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Abstract

In this paper we consider the following problem� given two general polyhedra of
complexity n� one of which is moving translationally or rotating about a �xed axis�
determine the �rst collision �if any� between them� We present an algorithm with
running time O�n������ for the case of translational movements and running time
O�n������ for rotational movements� where � is an arbitrary positive constant� This
is the �rst known algorithm with sub�quadratic running time�
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� Introduction

The demands on quality� security and higher production capacity in manufacturing in�
crease the need for automation during the phase of product design� To �nd potential
faults in the design as soon as possible one uses simulation programs� these predict the
physical properties and reactions of the product and check whether particular prefabri�
cated parts can be easily assembled� For the latter purpose� the simulation of assemblies
and robots� e�cient methods for collision detection are needed� In general collision detec�
tion is an essential prerequisite of simulations of mechanical series�

Regarding the signi�cance of this problem we consider in our paper e�cient algorithms
for collision detection� It is known �	Bo��� Ca��
� that in IR� a collision between a
moving polyhedral object and a stationary obstacle is computable in time O�n��� Hereby
n denotes the complexity of the two objects� i�e� the number of vertices� edges and faces�
We attempt to solve this problem in sub�quadratic time�

Our results are based on the following model�

� Objects are rigid bodies �polyhedra� in IR�� their surfaces consists of planar faces
with straight boundaries�

� An object may be moving translationally in an arbitrary direction or it may be
rotating about an arbitrary axis�

These restrictions are based on the fact� that real objects can be easily modelled by poly�
hedra and every motion can be approximated by a sequence of translations and rotations�
As model of computation we take the standard Real�RAM�model �	PS��
��

��� Previous results

There are �up to now� only e�cient solutions for some special cases of translated polyhedra�
Dobkin and Kirkpatrick demonstrate in 	DK��� DK��
 the e�ciency of the hierarchical
representation for solving distance problems between convex polyhedra� using this data
structure one can determine the collision between two convex polyhedra in time O�log� n��
if only one of them is moving� If one of the objects is not convex an algorithm with running
time O�n logn� is possible �for more details see 	Sch��� DHKS��
�� In his Ph�D� thesis
the �rst author 	Sch��
 constructs an algorithm which computes the collision between a
moving and a stationary iso�oriented polyhedron� if there are only constantly many �c�
possible directions of the edges then he is able to �nd a solution in time O�c�n log� n��
Also in this work the �rst sub�quadratic collision detection algorithm for two general
polyhedra �one of which is translated and one is stationary� is developed� Before it was
only known how to decide in sub�quadratic time �see 	Pel��
�� whether two �stationary�
general polyhedra intersect�

For the case of rotations there are no sub�quadratic algorithms known� Even the special
case of two convex polyhedra� one of which is rotating has not been solved up to now�
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This particular problem was posed as an open question by Jack Snoeyink during the Third
Dagstuhl Seminar on Computational geometry in March �

��

Given two convex polyhedra A�B� and an axis of rotation� compute the smallest
angle by which B has to rotate to meet A� Can this be done in sub�quadratic
time�

��� New results

In this paper we give the �rst sub�quadratic algorithms� which solve the collision problem
between two general polyhedra� one of which is moving translationally or rotating about
a �xed axis� whereas the other is stationary� In particular we get an upper bound of
O�n������ for the translational movement and O�n������ for the rotational movement��

��� Outline

The �rst collision between two polyhedra can either be a collision between a vertex of one
polyhedron and a facet of the other or a collision between two edges� The former case is the
simpler one and will be treated in the last part of the paper by plane sweep techniques �see
section ��� The latter problem is the harder problem and we concentrate on it� We show
how to preprocess the set of stationary segments� such that we can e�ciently compute the
�rst segment hit by a moving query segment� We proceed in three steps� In the �rst step
we use the parametric search technique of Meggido �see 	Meg��
� to reduce the problem of
computing the �rst intersection during the motion to the problem of computing the total
number of intersections during the motion� In the second step we show how to reduce
the latter problem to a combination of halfspace� and simplex range searching problems�
the key technique here is linearization� previously used in 	AM�	b
� In the third step
we solve the range searching problems using known techniques of Kreveld and Matou�sek�
After that our general technique can be applied to the collision problem of line segments
which move translationally or rotate about a �xed axis� in section � we will deduce the
needed appropriate linearizations� Applying a recent result of Pellegrini 	Pel��
 we give
an alternative solution for translational movement in section �� Section � considers the
collision problem for facets and vertices�

� General collision detection and parametric search

��� The problem

Let T be a class of �topologically closed� geometric objects� i�e� closed subsets of IRd� and
let S be some set of n objects in T � Let Q be another class of �topologically closed�
geometric objects in IRd� Further let M be a set of admissible motions for the objects in
Q� i�e� in our case the set of all possible translations respectively rotations�

�Throughout this paper� � denotes an arbitrary small positive constant	
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For an object S of T and an object Q � Q� which moves according to a formula �� we
denote the �rst time� such that S is hit by Q� with ��S�Q� ��� If there is no such collision
we set ��S�Q� �� � �� Abusing the notation slightly we use ��S�Q� �� also for denoting
the object containing the intersection point� Our goal is to build a data structure that�
given a query object Q � Q and the equation � � M of a motion� computes quickly
��S� Q� �� �� minS�S ��S�Q� �� together with a S � S such that ��S�Q� �� � ��S� Q� ���
We call this the on�line collision problem for Q with respect to T � If we know n queries in
advance we consider the so�called batched collision problem for Q with respect to T �

��� The parametric search technique

The parametric search technique �see 	Meg��
� is a powerful tool for solving a variety of
optimization problems e�ciently� It can be described as follows� we consider a decision
problem P�t� that receives as input n data items and a real parameter t� Assume that P
is monotone� meaning that if P�t�� is true for some t�� then P�t� is also true for all t � t��
Our aim is to �nd the minimum value of t for which P�t� is false� We denote this value
by t��

Suppose we have an e�cient algorithm As that� given the n data items and t� decides if
P�t� is true or not� i�e� the algorithm As can determine whether the given t is equal to�
smaller than� or larger than the desired value t� �we have t � t� i� P�t� is true�� We
call such a procedure an emptiness algorithm for P�t�� The parametric search technique
allows us to use that algorithm as a subroutine for solving the optimization problem� if
the control �ow of our emptiness algorithm As is governed by comparisons� each of which
involves testing the sign of some low�degree polynomials in t� The parametric search
technique simulates As generically on the unknown critical value t�� Whenever As reaches
a branching operation� the comparison can be reduced to testing the sign of a suitable
low�degree polynomial f�t� at t � t�� The algorithm computes the roots of this polynomial
and checks each root to see whether it is less than or equal to t� by calling As� In this
way� the algorithm identi�es two successive roots between which t� must lie and thus
determines the sign of f�t��� In this way we get an interval I in which t� lies� As we
proceed through the execution� each comparison that we resolve constrains I further and
we get a sequence of progressively smaller intervals each known to contain t�� The generic
simulation �since it is able to correctly resolve each comparison at each branching point�
will run to completion and we are left with an interval I that contains t�� It can be shown
that for any real number r � I � P�r� is true� Therefore� t� must be the right endpoint of
I �

Let Ts and Cs denote the running time and the number of comparisons made by algorithm
As� respectively� Since As makes at most Cs comparisons during its execution� the entire
simulation and� hence� the computation of t� take O�CsTs� time� To speed up this algo�
rithm� Megiddo replaces As by a parallel algorithm Ap that uses P processors and runs
in Tp parallel time� At each parallel step� let Ap make a maximum of Wp independent
comparisons� Then our algorithm simulates Ap sequentially� again at the unknown value
t�� At each parallel step� we get at most Wp low�degree polynomials in t� We compute the
roots of all of them and do a binary search among them using repeated median �nding to
make the probes for t�� For each probe� we run the sequential algorithm As� In this way�
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we get the correct sign of each polynomial in t�� and our algorithm can simulate the next
parallel step of Ap�

For the simulation of each parallel step� we spend O�Wp� time for median �nding� Hence�
the entire simulation of this step takes time O�Wp � Ts logWp�� As a result� the entire
algorithm computes t� in time O�WpTp � TsTp logWp�� Since Wp � P � the running time
is bounded by O�PTp � TsTp log P ��

In order to apply Meggiddo�s technique to our problem we need an algorithm As that�
given a query object Q � Q and a motion � � M� decides whether the moving object
intersects some objects of S within a given time period 	�� t
� In our case this time period
is represented by the length of a translation or by the angle of a rotation� We also assume
that the algorithm can detect the case when exactly one object of S is intersected and
that it can identify this object� Using this emptiness algorithm we can easily decide if a
given time t is less� equal or greater than ��S� Q� �� which allows us to apply Megiddo�s
parametric search technique�

� The emptiness algorithm

Our strategy is to reduce the collision problem to a problem for other objects that do
not move and then solve the latter by known techniques� We will proceed in two steps�
Firstly we linearize the problem and construct a multilevel data structure for counting all
collisions �respectively for testing� if there is any collision� within a given time interval�
Then we modify this algorithm and get the emptiness algorithm needed for the parametric
search technique�

In many applications one �complicated� query problem can be expressed as the combina�
tion of several other �easier� query problems�

A general notion for the composition of general query problems was introduced in
	Krev�	
�

Let P � fp�� p�� � � �png be a set of n points in IRd� let R denote the set of all simplices
in IRd� let S � fs�� � � � � sng be a set of n objects� and let Q denote a set of queries on
S� The composed query problem �S��Q�� is de�ned as follows� S� � f�pi� si�� � � i � ng�
Q� � R � Q and the answer set for a query �R�Q� � Q� is given by f�p� s�� �p� s� �
S� and p � R and s � Qg� We also say that �S��Q�� is obtained from �S�Q� by simplex
composition�

Simplices in d�space are the intersection of at most d � � many halfspaces� Therefore we
can w�l�o�g� consider simplex compositions where the simplices are halfspaces� In this case
we also use the term halfspace composition�
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��� General form of linearization

In this section we introduce the concept of linearization� It allows to translate a compli�
cated test in some low dimensional space into a test in some higher dimensional space but
involving only linear tests� Here we want to test whether a moving object Q� whose loca�
tion at time � is described by Q��� intersects a stationary object S in some time interval
	���t
� To �nd a linearization of this problem means to establish the equivalence

	�� � � � � � t� Q��� � S �� 	
 
�
dis�
i��

con�
j��

�
dimX
k��

�ijk �Q� t� 	
ij
k �S� 
� �

�
� ���

where 
�� f���������g for each innermost summation� dis� con� dim are positive con�
stants� and �ijk �Q� t� respectively 	

ij
k �S� are rational functions of constant degree depending

on the kind of motion� By Q��� we mean the location of Q at time � �

Having such a linearization we map the objects S � S into the points pij ��
�	ij� �S�� 	

ij
� �S�� � � � � 	

ij
dim�S�� in IRdim and the query object Q into the hyperplanes

hij �� ��ij� �Q� t�� �
ij
� �Q� t�� � � � � �

ij
dim�Q� t�� in the same space� Then we can think of anyPdim

k�� �
ij
k �Q� t� 	

ij
k �S� 
� � as the condition� that �depending on 
�� the point pij lies on the

hyperplane hij respectively in a halfspace bounded by hij � Because each conjunction of ���
can be interpreted as the composition of con halfspace range searching problems we can
�nd the objects in S satisfying a particular conjunction by applying halfspace composition
con times� The disjunctions of ��� correspond to the union of ranges� By rewriting the
de�ning formula� we can assume that these are disjoint unions� a formula A 
 B can be
rewritten as A 
 �B � �A�� Now for counting all objects hit by the moving query object
we can just sum up the solutions of the dis � O��� composed problems �de�ned by the
conjunctions��

In section � we deduce the linearization for the collision problem between a set of moving
line segments �all moving in the same direction or all rotating about the same axis� and
a set of stationary segments in IR�� There we get dim � ��

��� The data structure

In his Ph�D� thesis 	Krev�	
 Marc van Kreveld investigated e�cient solutions for simplex
composition of query problems�

Theorem � ��Krev�	�� Let P be a set of n points in dim�space� and let S be a set of
n objects in correspondence with P� Let T be a data structure on S having building time
p�n�� size f�n� and query time g�n�� For an arbitrary small constant 
 � �� the application
of simplex composition on P to T results in a data structure D of

�� size O�n��ndim � f�n��� and query time O�g�n� � logn�� or

�� size O�n� f�n�� and query time O�n��n����dim � g�n���� or
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�� building time O�m��m� p�n���� size O�m��m � f�n�� and query time O�n��g�n� �
n�m��dim�� for every �xed m such that n � m � ndim�

assuming that f�n��n is non�decreasing and g�n��n is non�increasing� Reporting takes
additional O�K� time if there are K answers�

Remark� If there is a parallel query algorithm for T running in time t�n� using P �n�
processors then the query algorithm for the last data structure can be parallelized such that
it runs in O�t�n� � g�n� � logn� parallel steps using O�n��P �n� � n�m��dim�� processors�
assuming that P �n��n is non�decreasing and t�n��n is non�increasing�

�

In our case we apply con � O��� halfspace compositions starting with a halfspace range
searching problem� The resource bounds for halfspace range searching structures in dim�
space are �see 	Mat��
�

� size and preprocessing time O�ndim�� query time O�logn�� or

� O�m� space� preprocessing time O�n����m�log n��� and O� n
m��dim log����dim�m�n��

query time for a parameter n � m � ndim�

Using these bounds Theorem � leads to a data structure with building time and size
O�m����� which can count all objects in S satisfying a particular conjunction of ��� in query

time Ts �� O� n���

m��dim �� for every �xed m such that n � m � ndim� We can parallelize that

query algorithm such that it runs in Tp �� O�polylog n� parallel time with P �� O� n���

m��dim �
processors� Using the parametric search technique this gives us the �rst time t� of any
collision in time O�PTp�TsTp logP � � O� n���

m��dim �� To get the �rst hit object we start the
corresponding reporting algorithm satisfying the same resource bounds�

Theorem � The on�line collision problem with linearization 	�
 can be solved with a data

structure of size and preprocessing time O�m���� and query time O� n���

m��dim �� for every

�xed m such that n � m � ndim�

Assume we have n moving objects Q � Q instead of only one and we want to determine
the �rst collision between any pair Q� S�for Q � Q and S � S� We apply the solution to
the on�line problem and query the data structure of Theorem � with each moving element�
This gives us a list of n candidates in which we can �nd the �rst collision in time O�n��

Using this approach we need O�m���� preprocessing time and n�O� n���

m��dim � query time�
To �nd the best time bound we have to minimize the function

t�m� � c�m
��� � c�

n���

m��dim
�
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where c�� c� are the O�constants of the resource bounds� The value t achieves its minimum
for m satisfying

c�m
��� � c�

n���

m��dim
i� e� m �

�
c�
c�

� dim
dim��dim��

n
�����dim

dim��dim�� � n
�dim
dim�����

This proves the following result�

Corollary 	 Given a subset S of n objects from S and a set Q of n moving objects from
Q� Assume that there is a linearization of the collision problem for Q with respect to T
in the form of 	�
� Then we can �nd in O�n

�dim
dim����� time and space the �rst collision

between any elements of Q and S�

Corollary 
 Given two polyhedra of complexity n� one of which is moving translationally
respectively is rotating about a �xed axis� The �rst collision between any two edges of them
can be computed in time O�n������ respectively O�n�������

Remark� We can get a less e�cient sub�quadratic algorithm in a simpler way� The data
structure of polynomial size and logarithmic query time for halfspace range searching
��rst case of Theorem �� leads to a data structure with building time and size O�ndim����
which can count all objects in S satisfying a particular conjunction of ��� in query time
Ts �� O�logn�� Using the parametric search technique we modify the query algorithm
such that it solves e�ciently the on�line collision problem� i�e� it can determine the �rst
collision of one query element in time O�log� n��

This is the basis for a sub�quadratic solution of the batched collision problem� If we want
to compute the �rst collision between n moving objects from Q and the n stationary
elements in S in sub�quadratic time we cannot directly use this data structure which
requires at least time O�ndim��� for preprocessing� Instead we subdivide the set S in k

subsets of �nearly� equal size and build for each subproblem the above data structure�
This procedure needs preprocessing time O�k�n�k�dim���� Clearly we have to query each
subproblem with each moving object� Therefore we have query time O�nk log��n�k��� If

we choose k � n��
�

dim � � we get a total time amount of O�n��
�

dim
���� where � denotes

an arbitrary small positive constant� �

� Collision of translationally or rotationally moving line

segments

Formulation of the problem�

Given� Two line segments lab and lcd with endpoints a� b and c� d� The line
segment lab��� performs a translation in the direction of the positive x��axis
or a counterclockwise rotation about the x��axis� from time � � � to � � t�

Wanted� Linear conditions to describe the fact that there is a time � � � �

� � t� such that lab��� and lcd intersect�
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In this section we show the following result�

For a translational as well as for a rotational motion there exist natural numbers dis� con�
dim� so that the following holds�

	�� � � � � � t� lab���� lcd �� 	
 
�
dis�
i��

con�
j��

�
dimX
k��

	ijk �c�d� �
ij
k �a�b� t�

�
��

�
�

where 	ijk �c�d� is a polynomial in the coordinates of c and d and �ijk �a�b� t� is a polynomial
in t and the coordinates of a and b� These polynomials depend on the kind of motion�

Let Lab and Lcd be the lines that contain the segments lab and lcd respectively� Let
T � f� jLab���� Lcd �� 	g� Then

	�� � � � � � t� lab��� � lcd �� 	
 
� 	�� � T � � � � � t � lab���� lcd �� 	
�

��� Pl�ucker coordinates for lines in IR�

If Lab � Lcd �� 	� then all four points a�b� c�d lie in a plane� In homogeneous coordinates
this fact can be expressed by the equation�

det

�
���	
a� a� a� a�
b� b� b� b�
c� c� c� c�
d� d� d� d�



���� � �

Expansion of this ��� determinant according to the ��� minors of the submatrix formed
by the coordinates of the points a and b and the minors of the submatrix formed by the
points c and d yields the following homogeneous equation�

������ � ������ � ������ � ������ � ������ � ������ � � ���

with �ij � aibj � ajbi and �ij � cidj � cjdi�

For the sequel it is convenient to assume that our lines are oriented from the lower to the
higher end point� i�e� a� � b� and c� � d� and hence ��� � � and ��� � �� Moreover we
restrict ourselves to the case ��� � � and ��� � �� the other cases being simpler�

The Pl�ucker coordinates �ij �and the Pl�ucker coe�cients �ij� are not independent� They
ful�ll the equations

��� ������� ������� ��� � ��
��� ��� � ��� ��� � ��� ��� � ��

���

With the help of the bilinear equation ��� one can interpret the collision of the two lines
Lab and Lcd in IR� as a collision of a point pab with a hyperplane Hcd in IR	� where pab
and Hcd are given by�

Hcd � ����� � ����� � ����� � ����
 � ����� � ����	 � �

pab � ���� ��� ��� �
� ��� �	�
T � ����� ���� ���� ���� ���� ����

T






��� Collision times for translationally moving lines

In this subsection we compute the possible times of a collision between a translationally
moving line Lab and a stationary line Lcd�

The translation of the line Lab��� appears in Pl�ucker space as a corresponding motion of
the point pab���� Its Pl�ucker coordinates are obtained as the �� � minors of the following
matrix� �

a� a� a� a���a�
b� b� b� b���b�

�

pab��� � ����� ���� ���� ���� ����� ���� ����� ����

Substituting these coordinates in the plane equation Hcd we obtain�

u�� � u� � � where

u� � ������ � ��� ���

u� � ������ � ��� ��� � ������ � ��� ��� � ������ � ��� ����

In the general case� when the projections Lab and Lcd of the lines onto the x�x��plane are
not parallel� we get u� �� � and therefore

�� � �u�
u�
� ���

Otherwise� if u� � �� a collision can only occur if u� � � and Lab � Lcd� These degenerate
cases will be treated in the appendix A��� As far as the collision test for polyhedra is
concerned these cases can be ignored� because they are detected during the collison test
of vertices and facets �see section ���

��� Conditions for the collision of translationally moving lines

We want to derive linear expressions� which only depend on the coordinates of a and b�
for the predicate 	� � �� � t
� We have the equivalence

	� � �� � t



� 	u� � �
 � 	u� � �
 � 	t u� � u� � �


 	u� � �
 � 	u� � �
 � 	t u� � u� � �


where the term tu� � u� can be written in linearized form as follows�

tu� � u� � ����t��� � ���� � �����t��� � ���� � ������ � ������ � ������ � �������

This gives a linearized form for the predicate 	� � �� � t
 of dimension ��
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��� Conditions for the collision of translationally moving line segments

Formulation of the problem�

Given� Two line segments lab and lcd with endpoints a� b and c� d� Assume
that during a translation of lab in the direction of the positive x��axis the
condition 	Lab���� � Lcd �� 	
 is valid at time ���

Wanted� Linear conditions to describe the fact� that 	lab���� � lcd �� 	
�

We use the following relation in order to answer the question� whether the line segments
really intersect� in case the corresponding lines collide�

	lab����� lcd �� 	
 
� 	lab���� � lcd �� 	

With lab���� and lcd we denote the projection of the two line segments onto the x�x��plane�
Note that lab���� � lab because lab is moving in the positive x��direction�

Projection of the line segments into the x�x��plane

We project the line segments lab and lcd onto the x�x��plane�

lab � x � a� ��b� a�� where � � � � �

lcd � x � c� ��d � c�� where � � � � �

Then

	lab � lcd �� 	

� �	c left of Lab
 � 	d right of Lab

�	a right of Lcd
 � 	b left of Lcd
�



�	c right of Lab
 � 	d left of Lab

�	a left of Lcd
 � 	b right of Lcd
��

The point c lies to the left�right of the orientated line Lab i� the following is true�

��b� a�� �c� a����� �


� �a� b�� � �b� c�� � �c� a���� �


� a�b� � a�b� � c�b� � c�b� � c�a� � c�a��� ��

Therefore

	lab � lcd �� 	
 
� � 	a�b� � a�b�� c�b� � c�b� � c�a� � c�a� � �

� 	a�b� � a�b�� d�b� � d�b� � d�a� � d�a�� �

� 	c�d� � c�d�� d�a� � d�a�� c�a� � c�a� � �

� 	c�d� � c�d�� d�b� � d�b� � c�b� � c�b� � �
�



� 	a�b� � a�b�� c�b� � c�b� � c�a� � c�a� � �

� 	a�b� � a�b�� d�b� � d�b� � d�a� � d�a�� �

� 	c�d� � c�d�� d�a� � d�a�� c�a� � c�a� � �

� 	c�d� � c�d�� d�b� � d�b� � c�b� � c�b� � �
��

��



��� Collision times for rotating lines

A counterclockwise rotation of the line Lab��� about the x��axis induces a corresponding
motion of the point pab��� in Pl�ucker space� Its Pl�ucker coordinates are given by the ���
minors of the following matrix��

a� cos�a��sin�a� � sin�a��cos�a� a�
b� cos� b��sin� b� � sin� b��cos� b� b�

�

pab��� � �cos�����sin������ sin�����cos����� ����

���� cos�����sin������ sin�����cos�����

Substituting these coordinates into the plane equation Hcd results in�

u� cos�� u� sin�� u� � � where ���

u� � ��� ��� � ������ � ��� ��� � ������

u� � ���� ��� � ������ � ��� ��� � ������ ���

u� � ��� ��� � ������

The following parametric formulation

sin � �
��

� � ��
� cos� �

�� ��

� � ��
� where � � tan

�

�
� � � � � ��

transforms equation ��� into a quadratic equation

u�� �
� � u�� � � u�� � �� where u�� � u� � u�� u�� � �u�� u�� � u� � u� ���

with the two roots�

�� �
�u�� �

q
u��
�
� �u�

�
u�
�

�u��
� �� �

�u�� �
q
u��
�
� �u�

�
u�
�

�u��
� for u�� �� ��

As expected there are in general two points in time where the two lines intersect� If u�� � �

and u�� �� � there is one collision at time �u��
u��

and an other at �� which corresponds to

a rotation angle of � � �� The degenerate case u�� � u�� � u�� � � occurs i� both lines
Lab and Lcd intersect the axis of rotation in the same point or if both are parallel to it or
if both lie in the same plane perpendicular to the axis of rotation� In these cases we can
proceed similar to the treatment of the degenerate cases of the translational motion�

��� Conditions for the collision of rotating lines

�� and �� are real numbers only if 	u��� � �u��u
�
� � �
� Under this precondition the predi�

cates 	� � �i � t
 can be transformed as follows �see ���� in the appendix��

	� � �� � t


��




� 	u�� � �
��	u�� � �

 	u�� � �
�� 	�tu�� � u�� � �
� 	t�u�� � tu�� � u�� � �



 	u�� � �
� 	u�� � �
 � 	u�� � �
 ��	�tu�� � u�� � �

 	t�u�� � tu�� � u�� � �
�


 	u�� � �
� 	u�� � �
 � 	u�� � �
 � 	tu�� � u�� � �


and

	� � �� � t



� 	u�� � �
� 	u�� � �
 � 	u�� � �
 ��	�tu�� � u�� � �

 	t�u�� � tu�� � u�� � �
�


 	u�� � �
��	u�� � �

 	u�� � �
�� 	�tu�� � u�� � �
� 	t�u�� � tu�� � u�� � �



 	u�� � �
� 	u�� � �
 � 	u�� � �
 � 	tu�� � u�� � �
 �

We now derive the linear expressions for the various predicates� From equation ��� we
obtain the following equations

