
E�cient Computation of Compact

Representations of Sparse Graphs�

Srinivasa Rao Arikati Anil Maheshwariy Christos Zaroliagis

Max�Planck Institute f�ur Informatik

Im Stadtwald� D������ Saarbr�ucken

Germany

E�mail 	 farikati�anil�zarog�mpi�sb�mpg�de

December �
� ����

Abstract

Sparse graphs �e�g� trees� planar graphs� relative neighborhood graphs� are among
the commonly used data�structures in computational geometry� The problem of �nding
a compact representation for sparse graphs such that vertex adjacency can be tested
quickly is fundamental to several geometric and graph algorithms� We provide here
simple and optimal algorithms for constructing a compact representation of O�n� size
for an n�vertex sparse graph such that the adjacency can be tested in O��� time� Our
sequential algorithm runs in O�n� time� while the parallel one runs in O�logn� time
using O�n�logn� CRCWPRAM processors� Previous results for this problem are based
on matroid partitioning and thus have a high complexity�

Keywords� Design and Analysis of Algorithms� Sparse Graphs� Implicit Representation�
Compact Representation� Arboricity�

�This work is partially supported by the EEC ESPRIT Basic Research Action No� ���� �ALCOM II��
yOn leave from CSC Group� Tata Institute of Fundamental Research� Bombay 	 �

 

�� India

�



� Introduction

Paths� trees� relative neighborhood graphs� planar graphs� visibility graphs� etc� are some

of the numerous graph�theoretic data�structures frequently used by algorithms in compu�

tational geometry� For example� dual of a triangulation of a simple polygon is a tree and

dual of the Voronoi diagram of a planar point set is a planar graph� A fundamental data

structuring question in the design of e�cient algorithms in computational geometry is how

to represent such an underlying graph in memory using as little space as possible� so that

given any two vertices� we can test their adjacency in O��� time� Compact representation

can be used to obtain e�g� an optimal algorithm for the visibility query problem 	�
� stated

as follows� Queries are a pair of vertices of a simple polygon and we are interested to know

if the query vertices are visible� It is easy to see that the complexity of reporting queries

and the cost of preprocessing depends upon the compact representation of the visibility

graph of the simple polygon�

Following 	�� �
�� we say that a class of graphs has an implicit representation if there

exists a constant � such that for every n�vertex graph G in the class� there is a labeling

of the vertices with �dlogne�bits each� that allows us to decide adjacency in O��� time�

Implicit representation eliminates the need for an adjacency matrix� �Note that in the

adjacency matrix representation of G� adjacency can be tested in O��� time� but n� bits

are required�� Also� an adjacency list representation requires �n�m�dlogne bits �where m
is the number of edges of G�� but the test for adjacency takes O�logn� time�

The arboricity of a graph G is de�ned as maxJfjE�J�j��jV �J�j � ��g� where J is any

subgraph of G and jV �J�j� jE�J�j are the number of vertices and edges� respectively� of

J � Graphs of bounded arboricity are called sparse� As observed in 	��� an implicit rep�

resentation can be computed by decomposing the edges of G into edge�disjoint forests� or

alternatively� by coloring the edges of G with k colors such that there is no monochromatic

cycle� If G has this latter property� we say that it is k�forest colorable� It follows from a

theorem of Nash�Williams 	��� ��� that if G has arboricity c then G is c�forest colorable�

and consequently that G has an implicit representation of �c � ��ndlogne bits� In such a

case� G is said to have an optimal implicit representation�

The known sequential and parallel algorithms for obtaining an optimal implicit repre�

sentation are based on involved techniques such as Edmonds� results on matroid partition�

ing 	��� Also� the algorithms of Narayanan et al� 	��� on matroid union and intersection

result in a randomized parallel algorithm for �nding a c�forest coloring of graphs with ar�

boricity c �it runs in O�log� n� time using O�n���� processors on a probabilistic CREW

PRAM�� Planar graphs� a particular case of sparse graphs with c � �� have received a

considerable amount of attention� see 	�� �� ����

�



An alternative way to generate the implicit representation of a graph is proposed in 	�
�

�Theorem ��
�� If G has treewidth b� then it has an implicit representation of �b���ndlogne
bits� There are algorithms for computing a tree�decomposition of graphs with treewidth b

in either a sequential or a PRAM model of computation 	�� ���� provided that b is constant�

Note that this approach does not work in general� since e�g� b can be O�
p
n� in the worst

case for planar graphs 	���

The main contribution of this paper is twofold� First� we provide optimal sequential

and parallel algorithms for obtaining optimal implicit representations of sparse graphs� Our

results and their comparison with previous work are summarized in Table �� It is worth

noting that our results are achieved by simple and rather intuitive techniques compared

with those used in 	�� �� ��� and moreover� our algorithms are easy to implement�

Implicit Planar Graphs Graphs of Bounded
Representation Arboricity c

Number
of bits �ndlogne �ndlogne �c� ��ndlogne �c� ��ndlogne

Sequential
Time O�n� O�n� O�n�� O�n�

Parallel
Time O�logn log logn� O�logn� �� O�logn�

Number of
Processors O�n� logn log logn� O�n� logn� �� O�n� logn�

Results
achieved in� 	�� ��� This paper 	�� This paper

Table �� Our results and their comparison with previous work� The parallel model of computation is the

arbitrary CRCW PRAM �
��

The second contribution is based on the following observation� The results in Table �

require a priori the knowledge of the arboricity of the input graph� Since computing the

exact value of arboricity seems to be hard 	��� �
�� we provide here algorithms that compute

a ��approximation for arboricity �i�e�� an approximation which can be at most twice the

exact value�� Moreover� we show that using the approximate value� we can still obtain an

optimal implicit representation of a sparse graph�

The k�forest coloring problem is of independent interest since it is a fundamental prob�

lem in the design of fault�tolerant communication networks 	��� analysis of electric networks

	
� ��� and the study of rigidity of structures 	����

� Preliminaries

We �rst show that an optimal implicit representation of a graph G can be obtained opti�

mally� if a k�forest coloring of G is given�

�



Lemma � Given a k�forest coloring of an n�vertex graph G with arboricity c� where

k � O���� an optimal implicit representation of �c � ��ndlogne bits can be computed ei�

ther in O�n� sequential time� or in O�logn� parallel time using O�n� logn� EREW PRAM

processors�

Proof� Suppose that we are given a k�forest coloring of an n�vertex� m�edge sparse graph

G� We can obtain an optimal implicit representation of G as follows� First� give distinct

labels to the vertices with integers from � up to n� Then� concatenate to each vertex

label� the label of its parent in each of the k forests� In order to decide if two vertices are

adjacent� check if one is the parent of the other in any of the k forests� Observe that in this

representation we need at most �� � d�v��dlogne bits for each vertex v� where d�v� is the

total number of parents of v in the k forests� It is clear that the total number of bits thus

needed is at most �n �m�dlogne as each edge of G is represented exactly once� Further�

�n�m�dlogne � �c���ndlogne� since m � c�n��� in graphs with arboricity c� Notice that

the number of bits is independent of the number of forests k� k a�ects only the query time

for adjacency� It is easy to see that the above�mentioned procedure to compute an optimal

implicit representation from a k�forest coloring of G can be implemented in O�logn� time

using O�n� logn� EREW PRAM processors� Notice that the basic steps for �nding such

a representation involve� rooting a tree� labeling its vertices� and computing the parent of

each vertex� All these steps can be implemented in O�logn� time using O�n� logn� EREW

PRAM processors �see e�g� 	
�� Chapter ��� The sequential bound follows directly by the

parallel ones and the above discussion�

The following lemma is central to our discussion�

Lemma � Suppose that the vertices of a graph G can be ordered as v�� v�� � � � � vn such that

each vertex vi has at most k neighbors before it �i�e�� among v�� � � � � vi���� Then� G is

k�forest colorable�

Proof� Induction on i� Assume that the subgraph of G induced by v�� � � � � vi�� can be

colored using k colors� say integers from � up to k� Let the neighbors of vi that come before

it� be u�� � � � � up� where p � k� For each � � j � p� color the edge �vi� uj� with color j�

Hence� for the rest of the paper� we will be concerned with the forest coloring problem�

We refer to the ordering de�ned in Lemma � as a k�ordering of the vertices� The following

two lemmas will be used in the next section for designing sequential and parallel algorithms

to compute k�orderings of sparse graphs�

Lemma � Let G � �V�E� be an n�vertex graph with arboricity c� Then G has a vertex of

degree at most �c� ��

�



Proof� Note that jEj � c�n � �� as G has arboricity c� So the sum of the degrees is at

most �c�n� �� and hence G must have a vertex of degree at most �c� ��

Lemma � Suppose that G � �V�E� is an n�vertex graph with arboricity c� Then jU j �
� �

�c��
�n� where U is the set of vertices of degree at most �c�

Proof� As before� jEj � c�n� ��� There are n� jU j vertices of degree at least �c��� and

summing the degrees of these vertices we get �n� jU j���c� �� � �jEj� The lemma follows

by rearranging the terms�

� Forest Coloring With Known Arboricity

In this section we present algorithms for computing forest colorings of sparse graphs�

Lemma � implies that in order to �nd an optimal implicit representation of a sparse graph

G� it su�ces to �nd a k�ordering of G� A sequential algorithm for computing a forest

coloring of G is given in Algorithm ��

Input� A graph G � �V�E�� jV j � n� and its arboricity c�
Output� A ��c� ���forest coloring of G�

�� Low �� fv � degree of v in G is at most �c� �g� i �� n�

�� while Low �� � do

�a� Pick a vertex� say u� from the set Low�

�b� for each neighbor w �� Low of u do

Decrement the degree of w by one and add w to the set Low if its degree becomes
�c� ��

�c� G �� G� u� vi �� u� i �� i� ��

�� Compute a ��c � ���forest coloring of G using the procedure given in the proof of
Lemma ��

Algorithm �� A sequential algorithm to compute forest coloring�

Theorem � Let G � �V�E�� be an n�vertex graph with bounded arboricity� say c� Then a

��c� ���forest coloring of G can be computed in O�n� time�

Proof� By Lemma �� G has a vertex of degree at most �c� �� call it vn and delete it from

G� Again� G has a vertex� say vn��� of degree at most �c � �� By repeating this process�

we obtain a sequence v�� � � � � vn� This procedure is formalized in Algorithm �� It is easy to

�



see that the sequence v�� � � � � vn� generated in Step � of the algorithm� is a ��c� ���ordering

of vertices of G� We now discuss the complexity of the algorithm� The work done in each

iteration of the while loop is bounded by the degree of the vertex u� So the total work done

in the while loop is bounded by the sum of degrees� which is O�jEj� � O�n�� since G is

sparse� Also Step � clearly takes O�n� time� The bound follows�

A parallel algorithmto compute a forest coloring of sparse graphs is given in Algorithm��

Input� A graph G � �V�E�� jV j � n and its arboricity c�
Output� A �c�forest coloring of G�

�� G
�

�� G� i �� �� mark all vertices unlabeled�

�� while there is an unlabeled vertex do�

�a� Let U be the set of vertices of G
�

with degree at most �c�

�b� for each v � U do� label�v� � i�

�c� G
�

�� G
� � U � update the degrees of neighbors of U accordingly�

�d� i �� i� ��

�� for each vertex v in G do� delete all the neighbors u from its adjacency list satisfying
label�u� � label�v��

�� for each vertex v do� let its neighbors be u�� � � � � u�� where � � �c� color the edge
�v� ui� with color i� � � i � ��

Algorithm �� A parallel algorithm to compute forest coloring�

Theorem � Given an n�vertex graph G � �V�E� of bounded arboricity� say c� Algorithm �

�nds a �c�forest coloring of G	 the algorithm runs in O�logn� time using O�n� logn� CRCW

PRAM processors�

Proof� The proof of correctness is straightforward� and we analyze the complexity� By

Lemma �� the number of iterations of the while loop is O�logn�� Note that in each iteration�

it is not necessary to recompute the degrees of each vertex after deleting U � Instead� it is

su�cient to mark in G
�

which vertices have degree at most �c� This can be done as follows�

For every v � G
�

� assign one processor to every vertex u in its adjacency list such that u

has not been labeled yet� Then all such processors pu iterate for �c� � times the following

two steps� �a� Every pu writes its id� id�pu�� into a speci�ed memory location m�v�� �b�

All pu read the contents of m�v�� if m�v� � id�pu�� then pu does not participate in the

next iteration� If the contents of m�v� after the �c���st iteration is the same as that after

the �c�th iteration� then the degree of v is at most �c� Thus the above procedure needs






O��� time and performs O�jG� j� � O�n� work on a CRCW PRAM� where jG� j denotes the
number of vertices plus the number of edges of G

�

� It is easy to see that the remaining

steps can be done in O��� time using O�n� processors� Hence� the total resource bounds

are as those stated in the theorem�

� Approximating Arboricity

The results listed in Table � require a priori the knowledge of the arboricity of the input

graph in order to obtain its optimal implicit representation� However� the known algorithms

for computing the exact value of the arboricity are based on matroid theory� a sequential

algorithm 	�� and a randomized parallel algorithm 	���� In this section we present simple

and e�cient algorithms� including a deterministic parallel algorithm� to compute good

approximations for arboricity�

For the rest of this section� let G � �V�E�� jV j � n� jEj � m� denote a graph of unknown

arboricity c� Given an integer �� Algorithm � tests whether or not G has an ��ordering�

Input� A graph G and an integer ��
Output� A boolean variable ans� The variable ans is set to true if and only if the algorithm
is able to �nd an ��ordering of G�

�� G
�

�� G� i �� n� ans �� true�

�� while �i � �� and �ans � true� do

if G
�

does not have a vertex of degree at most � then ans �� false
else

�a� Let u be a vertex of degree at most �� De�ne G
�

� G
� � u and update the

degrees of neighbors of u accordingly�

�b� vi �� u and i �� i� ��

�

Algorithm �� A sequential algorithm used to �nd arboricity�

Lemma � A ��approximation for arboricity of G can be computed in O�m logn� time�

Proof� Let �� be the smallest value of � for which Algorithm � true� Then �� � �c� ��

since the algorithm returns true for � � �c�� by Theorem �� An ���ordering of G results in

an ���forest coloring of G by Lemma �� Hence �� is a ��approximation for arboricity of G�

In order to estimate the time complexity� observe that for a single value of �� Algorithm �

takes O�m� time� Therefore� in order to �nd the particular ��� it su�ces to perform a

�



binary search in the range 	�� n�� At each step we apply Algorithm � supplied with an

appropriate value for � �as determined by the binary search�� The binary search will stop

as soon as Algorithm � returns true for �� and false for �� � ��

A parallel algorithm used for approximating arboricity is given in Algorithm ��

Input� A graph G � �V�E� and an integer ��
Output� A boolean variable ans� The variable ans is set to true if and only if the algorithm
is able to �nd an ��ordering of G�

�� G
�

�� G� V
�

�� V � ans �� true� mark all vertices unlabeled�

�� while there is an unlabeled vertex and �ans � true� do

Let U be the set of vertices of G
�

with degree at most ��
If jU j � � �

���
�jV � j then ans �� false

else

�a� mark all vertices of U as labeled�

�b� V
�

�� V
� � U � G

�

�� G
� � U � update the degrees of neighbors of U accordingly�

�

Algorithm �� A parallel algorithm used to �nd arboricity�

Lemma 	 A ��approximation for arboricity of G can be found in in O�log� n� time using

O�m� logn� CRCW PRAM processors�

Proof� Let �� be the smallest value of � for which Algorithm � returns true� Then

�� � �c� since the algorithm returns true for � � �c by Theorem �� Further� Algorithm �

can be implemented in O�logn� time using O�m� logn� CRCW PRAM processors� as shown

in the proof of Theorem �� The rest of the proof is similar to the proof of Lemma ��

By Lemmas �� � and 
 it is clear that Algorithms � and � can be used to compute

optimal implicit representations of sparse graphs� even without knowing the exact value of

arboricity� We summarize the result below�

Theorem � Let G be an n�vertex sparse graph of unknown arboricity� Then an optimal

implicit representation of G can be computed in O�n logn� sequential time� or in O�log� n�

parallel time using O�n� logn� CRCW PRAM processors�

� Conclusion

We have presented simple and optimal algorithms to compute optimal implicit represen�

tations of sparse graphs� It is known that many intersection graphs also have implicit






representations 	��� The problem of characterizing the classes of graphs having compact

representation is open� It will be interesting to �nd better approximations for arboricity of

a graph than what we have presented� Although with our approximation we can compute

an optimal implicit representation� our algorithms compute a number of forests which is at

most twice the optimal� The known algorithms for computing an optimal forest coloring

use matroid partitioning and thus have a high complexity� It is of independent interest to

come up with e�cient algorithms for computing an optimal forest coloring�

Acknowledgements
 We are grateful to Shiva Chaudhuri� Jaikumar Radhakrishnan and

K�V� Subrahmanyam for many helpful discussions and criticism� and to Kurt Mehlhorn for

his encouragement�

References

	�� H� Bodlaender� A linear time algorithm for �nding tree�decompositions of small

treewidth� Proc� �
th ACM STOC� pp���
����� �����

	�� H� Bodlaender� Personal communication� February �����

	�� J� Edmonds� Minimum partition of a matroid into independent sets� Research of the

NBS� 
�B�
����� ��
��

	�� M� F�urer� X� He� M� Kao� and B� Raghavachari� Parallel algorithms for straight�

line grid embeddings of planar graphs� ACM Symposium on Parallel Algorithms and

Architectures� �����

	�� H�N� Gabow and H�H� Westermann� Forests� frames� and games� algorithms for ma�

troid sums and applications� Algorithmica� ���
������ �����

	
� M� Iri and S� Fujishige� Use of matroid theory in operating research� circuits and

systems theory� Int� J� Systems Sci�� �������
�� pp�������

	�� A� Itai and M� Rodeh� The multi�tree approach to reliability in distributed networks�

Proc� �
th IEEE Symp� on FOCS� pp��������� ��
��

	
� J� J�aJ�a� An Introduction to Parallel Algorithms� Addison�Wesley� New York� �����

	�� S� Kannan� M� Naor� and S� Rudich� Implicit representation of graphs� In Proc� ��th

ACM STOC� pp��������� ��

�

	��� J� Lagergen� E�cient parallel algorithms for tree�decomposition and related problems�

Proc� �
rd IEEE Symp� on FOCS� pp������
�� �����

�



	��� L� Lovasz and Y� Yemini� On generic rigidity in the plane� SIAM J� on Alg� Disc� Meth��

�� ��
�� pp�����
�

	��� H� Narayanan� H� Saran� and V�V� Vazirani� Randomized parallel algorithms for ma�

troid union and intersection� with applications to arborescences� and edge�disjoint

spanning trees� In Third ACM�SIAM Symposium on Discrete Algorithms� �����

	��� C� St� J� A� Nash�Williams� Edge�disjoint spanning trees of �nite graphs� Journal

London Math� Soc� �
��������� ��
��

	��� C� St� J� A� Nash�Williams� Decomposition of �nite graphs into forests� Journal London

Math� Soc� ������ ��
��

	��� T� Ohtsuki� Y� Ishizaki and H� Watanabe� Topological degrees of freedom and mixed

analysis of electrical networks� IEEE Trans� Circuit Theory� CT���� �� ����� pp�����

����

	�
� J� O�Rourke� Art Gallery Theorems and Algorithms� Oxford University Press� ��
��

	��� W� Schnyder� Embedding planar graphs on the grid� In First ACM�SIAM Symposium

on Discrete Algorithms� �����

	�
� J� van Leeuwen� Graph algorithms� In J� van Leeuwen� editor� Handbook of Theoretical

Computer Science� volume A� pages ����
��� Elsevier� Amsterdam� �����

��


