

nX
k��

n �
�
n� �

k � �

�
pk��� p�n�k

� n � p
n��X
k��

�
n � �

k

�
pk�� � p�n���k

� n � p �p� �� � p��n��

� n � p�
Putting everything together� we have proved that the expected search cost above level

A is bounded by O�n��A�	
Next we estimate the expected search cost in the lists L�� L�� � � �� LA	 Recall that

Ci is the number of elements of Li that are inspected when searching for x	 How do
we compute E�Ci� Again� we use conditional expectations� Let li�x� be the number of
elements in Li that are at most equal to x	 Then

E�Ci� �
nX

k��

E�Ci j li�x� � k� � Pr�li�x� � k��

Assume that li�x� � k	 Also� assume that there is an element Li that is larger than x	
Then� Ci � j if and only if the largest j � � elements of Li that are at most equal to x
do not appear in Li��� but the element that immediately precedes these j � � elements
does appear in Li��	 �Note that the latter element may be ��� which always appears in
Li��	� Hence�

Pr�Ci � j j li�x� � k� � �����j�� � � � j � k�

This inequality also holds if x is at least equal to the maximal element of Li	 From this
we obtain

E�Ci j li�x� � k� �
kX

j��

j � Pr�Ci � j j li�x� � k�

�
kX

j��

j��j��

� ��

This� in turn� implies that

E�Ci� �
nX

k��

� � Pr�li�x� � k� � ��

It follows that the expected search cost up to level A is proportional to

E�
AX
i��

�� � Ci�� �
AX
i��

�� � E�Ci�� � �A�

Summarizing� we have proved that the expected time to search for element x is
bounded by �again� we use the linearity of expectation�

O�n��A �A��
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This upper bound holds for any A	 We take A � dlog ne and infer that the expected
search time in a skip list is O�log n�	 �In Section �	�� we give an alternative proof of this	
See Remark �	�	�	�

Finally� we consider the expected update cost	 It is easy to see that the expected
time to insert or delete an element x in a skip list is proportional to the expected cost of
searching for x	 Hence� the expected update time is O�log n�	

There is an important remark to be made here� An insertion �resp	 deletion� of an
element x results in a skip list that has the same probability distribution as a skip list for
S�fxg �resp	 S nfxg� that is built by one of our constructions	 Hence� after a sequence of
updates has been performed� the data structure still �behaves� as if it were just built	 We
analyzed skip lists under the assumption that they were built by one of our constructions	
As a result� the space and time bounds we derived also hold for skip lists that have been
changed by a sequence of updates	

The next theorem summarizes the results of this section	

Theorem ����� Let S be a set of n real numbers and let SL be a skip list for S�

�� The expected number of levels in SL is O�log n��

	� The expected size of SL is O�n��


� For any x 	 IR� it takes O�log n� expected time to search for x in SL�

�� We can insert and delete an element in SL in O�log n� expected time�

��� Tail estimates� Cherno	 bounds

In the previous section� we proved bounds for the expected size� search time and update
time of a skip list	 In this section� we consider so�called tail estimates	 That is� we
estimate the probability that e	g	 the actual search time deviates signi
cantly from its
expected value	 We saw that the expected search time is bounded by O�log n�	 Assume
for simplicity that the constant in this bound is equal to one	 Then we want to estimate
the probability that the actual search time is at least t � log n	 This probability can be
bounded by Markov�s inequality�

Lemma ��	�� Let X be a random variable that takes non�negative values� and let � be
the expected value of X� Then for any t � ��

Pr�X � t�� � ��t�

Proof� Let s � t�	 Then

� �
X
x

x � Pr�X � x�

� X
x�s

x � Pr�X � x�

� X
x�s

s � Pr�X � x�

� s � Pr�X � s��



�� �� Skip Lists� a randomized dictionary

Hence� the probability that the actual search time is at least t � log n is less than or
equal to ��t	 This is not very impressive� The probability that the search time is more
than ��� times its expected value is at most �����	 If this upper bound were tight� then
among ��� searches we would expect that one takes ��� times as long as an average search	

In this section� we prove so�called Cherno
 bounds� which will be used in Section �	�
to give much better tail estimates	 By using more properties of the random variables that
determine the search time� we will prove that the probability that it exceeds t � logn is less
than or equal to n��t���� for t � ��	 �For t � ��� the bound is slightly worse	� Hence� in a
skip list for ���� elements� the probability that the search time is more than ��� times its
expected value is at most �����	 In practice� this means that this event will never occur	

Markov�s inequality holds for any non�negative random variable	 The Cherno� tech�
nique applies to random variables X that can be written as a sum

Pn
i��Xi of mutually

independent random variables Xi	 In such cases� much better bounds can be obtained for
Pr�X � t��	

So let X�� X�� � � �� Xn be a sequence of n mutually independent random variables and
let X �

Pn
i��Xi	 For any real number �� the random variables e�X�� e�X�� � � � � e�Xn are

also mutually independent	 Therefore�

E�e�X� � E�e�
X������Xn�� �
nY
i��

E�e�Xi��

Now let s � � and � � �	 Since X � s if and only if e�X � e�s� we have Pr�X � s� �
Pr�e�X � e�s�	 By applying Markov�s inequality to the non�negative random variable
e�X� we get

Pr�X � s� � Pr�e�X � e�s� � e��s � E�e�X��

This yields

Pr�X � s� � e��s
nY
i��

E�e�Xi� for s � � and � � �	 ��	��

This is the basic inequality	 To estimate Pr�X � s�� we need bounds on E�e�Xi�	 Of
course� these bounds depend on the probability distribution of Xi	

We illustrate the technique with the geometric distribution	 �See Exercise �	�	�	� We
are given a coin that comes up with zero or one� each with probability ���	 We �ip
this coin independently until a one comes up	 Let T be the number of �ips	 Then T is
distributed according to a geometric distribution� Pr�T � k� � �����k for k � �� and
E�T � � �	

Now assume that we �ip the coin until we have obtained a one exactly n times	 We
denote the number of �ips by Tn	 �Hence� T � T�	� This random variable Tn is distributed
according to a negative binomial distribution	 Our goal is to estimate Pr�Tn � s�	

To apply the Cherno� technique� we must express Tn as a sum of mutually independent
random variables	 For � � i � n� let Xi denote the number of �ips between the �i� ���st
and the i�th ones	 �We exclude the �ip that gives the �i� ���st one� but we include the
�ip that gives the i�th one	� Then� Tn �

Pn
i��Xi� each Xi is distributed according to a

geometric distribution� and X�� X�� � � �� Xn are mutually independent	
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The expected value of Tn follows from the linearity of expectation�

E�Tn� �
nX
i��

E�Xi� �
nX
i��

� � �n�

Hence Markov�s inequality gives Pr�Tn � �� � t�n� � ���� � t�	 As we will see� the
Cherno� technique gives a much better upper bound	

Let � � � � ln �	 Then� applying Lemma �	�	� with f�x� � e�x� we get

E�e�Xi� �
�X
k��

e�k � Pr�Xi � k� �
�X
k��

�e����k �
e�

�� e�
�

Now we apply the basic inequality ��	�� with s � �� � t�n� where t � �	 We get

Pr�Tn � �� � t�n� � e��
��t�n
�

e�

�� e�

�n
�

�
e��
��t�

�� e�

�n
�

This inequality holds for any � � � � ln �	 Hence� we now choose � such that the
term on the right�hand side is minimal	 It turns out that this happens for � � ln��� t

��t
�	

We 
nd that

Pr�Tn � �� � t�n� �
�
� �

t

�

	n �
�� t

� � �t

	
��t�n

�

Since � � x � e�x for all x� we have

�
�� t

� � �t

	��t
�
�
e�t�
���t�

���t
� e�t���

Moreover� � � t�� � et�� for t � �	 This proves that for t � �

Pr�Tn � �� � t�n� � etn�� � e�tn�� � e�tn���

�Compare this with the bound obtained from Markov�s inequality!�

Theorem ��	�� Let X�� X�� � � �� Xn be mutually independent random variables and as�
sume that each Xi is distributed according to a geometric distribution� Let Tn � X� �
X� � � � ��Xn� Then E�Tn� � �n and for any t � ��

Pr�Tn � �� � t�n� � e�tn���

Corollary ��	�� Let c � � be a constant� and let n be a positive integer� Then for any
s � ��

Pr�Tdc�lnne � s � c � lnn� � n�
s���c���

��
 Tail estimates for skip lists

We use the results of the previous section to prove tail estimates for the size� search time
and update time of a skip list	

Consider a skip list for a set S of n elements	 Let M denote the total size of the
sets S�� S�� � � �� Sh� and let M � denote the total number of nodes of the skip list	 Then�
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M � � M � h	 We have seen that the expected size of the skip list is equal to E�M �� �
E�M � h� � �n � � � dlog ne	 We are interested in the probability that M � is at least
equal to �� � t�n	

Clearly� if M � � �� � t�n� then h � tn�� or M � �� � t���n	 As a result�

Pr�M � � �� � t�n� � Pr�h � tn��� � Pr�M � �� � t���n��

In Section �	�� we already estimated the 
rst probability on the right�hand side	 There�
we proved that Pr�h � k � �� � n��k�� for k � �	 Hence� for t � � and n su
ciently
large�

Pr�h � tn��� � n

�tn����
� elnn�� ln��
tn��� ln� � e�tn�
�

It remains to bound Pr�M � �� � t���n�	 As in Section �	�� let h�x� be the number
of sets Si� � � i � h� that contain x	 Then� the random variables h�x�� x 	 S� are
mutually independent and each one is distributed according to a geometric distribution	
Since M �

P
x�S h�x�� Theorem �	�	� implies that for t � ��

Pr�M � �� � t���n� � e�tn�
�

This proves that for t � ��

Pr�M � � �� � t�n� � � � e�tn�
�

i	e	� it is extremely unlikely that the size of a skip list deviates much from its expected
value	

The analysis of the search time is more complicated	 Let x 	 IR and let c � � be a
constant	 We want to estimate the probability that searching for x takes more than c � lnn
steps	 We analyze this cost by considering the costs up to level dc � lnne and above level
dc � lnne separately	

Let Ta denote the number of nodes traversed in the levels ��dc�ln ne� ��dc�ln ne� � � � � h�
when searching for x	 We proved in Section �	� that the expected value of Ta is bounded
by O�n��dc�ln ne� � O�n��c�ln ��	 Then� Markov�s inequality shows that

Pr�Ta � �� � E�Ta� � O�n��c�ln ���

Let Tb be the number of nodes traversed in the levels �� �� � � � � dc � lnne� when searching
for x	 In order to apply Theorem �	�	�� we have to express Tb as a sum of mutually
independent random variables� each one distributed according to a geometric distribution	
In order to do this� we give a new construction of our skip list	

Let S� � S � hs�� � s�� � � � � � s�n�i� where n� � n	 Moreover� let l��x� be the
number of elements of S� that are at most equal to x	

Let i � � and assume we have constructed Si � hsi� � si� � � � � � sinii� with ni � jSij	
Let li�x� � jfy 	 Si � y � xgj	 We do the following�

Stage �� We �ip our coin ni � li�x� times	

Stage �� We �ip the coin li�x� times	

Stage �� If the previous li�x� �ips only produced zeros� then we �ip the coin until we get
a one	
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Let fi be the total number of �ips made during these stages� and denote the outcomes by
Fi�� Fi�� � � � � Fifi	 Note that fi � ni	 We proceed as follows�

�	 We de
ne Si�� �� fsij � � � j � ni 
 Fij � �g� ni�� � jSi��j and li���x� �� fy 	
Si�� � y � xg	

�	 We de
ne the random variable Xi as the number of �ips after Stage � until the 
rst
one comes up	

�	 We de
ne the random variable Ci as the minimum of � � li�x� and Xi	

The construction stops as soon as an empty set Si�� has been constructed	 As usual� we
denote the number of sets by h	 Hence� we now have sets

� � Sh � Sh�� � Sh�� � � � � � S� � S� � S�

and random variables X�� X�� � � �� Xh�� and C�� C�� � � �� Ch��	
This construction de
nes a probability distribution on skip lists� which is the same

as that of our previous two constructions	 In fact� the new construction is the same as
our 
rst one� except that Stage � and the random variables Xi and Ci� i � �� have been
added	

Let us go back to the analysis of the search time	 For convenience� we de
ne Ci � � for
all i � h	 Recall that Tb is the number of nodes traversed in the levels �� �� � � � � dc � lnne	
We have

Tb �
dc�lnneX
i��

Ci�

That is� we have written Tb as a sum of random variables	 However� the variables
C�� C�� � � � � Ch�� are not mutually independent� It is easy to see that

Pr�Ci�� � �n�� 
 Ci � �n��� � ��

but
Pr�Ci�� � �n��� � Pr�Ci � �n��� 
� ��

Moreover� the Ci�s are not distributed according to a geometric distrbution� For j � li�x��
we have Pr�Ci � j� � �	

On the other hand� it is easy to see that Ci � Xi for all � � i � h� �	 Moreover� the
random variables Xi� � � i � h��� are mutually independent and each one is distributed
according to a geometric distribution	 For i � h� let Xi also denote a random variable
distributed according to a geometric distribution	 Since

Tb �
dc�lnneX
i��

Ci �
dc�lnneX
i��

Xi�

we infer

Pr�Tb � s � c � lnn� � Pr�
dc�lnneX
i��

Xi � s � c � lnn��

Corollary �	�	� immediately gives

Pr�Tb � s � c � lnn� � n�
s���c�� � n�sc�
�
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for c � � and s � �	
Now we can give the tail estimate for the search time 	 Let T denote the total number

of nodes traversed when searching for x	 Then T � Ta�Tb	 Moreover� if T � �� �c � lnn
then Ta � � or Tb � �c � lnn	 Hence�

Pr�T � � � �c � lnn� � Pr�Ta � �� � Pr�Tb � �c � lnn��
Our results for the two probabilities on the right�hand side imply that for c � ��

Pr�T � � � �c � lnn� � O�n��c�ln � � n��c�
��

Taking c � t��� ln ��� where t � � ln � � ����� we get

Pr�T � � � t log n� � O�n��t�� � n�t�

 ln���

� O�n��t�� � n��t�����

Note that this estimate only makes sense for t � �	 This completes the analysis of the
search time	 Since the update time is proportional to the search time� similar bounds can
be proved for it	 We summarize our result	

Theorem ����� Let S be a set of n real numbers and let SL be a skip list for S�

�� For each t � �� the probability that SL consists of at least �� � t�n nodes is at most
� � e�tn�
�

	� For each t � � and x 	 IR� the probability that a search in SL for x visits at least
� � t log n nodes is O�n��t�� � n��t�����


� There is a constant c such that for any su�ciently large t� the probability that an
insert or delete operation in SL visits at least t log n nodes is O�n�ct��

Remark ����� Consider again the random variables Ci and Xi	 We have seen that the
total number T of nodes visited when searching for x is equal to

T �
hX
i��

Ci �
hX
i��

Xi�

Therefore� the expected search time E�T � is at most equal to E�
Ph

i��Xi�	 �See Exercise
�	�	�	� The random variables h� X�� X�� � � �� Xh are mutually independent	 �Convince
yourself that this is true	� Therefore� by �Ubungsaufgabe �	��

E�T � � E�
hX
i��

Xi� � E�h� � E�X�� � �� � dlog ne� � � � O�log n��

This gives an alternative proof of the logarithmic expected search time	

��� Further reading

Skip lists were invented by Pugh in ����	 See ���� ��� ���	 Another randomized dictionary�
based on binary search trees� was introduced in ���� by Aragon and Seidel ���	

An introduction to probability theory can be found in the book by Cormen� Leiserson
and Rivest ���	 The standard book on this topic is Feller ���	 A comprehensive overview
of randomized algorithms and data structures� especially in computational geometry� is
the book by Mulmuley ����	



Chapter �

The Union�Find Problem

In this chapter� we consider the well�known Union�Find Problem�
Given a collection of n disjoint sets S�� S�� � � �� Sn� each containing one single element�

perform a sequence of operations of the following two types�

Union�A�B�C
� Combine the two disjoint sets A and B into a new set named C	

Find�x
� Compute the name of the �unique� set that contains x	

The sequence of operations is given on�line� i	e	� the next operation becomes available
if the current one has been processed	

��� An optimal amortized solution

The data structure consists of a collection of trees	 For each set A in the current collection
of sets� there is a tree with jAj nodes	 Each node in this tree stores one element of A	
Moreover� except for the root� each node contains a pointer to its parent	 With the root�
we store the name of the set and its size	 See Figure �	�	

Initialization� At the start of the sequence of operations� there are n trees	 For � � i �
n� the i�th tree consists of one node that stores the element of Si� the name of this set
and its size	

Now we can start with the operations�

Union� To process the operation Union�A�B�C�� we are given pointers to the roots rA
and rB of the trees that represent A and B� respectively	 In these roots� we read the sizes
of A and B	

�	 If jAj � jBj� then we merge both trees by making rA a child of rB� We give rA a
pointer to rB� and with rB we store the name C of the new set and its size� which
is jAj� jBj	

�	 If jBj � jAj� then we merge both trees by making rB a child of rA� We give rB a
pointer to rA� and with rA we store the name C of the new set and its size� which
is jAj� jBj	

��
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Figure �	�� Trees for the sets A � f�� �� �� �� �� ��� ��� ��� ��g and B �
f�� �� �� �� ��� ��� ��� ��g	

See Figure �	� for an example	

Find� To process the operation Find�x�� we are given a pointer to the node u containing
x	 We perform the following two steps	

�	 Starting in node u� we follow parent�pointers until we reach the root r of u�s tree	
In r� we read the name of the set that contains x	

�	 We again traverse the path from u to r	 Each node v 
� r on this path becomes a
child of r� We give v a new parent�pointer to r	

See Figure �	�	 The process of Step � is called path�compression	 Subsequent Find�
operations may pro
t from this	

In the next sections� we will analyze the complexity of these algorithms	 We will show
that any sequence of m Union� and Find�operations can be processed in an amount of
time that is almost linear inm�n	 It turns out that this is optimal in the pointer machine
model	

��� Ackermann�s function and its inverse

To analyze the algorithms of the previous section� we need to introduce an extremely
slowly growing function	 This function is the inverse of an extremely rapidly growing
function� which we de
ne 
rst	

We will use the following notation	 If f is a function and i is a non�negative integer�
then f 
i� denotes the i�th iterate of f 	 That is� f 
�� is the identity function and for i � ��
f 
i��� is de
ned by f 
i����x� � f�f 
i��x�� for all x	

For k � �� we de
ne the function Ak � IN �� IN recursively� as follows�
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Figure �	�� The result of Union�A�B�C� on the tree of Figure �	�	

�	 For all x 	 IN� A��x� �� x� �	

�	 For k � � and x 	 IN� Ak���x� �� A

x�
k �x�	

To get an idea of the behavior of these functions� we consider a few of them	 For x � ��
we have A���� � � and Ak����� � A


��
k ��� � � for k � �	 For x � �� we have Ak����� �

A

��
k ��� � Ak��� � � � � � A���� � �	 Let x � �	 Then A��x� � x� � and

A��x� � A

x�
� �x� � A��A


x���
� �x�� � A


x���
� �x� � �

� A��A

x���
� �x�� � � � A


x���
� �x� � ��

Continuing in this way� we get A��x� � �x	 For k � �� we get

A��x� � A

x�
� �x� � A��A


x���
� �x�� � � �A
x���

� �x�

� � �A��A

x���
� �x�� � �� �A
x���

� �x�

� � � � � �x � x � �x�

Next we consider A�	

A��x� � A

x�
� �x� � A��A


x���
� �x�� � �A


x���
� 
x��

which implies

A��x� � ��
��
�
�
�x


 �z �
x ��s

�
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Figure �	�� The result of Find���� on the tree of Figure �	�	

The function A� grows so fast that we only consider A�����

A���� � A

��
� ��� � A��A������

Since
A���� � A


��
� ��� � A��A����� � A���� � �����

we get

A���� � A������� � ��
��
�
�
�


 �z �
����

�

Exercise ����� Prove that for all k � � and y � x � ��
��� Ak�x� � x�
��� Ak�y� � Ak�x�	

Now we can de
ne our extremely rapidly growing function A � IN �� IN �

A�k� �� Ak��� for k � ��

This function is called Ackermann�s function	 The function we are actually interested in
is its inverse � � IN �� IN� de
ned by

��n� �� minfk � � � A�k� � ng�
We claim that for all practical applications� ��n� is at most �	 Indeed� let n be such

that ��n� � �	 Then A�k� � n for � � k � �	 In particular� n � A���	 We have seen�
however� that A��� � A���� is already a number beyond comprehension	

Exercise ����� Prove that � is well�de
ned	 That is� prove that for each n � �� there is
a k � � such that A�k� � n	 Also� prove that ��n� �� for n��	
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Remark ����� In the literature� several di�erent de
nitions of Ackermann�s function
appear	 All these functions grow at roughly the same rate	

At 
rst sight� the function � looks rather arti
cial	 In the next section� we will prove
that any sequence of m Union� and Find�operations� processed as in Section �	�� takes
O��m � n���n�� time	 It has been shown by Tarjan and La Poutr"e that this is optimal
on a pointer machine	 �This is a machine model having no random access	�

In fact� the function � appears in the analysis of many combinatorial an computational
problems	 As an example� consider a set of n line segments in the plane	 See Figure �	�	
These segments induce a partition of the plane into maximally connected regions� so�
called faces	 The complexity of a face is de
ned as the number of its edges	 Note that
one segment can contribute several edges to one face	 The maximal complexity of such a
face is bounded by O�n � ��n��	 Moreover� there is a constant c that for each n there are
n line segments whose induced partition contains a face of complexity at least c �n ���n�	
This shows that the function � appears in nature	 �Well� in Euclidean nature	�

Figure �	�� A face of complexity ��	

Exercise ����� Consider the partition of the plane induced by n lines	 Prove that each
face in this partition has complexity O�n�	
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��� Analysis of the Union
Find algorithm

As mentioned in the previous section� we will show that our algorithms of Section �	�
process any sequence of m Union� and Find�operations in O��m� n���n�� time	 In order
to prove this� we need to introduce the notion of rank	

����� The rank of a node

Let 	 be any sequence of m Union� and Find�operations	 Assume that we process this
sequence in two ways	 Once� we use the algorithms of Section �	�	 In the other way�
we also use these algoritms� but without Step � of the Find�algorithm	 We say that we
process 	 with and without path compression� respectively	

Observation ����� At any moment during the processing of 	�

�� the contents of the trees are the same with or without path compression�

	� the roots of the trees are the same with or without path compression�


� a node u becomes a descendant of v with path compression if and only if it does
without path compression� With path compression� however� u may at some later
point become a non�descendant of v�

Let Tt�u� denote the subtree rooted a u at time t in the processing of 	 without path
compression	 We de
ne the rank of a node u as

rank�u� �� � � height�Tm�u���

where height�T � denotes the height or length of a longest path in T 	

Observation ����� Without path compression�

�� as long as node u does not have a parent� the height of Tt�u� can still increase�

	� once u becomes a child of another node� the tree rooted at u becomes �xed�


� the height of a tree can never decrease�

Lemma ����� With or without path compression� if u ever becomes a descendant of v�
then

rank�u� � rank�v��

Proof� We know from Observation �	�	� that u becomes a descendant of v with path
compression if and only if it does without path compression	

Assume that u becomes a descendant of v at time t	 It is clear that height�Tt�u�� �
height�Tt�v��	 �Recall that Tt��� is a tree during the processing of 	 without path com�
pression	� By Observation �	�	�� we have height�Ts�u�� � height�Tt�u�� for all s � t	
Moreover� by Observation �	�	� height�Ts�v�� � height�Tt�v�� for all s � t	 It follows that
height�Ts�u�� � height�Ts�v�� for all s � t	 The de
nition of rank immediately implies
that rank�u� � rank�v�	
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Lemma ����� For all nodes u and any time t�

jTt�u�j � �height
Tt
u���

Proof� The proof is by induction on t	 For t � �� the claim is true� because jT��u�j �
jfugj � � and height�T��u�� � �	 Let t � � and assume the claim holds at time t	
Consider the �t� ���st operation of 		 Let u be any node	

If height�Tt���u�� � height�Tt�u��� then the claim is true at time t��� because jTt�u�j �
jTt���u�j	

Otherwise� we have height�Tt���u�� � height�Tt�u��	 Then� the �i � ���st oper�
ation must be a Union�operation� and during this operation� a tree Tt�v� is merged
into Tt�u�� making v a child of u in Tt���u�	 Then height�Tt�v�� � height�Tt���v�� �
height�Tt���u�� � �	 By the induction hypothesis� we have jTt�v�j � �height
Tt
v��	 More�
over� since we always merge smaller trees into larger ones� jTt�u�j � jTt�v�j	 Therefore�

jTt���u�j � jTt�u�j� jTt�v�j
� �jTt�v�j
� ���height

Tt
v��

� �height
Tt	�
u���

This completes the proof	

Lemma ����� For any node u� rank�u� � blognc� ��

Proof� Since jTm�u�j � n� we get from Lemma �	�	��

n � jTm�u�j � �height
Tm
u�� � �rank
u����

Hence� rank�u��� � logn	 Since rank�u� is an integer� it follows that rank�u��� � blognc	

Lemma ����� For any interger r � ��

jfu � rank�u� � rgj � n��r���

Proof� If u and v are nodes such that rank�u� � rank�v�� then by Lemma �	�	�� Tm�u�
and Tm�v� are disjoint	 Moreover� by Lemma �	�	�� if rank�u� � r� then jTm�u�� � �r��	
Therefore�

n � X
u	rank
u��r

jTm�u�j

� X
u	rank
u��r

�r��

� jfu � rank�u� � rgj � �r���

Now we de
ne a function 
 which maps non�root nodes u to integers 
�u�	 We process
the sequence 	 with path compression	 Recall that rank�u� is an integer that is inde�
pendent of time	 However� the parent parent�u� of u can change with time� and so can
rank�parent�u��	
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Exercise ����� Prove that the value rank�parent�u�� can only increase	 �Hint� use
Lemma �	�	�	�

The function 
 is de
ned as follows�


�u� �� maxfk � � � rank�parent�u�� � Ak�rank�u��g�

Note that the value 
�u� depends on time	

Lemma ����	 Let n � �� For any non�root node u�

�� 
�u� is well�de�ned�

	� 
�u� can never decrease with time�


� � � 
�u� � ��n�� ��

Proof� We know from Lemma �	�	� that

rank�parent�u�� � rank�u� � � � A��rank�u���

Hence the set fk � � � rank�parent�u�� � Ak�rank�u��g is non�empty	
Let k � ��n� and assume that rank�parent�u�� � Ak�rank�u��	 By Lemma �	�	�� we

have rank�parent�u�� � blognc� �	 Hence

n � blognc� � � rank�parent�u�� � Ak�rank�u���

Since rank�u� � � and since the function Ak is non�decreasing �see Exercise �	�	��� we get

n � Ak��� � A�k��

But� since Ackermann�s function is also non�decreasing� we have

A��� � A��� � A��� � � � � � A�k� � n�

Then the de
nition of the function � implies that ��n� � k	 This is a contradiction	
We have proved that rank�parent�u�� � Ak�rank�u�� for all k � ��n�	 As a result 
�u�

is well�de
ned and satis
es � � 
�u� � ��n���	 Exercise �	�	� implies that 
�u� can only
increase	

����� The analysis

We now prove the upper bound on the total time to process the sequence 	 of m Union�
and Find�operations with path compression	

Each Union�operation takes O��� time	 Hence� the total time for all Union�operations
is bounded by O�m�	

It remains to consider the Find�operations	 The operation Find�a� takes time propor�
tional to the length of the path from the node u containing a to the root v of u�s tree	
This path is traversed twice� once to 
nd v and once for the path compression	 We spend
constant time� say one time unit� per node along this path	

Let x be any node on the path from u to v
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�	 If x has an ancestor y such that 
�y� � 
�x�� then we charge the time unit of x to
node x itself	

�	 If x does not have such an ancestor� then we charge the time unit of x to the
Find�operation	

The total time for the Find�operations is proportional to the total number of time
units that are charged by us	 We count the time units that are charged to nodes and to
Find�operations separately	

First consider an operation Find�a�	 How many time units are charged to this opera�
tion Let u be the node containing a and let v be the root of u�s tree	 Let x be any node
on the path from u to v and assume we charge the time unit of x to this Find�operation	
Then� for all ancestors y of x� we have 
�y� 
� 
�x�	 Hence� if 
�x� � k� then x is the
highest node on the path from u to v whose 
����value is k	 That is� there is only one node
on this path with 
����value k whose time unit is charged to the current Find�operation	
By Lemma �	�	�� the function 
 can take ��n� possible values	 Hence� at most ��n� time
units are charged to this operation	

This proves that we charge at most m � ��n� time units to all Find�operations	
Now consider a node x	 How many time units are charged to x over the entire com�

putation If we charge one time unit to x at time t� then x must have an ancestor y such
that 
�y� � 
�x�	 Let k � 
�x�	 Then at time t�

rank�parent�x�� � Ak�rank�x���

and
rank�parent�y�� � Ak�rank�y���

Suppose that i � � and
rank�parent�x�� � A


i�
k �rank�x���

Let v be the root of x�s tree at time t	 Note that y 
� v	 We know from Lemma �	�	� that
rank�v� � rank�parent�y�� and rank�y� � rank�parent�x��	 Recall that the function Ak

is non�decreasing	 �See Exercise �	�	�	� It follows that at time t�

rank�v� � rank�parent�y��

� Ak�rank�y��

� Ak�rank�parent�x���

� Ak�A

i�
k �rank�x���

� A

i���
k �rank�x���

Since v is the parent of x at time t� �� we have at time t� ��

rank�parent�x�� � A

i���
k �rank�x���

This shows that if we charge a time unit to x for the i�th time� then

rank�parent�x�� � A

i�
k �rank�x��

at that moment	 �Exercise �	�	� is needed to prove this statement	� Therefore� after we
have charged rank�x� time units to x� we have

rank�parent�x�� � A

rank
x��
k �rank�x�� � Ak���rank�x��
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and

�x� � k � �

at that moment	 That is� after rank�x� charges against x� the value of 
�x� increases by
at least one	 Since 
�x� can increase only ��n� � � times �it never decreases!�� there can
be at most rank�x� � ��n� time units charged to x	

Now we are almost done	 By Lemma �	�	�� there are at most n��r�� nodes of rank r	
Hence� there are at most

r � ��n� � n

�r��
� n � ��n� � r

�r��

time units charged to nodes of rank r	 Summing over all values of r� we obtain the
following upper bound on the total number of time units that are charged to nodes�

�X
r��

n � ��n� � r

�r��
� n � ��n�

�X
i��

i� �

�i
� �n � n � ��n��

To summarize� we have shown that all Find�operations together take O��m� n���n��
time	

Theorem ����� The algorithms of Section 	�� process any sequence of m Union� and
Find�operations� starting with n singleton sets� in O��m� n���n�� time�

��� The single
operation complexity

Until now� we analyzed the complexity of an entire sequence of Union� and Find�operations	
That is� we were interested in the total running time for processing the sequence	 What
about the single�operation complexity 

Exercise ����� ��� Prove that the algorithms of Section �	� process each Union�operation
in O��� time and each Find�operation in O�log n� time	
��� Prove that the single�operation complexity of the algorithms of Section �	� is #�log n�	
That is� give a sequence of Union� and Find�operations such that at least one of them
takes #�log n� time	

This exercise shows that the algorithms of Section �	� have a single�operation com�
plexity of $�log n�	 In �Ubungsaufgabe �	�� a family of data structures is analyzed� For
each � � k � n� there is a data structure for the Union�Find problem that processes each
Union�operation and each Find�operation in O�k� and O�log n� log k� time� respectively	
Taking k � dlog n� log log ne� we get a single�operation complexity of O�log n� log log n�	
In this section� we prove that we cannot do better� Any algorithm �from a broad class�
for the Union�Find problem has #�log n� log log n� single�operation complexity	

First we de
ne the class of algorithms for which the lower bound holds	 Any algorithm
in this class uses linked data structures that can be viewed as graphs	 We assume that
these graphs are undirected	 Hence� edges can be traversed in both directions	 �A lower
bound for undirected graphs implies the same lower bound for directed graphs	 In an
implementation� we have directed graphs� because edges are implemented as pointers	�
The algorithm and its data structure should satisfy the following constraints�
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�	 To each element and to each set in the current partition� exactly one vertex is
associated that contains this element and the name of this set� respectively	

�	 The data structure consists of graphs� such that each graph corresponds to exactly
one set in the current partition	 Each such graph does not contain any edges to
vertices outside the graph	

�	 To process the operation Find�x�� the algorithm obtains the vertex containing x	
Starting in this vertex� the algorithm follows paths until it reaches the vertex that
stores the name of the current set containing x	

�	 To process a Union� and Find�operation� the algorithm may insert or delete any
edges� as long as Constraint � is satis
ed	

Exercise ����� Convince yourself that the algorithms of Section �	� and �Ubungsaufgabe �	�
can be implemented within this class	

In the rest of this section� we will prove the following result	

Theorem ����� Let A be any algorithm from the given class and let k be a positive
integer� If A processes each Union�operation in O�k� time� then the single�operation
complexity of a Find�operation is

#

�
log n

log k � log log n

�
�

Corollary ����� Any algorithm from the given class has #�log n� log log n� single opera�
tion complexity�

Exercise ����� Prove Corollary �	�	�	

How do we prove Theorem �	�	� Let A be any Union�Find algorithm from our class
that processes each Union�operation in O�k� time	 Let S�� S�� � � �� Sn be a collection of
n disjoint sets� each containing one single element	 We will de
ne a sequence of Union�
operations on this collection� followed by one Find�operation	 This Find�operation will
take #�log n��log k � log log n�� time	

How can we guarantee a lower bound on the time for a Find�operation Let A be a
set of size a in the current partition� and consider its graph G in the data structure	 If
each vertex of G has degree at most d� then there is an element x 	 A� such that the
shortest path from the vertex containing x to the vertex containing the name of A has
length #�log a� log d�	 �We will prove that later	� That is� the operation Find�x� takes
#�log a� log d� time	 Hence� to prove a good lower bound� we have to construct a set A
whose values of a and d are �large� and �small�� respectively	

Observation ����� During each Union�operation� algorithm A can insert at most c � k
edges into the data structure� for some constant c� We assume w�l�o�g� that c � ��

Now we can de
ne the sequence of Union�operations that �produce� an expensive
Find�operation	 First� we introduce some terminology	 The sequence consists of stages�
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�	 All Union�operations of stage i� � are processed before the 
rst one of stage i	

�	 Each Union�operation of stage i combines two disjoint sets of size �i�� into a set of
size �i	

If A is a set that is constructed during stage i� then Gi�A� denotes the graph in the data
structure corresponding to A immediately after all Union�operations of stage i have been
processed	

Initially there are n sets S�� S�� � � �� Sn of size one	 For each such set Sj� let G��Sj�
be the graph corresponding to this set	 Note that G��Sj� consists of two vertices� one
containing the name of Sj and one containing the element of it	 We say that S�� S�� � � �� Sn
have been constructed during stage �	

Let i � � and let

Xi�� �� fA � A has been constructed during
stage i � � and all vertices in
Gi���A� have degree at most � �
�i� ��k log ng	

Note that X� � fS�� S�� � � �� Sng	

Stage i� As long as Xi�� contains at least two sets� take and remove two sets A and B
from Xi�� and process the operation Union�A�B�C�	

Lemma ����� Let m � d�log n���e� We can perform at least m stages� and Xm 
� ��

Lemma ����� Let G be any graph with a vertices� and let d � �� Assume that each
vertex of G has degree at most d� Let r be any vertex of G� Then there is a vertex u in
G such that any path from u to r has length at least blog a� log dc�

Using these lemmas �whose proofs are given below�� we can prove Theorem �	�	�� Let
A 	 Xm and consider the graph Gm�A�	 Let r be the vertex of this graph that contains
the name of A	 This graph has at least n��� vertices� and each of them has degree at
most ��mk log n	 �By the de
nition of our class of algorithms� any path that starts in a
vertex of Gm�A� lies completely within this graph!� Therefore� by Lemma �	�	�� Gm�A�
contains a vertex u such that any path from u to r has length at least



log n���

log�� �mk log n�

�
� #

�
log n

log k � log log n

�
�

If x is the element that is stored in u� then the operation Find�x� takes #�log n��log k �
log log n�� time	

It remains to prove Lemmas �	�	� and �	�	�	

Proof of Lemma ������ Since jX�j � n � �� we can perform the 
rst stage	 Let i � �
and assume we have performed the 
rst i stages	 �Hence� Xi�� contains at least two
sets	� Since each set in Xi�� has size �i��� we have jXi��j � n��i��	 Hence� at most n��i

Union�operations have been processed during stage i	 In particular� at most kn��i edges
have been inserted into the data structure during this stage	



���� The single�operation complexity ��

Consider an operation Union�A�B�C� of stage i	 Since A�B 	 Xi��� each vertex in
Gi���A� and Gi���B� has degree at most � � �i � ��k log n	 Hence� if C �	 Xi� at least
k log n edges have been inserted into Gi�C� during stage i	 This proves that among all
sets that have been constructed during stage i� at most

kn��i

k log n
�

n

�i log n

do not belong to Xi	 Let Yi be the collection of all sets that have been constructed during
stage i	 Then jXi��j � �jYij or jXi��j � �� �jYij� depending on whether jXi��j is even or
odd� respectively	 Hence�

jXi��j � �

�
� jYij � jXij� jYi nXij � jXij� n

�i log n
�

which rewrites to

jXij � �

�
jXi��j � �

�
� n

�i log n
�

Since jX�j � n � �� we can perform stage � and� hence� X� exists	 In fact�

jX�j � n

�
� �

�
� n

� log n
� ��

hence� we can perform stage � and obtain a set X� of size

jX�j � n

�
� �

�
� n

� log n
� �

�
� n

� log n
�
n

�
� �

�
� �n

� log n
� ��

Continuing� we can perform stage i provided jXi��j � �	 In this case� we obtain a set Xi

of size

jXij � n

�i
� �i � �

�i
� in

�i log n
�

For i � m � d�log n���e� we get

jXmj � n

���
logn���
� �� � � �log n���

�
logn���
� n

log n

�
�

�
n��� � � � n���

log n
�

which is at least n����� � � for n su
ciently large	 Hence� we can perform m stages	
Since Xm contains at least two sets� it is non�empty	

Proof of Lemma ������ Let l � blog a� log dc	 Assume the lemma is false	 Then for
any vertex u� there is a path from u to r of length less than l	 We can as well consider
all paths that start in r	 Taking paths of length i� we can reach at most di vertices of G	
Hence� all paths of length less than l that start in r can reach at most

l��X
i��

di �
dl � �

d� �
� dl

vertices of G	 On the other hand� by our assumption� these paths visit all vertices of G	
Hence� dl � a� which implies l � log a� log d	 This is a contradiction	



�� �� The Union�Find Problem

Remark ����� The lower bound of Theorem �	�	� coincides with the upper bound of
�Ubungsaufgabe �	� if k � #��log n��� for some � � �	 For smaller values of k� there is
still a gap between the upper and lower bounds	 For example� for k � log log n� the upper
bound is O�log n� log log log n� and the lower bound is #�log n� log log n�	 Closing this
gap is an open problem	

��� Further reading

The Union�Find algorithm of Section �	� that uses path compression and merging smaller
into larger� is due to McIlroy and Morris	 They used this algorithm to construct minimum
spanning trees	 Theorem �	�	� was 
rst proved by Tarjan ����	 The proof given here is
much simpler than Tarjan�s original proof	 It appears in Kozen ����	

Lower bounds for the Union�Find problem have been proved by Tarjan ���� and La
Poutr"e ����	 Section �	� follows Blum ���	 �Ubungsaufgabe �	� is from Smid ����	

Good references are Tarjan and van Leeuwen ���� and the survey paper by Galil and
Italiano ���	



Chapter �

Range Trees and the Post�O�ce

Problem

This chapter discusses a problem from computational geometry�
Given a set S of n points in IRD preprocess them into a data structure such that for

any query point p 	 IRD� we can e
ciently 
nd a point p� 	 S that is nearest to p� i	e	�

d�p� p�� � minfd�p� q� � q 	 Sg�
Here� d�p� q� denotes the Euclidean distance between p and q�

d�p� q� �

�
DX
i��

�pi � qi�
�

����

�

This problem is known as the nearest neighbor searching problem or the post�o�ce
problem� Think of S as a set of post�o
ces	 Assume you are walking around	 Suddenly�
you 
nd a letter in your pocket which you want to send	 At that moment� you want to
know the post�o
ce that is closest to your current position	

In the planar case �D � ��� the problem can be solved optimally� i	e	� with O�log n�
search time and using O�n� space� by means of Voronoi diagrams and point location	 In
higher dimensions� however� the problem gets di
cult	 At this moment� the best results
either use a large amount of space �roughly nD��� or have a very high search time �roughly
n��f
D�� where f�D� goes to zero for increasing D�	

In the dynamic version of the problem� we want to maintain the data structure under
insertions and deletions of points	 At this moment� it is not known if the dynamic pla�
nar post�o
ce problem can be solved with polylogarithmic search time� polylogarithmic
update time� using O�n�log n�O
��� space	

In view of these negative results� it is natural to consider weaker versions of the post�
o
ce problem	 What happens to the complexity of the problem if we replace the Euclidean
metric by a simpler one De
ne the L��distance between the points p and q by

d��p� q� � maxfjpi � qij � � � i � Dg�
�The Euclidean distance is also called L��distance	� In the L��post�o�ce problem� we
want to 
nd a point p� 	 S that is closest to the query point p w	r	t	 the L��metric� i	e	�

d��p� p�� � minfd��p� q� � q 	 Sg�

��



�� �� Range Trees and the Post�O�ce Problem

We can also consider the following approximate L��post�o�ce problem� Let � � � be
a 
xed constant	 Instead of searching for the exact Euclidean neighbor p� of p� we are
satis
ed with a �� � ���approximate neighbor of p� i	e	� a point q 	 S such that

d��p� q� � �� � �� � d��p� p���

In this chapter� we will see that both these problems can be solved e
ciently� i	e	� with
polylogarithmic search and update times� using O�n�log n�O
��� space	

The data structure used is the range tree� one of the oldest data structures in compu�
tational geometry	 Range trees were invented for solving the so�called orthogonal range
searching problem	 �See �Ubungsaufgaben �	� and �	�	� We show that they can also be
used to solve the L��post�o
ce problem	

In the rest of this chapter� we restrict ourselves to the planar case	 For the general�
ization to higher dimensions� the reader is referred to the literature	

��� From the exact L�
problem to the approximate

L�
problem

Let S be a set of n points in the plane	 In this section� we show that any solution
for the L��post�o
ce problem can be transformed into a solution for the approximate
L��post�o
ce problem	

Let p 	 IR� be a query point� and let p� and p� be the Euclidean neighbor and L��
neighbor of p� respectively	 As a 
rst try let us take p� as an approximate L��neighbor of
p	 How large is the error That is� what is the largest value the quotient d��p� p���d��p� p��
can take 

Exercise ����� Prove that in the L��metric� a circle with radius one centered at p is an
axes�parallel square with sides of length two centered at p	

We can visualize the process of 
nding p� and p� as follows	 To 
nd p�� we grow a
circle centered at p until its boundary hits at a point of S	 This point is the Euclidean
neighbor p� of p	 Similarly� to 
nd p�� we grow an L��circle� which is an axes�parallel
square� centered at p until its boundary hits at a point	 This point is the L��neighbor
p� of p	

This observation allows us to bound the quotient d��p� p���d��p� p��	 Let 
 � d��p� p��
and consider the axes�parallel square C with sides of length �
 centered at p	 See Figure
�	�	 Note that p� lies on the boundary of C	 Since p� is the L��neighbor of p� it must lie
inside or on the boundary of C	 Hence� d��p� p�� � p

� �
� and equality occurs if and only
if p� coincides with one of the corners of C	 Similarly� d��p� p�� � 
� and equality occurs
if and only if p� coincides with the midpoint of one of the four sides of C	 It follows that

d��p� p
�� � p

� � 
 � p
� � d��p� p���

That is� p� is a
p
��approximate L��neighbor of p	 The error is maximal if and only

if p� is the midpoint of a side and p� is a corner of C	
Now consider the circle with center p and radius d��p� p��	 The point p� lies outside

or on the boundary of this circle	 Hence� p� must lie in the shaded region of Figure �	�	



���� From the L��problem to the approximate L��problem ��

p

p�

Figure �	�� p� lies on the boundary of the square centered at p having sides of length �
�
where 
 � d��p� p��	 The circle is centered at p and has radius d��p� p��	 The L��neighbor
p� lies in the shaded region	

We see from Figure �	� that the upper bound on the error depends on the angle
between the line segment pp� and the X�axis� The error can be maximal if and only if
this angle is zero	 On the other hand� if the angle is close to ���� the shaded region in
Figure �	� is very small� and the quotient d��p� p���d��p� p�� is close to one	 In fact� if
the angle is exactly ���� then p� and p� are equal	

Exercise ����� Let � be the angle between the segment pp� and the positive X�axis	
Assume that � � � � ���	 Prove that� d��p� p�� � p

�d��p� p�� cos� if � � ���� and
d��p� p�� � p

�d��p� p�� sin� if � � ���	

Here is the conclusion� The L��neighbor p� is a good approximation for the L��
neighbor p� if the angle between pp� and the positive X�axis is close to ���	 Of course�
in general� this angle will not be close to ���	 Nevertheless� we can use this approach
to 
nd a �� � ���approximate L��neighbor of p	 The idea is to maintain a number of
di�erent coordinate systems such that there is always at least one system in which the
angle between pp� and its X�axis is close to ���	

The details are as follows	 We assume that the �XY ��coordinate system is given	 Let
� � � � ���	 For � � i � ����� let Xi and Yi be the directed lines that make angles of i ��
with the positive X� and Y �axis� respectively	 Consider the �XiYi��coordinate systems�
� � i � ����	

Lemma ����� For each point q in the plane� there is an index i� such that the angle
between the line segment from the origin to q and the positive Xi�axis lies in between ���
and ��� � ��

Proof� Let 
q be the line segment from the origin to q� and let � be the angle between

q and the positive X�axis	 First assume that ��� � � � ��	 Let i � b�� � ������c
and let �i be the angle between 
q and the positive Xi�axis	 Then �i � � � i � � and
��� � �i � ��� � �	
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If � � � � ���� then we can take i � b����� � ����c	 In this case� �i � �� � i � �� �
and again ��� � �i � ��� � �	

For � � i � ����� let Si denote the set of points in S with coordinates in the �XiYi��
coordinate system	 Let p be a query point and let q
i� be an L��neighbor of p in Si�
� � i � ����	 Let q be the L��neighbor having minimal L��distance to p	

Lemma ����� q is a �� � ���approximate L��neighbor of p�

Proof� First note that the L��distance depends on the coordinate system	 Each �XiYi��
system has its own L��distance function	 The L��distance� however� is the same in all
these systems	 Let p� be the exact L��neighbor of p	 We have to show that d��p� q� �
�� � �� � d��p� p��	

By Lemma �	�	�� there is an index i such that the angle �i between the line segment
from the origin to the point p��p and the positive Xi�axis satis
es ��� � �i � ���� � �
���	 Note that �i is also the angle between the line segment from p to p� and the positive
Xi�axis	 Exercise �	�	� implies that

d��p� q

i�� � p

�d��p� p
�� sin �i

�
p
�d��p� p

�� sin���� � ��

� �cos �� sin ��d��p� p
���

where we used the formula sin�� � �� � sin� cos � � cos� sin�	 Since � � � � ���� we
have � � cos � � � and � � sin � � �	 Therefore�

d��p� q

i�� � �� � �� � d��p� p���

Now consider point q	 This point has minimalL��distance to p among all L��neighbors
q
j�� � � j � ����	 In particular� d��p� q� � d��p� q


i��	 This completes the proof	

Remark ����� We showed that d��p� q��d��p� p�� � � � �	 By a more careful anal�
ysis� it can be shown that in fact d��p� q��d��p� p�� � p

� cos���� � ����	 See also
�Ubungsaufgabe �	�	

We have proved that any solution for the exact L��post�o
ce problem can be used
to solve the approximate L��post�o
ce problem�

Theorem ����� Let � � � be a constant� The complexity of the planar ������approximate
L��post�o�ce problem is at most O����� times the complexity of the planar exact L��post�
o�ce problem�

In Section �	�� we will see how the L��post�o
ce problem can be solved using range
trees	 This data structure is introduced in the next section	

��� Range trees

Range trees are based on balanced binary search trees	 We use binary trees as leaf search
trees� Let V be a subset of IR � f ����g of size n	 We assume that V contains ��
and �	 A leaf search tree for V is a binary tree storing the elements of V in its leaves�
sorted from left to right	 Internal nodes contain information to guide searches	 That is�
each internal node u contains the values
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�	 maxl�u�� which is the maximal value stored in the left subtree of u� and

�	 minr�u�� which is the minimal value stored in the right subtree of u	

Exercise ����� ��� Prove that any leaf search tree for V consists of �n� � nodes	
��� Let x 	 IR	 Give an algorithm that 
nds the smallest element of V that is at least
equal to x	 Similarly� show how to 
nd the largest element of V that is at most equal to
x	

Clearly� the best performance is obtained if the binary tree is perfectly balanced� i	e	�
for each internal node u� the number of leaves in the left and right subtrees of u di�er by
at most one	 It is easy to see that such a tree has height O�log n�	

Exercise ����� Give two algorithms� one bottom�up and the other top�down� to con�
struct a perfectly balanced leaf search tree for V in O�n log n� time	 If the elements of V
are sorted already� the running time should be O�n�	

Exercise ����� Give an exact formula �a function of n� for the height of a perfectly
balanced leaf search tree for V 	

Now we can de
ne the range tree	 Let S be a set of n points in the plane	

Assumption ����� All x�coordinates of the points of S are distinct� and the same is true
for the y�coordinates of the points of S�

Hence� no two points of S lie on a horizontal or vertical line	 This assumption is made to
simplify the algorithm	 Later� we shall see how it can be removed	

De�nition ����� A range tree for S consists of the following�

�	 An x�tree �also called main tree�� which is a perfectly balanced leaf search tree for
the x�coordinates of the points of S and the arti
cial x�coordinates �� and �	

�	 Each node v of this tree contains a pointer to a y�tree �also called associated or
secondary structure�� Let Sv be the set of points of S whose x�coordinates are
stored in the subtree of v	 The y�tree of v is a perfectly balanced leaf search tree for
the y�coordinates of the points of Sv and the arti
cial y�coordinates �� and �	

See Figure �	� for a pictorial representation	 Note that Sv is a subset of S	 In
particular� if v is the rightmost leaf of the x�tree� then Sv � �� although v stores the
arti
cial x�coordinate �	

Of course� in an implementation� we store with each x� and y�coordinate �a pointer
to� the corresponding point of S	 Consider a node v of the x�tree	 Then we can search in
the set Sv for an x�coordinate as well as for a y�coordinate	 This makes range trees useful
for solving geometric problems	

Let p be a point in the plane	 Often we want to search �e	g	 with a y�coordinate or
a range of y�coordinates� in the set of all points of S that are on or to the right of the
vertical line through p	 Using the x�tree� we can decompose this set into O�log n� pairwise
disjoint subsets� as follows	 Search in the x�tree for the smallest x�coordinate that is at
least equal to the x�coordinate of p	 During this search� each time we move from a node
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v
S	yv

S	xv

Figure �	�� A range tree	 The subtree of v stores the x�coordinates of the points of Sv in
sorted order its leaves	 The y�tree of v stores the y�coordinates of these points� and the
values �� and �� in sorted order in its leaves	

v to its left son� add the right son of v to an initially empty set M 	 The leaf in which
the search ends is also added to M 	 See Figures �	� and �	�	 In Lemma �	�	� below� we
will show that fq 	 S � qx � pxg �

S
u�M Su	 Hence� we indeed decomposed the set of all

points of S that are to the right of p into O�log n� subsets	 If we want to search in this
set� then we can search in each set Su� u 	M � separately	

Lemma ����� Consider the set M of nodes of the x�tree that are computed by a call to
the procedure decompose�p�� Then

fq 	 S � qx � pxg �
�
u�M

Su�

and the right�hand side is a union of pairwise disjoint sets� The set M consists of O�log n�
nodes�

Proof� Let v be the leaf in which the procedure decompose�p� ends� and let r be the
point whose x�coordinate is stored in v	 �We assume that v is not the rightmost leaf of
the x�tree	 In that case� the lemma is true	� Then rx � px	 All leaves in the subtree
of any node u 	 M n fvg are to the right of v	 Hence� the x�coordinates stored in these
leaves are at least equal to px	 This proves that

S
u�M Su � fq 	 S � qx � pxg	

To prove the converse� let q be a point of S such that qx � px	 Let l be the leaf that
contains qx	 Then l � v� or l is to the right of v	 If l � v� then q 	 S

u�M Su� because
v 	M 	 Assume l 
� v	 Let w be the lowest common ancestor of v and l	 Then v is in the
left subtree of w� l is in the right subtree of w� w is on the search path to px� and in w
this path moves to the left son of w	 Therefore� the right son w� of w is contained in M 	
Since qx is stored in the subtree of w�� we have q 	 Su�M Su	

Next we prove that the sets Su� u 	M � are pairwise disjoint	 Let u and u� be distinct
nodes of M 	 First note that u is not contained in the subtree of u�� and u� is not contained
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procedure decompose�p� �� p � �px� py� is a point in the plane ��
begin

M �� ��
v �� root of the x�tree�
while v 
� leaf
do if maxl�v� � px

then v �� right son of v
else M �� M � fright son of vg�

v �� left son of v
�

od�
M �� M � fvg

end

Figure �	�� Partitioning all points of S that are to the right of p into O�log n� subsets	

v�

v�

v�

v�

Figure �	�� The search for px ends in the leaf v�	 We have M � fv�� v�� v�� v�g	
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in the subtree of u	 Let w be the lowest common ancestor of u and u�	 Then� u and u�

are contained in di�erent subtrees of w	 This proves that Su � Su� � �	
Since each node on the search path �delivers� at most one node to the setM � it follows

that this set has size O�log n�	
Let us analyze the size of a range tree for a set S of n points	 Consider a 
xed level of

the x�tree� and let u�� u�� � � �� uk be the nodes on this level	 For � � i � k� the y�tree of ui
has sizeO�jSui j�	 Note that the sets Sui � � � i � k� partition S	 Therefore�

Pk
i�� jSui j � n	

It follows that the y�trees of the nodes u�� u�� � � �� uk together have size O�n�	 This holds
for any level of the x�tree	 Hence� all y�trees together have size $�n log n�	 Since the
x�tree itself has size O�n�� we have proved�

Lemma ����� A range tree for a set of n points in the plane has size $�n log n��

To 
nish this section� we consider the problem of building a range tree	 By Lemma
�	�	�� this takes #�n log n� time	 Here is an algorithm that builds the data structure in
O�n log n� time	

�	 Build the x�tree	

�	 Do the following for each leaf u of the x�tree� Let p be the point whose x�coordinate
is stored in u	 Give u a pointer to a y�tree storing the set f��� py� �g	 �The
y�trees of the leftmost and rightmost leaves store the sets f��� �g	�

�	 Build the y�trees of the internal nodes in a bottom�up fashion� If u is an internal
node with sons v and w� such that the y�trees of v and w have been built already�
then we copy and merge these y�trees	 �The values �� and � are stored only once
in the resulting tree	� The tree obtained in this way is the y�tree of u	

Exercise ����� Prove that this algorithm builds a range tree in O�n log n� time	

We now explain how to remove Assumption �	�	�	 In the x�tree� we store the points
using the lexicographical ordering instead of the ordering by x�coordinates	 The search
information stored in the internal nodes become points instead of x�coordinates	

Similarly� in a y�tree� we store points using the �reversed� lexicographical ordering �a
y�coordinate has higher priority than an x�coordinate�	 The algorithms are only slightly
changed	 In the procedure decompose�p�� we search for the leftmost leaf that stores a
point whose x�coordinate is at least equal to px	

��� Solving the L�
post
o�ce problem

Recall the problem we want to solve� Preprocess a set S of n planar points in a data
structure� such that for any query point p 	 IR�� we can 
nd its L��neighbor� i	e	� a point
p� 	 S such that

d��p� p�� � minfd��p� q� � q 	 Sg�
We will show that this problem can be solved using range trees	

Consider a query point p	 Let pl and pr be the L��neighbors of p in the sets fq 	 S �
qx � pxg and fq 	 S � qx � pxg� respectively	 We call these points the left�L��neighbor
and right�L��neighbor of p� respectively	 Clearly� one of them is the L��neighbor of p	
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We show how to 
nd the right�L��neighbor pr of p	 �This point may not be unique	
Actually� we should talk about a right�L��neighbor	� The algorithm consists of three
stages	 Here is a brief overview	

Stage �� Call the procedure decompose�p� of the previous section	 This procedure com�
putes a set M of nodes such that fq 	 S � qx � pxg �

S
u�M Su	 Number these nodes

v�� v�� � � �� vm� where m � jM j and vi is closer to the root than vi��� � � i � m	
�See Figure �	�	�

Stage �� We know that the right�L��neighbor pr is contained in the union
S
u�M Su	 In

the second stage� we want to search for a node v 	M such that Sv contains pr	 This
turns out to be di
cult	 We can� however� reach the following somewhat weaker
goal� We compute a node v 	M and a small set C � S such that C � Sv contains
pr	

Stage �� given node v and set C� we walk down the subtree of v	 During this walk� we
maintain the invariant that C � Sv contains pr	 If v is a leaf� then the set C � Sv is
small enough to look at all its points and take the one having minimal L��distance
to p	 This point is the right�L��neighbor pr of p	

We now discuss Stages � and � in more detail	

����� Stage �

Run the following algorithm	

C �� �� i �� �� stop �� false �
while i � m and stop � false
do search in the y�tree of vi for the largest resp	 smallest y�coordinate

that is less than resp	 at least equal to py�
let a and b be the points that correspond to these y�coordinates�
r �� the point stored in the rightmost leaf of the subtree of vi�

 �� rx � px�
R �� the rectangle �px � rx�� �py � 
 � py � 
��
if a and b outside R
then C �� C � fa� bg�

i �� i� �
else v �� vi�

stop �� true
�

od

In words� this algorithm does the following	 It visits the nodes of M from left to
right �or� equivalently� from bottom to top�	 Consider one iteration	 �See Figure �	�	�
The algorithm searches with py in the y�tree of vi	 This gives two points a and b of Svi
between �w	r	t	 the vertical direction� which p lies	 The vertical lines through p and the
point r de
ne a slab whose width is denoted by 
	 Note that all points of Svi lie in or on
the boundary of this slab	 Consider the rectangle R	 If a and b are both outside R� then
we add these points to C and go to the next iteration	 Otherwise� if a or b is in R or on
its boundary� then the while�loop stops	
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Figure �	�� Illustrating one iteration of Stage �	

Remark ����� Since the x� and y�trees also store values �� and �� we have to be
careful	 If the rightmost leaf in the subtree of vi stores the value �� then there is no point
r corresponding to it	 In this case� the value of 
� which is rx � px � �� px according
to the algorithm� is set to �	 As a result� the rectangle R is the halfplane to the right of
the vertical line through p	

Similarly� the y�coordinate by may be �	 Then� there is no point b corresponding to
this value	 In this case� we use an arti
cial point b which is outside rectangle R if rx is

nite� and inside R if rx � �	 A y�coordinate ay � �� is treated in a similar way	

We consider the variable stop at the end of the while�loop and distinguish the two
cases where this variable has value true or false	

Lemma ����� If the variable stop has value false after the while�loop has been completed�
then the set C contains a right�L��neighbor of p�

Proof� First note that the while�loop makes m iterations	 Let pr be a right�L��neighbor
of p� and let i be the index such that pr 	 Svi	 Consider the i�th iteration	 The points a
and b selected during this iteration are outside R	

Let q be any point of Svi	 Then px � qx � rx and� hence� � � qx � px � rx � px � 
	
On the other hand� since q is outside R� we have jqy � pyj � 
	 It follows that d��p� q� �
jqy � pyj	 That is� for all points of Svi � the L��distance to p is the same as the distance
to p in the y�direction	

Assume w	l	o	g	 that d��p� a� � d��p� b�	 Then

d��p� a� � jpy � ayj � jpy � pryj � d��p� pr��

On the other hand� since pr is a right�L��neighbor of p� we have d��p� pr� � d��p� a�	
This proves that d��p� a� � d��p� pr�	
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Hence� a is also a right�L��neighbor of p	 Since a is added to C during the i�th
iteration� the proof is completed	

If the variable stop has value false at the end of the while�loop� then we can easily
complete the algorithm� We consider all points of C and take the one having minimal
L��distance to p	 By Lemma �	�	�� this point is a right�L��neighbor of p	

Lemma ����� If the variable stop has value trueafter the while�loop has been completed�
then the set C � Sv contains a right�L��neighbor of p�

Proof� Let pr be a right�L��neighbor of p� and let i be the index such that pr 	 Svi	
Let j be the integer such that during the j�th iteration� the variable stop is set to the
value true	 Note that v � vj	

First assume that i � j	 During the i�th iteration� the points a and b that are selected
in the y�tree of vi are outside the rectangle R	 In exactly the same way as in the proof
of Lemma �	�	�� it can be shown that a or b is also a right�L��neighbor of p	 Since both
points are added to C during the i�th iteration� the claim follows	

Next assume that i � j	 Then the set Sv� hence also the set C � Sv� contains a
right�L��neighbor of p	

It remains to consider the case where i � j	 Look what happens during the j�th
iteration	 Let a and b be the points in the y�tree of vj that are selected during this
iteration	 At least one of them is contained in the rectangle R	 Assume w	l	o	g	 that a
lies in R	 Then d��p� a� � 
� where 
 is the x�distance between p and the rightmost point
r in the subtree of vj	

Since the x�coordinates of all points in Svj are at most equal to the x�coordinates of
the point in Svi � we have prx � rx	 This implies that

d��p� pr� � prx � px � rx � px � 
�

We have shown that d��p� a� � d��p� pr�	 On the other hand� since pr is a right�L��
neighbor of p� we have d��p� pr� � d��p� a�	 This proves that d��p� pr� � d��p� a� and�
hence� a is also a right�L��neighbor of p	 Since a 	 Svj � Sv� the proof of the lemma is
completed	

This concludes Stage �	 To summarize� if the variable stop has value false after the
while�loop has been completed� then we 
nd a right�L��neighbor of p by looking at all
point of C	 In this case� the algorithm terminates	 Otherwise� we know that the set C�Sv
contains a right�L��neighbor of p	 In this case� we proceed to the next stage	

����� Stage �

Run the following algorithm	

while v is not a leaf
do w �� left son of v�

search in the y�tree of w for the largest resp	 smallest y�coordinate
that is less than resp	 at least equal to py�
let a and b be the points that correspond to these y�coordinates�
r �� the point stored in the rightmost leaf of the subtree of w�

 �� rx � px�
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R �� the rectangle �px � rx�� �py � 
 � py � 
��
if a and b outside R
then C �� C � fa� bg�

v �� right son of v
else v �� w
�

od

Lemma ����� During the while�loop� the set C � Sv contains a right�L��neighbor of p�

Exercise ����� Prove Lemma �	�	�	

We complete Stage � as follows� By looking at all points of C � Sv� we take the one
having minimal L��distance to p	 By Lemma �	�	�� this point is a right�L��neighbor
of p	

This concludes the algorithm for computing a right�L��neighbor pr of p	 In a com�
pletely symmetric way� we compute a left�L��neighbor pl of p	 Then� if d��p� pl� �
d��p� pr�� pl is an L��neighbor of p	 If d��p� pl� � d��p� pr�� then pr is an L��neighbor
of p	

We analyze the running time of the query algorithm	 By Lemma �	�	�� Stage � takes
O�log n� time	 Consider the while�loop of Stage �	 Each iteration takes O�log n� time	
Since m � O�log n�� there are O�log n� iterations	 Therefore� the entire while�loop takes
O��log n��� time	 If the variable stop has the value false after this loop� then we need
O�jCj� time to 
nd a right�L��neighbor of p	 It is clear that jCj � �jM j	 Hence�
jCj � O�log n�	 This proves that Stage � takes O��log n��� time	

In the while�loop of Stage �� we walk down a path in the subtree of v	 In each node
on this path� we spend O�log n� time	 Since this path has length O�log n�� the entire loop
takes O��log n��� time	 Afterwards� we need O�jC�Svj� time to 
nd a right�L��neighbor	
Since v is a leaf at this moment� we have jSvj � �	 The size of C is bounded by O�log n�	
Therefore� this 
nal step takes O�log n� time	

We have shown that the algorithm 
nds a right�L��neighbor of p in O��log n��� time	
In the same amount of time a left�L��neighbor is found	 Given these two points� the
L��neighbor of p is obtained in O��� time	

We summarize our result	

Theorem ����� Let S be a set of n points in the plane� Using a range tree� which has
size O�n log n�� we can solve the L��post�o�ce�problem with a query time of O��log n����

Applying Theorem �	�	� gives�

Corollary ����� Let � � � be a constant� and let S be a set of n points in the plane�
The �� � ���approximate L��post�o�ce problem can be solved using O�n log n� space with
a query time of O��log n����
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��� Improving the query time� layering

We have seen that a range tree solves the two�dimensional L��post�o
ce problem with a
query time of O��log n���	 In this section� we reduce the query time to O�log n�	

Consider the query algorithm of the previous section	 This algorithm makes O�log n�
binary searches in di�erent y�trees� and it does some additional work	 It is easily seen
that the additional work takes only O�log n� time	 �Here� we assume that we store with
each node of the x�tree a pointer to the rightmost leaf in its subtree	� The O�log n� binary
searches together take O��log n��� time	 That is� the running time of the query algorithm
is dominated by the time of these binary searches	

How can we improve the running time The key observation is that in each y�tree� we
search for the same element� we search for the y�coordinate of the query point p	

Let u and v be nodes of the x�tree such that u is a son of v	 Assume we want to locate
py in the y�trees of u and v	 Recall that Su and Sv denote the points of S that are stored
in the subtrees of u and v� respectively	

Assume that the y�coordinate py is less than all y�coordinates of the points of Sv	
Then the search for the smallest element in the y�tree of v that is at least equal to py
will end in the second leftmost leaf of this y�tree	 �The leftmost leaf stores the arti
cial
y�coordinate ��	� Where does the search in the y�tree of u end Since Su � Sv� it is
clear that py is less than all y�coordinates of the points of Su	 Therefore� the search for
the smallest element in the y�tree of u that is at least equal to py also ends in the second
leftmost leaf	

In general� the search for py in the y�tree of v gives information about the result of a
search for the same element in the y�tree of u	 As we will see� we can use this information
such that� given the position of py in the y�tree of v� only O��� time is needed to locate
py in the y�tree of u	 That is� we avoid making a binary search in this y�tree	 The idea is
to link the y�trees of u and v by pointers	 This technique is called layering	

We change the range tree as follows�

�	 As before� we have an x�tree which is a perfectly balanced leaf search tree for the
x�coordinates of the points of S and the arti
cial x�coordinates �� and �	

�	 Each node v of the x�tree contains a pointer to a y�tree� which is a perfectly bal�
anced leaf search tree for the y�coordinates of the points of Sv and the arti
cial
y�coordinates �� and �	

�	 For all nodes u and v of the x�tree� such that u is a son of v� there are pointers from
the y�tree of v to the y�tree of u� Let l be any leaf in the y�tree of v� and let qy be
the y�coordinate stored in l	 Leaf l stores a pointer to the leftmost leaf in the y�tree
of u whose y�coordinate is at least equal to qy	

We call the resulting data structure a layered range tree	 See Figure �	�	 Note that
if qy also occurs as a y�coordinate of a point in Su� then the pointer from l points to the
occurrence of qy in the y�tree of u	

Exercise ����� Prove that a layered range tree still has size O�n log n� and that it can
be built in O�n log n� time	
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Figure �	�� A layered range tree	 The leaf storing qy contains a pointer to the leaf
storing q�y	 If qy � ��� then q�y � ��	 If qy � �� the q�y � �	 If qy is 
nite� then
q�y � minfsy � s � �sx� sy� 	 Su� sy � qyg	

Let p be any point in the plane	 Call the procedure decompose�p�	 �See Figure �	�	�
This gives a set M of nodes of the x�tree such that fq 	 S � qx � pxg �

S
u�M Su	 We

show how to search for the smallest elements that are at least equal to py � in the y�trees
of all nodes u 	M 	

We again walk down the path in the x�tree to the leftmost leaf whose point has x�
coordinate at least px	 This walk starts in the root v of the x�tree	 We locate py in the
y�tree of v	 Let w be the right son of v	 Then� following the pointer from the leaf in v�s
y�tree that stores the position of py to the y�tree of w� we have located py in w�s y�tree	
�See Lemma �	�	� below	� If w is on the path to px� then we proceed in the subtree of w	
Otherwise� let u be the left son of v	 Note that w 	 M 	 We follow the pointer from the
leaf in v�s y�tree that stores the position of py to the y�coordinate of u	 This gives the
smallest y�coordinate in this y�tree that is at least equal to py	 Now we proceed in the
subtree of u	 The complete algorithm is given in Figure �	�	

Lemma ����� During the while�loop of the procedure searchM�p�� the invariant is cor�
rectly maintained�

Proof� It is clear that the invariant holds after the initialization	 Consider one iteration	
That is� let v be a node of the x�tree� let l be a leaf in the y�tree of v� let q be the point
whose y�coordinate is stored in l� and assume that

qy � minfsy � sy � py and sy stored in the y�tree of vg�
Let w be the right son of v� let l� be the leaf in the y�tree of w that is reached by following
the pointer stored with l� and let q� be the point whose y�coordinate is stored in l�	

We will show that

q�y � minfsy � sy � py and sy stored in the y�tree of wg�
From the de
nition of the pointers that link the y�tree of v with that of w� we know that
q�y � qy	 Since qy � py� we infer that

q�y 	 fsy � sy � py and sy stored in the y�tree of wg�
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procedure searchM�p�
�� p � �px� py� is a point in the plane ��
begin

M �� �� v �� root of the x�tree�
search in the y�tree of v for the smallest y�coordinate that is
at least equal to py �
l �� leaf where this search ends�
q �� point whose y�coordinate is stored in l�
while v 
� leaf
do �� invariant� l is a leaf in the y�tree of v� l stores qy�

qy � minfsy � sy � py and sy stored in the y�tree of v g ��
w �� right son of v�
follow the pointer from l to the leaf l� in the y�tree of w�
q� �� point whose y�coordinate is stored in l��
if maxl�v� � px
then v �� w� l �� l�� q �� q�

else M �� M � fwg� output a pointer to l��
u �� left son of v�
follow the pointer from l to the leaf l�� in the y�tree of u�
q�� �� point whose y�coordinate is stored in l���
v �� u� l �� l��� q �� q��

�
od�
M �� M � fvg
output a pointer to l

end

Figure �	�� Constructing the set M � and locating py in the y�tree of all nodes of M 	
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It remains to show that q�y is the minimal element of this set	 Assume this is not the case	
Then there is a y�coordinate ry stored in the y�tree of w such that py � ry � q�y	 Note
that Sw � Sv	 Therefore� the y�coordinates stored in the y�tree of w form a subset of
those stored in the y�tree of v	 In particular� ry is stored in the y�tree of v	 Since ry � py�
we infer that ry � qy	

We have shown that qy � ry � q�y� where ry is stored in the y�tree of w	 But then�
the pointer from l in the y�tree of v cannot point to the leaf l� storing q�y	 This is a
contradiction	

This shows the q�y is the smallest value in the y�tree of w that is at least equal to
py	 If the search path proceeds to w� then the invariant still holds after this iteration	
Otherwise� if the search path proceeds to the left son u of v� then it follows in the same
way that q��y �see Figure �	�� is the smallest element in the y�tree of u that is at least equal
to py	 Hence� also in this case� the invariant still holds after this iteration	 This completes
the proof	

Lemma ����� The pointers that are reported by the procedure searchM�p� point to the
leftmost leaves in the y�trees of all nodes of M � whose y�coordinates are at least equal to
py�

Proof� This follows immediately from the previous proof	
We analyze the running time of the procedure searchM�p�	 The initialization takes

O�log n� time	 It is easy to see� that each iteration takes O��� time	 Since there are
O�log n� iterations� the while�loop takes O�log n� time	 This proves that the entire pro�
cedure runs in O�log n� time	 That is� by introducing the layered range tree� we reduced
the time to locate py in the y�trees of all nodes of M � from O��log n��� to O�log n�	

Now we return to the algorithm of Section �	� for 
nding an L��neighbor of a query
point	 We replace Stage � by the procedure searchM�p�	 Then� Stage � can be performed
in O�log n� time	 In a similar way� the running time for Stage � becomes O�log n�	 This
proves�

Theorem ����� Let S be a set of n points in the plane� Using a layered range tree� which
has size O�n log n�� we can solve the L��post�o�ce problem with a query time of O�log n��

Corollary ����� Let � � � be a constant and let S be a set of n points in the plane�
The �� � ���approximate L��post�o�ce problem can be solved using O�n log n� space with
a query time of O�log n��

��� Supporting insertions and deletions� partial re


building

Until now we only considered the static version of the post�o
ce problem	 All binary
trees that occurred as substructures of the range tree were perfectly balanced	 Of course�
if we insert and delete points� the range tree might become unbalanced	 In this section�
we show how all binary trees that constitute the range tree can be kept in balance if
points are inserted and deleted	

Consider a range tree for a set S of n points in the plane	 We assume for simplicity
that Assumption �	�	� holds	 To insert or delete a point p � �px� py�� we do the following�
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�	 Search in the x�tree for the leftmost leaf storing an x�coordinate that is at least
equal to px	 Let w be the leaf in which this search ends	

�a� Assume we have to insert p and assume w	l	o	g	 that p �	 S	 Let q be the point
whose x�coordinate is stored in w	 Note that qx � px	 We give w two new
sons	 The left son is a range tree for the set fpg and the right son is a range
tree for the set fqg	 Finally we update the maxl�v� and minr�v� values of the
nodes on the search path to w	

�b� Assume we have to delete p and assume w	l	o	g	 that p 	 S	 Let u be the
father of w� and let v be the other son of u	 Then we replace the subtree of u�
which is a range tree for the set Su� by the subtree of v� which is a range tree
for Sv � Su n fpg	 We also update the search information of the nodes on the
search path to u	

�	 Consider again the path of Step �	 For each node on this path� we insert or delete
the value py in its y�tree	

�	 We rebalance the data structure	

Exercise ��	�� Convince yourself that the structure that results from Steps � and � is
a �not necessarily balanced� range tree for the set S � fpg resp	 S n fpg	

Clearly� the problem is how to rebalance the range tree	 Standard binary trees are
often rebalanced by means of rotations	 Consider a rotation as in Figure �	�	 Assume
we apply this rotation to the x�tree	 Then� v gets the y�tree of u	 This is simply done
by changing one pointer	 To obtain the new y�tree of u� however� we have to merge the
y�trees that are stored with the roots of A and B	 This takes O�jSuj� time� which is large
if u is close to the root of the x�tree	

u

A

v

B
C

v

u

A
B C

Figure �	�� A rotation	

By taking the binary trees from the class of BB����trees� to be de
ned below� it can be
shown that� nevertheless� this leads to an update algorithm with O��log n��� amortized
running time	 The proof of this result is complicated	 In the rest of this section� we give
a much simpler technique� the partial rebuilding technique� that gives the same amortized
update time	
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De�nition ��	�� Let � � � � ��� and let T be a binary tree	 For each node v of T � let
nv denote the number of leaves in its subtree	 The tree T is called a BB����tree� if for all
nodes u and v such that u is a son of v�

� � nu�nv � �� ��

Hence� if the subtree of v contains m leaves� then each of its subtrees contains at least
�m and at most �� � ��m leaves	

Exercise ��	�� Prove that for each n there is a BB����tree with n leaves	 Why do we
require that � � ��� Prove that the height of a BB����tree with n leaves is at most
c� � log n� and determine the constant c�	

We start with the one�dimensional case	 That is� we show how to maintain a BB����
tree storing a set S of n real numbers� if elements are inserted and deleted in S	 We store
with each node v the number nv of leaves in its subtree	 Here is the algorithm to insert
or delete a real number p�

�	 Search for the leftmost leaf storing a value that is at least equal to p	 Let w be the
leaf in which this search ends	

�	 Insert or delete p and update the appropriate maxl�v�� minr�v� and nv values	

�	 Rebalance as follows� walk back from w to the root and 
nd the highest node v
that is out of balance� i	e	� does not satisfy the BB����property	 If there is no such
v� then the tree is already a BB����tree and we are done	 Otherwise� we completely
rebuild the subtree of v as a perfectly balanced binary tree	

Exercise ��	�� Convince yourself that the rebalancing step results in a BB����tree	

Note that if node v is close to the root� rebalancing will take much time	 The following
lemma� however� shows that expensive rebalancing operations do not occur often	 As we
will see� this ensures that the given update algorithm has an amortized running time of
O�log n�	

Lemma ��	�� Let v be a node in a BB����tree that is in perfect balance� Let nv be the
number of leaves in the subtree of v at the moment when it gets out of balance� Then there
have been at least ��� ���nv � � updates in the subtree of v�

Proof� Let n�v� n
�
lv and n�rv be the number of leaves in the subtree of v� the left son of v

and the right son of v� respectively� at the moment when v is in perfect balance	 Assume
w	l	o	g	� that n�lv � n�rv	 Then n�lv � bn�v��c	 Clearly� the fastest way for node v to get
out of balance is by deleting elements from its left subtree and inserting elements into its
right subtree	

Suppose that at the moment when v gets out of balance� Ni insertions have taken
place in the right subtree of v� and Nd deletions have taken place in its left subtree	 Let
nlv be the number of leaves in the subtree of the left son of v at the moment when v gets
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out of balance	 Then nv � n�v �Ni �Nd and nlv � n�lv �Nd � bn�v��c �Nd	 Since node
v is out of balance at this moment� we have nlv�nv � �	 It follows that

�nv � nlv

� bn�v��c �Nd

� n�v�� � ��Nd

�
nv �Ni �Nd

�
� ��Nd

�
nv � �Ni �Nd�

�
� ��

Thus Ni �Nd � �� � ���nv � �� i	e	� there have been at least �� � ���nv � � updates in
the subtree of v	

We analyze the running time of the update algorithm	 Steps � and � take time
proportional to the height of the BB����tree� which is bounded by O�log n�	 It remains
to bound the time for Step �� i	e	� the time for rebalancing	 We show that the amortized
rebalancing time is bounded by O�log n�	 This will prove that the entire update algorithm
has amortized update time O�log n�	

Consider a node v of the BB����tree� and assume we rebuild the subtree of v	 Let Sv
be the set of elements that are stored in the subtree of v	 Note that nv � jSvj	 Using the
old subtree of v� we obtain the elements of Sv in sorted order� in O�nv� time	 Then� in
O�nv� time� we build a perfectly balanced binary tree for these elements	 �See Exercise
�	�	�	� Hence� the entire rebuilding operation takes O�nv� time	 We say that this visit
to node v has cost O�nv�	 By Lemma �	�	�� there have been �� � ���nv � � updates in
the subtree of v during which this subtree was not rebuild	 During each of these updates�
O��� time was spent in node v	 That is� each of the provious ������nv�� visits to node
v had cost O���	

This proves that the ������nv�� most recent visits to node v have total cost O�nv�	
Averaged over these visits� we get an upper bound of O��� per visit to node v	

To summarize� each node visited during an update operation causes O��� rebalancing
costs	 Since we visit O�log n� nodes during an update we get an O�log n� upper bound
on the total amortized rebalancing cost	 We have proved the following lemma	

Lemma ��	�� Using the partial rebuilding technique� a BB����tree can be maintained
under insertions and deletions in O�log n� amortized time per operation�

����� An alternative proof� the potential method

In this section we give a somewhat cleaner� but more tricky� proof of Lemma �	�	�	 We
start by recalling the potential method	

Consider a data structure on which we perform a sequence of n operations	 The initial
data structure is denoted by D�	 For � � k � n� let Ck be the cost of the k�th operation�
and let Dk be the data structure that results by performing the k�th operation on Dk��	

The total cost for the n operations is
Pn

k�� Ck	 Often it is di
cult to give a good
estimate for this summation	 In such cases� one can try to apply the potential method�

Let % be a function that maps the data structure Dk to a real number %�Dk�� � �
k � n	 This function is called the potential function	 Given this function� de
ne

&Ck �� Ck � %�Dk��%�Dk���� � � k � n�
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That is &Ck is the sum of the actual cost of the k�th operation and the increase in potential
due to this operation	 Now we can rewrite the total cost for the n operations�

nX
k��

Ck �
nX

k��

� &Ck � %�Dk� � %�Dk����

�
nX

k��

&Ck � %�D��� %�Dn��

Suppose that our potential function satis
es

�	 %�D�� � �� and

�	 %�Dk� � �� for all � � k � n	

Then�
nX

k��

Ck �
nX

k��

&Ck�

i	e	� the summation on the right hand side is an upper bound on the total cost for the n
operations	 The trick is to de
ne a potential function % such that the summation

P &Ck

can be estimated easily	
We apply this technique to analyze the amortized time of the update algorithm for

BB����trees	 Recall that for any node v� nv denotes the number of leaves in the subtree
of v	 For v an internal node� let vl and vr be its left an right sons� respectively	 De
ne

'v �� jnvl � nvr j�

The potential of a binary tree T is de
ned by

%�T � �� �
X

v�T 	�v��

'v�

where � is a constant to be 
xed later	
Suppose we start with a BB����tree for the empty set	 Consider a sequence of n insert

and delete operations	 Let T�� T�� T�� � � � � Tn be the sequence of BB����trees obtained in
this way	

First note that %�T�� � � and %�Tk� � � for all � � k � n	 Also� a perfectly balanced
binary tree has potential zero	

Let � � k � n and consider the k�th update operation	 Let T �
k be the tree obtained

after performing Steps � and � of the update algorithm	 Then� Tk is obtained by per�
forming Step �� the rebalancing step to T �

k	 Assume that during this step� we rebuild the
subtree rooted at v	 Hence� v is the highest node of T �

k that is out of balance	
Steps � and � take O�log n� time	 Step � takes O�nv� time� where nv is the number of

leaves in the subtree of v in T �
k	 Hence� there is a constant �� such that the time Ck for

the k�th update operation satis
es

Ck � ���log n� nv��

To estimate the increase in potential� we consider %�Tk��%�T �
k� and %�T �

k��%�Tk���
separately	
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During the transformation from Tk�� into T �
k� the 'u values of all nodes u on the

search path increase by at most one	 All other 'u values remain unchanged	 It follows
that

%�T �
k�� %�Tk��� � h�� log n�

where h� is the constant that appears in the O�log n� bound on the height of a BB����tree	
Consider the node v in T �

k	 Because v is out of balance� we have nvl�nv � � and
nvr�nv � � � �� or nvr�nv � � and nvl�nv � � � �	 Assume w	l	o	g	 that the 
rst case
occurs	 Then�

nvr � nvl � ��� ��nv � �nv � ��� ���nv �

If Tkv and T �
kv denote the subtrees of Tk and T �

k rooted at v� respectively� then

%�Tk�� %�T �
k� � %�Tkv�� %�T �

kv��

Since Tkv is perfectly balanced� its potential is zero	 Moreover�

%�T �
kv� � ��nvr � nvl� � ��� � ���nv �

Hence�
%�Tk�� %�T �

k� � ����� ���nv�

Putting everything together� we have shown that

%�Tk��%�Tk��� � %�Tk�� %�T �
k� � %�T �

k��%�Tk���

� ���� � ���nv � h�� log n�

This implies that

&Ck � Ck � %�Tk�� %�Tk���

� ���log n� nv�� ��� � ���nv � h�� log n�

Note that we still have to choose the constant � in the de
nition of %	 We take � ��
����� � ���	 Then

&Ck � �� log n� h�� log n�

It follows that the total time for the n update operations is bounded by

nX
k��

Ck �
nX

k��

&Ck �
nX

k��

��� � h��� log n � O�n log n��

That is� the amortized time per update operation is bounded by O�log n�	 This proves
Lemma �	�	�	

����� Range trees and partial rebuilding

In the beginning of Section �	�� we already gave the basic algorithm for inserting or
deleting a point p in a range tree	 The algorithm consisted of three steps�

�	 Search in the x�tree for the position where the x�coordinate px of p has to be inserted
or deleted	 Perform the update at this position	



�� �� Range Trees and the Post�O�ce Problem

�	 For each node of the x�tree on the path to px� insert or delete py in its y�tree	

�	 Rebalance the range tree	

De�nition ��	�� A range tree is called a BB����range tree� if the x�tree and all the
y�trees are BB����trees	

Exercise ��	�� Prove that the statements of Lemmas �	�	�� �	�	�� and Theorem �	�	�
also hold for BB����trees	

It will be clear how we maintain BB����range trees under insertions and deletions	 Step
� can easily be performed in O�log n� time	 For Step �� we apply the partial rebuilding
technique to each y�tree	 Since O�log n� y�trees are updated during this step� each at an
amortized cost of O�log n�� Step � takes O��log n��� amortized time	 After this step� all
y�trees are BB����trees	

To perform Step �� we walk the path in the x�tree to px in the reversed direction� and

nd the highest node v that is out of balance	 If there is no such node� the x�tree is already
a BB����tree and we are done	 If v exists� then we completely rebuild the subtree of v
�together with all its y�trees� as a perfectly balanced range tree	 Step � takes O�nv log nv�
time	

Using Lemma �	�	�� it can be shown in exactly the same way as for BB����trees that
this algorithm has an amortized update time of O��log n���	

Exercise ��	�	 Prove this	

The bound on the amortized update time can also be proved with the potential
method	 For v a node of the x�tree� let Y �v� be the y�tree of v	 The potential of a
range tree T is de
ned by

%��T � �� �
X

v�x�tree	�v��

'v log 'v �
X

v�x�tree

%�Y �v���

where 'v and %��� are as de
ned in Section �	�	�	

Exercise ��	�� Apply the potential method to prove that the update algorithm for
BB����range trees has O��log n��� amortized time complexity	

If we combine the results of this section with those of Theorem �	�	� �see also Exercise
�	�	��� then we get the 
nal result of this chapter�

Theorem ��	�� Using BB����range trees� which have size O�n log n�� we can solve the
dynamic planar L��post�o�ce problem with a query time of O��log n��� and an amortized
update time of O��log n����

Corollary ��	�� Let � � � be a constant� The dynamic �� � ���approximate L��post�
o�ce problem can be solved using O�n log n� space with a query time of O��log n��� and
an amortized update time of O��log n����

Exercise ��	�
 Give an argument why the layering technique of Section �	� is di
cult
to apply if also insertions and deletions have to be supported	
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��
 Further reading

In this chapter� we considered two topics from computational geometry� the post�o
ce
problem and range trees	 For more information about these topics and geometric algo�
rithms� see the books by Mehlhorn ����� Preparata and Shamos ����� Edelsbrunner ���
and Mulmuley ����	 The partial rebuilding technique applied to range trees is due to
Lueker ����	 He investigates D�dimensional range trees for any 
xed dimension D � �	
In Overmars ����� more so�called dynamization techniques can be found	 For more appli�
cations of the potential method� see the book of Cormen� Leiserson and Rivest ���	 The
layering technique is due to Willard and is described in ����	 A generalization of this
technique that also supports insertions and deletions is given in Mehlhorn and N�aher ����	

The algorithms for the L��post�o
ce problem and the approximate L��post�o
ce
problem are due to Kapoor and Smid ���	 For the static approximate post�o
ce problem�
there is a solution having O�log n� search time that uses O�n� space	 See Arya et al	 ���	

A solution to �Ubungsaufgabe �	� can be found in Smid ����	 �Ubungsaufgaben �	��
and �	�� are based on results of Keil and Gutwin ����� Salowe ���� and Ruppert and
Seidel ����	
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Chapter �

Mantaining order in a list

In this chapter we apply the potential method of Section �	�	� to analyze an algorithm
for the order maintenance problem	 In this problem� we perform the following three types
of operations on a linked list L�

Insert�x� y
� Given a pointer to element x in L� insert element y immediately after x	

Delete�x
� Given a pointer to element x in L� delete it from the list	

Order�x� y
� Given pointers to elements x and y in L� decide if x is before y in the list	

There are two obvious solutions for this problem	 We can build a binary tree having
the elements of L in its leaves in the order in which they occur in this list	 Then� insertions
and deletions can be performed in O�log n� time� if n is the number of elements in L	 To
answer an order query� we determine the lowest common ancestor z of x and y� by walking
up the tree	 Then� x is before y in L i� x is in the left subtree of z	 The time for an order
query is bounded by O�log n�	

In the second obvious solution� we give each element x in L a label v�x�� such that
these labels increase if we walk along L	 Then� an order query is particularly simple� x is
before y in L i� v�x� � v�y�	 To insert element y immediately after x� we put y between
x and its successor z and give it label v�y� � �v�x� � v�z����	 Clearly� in this way the
labels still increase if we walk along L	 To delete an element� we just remove it together
with its label	 In this solution� each operation takes only O��� time	 The labels� however�
can become very large numbers� If we perform operations Insert�x� yi�� i � �� then we
need more and more bits to represent the labels of the yi�s	

In this chapter� we give an extension of the second solution	 Be relabeling certain
elements of the list� we guarantee that each label can be represented by O�log n� bits� and
each operation takes O��� amortized time	

��� An O�logn� amortized time solution

The data structure consists of the linked list L	 Each element x is labeled with an integer
v�x�� and it has a pointer to its successor s�x�	 For convenience� we add an arti
cial
element b called the base	 This element is never deleted and it never occurs in an order
query	 The base has label v�b� and its successor s�b� is the leftmost element of L	 The
successor of the rightmost element of L is b	 In this way� we get a circularly linked list	
Note that order queries are w	r	t	 the original list and� hence� these are well�de
ned	

��
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We denote the current size of L by n	 The labels v�x� are integers from f������� � � �M�
�g	 We assume that M � �n�	 For each element x in L we de
ne

vb�x� �� �v�x�� v�b�� mod M�

v�b �x� ��

�
M if s�x� � b�
vb�s�x�� if s�x� 
� b�

Note that we only store the value v�x� with element x	 Given a pointer to x� we can
compute vb�x� and v�b �x� in O��� time	 The following invariant will always be maintained	

Invariant� vb�x� � v�b �x� for all elements x	

Lemma ����� Let x and y be elements of L� both not equal to the base b� Then� x is
before y in L i
 vb�x� � vb�y��

Proof� Let x�� x�� � � �� xn�� be the non�base elements of L in the order in which they
appear in L	 The invariant implies that

vb�xi� � v�b �xi� � vb�s�xi�� � vb�xi���� � � i � n� ��

Hence�

vb�x�� � vb�x�� � � � � � vb�xn����

According to this lemma� an order query can be solved in O��� time� just by computing
and comparing vb�x� and vb�y�	 To delete element x� we remove this element together
with its label v�x�	 This also takes O��� time	

Exercise ����� Convince yourself that a deletion does not destroy the invariant	

Clearly� the di
culty is to maintain the invariant under insertions	 We assume that
we start with a list L containing only the base b	 We give it an arbitrary label v�b� from
f������� � � �M � �g	 At this moment� we have s�b� � b	 Hence� vb�b� � � and v�b �x� � M 	
Therefore� the invariant holds initially	

Consider the list L at any moment� and assume we perform the operation Insert�x� y�	
If vb�x��� � v�b �x� then there is room to give y a label v�y� such that vb�y� lies in between
vb�x� and v�b �x�	 What happens if vb�x� � � � v�b �x� In order to give y a label v�y�� we
relabel the successor of x	 Of course� if vb�s�x�� � � � v�b �s�x��� we also relabel s�s�x���
and so on	 In this way� we might have to relabel many elements	 Be relabeling in such
a way that the di�erences of the new values v�b �x� � vb�x�� v�b �s�x�� � vb�s�x��� � � �� are
large enough� we can guarantee that the amortized number of relabelings is O�logM� per
insertion	

Now we can give the details	 For each element x of L� de
ne s��x� �� x and si�x� ��
s�si���x�� for i � �	 That is� si�x� is the i�th successor of x	 De
ne wi �� �vb�si�x�� �
vb�x�� mod M for � � i � n� �� and wn �� M 	

Consider the operation Insert�x� y��

�	 Compute the values vb�x� and v�b �x�	
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�	 If vb�x� � � � v�b �x�� then we add y immediately after x and give it label

v�y� ��

�

vb�x� � v�b �x�

�

�
� v�b�

�
mod M�

�	 If vb�x� � � � v�b �x�� then we do the following� We compute the minimal j � �
such that wj � �j�	 Next� we compute integers D � � and f � � � f � j such that
wj � D � j � f 	 We relabel the elements s�x�� s��x�� � � � � sj���x�� For � � i � j � ��
we give si�x� the new label

v�si�x�� ��

�
�v�x� � i�D � ��� mod M� if � � i � f�
�v�x� � f�D � �� � �i� f�D� mod M� if f � � � i � j � ��

We now have vb�x� � � � v�b �x�	 �See Lemma �	�	� below	� We add y as in Step �	

Note that during the algorithm� the value of v�b� might change	 Then� all values vb�z�
also change	 We do not have to worry about this because we do not store these values�
we only store the values v�z�	

The correctness of the insertion algorithm follows from the following three lemmas	

Lemma ����� Step 	 correctly maintains the invariant�

Proof� We consider the value v�b �x� as it was before the insertion	 Note that

vb�y� � �v�y�� v�b�� mod M �



vb�x� � v�b �x�

�

�
�

Since vb�x� � � � v�b �x�� we infer that vb�y� � vb�x� � � � vb�x� and vb�y� � v�b �x�� � �
v�b �x�	

After the insertion� the value of v�b �x� is equal to vb�y�	 Hence� the invariant still holds
for x	 The value of v�b �y� is equal to the old value of v�b �x�	 Therefore� the invariant also
holds for y	 This completes the proof� because no other values v�b ��� are changed during
Step �	

Lemma ����� Assume Step 
 of the insertion algorithm is performed� The integer j of
this step exists� and we have D � ��

Proof� Since wn � M � �n�� there is a j � � such that wj � �j�	 Hence� there is also a
smallest j � � having this property	

If s�x� � b� then vb�x� � v�b �x� � � � M � �	 Since vb�b� � �� it follows that
w� � �vb�s�x�� � vb�x�� mod M � �� �M � �� mod M � �	 If s�x� 
� b� then w� �
�v�b �x� � vb�x�� mod M � �	 That is� in both cases� we have w� � � � � � ��	 Therefore�
j � � which implies that D � bwj�jc � �j� � �	

Lemma ����� Step 
 correctly maintains the invariant� In particular� immediately before
adding y� we have vb�x� � � � v�b �x��
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Proof� We distinguish two cases� depending on whether or not the base b gets a new
label	

Assume b does not get a new label	 Consider what happens until we add y at the end
of Step �	 Look at the value vb�sj�x��	 �This value does not change in Step �	� First
assume that sj�x� 
� b	 The invariant implies that vb�sj�x�� � vb�x�	 Since all labels vb���
are between zero and M � �� we have vb�sj�x��� vb�x� � M 	 Therefore�

wj � �vb�s
j�x��� vb�x�� mod M � vb�s

j�x��� vb�x��

Let � � i � j � � and consider the new value vb�si�x��new	 We have

vb�s
i�x��new �

�
�vb�x� � i�D � ��� mod M if � � i � f�
�vb�x� � f�D � �� � �i� f�D� mod M if f � � � i � j � ��

Note that vb�x� � i�D � �� � � for � � i � f � and vb�x� � f�D � �� � �i � f�D � � for
f � � � i � j � �	 Also� both these values are at most equal to

vb�x� � f�D � �� � �j � �� f�D � vb�x� � wj �D � vb�s
j�x���D � M�

As a result�

vb�s
i�x��new �

�
vb�x� � i�D � �� if � � i � f�
vb�x� � f�D � �� � �i� f�D if f � � � i � j � ��

Since vb�sj�x��new � vb�sj�x��old � vb�x� �Dj � f � the latter equation also holds for
i � j	 This proves that

v�b �s
i�x��new � vb�s

i���x��new � vb�s
i�x��new �D� � � i � j � ��

Hence� immediately before we add y� we have

vb�s
i�x��new � v�b �s

i�x��new� � � i � j � ��

and also
v�b �x�new � vb�x�new �D � vb�x�new � ��

because D � �	 That is� at this moment� the invariant holds and we are in the same
situation as in Step �	 Then Lemma �	�	� implies that the invariant still holds after y has
been added	

Exercise ����� Treat the case where sj�x� � b	 Note that wj � M � vb�x�	

Now we analyze the case where b gets a new label	 This case is more complicated�
because now all values vb��� change in Step �	 Again� we 
rst look at the situation
immediately before we add y	

Let � � k � j � � be such that sk�x� � b	 First note that

vb�s
i�x��new �

�
�vb�x�new � i�D � ��� mod M if � � i � f�
�vb�x�new � f�D � �� � �i� f�D� mod M if f � � � i � j � ��

Moreover� vb�sk�x��new � vb�b�new � �	 For k � i � j � �� we obtain vb�si�x��new by
adding i� k times the quantity D � � or D to vb�sk�x��new � �� and reducing the result



���� An O�log n� amortized time solution ��

modulo M 	 Since we never add more than f�D � �� � �j � � � f�D � wj �D � M to
vb�sk�x��new � �� the reduction modulo M is not necessary	 This proves that

vb�s
i�x��new � vb�s

i���x��new � v�b �s
i�x��new� k � i � j � ��

Similarly� for � � i � k��� we obtain vb�si�x��new by substracting k�i times the quantity
D�� or D from M 	 �Again� the reduction modulo M is not necessary	� This proves that

vb�s
i�x��new � v�b �s

i�x��new� � � i � k � ��

It remains to prove that vb�z�new � v�b �z�new for all elements z whose v����label did not
change� and for z � sj���x�	

Let z be an element such that v�z�old � v�z�new	 We claim that vb�z�new � vb�z�old	
First note that

wk � M � vb�x�old�

and
wj � vb�s

j�x��old �M � vb�x�old�

Also�

vb�s
j�x��new � �v�sj�x��new � v�b�new� mod M

� �v�sj�x��old � v�b�old � v�b�old� v�x� � v�x�� v�b�new� mod M

� �vb�s
j�x��old � vb�x�old � v�x�� v�b�new� mod M�

Assume that k � f 	 Then

vb�s
j�x��new � �vb�s

j�x��old � vb�x�old� k�D � ��� mod M�

We have

vb�x�old � k�D � �� � M � wk � k�D � ��

� M � wk � kD

� M � wk � kbwj�jc
� M � �k� � k � �j�
� M � �k�j� � k��

� M�

Also

vb�x�old � k�D � �� � vb�x�old � k�wj�j � ��

� vb�x�old �
k

j
�vb�s

j�x��old �M � vb�x�old� � k�

This last expression is at most equal to vb�sj�x��old�M i� k � ��� k�j�wj	 This is true
because

wj � �j� � kj

j � k
�

k

� � k�j
�

Hence we know that

M � vb�x�old � k�D � �� �M � vb�s
j�x��old�
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Therefore�

vb�s
j�x��new � �vb�s

j�x��old � �vb�x�old � k�D � ���� mod M

� vb�s
j�x��old � �vb�x�old � k�D � �� �M�

� vb�s
j�x��old�

If f � � � k � j � �� then this inequality can be proved in a similar way	 Recall that
we want to prove that vb�z�new � vb�z�old	 The value vb�z�new is obtained by shifting
vb�z�old over a certain amount modulo M 	 The value vb�sj�x��new is obtained by shifting
vb�sj�x��old over the same amount	 Therefore� since vb�sj�x��old � vb�z�old� we also have
vb�z�new � vb�z�old	 Using the same argument� we conclude that vb�z�old � v�b �z�old implies
vb�z�new � v�b �z�new	

In a similar way� it can be shown that vb�sj���x��new � v�b �s
j���x��new	 It follows that

the invariant holds immediately before we add y	 Since v�b �x�new � vb�x�new � � at this
moment� Lemma �	�	� implies that the invariant still holds after y has been added	

��� The analysis

We saw already that order queries and deletions takeO��� worst�case time	 In this section�
we show that the amortized insertion time is bounded by O�logM�	

If x� � b� x�� x�� � � �� xn�� is the sequence of elements of L obtained by walking along
it from left to right� then we de
ne

gk �� v�b �xk�� vb�xk�� for � � k � n� ��

We call gk a gap	 We use the following potential function�

% �� c �
n��X
k��

logM�gk�

where c is a constant to be determined later	
Initially� the list only contains the base b	 Then� n � �� g� � v�b �b� � vb�b� � M and

% � �	
Next� we claim that at any time� the potential is non�negative� The invariant implies

that gk � �	 Also gk � v�b �xk� �M 	 Hence� logM�gk � �� which implies that % � �	
By the result of Section �	�	�� we have to estimate the actual cost of any operation

plus the increase in potential due to this operation	
During an order query� we do not change any labels	 Therefore� the potential does not

change	
Consider a deletion of element x	 Note that x 
� b� since we never delete the base	 If

x � xk� then the potential increases by

c log
M

gk�� � gk
� c log

M

gk��
� c log

M

gk
� c log

gk��gk
M�gk�� � gk�

� ��

The actual cost of the deletion is constant	 This proves that the amortized time for a
deletion is bounded by a constant	 �Of course� we already know that even the worst�case
time for a deletion is O���	�



���� The analysis ��

Now consider the operation Insert�x� y�	 If we add y between xk and xk��� then Step �
takes time O���	 We assume w	l	o	g	 that the constant in this big�O is one	 This addition
increases the potential by

c log
M

dgk��e � c log
M

bgk��c � c log
M

gk
� c log

M

gk��
� c logM � c log

M

gk
� c� c logM�

Now consider Step �	 This step takes O�j� time	 Assume w	l	o	g	 that the constant in
the big�O is one	 Renumber the indices such that before the relabeling we have gaps
g�� g�� g�� � � � � gj�� with

Pj��
l�� gl � wj	 Afterwards� we have f gaps of size D�� and j � f

gaps of size D	 Therefore� the increase in potential is given by

c

�
�f log

M

D � �
� �j � f� log

M

D
�

j��X
l��

log
M

gl

�
A �

We will prove that this expression is at most equal to �j� if the constant c in the de
nition
of % is chosen appropriately	 This will prove that the amortized cost for the entire insert
algorithm is at most

� � c� c logM � j � j � O�logM��

Let

A �� f log
M

D � �
� �j � f� log

M

D
� j log

M

wj�j
�

and

B �� j log
M

wj�j
�

j��X
l��

log
M

gl
�

Then we want an upper bound for c�A�B�	 Since

wj�j

D � �
�

wj�j

�wj � f��j � �
�

�

� � ��� f�j�j�wj
�

and
wj�j

D
�

wj�j

�wj � f��j
�

�

� � f�j � j�wj

�

we have

A � j

�
f

j
log

wj�j

D � �
�
j � f

j
log

wj�j

D

�

� j��f � log�� � �� � f ��p�� ��� f �� log�� � f �p���

where f � �� f�j and p �� j�wj 	 Note that � � f � � � and � � p � ���	 Maximizing over
all � � f � � � and � � p � ��� yields �see Section �	��

A � log e

��
� j�

Next we consider B	 We know that wl �� g� � g�� � � �� gl�� � �l� for � � l � j�w� �
g� � �� and wj � �j�	 Let i �� dj��e	 De
ne

B� �� j log
M

wj�j
�

i��X
l��

log
M

gl
wj��
wi

�
j��X
l�i

log
M

gl
wj��
wj�wi

�
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and

B� ��
i��X
l��

log
M

gl
wj��
wi

�
j��X
l�i

log
M

gl
wj��
wj�wi

�
j��X
l��

log
M

gl
�

Note that B � B� �B�	 Observe that

i��X
l��

gl
wj��

wi
�

j��X
l�i

gl
wj��

wj � wi
� wj�

Therefore� the convexity of the function � log x implies that B� � �	 �See Section �	�	�
To bound B�� we argue as follows�

B� � �i log wj��

wi
� �j � i� log

wj��

wj � wi
�

Recall that i � dj��e	 If j � �i� then wj � �j� � � � �i� � �wi	 If j � �i� �� i � �� then

wj � �j� � ���i� ��� � � � �i� � �wi�

That is� we always have wj � �wi	 This implies that

log
wj��

wi

� ��

and

log
wj��

wj � wi
� ��

Hence�

B� � � j

�

�
log

wj��

wi

� log
wj��

wj � wi

�

� � j

�
log

r�

��r � ��
�

where r �� wj�wi � �	 For r � �� the function r���r � �� attains its minimum when
r � �	 As a result�

B� � � j

�
log

�

�
�

Combining everything� we conclude that the potential increase due to the relabeling
is bounded by

c�A�B� � c�A�B� �B��

� c

�
log e

��
� j � �� j

�
log

�

�

�
�

Taking

c �
�

�
� log

�

 � log e

��

� ���

we 
nd that the potential increase is at most �j� which is exactly what we wanted to
show	 We summarize our result	

Theorem ����� Let L be a list storing n elements and let M be an integer such that M �
�n�� We can solve the order maintenance problem on L using labels from f�� �� �� � � � �M�
�g such that order queries and deletions take O��� worst�case time� and insertions take
O�logM� amortized time�



���� An O��� amortized solution ��

��� An O��� amortized solution

In this section� we improve the result of Theorem �	�	�	 To be more precise� we 
rst reduce
the amortized insertion time from O�logM� to O���	 Then we show how to maintain the
assumption that M � �n� and guarantee that the labels are integers consisting of O�log n�
bits rather than O�logM�	

To reduce the insertion time� we apply the bucketing technique	 Let x�� x�� � � � � xn��
be the non�base elements of L in the order in which they appear in L	 We assume that
logM is an even integer	 Partition the elements into buckets

bi �� hx��i logM � x��i logM � � � �� x
i��� logM i� � � i � n� logM�

Our data structure consists of the following�

�	 A list B storing the names of the buckets b�� b�� b��� � � � in this order	 For this list�
we apply the labeling technique of Theorem �	�	�	 With each bucket name in B� we
store the number of elements of L that are contained in the corresponding bucket	

�	 The list L	 Each element x of L contains a pointer to its successor in L and a pointer
to the bucket in B that contains x	

�	 For each � � i � n� logM and � � j � logM � we give element xj�i logM label
j � pM 	

First� we give the algorithm for inserting an element	 Consider an operation Insert�x� y�	
Recall that we get a pointer to the occurrence of x in L	 Let z be the successor of x	 If x
and z belong to the same bucket b �this can be checked by following the pointers from x
and z to B�� then we give y a label which is the rounded average of the labels of x and z	
We add y to L� between x and z� give it a pointer to b� and increase b�s counter by one	
If x and z belong to di�erent buckets� then we give y label bl��c� where l is z�s label� add
y to L� give it a pointer to z�s bucket and increase this bucket�s counter by one	

Initially� the labels within one bucket have gaps of size
p
M 	 Therefore� our algorithm

guarantees that the labels within one bucket are increasing integers� as long as the bucket
contains at most ��� logM elements	 If a bucket contains ��� logM elements� then we
split it into two equal�sized buckets	 We add the new bucket to B� using the insertion
algorithm of Section �	�� and give each element involved a pointer to the �its� bucket	
Within each of the new buckets� we relabel the elements such that the gaps have sizep
M 	
The deletion algorithm is similar	 As soon as a bucket contains ��� logM elements�

we merge it with a neighboring bucket	

Exercise ����� Give the details of the deletion algorithm	

The algorithm for answering an order query should be clear	 Consider the query
Order�x� y�	 We follow the pointers from x and y to the buckets bx and by in B� respec�
tively	 If bx 
� by� then x is to the left of y in L i� bx is to the left of by in B	 The latter
condition can be veri
ed because we apply the labeling technique of Theorem �	�	� to the
list B	

Assume the bx � by	 Then x and y belong to the same bucket	 Our update algorithms
ensure that the labels of the elements within one bucket are increasing	 As a result� x is
to the left of y in L i� x�s label is smaller than y�s label	
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Theorem ����� Let L be a list storing n elements and let M be an integer such that M �
�n�� We can solve the order maintenance problem on L using labels from f�� �� �� � � � �M�
�g such that order queries take O��� worst�case time� and insertions and deletions take
O��� amortized time�

Proof� To merge or split buckets� we need O�logM� time to update the list L and�
by Theorem �	�	�� O�logM� amortized time to update the list B	 If such an operation
occurs� however� then there must have been #�logM� updates in the bucket that did not
cause merge or split operations	

Until now� we always assumed that M � �n�	 What happens if n becomes too large
because of many insertions Also� until now we used labels consisting of $�logM� bits	 If
we delete many elements� i	e	� if n becomes small� then logM will be very large compared
to log n	 Is there a way to use labels of O�log n� bits 

Here is a solution	 We occasionally rebuild the entire data structure	 Let n� be the size
of L at the most recent rebuilding	 Then we take M � ���� � n��� and use the algorithm
of Theorem �	�	�� as long as n� the current size of L� is at least n��� and at most �n���	
If n becomes too small or too large� then we completely rebuild the data structure� using
a new value for M 	

Between two rebuildings� the current size n satis
es n��� � n � �n���	 Therefore�

�n� � ���n����
� � M�

and
M � ���� � n�� � ���� � ��n�� � ��n��

That is� the condition M � �n� always holds� and the labels always consist of O�logM� �
O�log n� bits	

A rebuilding operation takes O�n�� time	 �Why � However� after this operation� we
do not rebuild during the next n��� updates	 Hence� rebuilding only adds O��� to the
amortized update time	

We have proved our 
nal result�

Theorem ����� Let L be a list storing n elements� We can solve the order maintenance
problem on L using labels consisting of O�log n� bits such that order queries take O���
worst�case time� and insertions and deletions take O��� amortized time�

��� Convex functions and inequalities

In Section �	�� we used the convexity of the function � log x to conclude that the value
of B� is non�positive	 In the present section� we give the details	

De�nition ����� Let f be a real�valued function de
ned on the �
nite or in
nite� interval
�a � b�	 This function is called convex if for all a � x� y � b and all � � � � ��

f��x� �� � ��y� � �f�x� � �� � ��f�y��

Theorem ����� Let f be a convex function� Let x�� x�� � � �� xn be real numbers in the
interval �a � b�� and let ��� ��� � � �� �n be real numbers in the interval �� � �� such thatP
�i � �� Then

f�
nX
i��

�ixi� �
nX
i��

�if�xi��
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Proof� The theorem can be proved by induction on n	 For n � �� the claim follows from
the de
nition of convexity	 We give the proof for n � � and leave the general case to the
reader	

Let a � x� y� z � b� � � �� �� � � �� such that � � � � � � �	 We can assume
w	l	o	g	 that � 
� �	 Since

�x� �y � �z � �x� �� � ��

�
�

�� �
y �

�

� � �
z

�
�

the convexity of f implies that

f��x � �y � �z� � �f�x� � �� � ��f

�
�

� � �
y �

�

�� �
z

�
�

Note that ����� �� and ���� � �� are real numbers in the interval �� � �� with sum one	
Therefore� again using the convexity of f � we get

f��x� �y � �z� � �f�x� � �� � ��

�
�

�� �
f�y� �

�

� � �
f�z�

�

� �f�x� � �f�y� � �f�z��

Theorem ����� Let f be a function on �a � b�� If f is twice di
erentiable and f ���x� � �
for all a � x � b� then f is convex�

Proof� Let x� y 	 �a � b� and � 	 �� � ��	 We have to show that f��x � �� � ��y� �
�f�x� � ��� ��f�y�	 We assume w	l	o	g	 that x � y and � � � � �	

Let z � �x � �� � ��y	 Then x � z � y	 By the mean�value theorem� there is an ��
z � � � y� such that

f�y�� f�z� � �y � z� � f �����
Similarly� there is a �� x � � � z� such that

f�z�� f�x� � �z � x� � f �����

Since
x� z � x� �x� �� � ��y � ��� ���x� y�

and
y � z � y � �x� ��� ��y � ��y � x��

we get

�f�x� � �� � ��f�y�� f�z� � ��f�x�� f�z�� � �� � ���f�y�� f�z��

� ��x� z� � f ���� � ��� ���y � z� � f ����
� ��� � ���y � x��f ����� f ������

Note that f � is non�decreasing and � � �	 Hence the last expression is at least equal to
zero	
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Now we can return to Section �	�	 We had

B� � j log
M

wj�j
�

i��X
l��

log
M

gl
wj��
wi

�
j��X
l�i

log
M

gl
wj��
wj�wi

� �j logwj�j �
i��X
l��

log gl
wj��

wi
�

j��X
l�i

log gl
wj��

wj � wi
�

and

wj �
i��X
l��

gl
wj��

wi
�

j��X
l�i

gl
wj��

wj �wi
�

By Theorem �	�	�� the function f�x� � � log x is convex	 Let

xl ��

��
� gl

wj��
wi

if � � l � i� ��

gl
wj��
wj�wi

if i � l � j � ��

and �l �� ��j for � � l � j � �	 Then Theorem �	�	� implies that B� � �� which was
claimed in Section �	�	

Exercise ����� Prove that

x ln
x

a
� y ln

y

b
� �x� y� ln

x� y

a � b

for x� y� a� b � �	 �Hint� x lnx is convex	�

In Section �	�� we also had to maximize the function

F �f� p� �� �f log�� � ��� f�p� � ��� f� log��� fp��

where � � f � � and � � p � ���	 �In Section �	�� we wrote f � instead of f 	� Here� we
give the details	

Lemma ����� For all x � ��� log�� � x� � x
��x

� log e�
Proof� Compute the minimum of the function ln�� � x�� x��� � x�	

We consider the partial derivative of F w	r	t	 p�

�F

�p
� f�� � f�

�
�

�� fp
� �

� � �� � f�p

�
log e�

Since each term in this product is non�negative� it follows that for each 
xed f � � � f � ��
the function F �f� p� is non�decreasing in p	 Hence�

F �f� p� � �f log�� � �� � f���� � ��� f� log�� � f����

Applying Lemma �	�	� gives

F �f� p� �
�
�f �� � f���

� � ��� f���
� ��� f�

�f��
� � f��

�
log e

�
f�� � f� log e

���� � f����� � ��� f����
�

Since f � �� �� f � �� �� f�� � ��� and � � �� � f��� � �� we conclude that

F �f� p� � log e

��
�

which is exactly what was claimed in Section �	�	
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��� Further reading

This chapter is based on Dietz and Sleator ���	
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Chapter 	


Ubungsaufgaben

�Ubungsaufgabe 	�� Betrachte eine Skip List f�ur eine Menge S von n Zahlen	 F�ur p
und q in S sei R�p� q� die Anzahl der Elemente von S� die echt zwischen p und q liegen	
Sei die Position von p in der untersten Liste L� bekannt	 Beweise� da( man das Element
q in O�logR�p� q�� erwarteter Zeit lokalisieren kann	 Warum ist das ein interessantes
Ergebnis 

�Ubungsaufgabe 	�� Gegeben seien n K�astchen und n B�alle	 Wir verteilen die B�alle
zuf�allig und unabh�angig �uber die K�astchen	

�	 Sei j mit � � j � n fest	 Beweise� da( die erwartete Anzahl von B�allen in dem
j)ten K�astchen gleich eins ist	

�	 F�ur � � j � n sei Lj die Anzahl der B�alle in dem j)ten K�astchen	 Wir haben in �	
gesehen� da( Lj eine Zufallsvariable mit Erwartungswert eins ist	
Sei L �� max�	j	n Lj 	 Beweise folgende Aussagen�

�a� Pr�L � k� � n �
�
n
k

�
� � �

n
�k�

�b� E�L� � P�
k��min��� n

k���

�c� E�L� � O� logn
log logn��

�Man kann beweisen� da( E�L� � $� logn
log logn� ist	 Siehe� G	H Gonnet� Journal of the

ACM ��� ����� pp	 �������	�

�Ubungsaufgabe 	�� Eine Folge �Xi�i�� von Zufallsvariablen hei(t paarweise unabh�angig�
falls f�ur alle � � i � j und alle r und s gilt�

Pr�Xi � r 
Xj � s� � Pr�Xi � r� � Pr�Xj � s��

Die Folge hei(t gegenseitig unabh�angig� falls f�ur alle n � �� � � i� � i� � � � � � in und
r�� r�� � � � � rn gilt�

Pr�
n�
j��

�Xij � rj�� �
nY
j��

Pr�Xij � rj��

Betrachte folgenden Ereignisraum�

U � f������ ������ ������ ������ ������ ������ ������ ������ �����g�

��
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Wir ziehen zuf�allig ein Element u aus U 	 F�ur i � �� �� � sei Xi die Zahl an der i)ten Stelle
von u	 �Wenn z	B	 u � ����� ist� dann ist X� � �	� Sei N die Zufallsvariable� die gleich
X� ist	 Beweise folgende f�unf Aussagen�

�	 � i� r� � � i � �� � � r � � gilt� Pr�Xi � r� � �
�
�

�	 X��X� und X� sind paarweise unabh�angig	

�	 X��X� und X� sind nicht gegenseitig unabh�angig	

�	
PE
N�

i�� E�Xi� � ��

�	 E�
PN

i��Xi� 
� PE
N�
i�� E�Xi��

�Ubungsaufgabe 	�� Sei �Xi�i�� eine Folge von gleichverteilten Zufallsvariablen	 Jedes
Xi nimmt nur Werte aus f�� �� �� �� � � �g an	 Sei N eine Zufallsvariable� die auch nur Werte
aus f�� �� �� �� � � �g annimmt	 Nehme an� da( die Variablen N und Xi� i � � gegenseitig
unabh�angig sind	 Beweise� da(

E�
NX
i��

Xi� � E�N� � E�X���

�Ubungsaufgabe 	�	 Sei S eine Menge von n reellen Zahlen und SL eine Skip List f�ur
S	 F�ur x 	 IR sei T �x� die Zeit� die wir brauchen� um in SL nach x zu suchen	 Wir haben
in der Vorlesung bewiesen� da( der Erwartungswert von T �x� durch O�log n� beschr�ankt
ist	 Sei nun T � maxfT �x� � x 	 IRg	 Beweise� da( der Erwartungswert von T auch
durch O�log n� beschr�ankt ist	

�Ubungsaufgabe 	�� Seien k und n ganze Zahlen� so da( � � k � n	 Ein Baum T hei(t
UF�k��Baum falls

�	 die Wurzel von T h�ochstens k Kinder hat�

�	 jeder Knoten in T entweder � oder mehr als k Enkel hat�

�	 alle Bl�atter von T die gleiche Tiefe haben	

L�ose das Union�Find)Problemmit Hilfe von UF�k��B�aumen� so da( jede Union�Operation
Zeit O�k � logk n� und jede Find�Operation Zeit O�logk n� kostet	
�Andere die Datenstruktur� so da( jede Union)Operation ZeitO�k� und jede Find)Operation
immer noch Zeit O�logk n� braucht	
F�ur welchen Wert von k sind diese Zeiten minimal  

�Ubungsaufgabe 	�
 Sei S eine Menge von n Punkten in der Ebene	 Beweise� wie man
mit Hilfe von Range Trees sogenannte orthogonal range queries e
zient l�osen kann	 Eine
solche Query besteht aus einem Rechteck R � �a� � b�� � �a� � b�� und der Aufgabe alle
Punkte von S zu suchen� die in R liegen� d	h	 alle Punkte p � �p�� p�� 	 S� so da(
a� � p� � b� und a� � p� � b�	
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�Ubungsaufgabe 	�� In dieser Aufgabe betrachten wir eine Variante von Range Trees	
Sei S ein Menge von n Punkten in der Ebene und sei m ein Parameter� so da( � � m �
log n	

Ein Range Tree mit slack Parameter m hat eine �ahnliche Struktur wie ein Range Tree	
Der Unterschied ist� da( nur Knoten auf den Stufen ��m� �m� �m� � � � des x)Baums Zeiger
auf y)B�aume enthalten	

Beweise� wie man mit Hilfe dieser Datenstruktur orthogonal range queries in Zeit
O��

m

m
� �log n��� k� l�osen kann� wobei k die Anzahl der Punkte in dem Queryrechteck ist	

Beweise� da( diese Datenstruktur Gr�o(e O� �
m
� n log n� hat	

�Ubungsaufgabe 	�� Wir betrachten au(er dem XY )System auch das X �Y �)System�
das durch eine Drehung um �

�
entsteht	 Sei S eine Menge von Punkten in der Ebene�

und sei p 	 IR�	 Seien weiter p� der L�)Nachbar von p in S� q der L�)Nachbar von
p in S bez�uglich des XY )Systems� und q� der L�)Nachbar von p in S bez�uglich des
X �Y �)Systems	

Sei q� der Punkt aus fq� q�g� der den kleinsten L�)Abstand zu p hat	 In der Vorlesung
wurde gezeigt�da( d��p� q�� � �� � �

�
� � d��p� p�� �Nimm � � �

�
in Abschnitt �	��	 Diese

Absch�atzung ist sehr grob� da auch gezeigt wurde� da( d��p� q�� �
p
� � d��p� p��	 Beweise�

da( d��p� q�� �
q
� � �

�

p
� � d��p� p��	

�Ubungsaufgabe 	��� Sei S eine Menge von n Punkten in der Ebene� k � � eine Kon�
stante und $ � ��

k
	 F�ur � � i � k� sei li die Halbgerade� die entsteht� wenn die positive

X�Achse um i � $ gedreht wird	 Sei Ci der Winkelausschnitt bestehend aus allen Punk�
ten der Ebene� die zwischen li�� und li liegen	 F�ur einen Punkt p in der Ebene sei
Cp
i �� Ci � p �� fc� p � c 	 Cig	
�	 Sei i� � � i � k� fest	 Gib eine Datenstruktur f�ur S an� die folgende Queries e
zient

l�ost�
Gegeben ein Punkt p in der Ebene� 
nde den Punkt p
i� in Cp

i �S� dessen Projektion
auf li�� den kleinsten Abstand zu p hat	 �Also� wenn i � � und p der Ursprung�
dann suchen wir den Punkt in Cp

� � S mit minimaler x)Koordinate	�

�	 Sei p
i�� der Punkt in Cp
i � S mit kleinstem Abstand zu p	 Beweise� da(

d�p� p
i�� � �

cos$
� d�p� p
i�� ��

�	 L�ose das � �
cos���approximative Post�O
ce Problem	 F�ur jedes � � � gibt es ein k�

so da( �
cos� � � � � f�ur $ � ��

k
	 Dies liefert also eine alternative L�osung f�ur das

�� � ���approximative Post�O
ce Problem	

�Ubungsaufgabe 	��� Wir benutzen die Bezeichnungen aus Aufgabe ��	 Sei t � � eine
Konstante	 Ein Graph G mit Knotenmenge S hei(t ein t�spanner� falls es f�ur jedes Paar
p� q 	 S einen Pfad in G von p nach q gibt� mit L�ange h�ochstens t � d�p� q�	 �Die L�ange
eines Pfades ist die Gesamtl�ange der Kanten des Pfades	�

�	 Warum enth�alt ein spanner mindestens n� � Kanten 
F�ur k � � sei Gk der Graph mit Knotenmenge S und Kantenmenge

f�p� p
i�� � p 	 S� � � i � kg�
Wir nehmen an� da( k eine Konstante ist	 Dann enth�alt Gk O�n� Kanten	



�� 	� Ubungsaufgaben

�	 Seien p und q Punkte in S� so da( �p� q� keine Kante in Gk ist	 Sei i der Index� so
da( q 	 Cp

i 	 Betrachte den Punkt p
i� und beweise� da(

d�p
i�� q� � d�p� q� � d�p� p
i�� � �sin$� cos$��

Da $ � �
�
� gilt insbesondere d�p
i�� q� � d�p� q�	

�	 Beweise� da( Gk zusammenh�angend ist	

�	 Sei t � �
cos��sin� 	 Beweise� da( Gk ein t�spanner ist	 F�ur jedes � � � gibt es ein k�

so da( �
cos��sin�

� � � � f�ur $ � ��
k
	 Dies liefert also einen �� � ���spanner mit nur

O�n� Knoten	
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