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Abstract

Suppose we are given nmoving postmen described by their motion equations pi�t� �
si � vit� i � �� � � � � n� where si � IR� is the position of the i�th postman at time t � 	�
and vi � IR� is his velocity
 The problem we address is how to preprocess the postmen
data so as to be able to e�ciently answer two types of nearest neighbor queries
 The
�rst one asks 
who is the nearest postman at time tq to a dog located at point sq
 In
the second type a fast query dog is located a point sq at time tq � its velocity is vq where
vq � jvij for all i � �� � � � � n� and we want to know which postman the dog can catch
�rst
 We present two solutions to these problems
 Both solutions use deterministic
data structures
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� Introduction

The classic post�o�ce problem is to preprocess the locations of n post�o�ces in the plane
so as to permit e�cient solutions to queries of the type �where is the closest post�o�ce
to a customer located at �x� y��� The standard solution to this problem is to preprocess
the post�o�ces by constructing their Voronoi�diagram	 a query is answered by performing a
planar point location in the Voronoi�diagram�

We discuss the variant of the post�o�ce problem that arises when the post�o�ces become
postmen
 i�e� they are allowed to move� A recent paper �DG�
� introduced the problem and
demonstrated a data structure for solving it� The data structure and techniques used there
were inherently randomized	 the existence of e�cient deterministic solutions was posed as
an open question� In this paper we provide such solutions�

Following �DG�
� we assume that the motion of each postman is described by the equation

pi�t� � si � vit� i � �� � � � � n�

where t stands for time
 si is the location in the plane of the ith postman at time t � �
 and
vi � IR� is his velocity� Thus pi�t� is the location of the ith postman at time t� By analogy
with the static post�o�ce problem we would like to preprocess the postmen so as to easily
answer the question �given a query point sq at time tq who is the postman closest to sq��
In the static case the meaning of �closest� was clearly closest in terms of distance� When
the postmen are moving then we distinguish between two problems� the closest postman at
a given time �see query � below� and the postman that can be reached �rst� More formally

denoting the Euclidean distance between points p� s � IR� by jp� sj
 we de�ne the following
two types of queries
��� Moving�Voronoi query� Given a point �dog� query
 q
 by its location sq � IR�
 at time
tq
 �nd the postman nearest to it� Let

M�sq� tq� � fpi � jpi�tq�� sqj � jpj�tq�� sqj� �j � �� � � � ng

be the set of nearest postmen to sq at time tq� The query returns a postman from M�sq� tq��
�Throughout the paper we abuse notation slightly by having pi denote both the i�th postman
and its motion parametrized by t��

��� Dog�Bites�Postman query� We de�ne the query
 q
 to be a triple �sq� tq� vq� where sq � IR�

is the initial location of the dog at time tq
 and vq � �
 vq � IR
 is the dog�s speed
 �nd the
postman that the dog can reach quickest� For the dog
 only the magnitude of the speed is
known
 its direction is chosen by the dog to minimize the time for reaching a postman� Set

tjq � minft � tq � �t� tq�vq � jpj�t�� sqjg�

for j � �� � � � � n
 to be the �rst time that the dog can catch postman j if it starts running to
him at time tq
 and

D�sq� tq� vq� � fpi � tiq � tjq� �j � �� � � � � ng
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Figure �� Example with p��t� � �� � t��� ��
 p��t� � ��
 � t��� ��
 sq � ��� ��
 tq � �
 and
vq � �

to be the set of postmen that the dog can reach quickest� The query returns a postman from
D�sq� tq� vq��

As in �DG�
� we assume that vq � jvij for all i � �� � � � � n
 i�e�
 the dog is faster than
all of the postmen� This guarantees that every query has an answer and also simpli�es the
underlying geometry of the problem� We brie�y discuss what happens if the dog is slower
than the postman in Section �� As we shall see Moving�Voronoi queries can be used to
answer Dog�Bites�Postman queries if vq � jvij for i � �� � � � � n�

As an example suppose that n � � with p��t� � �� � t��� ��� p��t� � ��
 � t��� �� �see
Figure ��� The query point is sq � ��� ��� the query time tq � � and the query speed vq � ��
The nearest neighbor to sq at time tq is postman p�� The postman that the dog can reach
quickest though is p� �this will happen at t � ��� The reason that the two answers are
di�erent is that p�� the nearest postman
 is moving away from the dog while p�� the further
one
 is moving towards it�

In this paper we describe two deterministic techniques for solving these queries
 with
tradeo� between preprocessing time and query time� For each technique we construct a data
structure which permits a fast solution of both types of queries� In essence both solutions
reduce to the problem of answering several point location queries in arrangements in �x� y� t��
space�

The �rst solution starts by locating tq in some data structure and next locates sq � �xq� yq�
in the plane parallel to the �x� y��plane at t � tq� The Dog�Bites�Postman query time is
O�log� n� and its space complexity is O�T �n� log n�
 where T �n� is the number of topological
changes in the Voronoi�diagram of linearly moving points �cf� �FL���
 �GMR����� T �n� is
described in more detail in the next section� For Moving�Voronoi queries the query time is
O�log� n� with the same space complexity� The second solution �rst locates sq � �xq� yq�

and then locates tq in a data structure on a line parallel to t�axis through �xq� yq�� It has
query time O�log n� for both type of queries but space complexity O��T �n���� The time and
space requirements for both solutions as well as the query times they support are tabulated






in Table ��

Method Space Preprocessing M�V� Query Dog Query

� O�T �n� log n� O�T �n� log n� O�log� n� O�log� n�
� O�T �n��� O�T �n�� log n� O�log n� O�log n�

Table �� The algorithms presented in this paper for solving Moving�Voronoi and Dog�Bites�
Postman queries� T �n� is the number of topological changes in the Voronoi�diagram of n
moving points�

The paper is organized as follows� In the next section we discuss the geometric details of
the problem� In Section 
 we brie�y review some previous related work� Our �rst determin�
istic approach is given in Subsection ���� Our second
 time�optimal solution
 is presented in
Subsection ���� We conclude and discuss open problems in Section ��

� The geometric structure of the problem

We start by considering the Voronoi�diagram of n moving postmen

pi�t� � si � vit� i � �� � � � � n�

Consider the three�dimensional space �x� y� t� where the x� and y�axes span the horizontal
plane and the t�axis is vertical to this plane� At any given time t� the set of points pi�t��

i � �� � � � � n
 de�ne a planar Voronoi�diagram
 V �t��
 which partitions the plane t � t��
As the postmen move with t
 their corresponding planar Voronoi�diagram
 V �t�
 changes
continuously and sweeps the 
�dimensional space �x� y� t�� The sweep creates a partition

M
 of this space in the following way� The vertices of V �t� sweep along edges of M
 edges
of V �t� sweep faces of M and Voronoi regions of V �t� sweep three�dimensional cells of M�
Thus
 M is a cell complex
 de�ned by the moving�Voronoi�diagram of the moving postmen�

During the sweep along t the Voronoi�diagram V �t� undergoes two types of changes�
The �rst type is a continuous deformation
 in which the topology of the Voronoi�diagram
remains the same	 in this type
 Voronoi proximity relations do not change so no Voronoi
edges and�or vertices are either created or deleted� Just the locations of the Voronoi vertices
in the plane and the locations and lengths of the Voronoi edges change� The second type
of change is the addition and deletion of Voronoi edges� This occurs when at some t four
points become co�circular� Due to new proximity relations
 an old Voronoi edge contracts to
a vertex �e�ectively merging its two endpoints� and then expands to become a new Voronoi
edge� For this type therefore
 the topological structure of V �t� is modi�ed and these changes
are called topological changes in V �t�� The Voronoi vertex of the four points at t creates a
vertex in M�

In order to estimate the complexity ofM we �rst need a bound on the number of vertices
in M
 which is also the number of topological changes in the moving Voronoi�diagram� We

�



denote this number by T �n�� The value of T �n� has been extensively studied	 it is known
that T �n� � O�n����n�� � O�n� log� n� �see
 e�g�
 �GMR���
 and that there are sets of n
moving points for which T �n� � ��n��� The problem of whether there are sets of n moving
points for which T �n� � ��n��
 i�e� asymptotically bigger than n�
 is still open�

Since a two dimensional Voronoi�diagram has space complexityO�n� and each topological
change can cause only a constant number of changes to V �t�
 the space complexity of M
 as
measured by the total number of its cells
 edges
 faces and vertices
 is O�n�T �n�� � O�T �n���

In �GMR����
 Guibas
 Mitchell and Roos describe an algorithm that
 in O�T �n� log n�
time starts at t � �� and sweeps towards t � �� stopping at each topological change in
the Voronoi�diagram and reporting it� Suppose then that their algorithm has been run and
found the times �� 	 �� 	 � � � 	 �k
 k � T �n�
 at which the topological changes occur�

Another way to view the cell complexM is to describe the motion of the postmen as line
segments in 
�space
 thus the cells ofM can be viewed as sleeves around these line segments�
The boundaries of the sleeves consist of algebraic surface patches �ruled surfaces�
 which in
turn intersect in algebraic curves
 called edges
 and the edges intersect in the vertices of the
cell complex M�

More explicitly
 let pi�t� � si � vit for i � �� � � � � n
 where each point si � �xi� yi�
 and
vi � �vxi� vyi�� Then the surface between two moving points pi�t� and pj�t� is described by

�x� xi � vxit�� � �y � yi � vyit��

� �x� xj � vxjt�� � �y � yj � vyjt���

which is a quadratic algebraic surface� The edges
 which are intersections of these surfaces

can be quartic curves in �x� y� t�� Clearly there are exactly O�n� sleeves in M�

� Previous Work

The combinatorics of Moving�Voronoi queries has already been addressed in �AR��
 FL��

GMR��
 RN��
 Roo��
 Roo���	 these papers actually treat the evolution of changes in the
Delaunay triangulation and the Voronoi�diagram and not point location in them� A special
case of dog type queries � one in which all of the postmen move with the same velocity � was
dealt with in �Sug���� The general dog type query and algorithms for both types of queries
were introduced in �DG�
��

The approach to solving Moving�Voronoi queries used in �DG�
� uses the fact that M
subdivides three�space into cells such that all points in a given cell have the same nearest
postman� Solving a Moving�Voronoi query can therefore be done by locating the cell in
M which contains �xq� yq� tq�� In �DG�
�
 a three�dimensional point location structure for
M is built incrementally by adding the postmen at a random order
 one at a time
 to the
structure and by saving the changes that the addition of the new postman caused to the old
structure� �This method is similar to the Guibas
 Knuth and Sharir �GKS��� randomized
data structure for point location in static Voronoi�diagrams�� It was shown in �DG�
� that
the expected time for a Moving�Voronoi query in this data structure is O�log� n� where the
expectation is taken over all possible orders in which the postmen can be inserted into the
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data structure� It was also shown that
 if the dog is faster than all of the postmen
 then this
same data structure also answers Dog�type queries in O�log� n� expected time� If P is the
set of n postmen being stored then the expected size of the data structure was shown to be

O
�P

r�n
TE�r�

r

�
where TE�r� is the expected number of topological changes in the moving�

Voronoi�diagram of a random sample of r postmen from P � This implies that the expected
size of the data structure is O�n����n���

� Our solutions

We describe below two approaches to solve both queries deterministically� One approach is
more economical in space requirements than the other approach
 while having greater query
times� In both approaches we �rst solve the Moving�Voronoi query
 which is actually a
point location problem in a Voronoi�diagram of moving points� Based on the point location
solution we build an algorithm for the Dog�Bites�Postman query�

��� Space�E�cient Solution

One approach to solving a Moving�Voronoi query would be to store the topology of the graph
of each Voronoi�diagram between two consecutive topological changes
 in a way that permits
point location� Recall that we denoted by ��� � � � � �k
 the times at which the topological
changes occured in the moving Voronoi�diagram� We denote by Vi the topological structure
of the Voronoi�diagram of the postmen in time interval ��i� �i	��� �In this structure a Voronoi
edge
 e�g�
 is stored as the points that are equidistant from it
 and a Voronoi vertex as triple
of points equidistant from the Voronoi vertex
 together with the cyclic ordering of the edges
incident to it�� An obvious improvement to this approach takes advantage of the fact that
two consecutive Voronoi�diagrams have one topological change between them
 which
 as
described above
 causes just a constant number of local changes to the edges and vertices
of these Voronoi�diagrams� So a data structure for dynamic planar point location that uses
only the topology and can be made partially persistent would be very useful�

We don�t know an e�cient planar point location structure that uses only the topology�
However
 Goodrich and Tamassia �GT��� present a method for dynamic planar point lo�
cation and a dynamic data structure which maintains a dynamically changing monotone
subdivision
 its graph theoretic dual and spanning trees for both
 which nearly uses only the
topology� �A monotone subdivision with respect to the y�axis is a planar graph in which
each face has the property that its boundary is intersected at most twice by any horizontal
line�� The same �GT��� point location structure can be used for V �t�� and V �t��� as long
as both have the same topology and the directed graph obtained by directing all edges of
the Voronoi�diagram downwards
 with respect to the y�axis
 is the same �cf� Lemma ��� in
�GT����� Clearly
 a planar graph in which each face is convex
 such as the Voronoi�diagram

is a monotone subdivision� The Voronoi�diagram Vi is kept in a topological representation�
We notice that the directed graph associated with the Voronoi�diagram V �t�
 changes only
when
 at time t�
 a Voronoi edge in V �t�� becomes parallel to the x�axis �horizontal�� Since all
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the faces of the moving Voronoi�diagram are ruled surfaces of constant degree
 each edge can
become horizontal at most a constant number of times
 so
 in total
 the number of changes
in the point location structure used for point location in the monotone subdivisions given
by the Voronoi�diagrams is also O�T �n��� We re�ne each interval ��i� �i	�� into a sequence
of sub�intervals
 such that in each sub�interval the point location structure of Goodrich
and Tamassia corresponding to the Voronoi�diagram does not change� Let � �� 	 � � � 	 � �l 

l � O�T �n�� denote the thus re�ned times�

Analogously to the data structure for point location in a cell complex described in �GT���

a data structure for point location can be built which
 using the persistence�technique
�DSST ��
 stores the di�erent point location structures for the Voronoi�diagrams� Given
the list of times and the corresponding changes at these times in the monotone subdivi�
sions
 the data structure can be constructed in time O�T �n� log n�� It has size O�T �n� log n��
Applying this to the Moving�Voronoi query we �rst perform an O�log n� binary search on
the set f� ��� � � � � �

�
lg to �nd i such that tq � �� �i � �

�
i	��
 and then follow by performing the

�GT��� point location algorithm in time O�log� n�� This brings the total time for solving a
Moving�Voronoi query to O�log� n��

Turning to the Dog�Bites�Postman queries
 we will now describe how access to Moving�
Voronoi solutions permits us to parametrically solve Dog�Bites�Postman queries� Recall that
a Dog�Bites�Postman query q is speci�ed by the dog�s starting location sq at starting time
tq
 and its speed vq
 and that tiq is the �rst time that a dog can reach postman pi� Let

t�q � min
i
tiq

be the �rst time that a dog can reach some postman� The crucial observation is the following�

Lemma � Let t � tq be an arbitrary time and let pi�t� be the nearest postman to sq at time
t� If the dog is faster than all of the postmen then

t�q � t if and only if tiq � t�

Proof�
Since t�q � tiq the if direction is obvious�

To prove only if we introduce a geometric construct associated with the Dog�Bites�
Postman query� We can view the motion of the postmen as straight lines in �x� y� t��space
�see Figure ��� A query dog at �sq� tq� with velocity vq can choose to run in any one direction

which corresponds to choosing a generating ray on the boundary of a circular cone Cq in
�x� y� t��space
 with an apex at �sq� tq�
 that grows upwards with angle arctan vq� The motion
�direction� chosen by the dog
 is therefore
 a ray from the apex of Cq on the boundary of
it� Finding the postman that can be reached quickest is equivalent to �nding the line of
postman pj which intersects the cone Cq at the lowest t value� Denote by Cq�t� the circle
which is the �horizontal� cross section of Cq at time t � tq� Clearly the radius of Cq�t� is
vq�t� tq� for t � tq�

Assume by contradiction that t�q � t 	 tiq� Then there must be some postmen pj such
that t�q � tjq � t� Since the dog is faster than all postmen
 thus faster than postman pj
 then
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Figure �� Postmen p� and p� in �x� y� t��space and the cone Cq of the dog�s motion options

once the line of postman pj in �x� y� t��space enters the cone Cq
 at time tjq
 it will never leave
the cone again
 i�e�
 Cq�t�� � pj�t�� �� 	 for all t� � tjq� This implies that Cq�t� � pj�t� �� 	
because it entered the cone at time tjq � t� On the other hand
 the point pi�t� must be
outside of circle Cq�t� because t 	 tiq
 and tiq is the �rst time the line segment of postman pi
entered the cone� The radius of Cq�t� is vq�t� tq�
 so

jpi�t�� sqj � vq�t� tq� � jpj�t�� sqj�

contradicting the fact that pi was the nearest postman to sq at time t� �

Let pi be a nearest postman to sq at time t�q� The lemma implies that tiq � t�q� By
de�nition t�q � tiq so t�q � tiq and pi is a postman that the dog can catch quickest� This
suggests an algorithm for solving Dog�Bites�Postman queries� perform a Moving�Voronoi
query at location sq at time t�q� The di�culty with this approach is that knowing t�q requires
having already solved the Dog�Bites�Postman query� We work around this di�culty by using
parametric search �Me 
� and applying Lemma ��

The algorithm for the Dog�Bites�Postman query has two phases� The �rst phase performs
a parametric binary search on f� ��� � � � � �

�
lg to �nd the interval �� �i � �

�
i	�� such that t�q � �� �i � �

�
i	��


and the associated point location data structure for the topology of V �t�q�� The second
phase uses a parametric search �cf� �Me 
�� to �nd an interval �� �� � ��� 
 �� �i � �

�
i	�� such that

t�q � �� �� � ��� and sq has the same nearest postman at time t for all t � �� �� � ���� It runs the
point location procedure implicitly for t�q
 and on any branching point of the procedure it
makes a local decision on the branching options
 as we describe below
 while
 at the same
time
 it truncates the time interval where t�q can be found�

 



For the �rst phase note that questions of the form �is t�q � t�� can be answered by
performing a Moving�Voronoi query at time t
 taking the answer pi and checking whether
tiq � t� If the answer is �yes� then the lemma implies t�q � t
 otherwise it implies t�q � t�
Using log�T �n�� � O�log n� such queries the interval �� �� � �i��� such that t�q � �� �i � �

�
i	�� can

be found
 using binary search on � � The total amount of time for the binary search is
the number of Moving�Voronoi queries made multiplied by the amount of time required for
answering a Moving�Voronoi query
 i�e� O�log� n��

Along with the interval �� �i � �
�
i	�� we also �nd an associated point location structure for

searching in the Voronoi�diagram V �t�
 t � �� �i � �
�
i	��� How can this be used to search in

V �t�q�� Consider a simple point location using the �GT��� at a �xed time t in the interval

�� �i � �
�
i	��� It asks O�log� n� questions of the form �is sq � �xq� yq� above or below bisector

line L�t� at time t��
 where L�t� is the line through an edge of V �t�
 and of the form �is yq
greater or smaller than the y�coordinate of Voronoi vertex v�t� at time t��

Even though we do not know the exact value of t�q we will be able to use Lemma � to
parametrically answer questions of the two types� This will enable us to make the proper
branching choices in the point location procedure and �nd the region that contains sq at
time t�q and its associated nearest neighbor postman
 as we describe below�

The lines L�t� to which sq is compared in the procedure
 are extensions of edges of
V �t�
 and are therefore the bisectors of two postmen� Suppose then that line L�t� is the
bisector of postmen p� and p��� The crucial observation here is that sq lies on L�t� only when
jp���t�� sqj

� � jp��t�� sqj
� � �	 since the points move with linear motion this is a quadratic

equation in t so
 if the equation is not identically � � corresponding to sq always lying on
the bisector � then sq may lie on L�t� at most twice� Thus
 sq switches from being above or
below L�t� to below or above L�t� at most twice�

Answering the question �is sq above or below line L�t� at time t�q�� is therefore a matter
of calculating the times that sq lies on L�t�� Suppose these are times t� and t��
 and assume
t� � t��� If both t� and t�� are outside the current time interval �� �� � ��� then sq is either always
above or always below line L�t� for all times in the interval and speci�cally for time t�q� We
calculate which it is
 above or below
 and then proceed with the search� If either t� or t�� or
both are in this interval we perform at most two calls �one for each of these times� to the
Moving�Voronoi query procedure to calculate if t�q is greater than t�
 between t� and t�� or
greater than t��
 using Lemma �� As before
 locating sq in V �t�� gives a postman pj closest
to sq at time t�
 and checking if tjq � t� will tell us
 using Lemma �
 if t�q � t�� Similarly for
t��� The answers to these two questions allow us to perform the right branching for point
location in V �t�q� and to shrink the time interval�

Similarly
 the Voronoi vertex v�t�
 to which sq is compared in the second type of question

is the center of the circumcircle through three speci�ed linearly moving postmen and therefore
follows an algebraic curve of constant degree and can only pass through the horizontal line
y � yq a constant number of times� As with the case of the lines L�t� we can calculate
these times and
 using Lemma �
 decide using a constant number of Moving�Voronoi queries
whether sq is above or below Voronoi vertex v�t� at time t � t�q�

Thus
 the point location algorithm of �GT��� provides us with O�log� n� questions as
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described above
 at each question we get at most a constant number of time values for which
we answer a constant number of Moving�Voronoi queries in O�log� n� time to determine the
next branching in the point location algorithm� At the end of the parametric point location
algorithm we have located sq at time t � t�q� The full parametric point location procedure

uses O�log� n� time� The initial parametric binary search used only O�log� n� time so the
the total cost of performing a Dog�Bites�Postman query is O�log� n��

Theorem � A Moving�Voronoi query for n postmen can be answered in time O�log� n� time
using space O�T �n� log n�� A Dog�Bites�Postman query for n postmen slower than the dog
can be answered in time O�log� n� using space O�T �n� log n��

��� Time�E�cient Solution

Consider a �xed vertical line l perpendicular to the horizontal plane at point s � �x� y� and
its intersections with the faces of the cell complex M� These intersections subdivide l into
intervals such that in each interval one postman is nearest to all points �s� t� � �x� y� t� for all
t in this interval� Label the interval with the index of the nearest postman� If l is tangent to
a face ofM than it is equidistant from two postman
 in which case we break ties by labeling
the interval by the nearest postman with the smaller index� The labels change only at the
times ts� 	 ts� 	 � � � 	 tsm when l intersects M� We set ij to be the index of the nearest
�with the smallest index� postman to s between times tsj� and tsj	�
 j � �� � � � �m� To make
our de�nitions consistent we set ts� � �� and tsm	� ��� We call the times tsj� the stabbing
times and the sequence ij
 j � �� � � � �m� the stabbing sequence associated with s� Let us
denote T s � fts�� � � � � t

s
mg� The number of di�erent labelings of lines can be bounded by the

number of faces
 edges and vertices of the projection of M on the �x� y��plane�
Because the postmen are moving linearly
 the size of a stabbing sequence must be small�

Lemma � Fix a point s and let the stabbing sequence i�� � � � � im be de	ned as above� This
sequence is a �n� �� Davenport�Schinzel sequence and hence m � �n�

Proof�
A sequence is a �n� �� Davenport�Schinzel sequence if it does not contain a ��repeating
subsequence of the form

i � � � j � � � i � � � j�

Suppose the stabbing sequence did contain some ��repeating subsequence� Between each
subsequence i � � � j or j � � � i there must be a time t such that

jpi�t�� sj� � jpj�t�� sj��

The existence of a ��repeating sequence therefore implies the existence of at least three
distinct times t when this equation is satis�ed� The points move with constant speed

though
 so jpi�t�� sj� � jpj�t�� sj� is a quadratic equation and only has two roots
 leading

��



to a contradiction� Therefore the stabbing sequence is a �n� �� Davenport�Schinzel sequence
and hence has length m � �n� �

We can now propose a di�erent approach to answering a Moving�Voronoi query� Note that
between any two stabbing times tsj and tsj	� the vertical line through s is wholly contained
within the region associated with postman pij � If
 for any query point sq
 we could access
the stabbing times associated with sq in a way that permits binary search on T sq 
 then

in logarithmic time
 we could solve a Moving�Voronoi query �sq� tq� by performing a binary
search on the stabbing times to �nd the interval that contains tq
 which will immediately
give us pij as the nearest postman to sq at time tq� We show below a data structure that
allows us to access the stabbing times in this way
 so that the Moving�Voronoi query can be
performed in time O�log n��

The nice fact is that using the same data structure we can also answer the Dog�Bites�
Postman query in time O�log n�� This will follow from the next lemma which is a consequence
of Theorem � in �DG�
� �given here without a proof��

Lemma � Let s be a 	xed point in IR�
 and let v be a 	xed speed of a query dog
 such that
v � jvij
 i � �� � � � � n� We de	ne a function 
s�t� as follows� Let p be a postman nearest to s
at time t� Set ds�t� � jp�t�� sj to be the distance between s and its nearest postman� De	ne
the function 
s � IR� IR


s�t� � t�
ds�t�

v
�

Then

�a� 
s is a ��� continuous mapping from IR to IR such that if t � t� then 
s�t� � 
s�t���
Furthermore 
s���� � �� and 
s��� ���

�b� M�s� t� � D�s� 
s�t�� v��

Statement �a� means that 
s maps the interval Isj � �tsj� t
s
j	�� continuously into the

interval J s
j � �
s�tsj�� 
s�t

s
j	��� and that


s�t
s
�� 	 
s�t

s
�� 	 � � � 	 
s�t

s
m��

Because the intervals Isj � j � �� � � � �m� partition IR
 the intervals J s
j � j � �� � � � �m also

partition IR� Statement �b� says that if p is a nearest postman to s at time t then p is a
postman that a dog starting at point s at time 
s�t� can reach quickest if the dog travels
with speed v� Taken together these two statements provide us with a way of answering a
Dog�Bites�Postman query� Given a Dog�Bites�Postman query �s� tq� v� we locate the unique
interval Isj such that tq � J s

j � The index of the postman assigned to interval Isj immediately
gives us the postman that the dog can reach quickest�

We will now show how we �nd the interval Isj such that tq � J s
j � Recall that we assume

that for a �xed s we have a sequence of stabbing times with the assigned indices of the
closest postman in each interval� We �nd the interval by performing a binary search on the
m values


s�t
s
�� 	 
s�t

s
�� 	 � � � 	 
s�t

s
m��

��



Since we do not know these values in advance we perform binary search on the set T s� For
each tsj � T s we compute ds�tsj� � jpij�t

s
j��sj and from there 
s�tsj�� Consequently
 given any

tsj we can
 in constant time
 decide whether tq � 
s�tsj� or not� We can therefore perform an
O�log n� binary search to �nd the interval J s

j which contains tq without explicitly computing
the whole sequence J s

j 
 j � �� � � � �m�
To review
 we have just seen that if we have a data structure which returns the stabbing

times T s
 in a form suitable for binary search
 for any given point s
 then we can solve both
Moving�Voronoi queries and Dog�Bites�Postman queries in O�log n� time�

We now describe such a data structure� By projecting M on the plane we get a planar
subdivision M�� To obtain the projection of M on the plane we project the edges and
vertices of M on the �x� y��plane� The projection of the faces of M on the plane is the
projection of all points on the surface patch �the face� which are tangent to a vertical line
�the silhouette of the surface patch�� It is known that the silhouette of an algebraic surface
patch of a constant degree consists of a constant number of connected components �the
boundary of each is also algebraic of constant degree�
 and that it has a constant number
of extremal points in a given direction and a constant number of points of self intersection�
Thus
 the total number of curve segments de�ning M� �projection of edges and silhouettes
of the faces of M� is O�T �n��� Any two curve segments in M� intersect at most a constant
number of times� Thus the number of cells in the planar subdivision M� is O�T �n���� The
projection M� consists of vertices
 edges which are algebraic curves
 and regions
 which are
maximally connected planar cells� It is easy to see that for all points in one region there is
a unique stabbing sequence�

Assume we have constructed M by one of the standard methods
 see
 e�g�
 �GMR����
After construction of the de�ning curve segments we construct the planar subdivision M�

by a plane sweep� The sweep stops at endpoints
 intersections and cusps of the projections
of the edges and the silhouettes of the faces of M � Under the assumption that intersections
and cusps of the curve segments can be computed in constant time
 the sweep takes time
O�N logN� � O�N log n� where N � O�T �n����

During the sweep we can build a point location structure for M� as described
 e�g�

by Sarnak and Tarjan �ST �� or Cole �Co ��� This point location data structure has space
complexity O�T �n���
 and a point location query takes time O�log n� �ST �
 DSST ���

Assume we are given a Moving�Voronoi query q � �sq� tq�� We �rst locate the region
in M� that contains the point sq� Next we have to locate tq in the stabbing sequence
corresponding to this region� We use binary search trees to store the stabbing sequences�
Since the stabbing sequences of neighboring regions are similar the persistence�technique can
be used again� Given a search tree for a connected region in M� 
 a constant number of
updates is su�cient to build a search tree for a neighboring region� However
 since we do not
have a natural linear order on the binary search trees
 partial persistence
 which allows to
modify only the newest version of a data structure
 is not su�cient here� Hence we use fully
persistence
 which allows to modify all versions� We choose a region r� in M� and construct
a binary search tree for its stabbing sequence� For all other regions r we need a neighboring
region whose binary search tree has already been constructed and can be modi�ed according
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to the full�persistence�technique to get a binary search tree for the stabbing sequence of r�
We can use any rooted spanning tree of the dual of the graph de�ned by M�
 which has
root r�
 to �x the order of search tree constructions� Since O��� updates su�ce
 the search
tree for a region r can be constructed from the search tree of the predessor of r in the rooted
spanning in time O�log n� with O��� additional storage
 cf� �DSST ��� With each region we
store a pointer to the search tree for its stabbing sequence� Construction time of the whole
structure is O�n � N log n� and space is O�n � N�
 where N � O�T �n��� is the number of
regions� Once a region is known we can locate t with the fully persistent binary search tree
in time O�log n�� Altogether we get

Theorem � A Moving�Voronoi query for n postmen can be answered in time O�log n� time
using space O�T �n���� A Dog�Bites�Postman query for n postmen slower than the dog can
be answered in time O�log n� using space O�T �n����

� Open problems

The major problem left open in this paper is how to solve Dog�Bites�Postman queries if the
dog is slower than some of the postmen� If the dog is slower than the postmen then Lemma �
and the correspondence between Moving�Voronoi and Dog�Bites�Postman queries described
above are no longer true and it is not obvious how to construct a data structure that permits
the solution of both types of queries�

It will also be nice to introduce some systematic trade o� between query time and stor�
age requirement for this problem� In our �rst solution we used O�T �n� log n� space
 but
had time complexity O�log� n� to answer Dog�Bites�Postman queries while in our second
solution we achieved logarithmic search time for Dog�Bites�Postman queries at the expense
of squaring the storage requirements to O�T �n���� Are there intermediate techniques that
balance storage requirements and search times�
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