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Abstract

We investigate approzimate decision algorithms for determining whether the mini-
mum Hausdorff distance between two points sets (or between two sets of nonintersecting
line segments) is at most e. An approximate decision algorithm is a standard decision
algorithm that answers YES or NO except when ¢ is in an tndecision interval where the
algorithm is allowed to answer DON’T KNOW. We present algorithms with indecision
interval [§ — 4,8 4+ 4] where § is the minimum Hausdorff distance and v can be cho-
sen by the user. In other words, we can make our algorithm as accurate as desired
by choosing an appropriate y. For two sets of points (or two sets of nonintersecting
lines) with respective cardinalities m and n our approximate decision algorithms run in
time O((e/v)*(m + n)log(mn)) for Hausdorff distance under translation, and in time
O((e/v)*mnlog(mn)) for Hausdorff distance under Euclidean motion.

1 Introduction

Determining the extent to which two planar shapes are similar is an important problem in
pattern recognition and computer vision. Various measures of shape similarity have been
investigated, e.g., Fréchet-distance for shapes given as polygonal curves [4, 5], approximate
congruence for shapes given as equal-cardinality sets of points [4, 6, 7, 10, 11, 15, 16, 20, 23,
24], and Hausdorff distance [2, 3, 4, 9, 12, 13, 14, 17, 18, 19, 22].

In this paper we consider the Hausdorff distance between (a) two sets of points under
translation, (b) two sets of points under Euclidean motion, (c) two sets of nonintersecting
line segments under translation, and (d) two sets of nonintersecting line segments under
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Euclidean motion. (Note that for our sets of nonintersecting line segments, intersection at
endpoints is allowed.) For two compact subsets A and B of the plane the Hausdorff distance
is defined as

h(A, B) = max (sup inf dist(a,b), sup inf dist(b, a)) ,
acA DEB beB acd
where dist denotes a distance function between points. In the remainder of this paper dist
means Euclidean distance.

In particular, we are interested in the case where one of the shapes can be moved by
some rigid motion to match the other shape as well as possible. In this case the question is:
Over all allowed motions, what is the smallest Hausdorfl distance between A and the moved
shape B? We refer to this distance as the minimum Hausdorff distance between A and B.
It 1s straightforward to show that the minimum Hausdorff distance is a metric.

The known algorithms that find the minimum Hausdorft distance for the four problems
stated above are very costly in terms of runtime. If A and B are point sets of cardinal-
ities m and n, respectively, then the minimum Hausdorff distance under translation can
be computed in time O(mn(m + n)log(mn)) [19]. Under Euclidean motion the runtime is
O((mn)?(m+n)log?(mn)) [12]. If A and B are sets of nonintersecting lines segments of cardi-
nalities m and n then the minimum Hausdorff distance under translation can be computed in
time O((mn)%log®(mn)) [8]. Under Euclidean motion the runtime is O((mn)®log®(mn)) [12].
These large runtimes, as well as the difficulty of actually implementing some of these algo-
rithms, provide motivation for finding simple and efficient approximation algorithms for these
problems.

The approximation approach that we take here extends ideas from [15, 16, 23, 24] where
approximation algorithms are developed for the problem of approzimate congruence between
point sets. (See, for instance, [6] or one of the other references mentioned above for defini-
tions and examples of approzimate congruence.) These algorithms are approximate decision
procedures that determine whether two shapes are e-congruent for some ¢ > 0. The answer
to such a query can be YES or NO, or, if ¢ is very close to the optimal solution, the answer
can be DON’T KNOW. Allowing the DON’T KNOW answer provides subtantial time savings.
The methods in the papers above involve aligning characteristic points (see Section 2 below).

We apply this approach for the problem of finding the minimum Hausdorff distance.
For point sets (and for sets of nonintersecting line segments) of cardinality m and n our
approximate decision algorithms run in time O((e/v)?(m+n)log(mn)) for Hausdorff distance
under translation, and in time O((e/v)*mnlog(mn)) for Hausdorff distance under Euclidean
motion, where ¢ is the distance-parameter of the decision-procedure,i.e., the question asked
is, “Is the minimum Hausdorff distance at most £?”, and « is an accuracy-parameter chosen
by the user.

Our approximation algorithm for nonintersecting line segments under Euclidean motion
improves an approximation algorithm due to Alt, Behrends and Blomer [2, 3] which runs
in time O(A1926(mn)log(mn)) where the function Ajg6 is an almost-linear function derived
from Davenport-Schinzel sequences. Using our techniques, we can get within the same
approximation factor in time O(mnlog(mn)).



Recently, we found that Alt, Aichholzer and Rote [1] have also researched the problem of
characteristic points for approximate shape matching. In their work they call these points
reference points. In [1], they determine a much-improved reference point for approximat-
ing the Hausdorff distance under Euclidean motion. These new reference points lead to
improvements in constant factors (hidden by the O-notation) for our algorithms.

The remainder of the paper is organized as follows: We discuss our general framework
in Section 2. In Section 3, we describe our solutions for sets of points under translation.
Point sets under Euclidean motion are covered in Section 4. In Section 5 and Section 6, we
discuss sets of nonintersecting segments. Section 7 contains a brief discussion of conclusions
and open problems.

2 Approximate Decision Algorithms and
Characteristic Points

Useful tools for the design of approximate decision algorithms are provided by characteristic
points of the shapes to be compared. Characteristic points are points that must be within
distance ce of each other whenever the corresponding shapes are e-close for some known
constant ¢. Two sets are said to be e-close if the distance between the two sets is at most e.
In this paper, unless otherwise noted, the distance we refer to is the Hausdorff distance.

As an example, the centroids ¢} and cj of point sets A and B, respectively, are char-
acteristic points for approximate congruence [23, 24]. If A and B are e-congruent then
dist(chy,cp) < e, ie. c=1.

For shapes A and B, let ¢}* and cg* be the points with the z-coordinate of the leftmost
point in A and B, respectively, and the y-coordinate of the bottommost point in A and
B, respectively. When only translation is allowed (no rotation) these points can be used
as characteristic points for approximate congruence of point sets [15] and for the minimum
Hausdorff distance of polygonal curves [3], i.e. ¢ = /2.

In [3, 11] it is shown that the centroid of the edges of the convex hull of a polygonal
curve is a characteristic point for minimum Hausdorff distance. If the minimum Hausdorft
distance of two sets is 6 then the characteristic points of these two sets are within distance
(47 4 3)6, i.e., ¢ = 4w + 3 here. In [1], it is shown that better characteristic points for the
same problem are provided by the so-called Steiner points of the two sets. Steiner points
give c = 4/m.

Characteristic points c4 and cp for shapes A and B give a simple test for distance
between A and B, when A and B are fixed in position: Compute the distance between
the characteristic points of the two sets. If this distance is more than ce then the distance
between A and B is more than e.

Characteristic points can also be used in approximate decision algorithms for measuring
the resemblance under a set of motions G if the motions in G preserve the characteristic
point. A motion g € G preserves a characteristic point for a class of shapes and a given
measure of resemblance if cy4) = g(cy4) for all shapes A in the class. For example all affine



transformations preserve the centroid of a set of points. However, for a rotation R and a
point set A we have in general R(c*) # CE(A).

Again, characteristic points lead to a simple test for distance between A and B, when
A and B can move according to motions g € G; Suppose we wish to know if the minimum
Hausdroft distance between A and B is at most e. If the distance is at most ¢ then we know
there is some motion g of B that achieves Hausdorfl distance at most ¢ and that, for that
motion g, g(cp) is within ce of c4. Thus, if no motion in G., = {I € G | I(c) = ca} gives
distance at most (1 4 c)e then A and B have distance more than e.

Consider the ce-neighborhood of ¢y, a circle of radius ce about c¢4. We fill this neighbor-
hood with a set of points C is such a way that each point in the neighborhood is within ~
of some point of C. Let Ge = {I € G | I(cg) € C}. We test all I € G for ¢ and € + . If
no I € Ge leads to distance at most € + +4 then A and B cannot have minimum Hausdorff
distance at most . Clearly A and B can’t have distance at most ¢ + v for ¢ < b4 — 7.
Since there i1s an I € G¢ C G that leads to distance at most ¢ for ¢ > d45 + v, we get a
(v,7)-approximate decision algorithm for motions in G. This method is analogous to the
method used in [16] for the problem of approximate congruence.

The runtime for this algorithm depends on the size of set C, how difficult it is to compute
characteristic points, and how difficult it is to determine Hausdorff distances for all motions
in G that align cp with a point in C. The set C can be easily defined by a grid of an
appropriate size such that |C| = O((%)2) Also, it turns out that the characteristic points
we use are all relatively easy to compute. Thus, the time bound for the algorithm depends
on the time to check Hausdorft distances.

3 Points Sets under Translation

Let A and B be sets of points with cardinalities m and n, respectively. As above let ¢jj* and

cg- be the points with the z-coordinate of the leftmost point in A and B, respectively, and
the y-coordinate of the bottommost point in A and B, respectively. If A and B are e-close
then there is a point in B which is e-close to the leftmost point in A and a point in B which
1s e-close to the bottommost point in A and vice versa. Hence both coordinates of ¢} and

cg- differ by at most € and therefore
dist(ch*, c5) < V2.

Translations preserve these characteristic points, because the leftmost and the bottommost
points of a set of points are invariant under translations. So ¢}* and cg* lead us to an
approximate decision algorithm for Hausdorff distance under translation.

Let 645 be the minimum Hausdorff distance between A and B under translation. In
order to obtain an approximate decision algorithm that solves the decision problem whenever
le — 8ap| > 7, we choose a set of points C in the circle with radius 24/c and center c}*, as
described above, such that for every point in this circle there is a 4-close point in C. We
then test all the translations that map cg* onto a point in C. There is only one possible
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Figure 1: Centroids of e-close point sets which are not O(e)-close

translation for each ¢ € C so the time depends on how long it takes to compute the Hausdorft
distance between A and g(B). Here, we use the algorithm of Alt et al. [3] to compute the
Hausdorff distance between fixed sets of points in time O((m + n)log(mn)).

Lemma 1 For two point sets with cardinalities m and n, there is a (v,7)-approzimate de-
ciston algorithm for the minimum Hausdorff distance under translation that runs in time

O((/7)*(m + n)log(mn)).

For comparison, the exact algorithm to determine if the minimum Hausdorft distance of
point sets under translation is bounded by ¢ has running time O(mn(m + n)log(mn)) [19].
For the L; or L., metrics, there is an exact algorithm for points under translation that is
more efficient, taking time O(mnlog(mn)) [13].

4 Point Sets under Euclidean Motion

Since Euclidean motions in general may change the leftmost and bottommost points, ¢j*
and cg' are not good characteristic points for Euclidean motion. The centroid and the center
of the smallest enclosing circle are preserved under Euclidean motion. Unfortunately, they
are not characteristic points for Hausdorff distance under Euclidean motion.

Let ¢ and cp denote the centroids of A and B and let ¢ and ¢ denote the centers of
the smallest enclosing circles of A and B.

Lemma 2 The distance of the centroids of two e-close point sets can be arbitrarily large
even if the point sets have the same cardinality.



Proof: Assume both sets, A and B have cardinality n. Let A > . We construct two
e-close point sets whose centroids have distance at least A. A consists of two clouds of 7
points each, B consists of a cloud with n —1 points and one isolated point. More precisely, 3
of the points in A have distance at most € to (0,0) and % have distance at most ¢ to (3A,0).
B has n—1 points e-close to (3A,0) and the n-th point is (0,0). Clearly A and B are e-close,
but ¢ is e-close to (3A/2,0) while ¢5—(3A,0) as n — oo. Hence dist(chy,cp) > Aif n is
sufficiently large. O

More surprising is the result that even for the center of the smallest enclosing circles
there is no constant ¢ such that the distance between the centers of two e-close point sets is
at most ce. In his Diplomarbeit [11] Behrends shows

Lemma 3 For any r > e there are e-close point sets A and B such that the smallest en-
closing circles of A and B have radius r and

dist(c5y, c3) > V2r/e.

Proceeding in our search of characteristic point for Hausdorft distance under Euclidean
motion we note that the extreme points of a point set, defined by the points on the con-
vex hull, are invariant under Euclidean motions. These points can be used to construct a
characteristic point. The results of [2, 3] show that the centroids of the edges of convex
polygons are O(e)-close if the convex polygons are e-close. Furthermore, denoting by CH(A)
the convex hull of the set A, and by bd(CH(A)) its boundary, we have

Lemma 4 If point sets A and B are e-close then the boundaries bd(CH(A)) and bd(CH(B))

of the convezx hulls of A and B are e-close as well.

Lemma 4 is a special case of Lemma 7 in [2] where it is shown that e-close compact subsets of
the plane have e-close convex hulls: Denote by U.(A) the € neighborhood of A and let A and B
be e-close compact subsets of the plane. Then we have CH(A) C CH(U.(B)) C U.(CH(B))
where the latter inclusion holds because U.(B) C U.(CH(B)) and U.(CH(B)) is convex.
Together with the symmetric case this proves the lemma.

Let ¢ and cg be the centroids of the edges of the (boundaries of the) convex hulls of the
point sets A and B resp. By the result of [2] and Lemma 4, c¢§ and c§ are O(¢)-close and
hence are characteristic points for the Hausdorff distance under Euclidean motion.

As in the translation case these characteristic points can be used for an approximate
decision algorithm for Hausdorff distance under Euclidean motion. We choose points near
¢ as candidate image points for cg. Fixing the image of c3 fixes the translational part
of the Euclidean motion of B. For testing whether an image point leads to e-closeness,
we need a decision algorithm for Hausdorff distance under rotations with a fixed center.
An extension of the algorithm of Goodrich and Kravets [14] yields a decison algorithm for
computing the Hausdorff distance under rotation for a fixed rotation-center that runs in time
O(mnlog(mn)). We get



Lemma 5 For two point sets with cardinalities m and n, there is a (v,7)-approzimate de-
ciston algorithm for the minimum Hausdorff distance under Euclidean motion that runs in
time O((g/7v)*mnlog(mn)).

The recent results of [1] provide a better characteristic point than the one we have used
here. This causes a change in the constant factor for the running time and does not otherwise
affect our analysis.

5 Line Segments under Translation

Alt et al. [2, 3] have computed an approximation to the problem of minimum Hausdorff dis-
tance between n nonintersecting line segments under various transformations. Their methods
involve characteristic points. Their method does not involve computing the Hausdorff dis-
tance between the sets, but coming up with a transformation which gives a Hausdorff distance
value within a certain factor of the exact minimum Hausdorff distance of the sets. Applying
their results we can derive (v, v)-approximate decision algorithms from these algorithms. For
the translational case the derived algorithm runs in time O((e/v)?*(n + m)log(n + m).

Lemma 6 For two sets of nonintersecting line segments with cardinalities m and n, there
is a (v, v)-approzimate decision algorithm for the minimum Hausdorff distance under trans-
lation that runs in time O((e/7)*(m + n)log(mn)).

For line segments the exact algorithm to determine if the minimum Hausdorff distance
under translation is at most ¢ has running time O((mn)?log(mn)) [8].

6 Line Segments under Euclidean Motion

For minimum Hausdorff distance of line segments under Euclidean motions a (v, v)-approximate
decision algorithm with running time O((e/v)*A1026(mn)log(mn)) can be derived from the
algorithms given in [2, 3]. Here, we introduce a different algorithm that leads to a slightly
improved time bound; in addition, we believe this algorithm is likely to be simpler to imple-
ment. Given sets A and B of nonintersecting segments of cardinalities m and n, respectively,
and given a parameter ¢, our goal is to determine if B can be rotated about a fixed center
into a position where the Hausdorftf distance between A and B is not greater than . Take
the set of segments in A and compute their Minkowski sum with a circle of radius €. The
Minkowski sum of a segment with a circle has a shape of a racetrack. The union of these
racetracks, A., has complexity O(m) [21] and can be computed in time O(mlogm). The
boundary of the union consists of arcs of radius e centered at endpoints of the segments in
A, and segments parallel to the segments in A. Now we need to determine if there is an
angle 6 such that all segments of B fall within A.. The angle should also be such that the
symmetric relation holds: all segments of A should fall within B.. We do this by examining
each segment b of B separately, determining all #-intervals where b is within A,; thus, each



b corresponds to a union of f-intervals. All b € B are contained in A, iff the intersection
of these unions over all b € B is nonempty. The final step is to take this (presumably
nonempty) intersection and intersect it with the intersection we get for the symmetric case
(A within B.). If the final result is nonempty then we have found the angle 6 where the
Hausdorff distance between A and B is at most €. The most difficult part of this procedure
is finding the set of #-intervals where a single segment b is within A..

We can find if segment b is within A, by doing a type of sweep. The insideness or not-
insideness of b can change only at critical values of 6: (1) when the boundary of A. contacts
an endpoint of b, (2) when a portion of the boundary of A. is tangent to segment b, and (3)
when a boundary vertex of A, crosses segment b. Since the boundary of A, consists of just
O(m) segments and circular arcs, it is easy to see that there are just O(m) critical values of
6. Segment b is inside A, if (1) it does not intersect the boundary of A, and (2) an endpoint
is inside A.. Thus we can set up a sweep, with running time O(mlogm), that reports the
set of O(m) f-intervals for which b is within A..

Now we have to intersect such unions of intervals. In O(mnlog(mn)) time, we can find
the necessary union of intervals for each segment in B and each segment in A. Now we
simply run a f-sweep over all these O(mn) intervals to determine which value of 6 is most
deeply covered by intervals. This can be done by using a simple counter which is updated at
each of the O(mn) interval endpoints. If the counter ever reaches m+n then the intersection
of interval unions must be nonempty.

In summary, it takes O(mnlog(mn)) time to determine if there is a motion that brings
A and B to within Hausdorff distance ¢ when B is allowed to rotate about a fixed center.
Combining this with the algorithm described in Section 2 we get

Lemma 7 For two sets of segments with cardinalities m and n, there is a (v, 7)-approzimate
deciston algorithm for the minimum Hausdorff distance under Euclidean motion that runs
in time O((g/7v)*mnlog(mn)).

7 Conclusions

Practical shape-matching algorithms are likely to depend on approximate matching since
exact algorithms are in many cases impractical, especially when full Euclidean (i.e., rigid)
motion is allowed. For instance, the exact algorithm to determine if the minimum Haus-
dorft distance is at most e, for sets of segments of cardinalities m and n under Euclidean
motion in the plane, takes time O((mn)®log(mn)) [12]; our approximation algorithm takes
time O((e/y)?*mnlog(mn)) where v is a parameter chosen by the user. Our approximation
algorithm is guaranteed to be correct if it reports either YES or NO, but if ¢ is near the
actual minimum Hausdorff distance 8,45, more precisely, if ¢ is in the indecision interval
[6aB — 7,848 + 7], it may report the answer DON’T KNOW.

As an example, our algorithm can be used to determine if a given e is within say 1% of the
minimum Hausdorff distance. For sets of points or segments in the plane, of cardinalities m
and n, under translation, it would take time O((m + n)log(mn)). Under Euclidean motion,



it would take O(mnlog(mn)) time. In both cases doubling the accuracy would quadruple
the running time.

Not a great deal is known about practical algorithms for shape matching in higher di-
mensions, especially when rotations are allowed. For instance, there is currently no practical
algorithm, either exact or approximate, for the problem of matching shapes (even just points)
under full 3D Euclidean motion. Here, we regard a factor of (mn)? as likely to be impractical.
For some subclasses of problems, heuristic techniques can be quite effective (for instance,
if the points sets are both long in just one direction, these directions can be aligned in a
preprocessing step, effectively decreasing the dimension of the problem), but we know of no
practical results for general point sets.
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