�tu�� � u�� � ������t��� � ���� � ������t��� � ���� � �����t����

������t���� � ������t��� � ���� � ������t��� � �����

t�u�� � tu�� � u�� � �����t���� � �t��� � ���� � �����t���� � �t��� � ����

�����t
���� � ���� � ����t

���� � ���� � �����t���� � �t��� � ����

������t���� � �t��� � �����

u��� � �u��u
�
� � ������ �������

�
�� � ����� � �������� � �������������� � �������

��������� � �������������� � �������� ����
�
�� � �������������

���� ���� � ������ �������
�
�� � �����

� ������ �������
�
�� � ����� � ����� � �������

�
�� � ������ ������

�
���

��������� � �������������� � �������� ������
�
���� ���

The last equality holds because of equation ���� since ������������������������������ �
�������������

In each case the predicates 	t�u���tu
�
��u

�
�
�
� �
� 	�tu���u

�
�
�
� �
 and 	u��� ��u��u�� � �
 are linear

in at most � expressions �ijk �a�b� t�� which are given as polynomials in the coordinates of
a and b and the time parameter t� This means we have found a linearization of dimension
� for the predicate 	� � �i � t
�

��	 Conditions for the collision of rotating line segments

Formulation of the problem�

Given� Two line segments lab and lcd with endpoints a� b and c� d� Assume
that during the rotation of lab��� about the x��axis the predicate 	Lab��i� �
Lcd �� 	
 is valid at time �i�

Wanted� Linear conditions to describe the fact� that 	lab��i� � lcd �� 	
�

We reduce the decision whether 	lab��i� � lcd �� 	
 to the calculation of the x��
coordinate z of the intersection points of the corresponding lines and a test whether
z � 	minfa�� b�g�maxfa�� b�g
 � 	minfc�� d�g�maxfc�� d�g
� For the calculation of the x��
coordinates of the possible intersection point we use cylindrical coordinates�

��



Representation of line segments in cylindrical coordinates

If we represent the line segments

lab � x � a � ��b� a�� where � � � � ��

lcd � x � c� ��d� c�� where � � � � ��

in cylindrical coordinates �r� �� z�� we can easily check� whether the line segment lab can
collide with the line segment lcd during a full rotation about the x��axis� During its
rotation the line segment lab generally describes a hyperboloid� whose projection into the
�r� z��plane of the cylindrical coordinate system yields a hyperbolic segment� The rotating
line segment lab can only collide with lcd� if the two corresponding hyperbolic segments
intersect in the �r� z��plane� In order to compute this intersections we have to �nd the
�r� z��representation for each point in IR�� which is given by its Cartesian coordinates
�x�� x�� x��� We get

z � x��

r �
q
x�� � x���

Since xi � ai � ��bi � ai� and � �
z � a�
b� � a�

� we have for a� �� b��

r� �

�
a� �

z � a�
b� � a�

�b� � a��

��
�

�
a� �

z � a�
b� � a�

�b� � a��

��

�
�

�b� � a���



�a�b� � a�b� � z�b� � a���

� � �a�b� � a�b� � z�b� � a���
�
�
�

We proceed with Pl�ucker coordinates and get�

r� �
�

��
��



���� � z����

� � ���� � z����
�
�

� v�z
� � v�z � v��

where v� �
���� � ����

����
� v� � �

������ � ������
����

� v� �
���� � ����

����
�

The question whether the line segment lab collides with the stationary segment lcd while
it is rotating about the x��axis can be answered by calculating the intersection between
the following two parabolic segments�

r�ab�z� � v�z
�� v�z� v� with a� � z � b��

r�cd�z� � w�z
��w�z�w� with c� � z � d��

W�l�o�g� let the line segments be given� such that a� � b� and c� � d�� The intersection
points of the two parabola can be found as the roots of a quadratic equation�

v��z
� � v��z � v�� � � where v�i � vi � wi� �
�

z� �
�v�� �

q
v��
�
� �v�

�
v�
�

�v��
� z� �

�v�� �
q
v��
�
� �v�

�
v�
�

�v��
� for v�� �� �

But a collision of the rotating line segment lab with lcd exists only if the quadratic equation
has real roots �	v��� � �v��v

�
� � �
� and these lie in the interval 	a�� b�
 � 	c�� d�
� For v

�
� � �

��



and v�� �� � we get one solution at �v��
v��

and an other at �� The case v�� � v�� � v�� � �

occurs i� Lcd lies on the hyperboloid generated by the rotating line Lab� In this case
possible collisions can be ignored because they are detected when testing vertices against
facets�

By using cylindrical coordinates we have succeeded in �nding the x��coordinates of the
possible intersection points of the rotating line Lab��� with Lcd� But it remains open� to
which x��coordinate the collision time �i corresponds� In section A�� we show� that z�
belongs to �� and z� to ��� if we assume that a� � b� and c� � d�� That is

	lab��i� � lcd �� 	
 
� 	zi � a�
 � 	zi � b�
 � 	zi � c�
 � 	zi � d�
� ����

In the following we want to derive linearized conditions for the predicates 	zi � Z
 respec�
tively 	zi � Z
 with the help of relations �����

	z� � Z
 
� 	v�� � �
� 	�Zv�� � v�� � �
� 	Z�v�� � Zv�� � v�� � �



 	v�� � �
��	�Zv�� � v�� � �

 	Z�v�� � Zv�� � v�� � �
�


 	v�� � �
� 	v�� � �
� 	Zv�� � v�� � �


	z� � Z
 
� 	v�� � �
��	�Zv�� � v�� � �

 	Z�v�� � Zv�� � v�� � �
�


 	v�� � �
� 	�Zv�� � v�� � �
� 	Z�v�� � Zv�� � v�� � �



 	v�� � �
� 	v�� � �
� 	Zv�� � v�� � �


	z� � Z
 
� 	v�� � �
��	�Zv�� � v�� � �

 	Z�v�� � Zv�� � v�� � �
�


 	v�� � �
� 	�Zv�� � v�� � �
� 	Z�v�� � Zv�� � v�� � �



 	v�� � �
� 	v�� � �
� 	Zv�� � v�� � �


	z� � Z
 
� 	v�� � �
� 	�Zv�� � v�� � �
� 	Z�v�� � Zv�� � v�� � �



 	v�� � �
��	�Zv�� � v�� � �

 	Z�v�� � Zv�� � v�� � �
�


 	v�� � �
� 	v�� � �
� 	Zv�� � v�� � �


It holds�

v�� �
���� � ����

��
��

� ���� � ����
��
��

�

v�� � �
������ � ������

��
��

� �
������ � ������

��
��

� ����

v�� �
���� � ����

��
��

� ���� � ����
��
��

�

The predicates 	v��� ��v��v�� � �
 and 	u��� ��u��u�� � �
 are equivalent� since both express the
fact that the rotating line Lab collides with the stationary line Lcd during a full rotation�
On the basis of relations ���� and equation ��� it holds�

u��� � �u��u
�
� � �����

�
�� � �v��� � �v��v

�
��� ����

According to equation ��� the predicate 	v��� � �v��v
�
� � �
 is linear in the expressions

���� � ����� �
�
�� � ����� ������ � ������� �

�
�� and �����

��



Now let us consider the predicates 	v��
�
� �
� 	�Zv�� � v��

�
� �
 and 	Z�v�� � Zv�� � v��

�
� �
� A

multiplication with ���� �
�
�� yields�

	v��
�
� �
 
� 	������

�
�� � ������ ����� � �������

�
���

�
� �
�

	�Zv�� � v��
�
� �
 
� 	�Z������

�
�� � ������ �Z����� � �������

�
���

������������� � �������� �������� � ���������
�
���

�
� �
�

	Z�v�� � Zv�� � v��
�
� �
 
� 	Z�������

�
�� � ������ Z������ � �������

�
���

��Z����������� � �������� ����� � �������
�
���

��Z������� � ���������
�
��� � ������

�
�� � �����

�
� �
�

If Z � c�� d� �see condition ���� then these predicates are linear in the four expressions
���������� �

�
��� �������������� �

�
�������� and the corresponding coe�cients only depend

on the coordinates of the points c and d�

However if Z � a�� b�� then one can de�ne the expressions Zk ����� � ������ Z
k �����

Zk ������� � �������� Z
k ����� � ����� for k � �� �� �� so that the former predicates are

linear in at most six of these expressions� where again the corresponding coe�cients only
depend on the coordinates of the points c and d�

��
 Linearization

To summarize we �rstly computed the conditions for the fact that the moving line Lab

intersects the stationary line Lcd during a time interval 	�� t
� In the next step �see sections
��� and ���� we got the additional conditions for the intersection of the corresponding line
segments� The combination of these two sets of conditions gives the wanted linearization�
i�e�

	�� � � � � � t� lab���� lcd �� 	
 
�
�
i

�	� � �i � t
 � 	lab��i� � lcd �� 	
�

Until now we have found linearizations with dim � � where �ijk �c�d� are polynomials in

the coordinates of c and d and 	ijk �a�b� t� are polynomials in t and the coordinates of a
and b� In order to reduce the dimension we divide each inequality by a positive coe�cient
	
ij
k �a�b� t�� which we can always �nd using the fact that ��� � �� So we get a linearization
with dimension dim � �� For example let us consider the condition 	�tu���u�� � �
� where

�tu�� � u�� � ������t��� � ���� � ������t��� � ���� � �����t����

������t���� � ������t��� � ���� � ������t��� � �����

We can divide the inequality by the term t��� � � and replace the inequality �tu���u�� � �
by

� � ����
��t��� � ����

t���
� ����

��t��� � ����

t���
� ����

t���
t���

�����
��t��� � ����

t���
� ����

��t��� � ����

t���
� ������

Now we can apply the construction of section ���� especially Corollary ��

��



� Alternative solution for the translational case

Let L� and L� be two sets of line segments in ��space� each consisting of n elements� We
translate the set L� in direction v for the distance t� We consider the following problems
�we assume that no line segment is moving in the direction of its supporting line� this
case can be solved with an algorithm computing the intersections between a set of red line
segments and a set of blue line segments���

� For each l � L� determine the time of the �rst collision with an element of L�
respectively the �rst such line segment �if any exists��

� determine the �rst collision between any element of L� and L��

Clearly we can solve the second problem by �nding the minimum solution of the �rst one�

We will proceed in two steps� Firstly we construct an algorithm for emptiness queries�
i�e� given a moving query segment determine if there is any collision with L� and if there
is exactly one collision compute it� Then we apply the parametric search technique of
	Meg��
 for computing the �rst such hit segment of L��

In the following we reduce the emptiness problem to a static problem and solve it with
known range searching techniques�

During its movement a segment moves over a quadrilateral which all segments of L�� that
are hit during the translation� have to intersect� We can triangulate the quadrilateral and
determine all segments intersecting one of the resulting triangles� During this process it
can happen that we count segments twice� if they intersect the common edge of the two
triangles� To avoid this we can �lter them out using a data structure for computing the
intersection between a given set of segments and a query segment� But for our emptiness
problem it is enough to work inaccurately� We can count the number of collisions and
when there are less than three of them we compute them and check whether they are
di�erent�

Therefore we have to consider the following subproblem�

Given a set L� of n line segments� construct a data structure such that for any
query triangle t one can e�ciently count�compute the incidences with L��

In 	Pel�	
 Pellegrini describes the query triangle as the intersection of three half�planes
and gives a sketch of a solution�

We construct a multilevel data structure� In the �rst level we determine the line segments
of L� which intersect the plane a��t�� This can be done using a point location structure
for locating the dual point of a��t� in the arrangement of n spatial double wedges which
are dual to the segments in L�� �Another way of solving this intersection problem could
be a two�level halfspace range searching structure which �rst computes the subset S�� of

��



all segments with left endpoints on one side of a��t� and then determine those of them
with right endpoint on the other side of a��t���

When we have computed the segments intersecting a��t�� we only have to consider their
supporting lines �which does not change the incidences with t�� In the following levels we
use three times a data structure for determining incidences between a set of lines and a
query halfplane in IR�� We use 	AM�	
 and get

Theorem � Given n segments there is a data structure using O�m� space� n��� � m �
n
��� such that we can count the number of segments intersected by a query triangle in
time O�n����m��
�� For reporting these k segments we need O�k� additional steps� The
structure can be build in time O�m��

The query algorithm can be replaced by a parallel version running in O�polylog�n�� parallel
steps using O�n����m��
� processors� which allows us to apply the parametric search
technique e�ciently�

Using this technique we get the following result�

Theorem 
 Given a set S of n line segments in ��space� We can preprocess it in time
O�m�� n��� � m � n
��� using O�m� space� such that for an arbitrary line segment l and
an arbitrary direction v we can determine the �rst collision of l 	moving in dirction v

with an element of S in time O�n����m��
��

Remark � In a similar way we can apply an algorithm for computing intersections be�
tween a set of triangles and a query segment �see 	Pel��
� for answering collision queries
between a set of moving segments and a �stationary� query segment with the same bounds�

�

Corollary � Given a set of n line segments� each of which is moving translationally in the
direction v over distance t and a set of n stationary line segments in IR� we can compute
the �rst collision between the two sets in time O�n�������

� Collisions between facets and vertices

Recall that we consider two polyhedra one of which is moving �let us say P�� whereas the
other one� P�� is stationary� Let Vi� Ei� Fi� i � �� �� denote the sets of vertices� edges and
facets of the polyhedra� Only translations or rotations are permitted as motions �w�l�o�g�
we assume that an axis of rotation has to intersect the center of the coordinate�system��
Until now we have shown how to compute the �rst collision between the edges of P� and
P�� We still have to determine the �rst facet of P� hit by a vertex of P� respectively the
�rst facet of the moving polyhedron which collides with a vertex of P�� A solution to
this problem is already presented in 	Sch��
 based on ideas from 	Nu��
� The facets and
vertices are projected into a ��dimensional space and a plane sweep technique is applied�

��



For completeness we present a sketch of his construction� We only determine the time of
the �rst collision between the set of vertices of P� and the set of faces of P��

In case of a translation we project the facets and vertices onto a plane perpendicular to the
direction of the motion� If the polyhedron P� is rotating about an axis �intersecting the
coordinate�center� we can apply a similar method� but we have to work with cylindrical
coordinates� the projection is done by removing the angle�component� In both cases
we get in the projection�plane a point set V� which is the image of the vertices of P�
and ��dimensional regions F� bounded by line segments respectively hyperbola segments�
Now we execute a plane sweep� stop�points�halts are starting� and end�points� extremal�
and intersection�points of the segments� Between two consecutive halts the ordering of
the intersection�points between the segments and the plane sweep S is always the same�
Therefore we can save the active segments in a balanced search tree which will be the
primary structure for saving more informations�

Let R be a region between two segments� which are adjacent on S� and assume that S
paints over R between two consecutive halts� Every vertex of P�� whose projection v lies
in R� can only collide with faces of P�� the projections f of which contain R� Therefore
for each region R we keep track of the set FR � ff � F�jR � fg� Thus for every segment
we save the set FR of the region lying above it�

Dependent on the kind of motion we can de�ne an ordering for each set FR� During a
rotation every point with projection in R will stab the regions in FR with the same cyclic
ordering� in the case of a translation we will get a linear order� As secondary structure
which stores the elements in FR we again use a balanced search tree which allows to �nd
the �rst facet hit by a vertex projected onto R in logarithmic time�

The sweep line stops at every point v � V � There we determine the region R containing v
and search the facet of FR which is hit by the corresponding vertex �rst� Both steps can
be done in logarithmic time using the tree structure�

During the sweep we have to hold all regions intersected by the sweep plane S as well as
the sets FR� To save space we only store the changes of the sets FR �see 	Nu��
�� Using
this idea each set FR can be stored with logarithmical costs�

The run time of the algorithm is O��jV�j � jE�j � CE�
� log jE�j� where CE�

denotes the
number of intersections of the projected edges of P�� Unfortunately this value could be
quadratic in the complexity of the polyhedron� Therefore we divide the problem into
several smaller subproblems� W�l�o�g� we assume that the facets of P� are triangles �a
triangulation of the surface does not change the asymptotic complexity of P��� We divide
F� in

pjF�j many subsets of size
pjF�j� For each subset we execute the above plane sweep

algorithm�

Theorem � Consider two polyhedra P�� P�� one of which is moving translationally or
rotating about a �xed axis� The �rst collision between a vertex of one of them and a facet
of the other can be computed in time O��jP�j� jP�j���� log�jP�j� jP�j���

�




� Conclusion

We have shown how to determine the collision between a stationary and a moving poly�
hedron in sub�quadratic time� For that we have computed the �rst collision between
vertices of one polyhedron and facets of the other and the �rst collision between the edges
of the polyhedra� We have reduced the latter task to the formulation of an appropriate
linearization which is derived by explicit computation of the collision times� We could do
this because the equations of the motions have degree at most two� The natural question
is how we can proceed if the motion of the polyhedron is more complicated� i�e� if the
equations have degree greater than �ve �then no explicit formulation of the roots exists��

A Appendix

A�� Roots of a quadratic equation

q�x� � a x� � b x� c � �� a �� �

x� �
�b�pb� � �ac

�a

x� �
�b� pb� � �ac

�a

The quadratic equation q�x� has real roots� i� the discriminant satis�es the condition
	b� � �ac � �
�

Conditions of the form 	xi � X 
 or 	xi � X 
 can be transformed so that they are linear in
the coe�cients of a� b and c� As an example we consider the condition 	x� � X 
�

�� case� 	a � �


x� �
�b�pb� � �ac

�a
� X


�
p
b� � �ac � �Xa� b� since 	a � �



� 	�Xa� b � �
 � 	b� � �ac � ��Xa� b��


b� � �ac � ��Xa� b��


� �a�X�a�Xb� c� � �


� X�a�Xb� c � �� since 	a � �


As a consequence we have

	a � �
� 	x� � X 



� 	a � �
� 	�Xa� b � �
� 	X�a �Xb� c � �


��



�� case� 	a � �


x� �
�b�pb� � �ac

�a
� X


�
p
b� � �ac � �Xa� b� since 	a � �



� 	�Xa� b � �
 
 	b� � �ac � ��Xa� b��


b� � �ac � ��Xa� b��


� �a�X�a�Xb� c� � �


� X�a�Xb� c � � since 	a � �


Therefore the following holds�

	a � �
 � 	x� � X 



� 	a � �
 � �	�Xa� b � �

 	X�a �Xb� c � �
�

�� case� 	a � �


If the leading coe�cient of the quadratic equation vanishes we have to deal with a linear
equation� Its root can be obtained by

lim
a��

x� �

�
�c�b for b � �
�� for b � �

� lim
a��

x� �

�
�� for b � �
�c�b for b � �

�

Thus we get

	a � �
� 	x� � X 



� 	a � �
� 	b � �
� 	Xb� c � �


In the same way one can linearize the conditions 	x� � X 
� 	x� � X 
 and 	x� � X 
� If we
assume that 	b� � �ac � �
 the following holds�

	x� � X 
 
� 	a � �
� 	�Xa� b � �
� 	X�a�Xb� c � �


	a � �
��	�Xa� b � �

 	X�a�Xb� c � �
�

	a � �
� 	b � �
� 	Xb� c � �


	x� � X 
 
� 	a � �
��	�Xa� b � �

 	X�a�Xb� c � �
�

	a � �
� 	�Xa� b � �
� 	X�a�Xb� c � �


	a � �
� 	b � �
� 	Xb� c � �


	x� � X 
 
� 	a � �
��	�Xa� b � �

 	X�a�Xb� c � �
�

	a � �
� 	�Xa� b � �
� 	X�a�Xb� c � �


	a � �
� 	b � �
� 	Xb� c � �


	x� � X 
 
� 	a � �
� 	�Xa� b � �
� 	X�a�Xb� c � �


	a � �
��	�Xa� b � �

 	X�a�Xb� c � �
�

	a � �
� 	b � �
� 	Xb� c � �


����

��



A�� Degeneracies

A���� Translation

The collision times �� of the translational moving line Lab and the stationary line Lcd

satisfy the equality ���� i�e�
u�� � u� � ��

Here we consider the case u� � �� which means that a collision during the translation can
only occur if u� � � and Lab � Lcd�

These conditions describe the following situation� the lines Lab and Lcd have to be parallel
or to intersect� additionally they must lie in the same plane perpendicular to the x�x��
plane� In this case the collision detection of the line segments can be described as a
two�dimensional problem�

It is easy to see that a collision between two segments in ��space is always a collision
between a vertex of one segment and the other segment� We will only demonstrate how
to test whether the point a collides with the segment lcd� the other cases being similar�
The collision occurs i� there are �� � � � � �� and �� � � � � t� such that

�e� � ��c� d� � a� c�

For d� �� c� this equation is satis�ed i�

�a� � c���d� � c�� � �a� � c���d� � c�� �

� � a� � c�
d� � c�

� � �

� � c� � a� �
a� � c�
d� � c�

�d� � c�� � t�

Further case decompositions �e�g� d� � c�� d� � c�� yield a linearization of dimension less
than ��

A���� Rotation

The collision times �i of the rotating line Lab and the stationary line Lcd satisfy the
equation ��� i�e�

u���
� � u��� � u�� � ��

Here we consider the case u�� � u�� � �� which means that a collision during the rotation
can only occur if u�� � � and the lines lie on the same cone respectively cylinder� Therefore
collision detection can be reduced to a ��dimensional problem� so that we only need to
test a collision between a vertices and segments� The same holds for the degeneracy of
equation �
� which means that the lines lie on the same hyperboloid�

��



A�� Correspondence between collision times and collision points

Given� Two lines Lab and Lcd� Let Lab��� rotate about the x��axis� and
assume that Lab��i� � Lcd �� 	 holds at time �� and ���

Wanted� The x��coordinate of the intersection point between Lab��i� and
Lcd�

For the x��coordinate of the intersection point of two lines L�ab and Lcd it holds�

zi �
������� � ������� � �������

������� � �������
����

We substitute Lab��i� for L
�
ab�

���� �
�� ��i
� � ��i

��� �
��i

� � ��i
���� ���� � � ��i

� � ��i
��� �

�� ��i
� � ��i

���

���� � ���� ���� � ���

���� �
�� ��i
� � ��i

��� �
��i

� � ��i
���� ���� � � ��i

� � ��i
��� �

�� ��i
� � ��i

���� where

�i �
�u�� �

q
u��� � �u��u

�
�

�u��
� and

u�� � ���� ��� � ������ � ��� ��� � ������ � ��� ��� � ������

u�� � ����� ��� � ������� � ������� � �������

u�� � ��� ��� � ������ � ������ � ��� ��� � ������ � ��� ���

Inserting the Pl�ucker coordinates ��ij into equation ���� results in

zi �
�Ax �B

�Cx�D
�

ACx� �BD � �BC �AD�x

C�x� �D�

where x �
�

�

q
u��
�
� �u�

�
u�
�

Thereby it holds�

BC � AD � ��������
�
���

�
�� � �����

�
�� � �����

�
�� � �����

�
���

������� � ������ � ������ � ������ � ������ � �������
�

C�x� �D� � ������
�
�� � �����

�
�� � �����

�
�� � �����

�
���

������� � ������ � ������ � ������ � ������ � �������
�

�������
�
�� � ������ ����� � ������

�
���

ACx� �BD � ������
�
�� � �����

�
�� � �����

�
�� � �����

�
���

������� � ������ � ������ � ������ � ������ � �������
�

�������� � ��������
�
�� � ����������� � ��������

Under the assumption that ������ � � applying equation ���� shows� that the x��
coordinate z� corresponds to �� and z� to ��� as speci�ed in equation ���

��



References

	AM�	
 P� K� Agarwal� J� Matou�sek� On range searching with semialgebraic sets� Proc�
��th Symp� on Math� Foundation of CS� ���� ��

��

	AM�	b
 P� K� Agarwal� J� Matou�sek� Ray shooting and parametric search� Proc� ��th
STOC� ������� ��

��

	Bo��
 J� W� Boyse� Interference detection among solids and surfaces�CACM Vol� �����
��
�
�� S� ��


	Ca��
 J� Canny� On detecting collision between polyhedra� Proc� ECAI ��
���� S� �������

	DK��
 D� Dobkin� D� Kirkpatrick� A linear algorithm for determing the seperation of
convex polyhedra� J� Algor� � ��
���� S� �����
�

	DK��
 D� Dobkin� D� Kirkpatrick� Determining the seperation of preprocessed polyhedra
� a uni�ed approach� Lecture Notes in Computer Science ��� ��

��� S� �������

	DHKS��
 D� Dobkin� J� Hershberger� D� Kirkpatrick� S� Suri� Implicitily searching con�
volutions and computing depth of collisions� Lecture Notes in Computer Science ���
��

��� S� �������

	Krev�	
 Marc van Kreveld� New Results on Data Structures in Computational Geome�
try� Ph�D� Thesis� University of Utrecht� The Netherlands� ��

��

	Mat��
 J� Matou�sek� Range searching with e�cient hierarchical cuttings� Discrete Com�
put� Geom �����
���� ��

��

	Meg��
 N� Megiddo� Applying parallel computation algorithms in the design of serial
algorithms� Journal of the ACM 	�� ������� ��
����

	Nu��
 O� Nurmi� A fast algorithm for hidden�line elimination� BIT� Vol� �� ��
���� S�
�������

	Pel�	
 M� Pellegrini Incidence and nearest�neighbor problems for lines in ��space� Proc�
�th Annu� ACM Symos� Comput� Geom�� ������� ��

��

	Pel��
 M� Pellegrini� Ray shooting on triangles in ��space� Algorithmica 
� �����
�
��

��

	PS��
 F� P� Preparata and M� I� Shamos� Computational Geometry
 an Introduction�
Springer�Verlag� New York� ��
���

	Sch��
 Elmar Sch�omer� Interaktive Montagesimulation mit Kollisionserkennung� Ph�D�
Thesis� Universit�at des Saarlandes� Germany� ��

��

��


