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Abstract. The range product problem is, for a given set S equipped with 
an associative operator 0, to preprocess a sequence al, ... , an of elements 
!rom S so as to enable efficient subsequent processing of queries of the 
form: Given a pair (s, t) ofintegers with 1 ::; s ::; t ::; n, return a. 0 a.+l 0 

.•. 0 a, . The generic range product problem and special cases thereof, 
usually with 0 computing the maximum of its arguments according to 
some linear order on S, have been extensively studied. We show that 
a large number of previous sequential and parallel algorithms for these 
problems can be unified and simplified by means of prefix graphs. 

1 Introduction 

In 1983 Chandra, Fortune and Lipton introduced a computational paradigm 
closely related to the Ackermann function and used it to study the computa
tion of semigroup products on unbounded-fanin circuits [6, 7]. Since then the 
paradigm was rediscovered several times, under different names and in different 
guises, and exploited in the design of sequential and parallel algorithms. In par
ticular, Berkman and Vishkin developed the "recursive star-tree data structure" 
[4] and used it in aseries of papers. We unify much of the previous research by 
observing that it is concerned simply with solving special cases ofthe range prod
uct problem, and by giving a generic algorithm for the range product problem 
in terms of graphs known as prefix graphs. We prove few new results; however, 
the machinery developed here allows us, with a modest effort, to obtain sim
pler proofs of the results of several previous papers, and to exhibit the intimate 
connection between such seemingly disparate problems as binary addition on a 
circuit and linear-range merging (i.e., merging sequences of length n with ele
ments in {1, ... , n}) on a PRAM. We hope that our effort at unification and 
simplification will contribute to a wider understanding and appreciation of the 
underlying paradigm. 

2 Definition of Prefix Graphs 

Informally, aprefix graph has n vertices arranged in a column on the left and n 
vertices arranged in a column on the right, some vertices in between, and enough 
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edges to allow us to go from left to right, provided that we also go down by at 
least one level. 

Definition 1. For all nEIN, a prejix graph of width n is a directed acyclic 
graph G = (V, E) with n distinguished input vertiees Xl , ... , X n of indegree zero 
and n distinguished output vertiees Yl, . .. ,Yn of outdegree zero and with the 
following properties, where the span of a ver tex v E V, span( v), is defined as 
{i: 1 ~ i ~ n and G contains a path from Xi to v}. 

(1) For i = 1, .. . ,n, span(Yi) = {1, .. . ,i -1} (for i = 1 this is 0); 
(2) For all v E V, span(v) is either empty or an "interval" of the form 

{s, ... , t}, for some integers s and t with 1 ~ s ~ t ~ n; 
(3) Any two vertices in V with a common successor have disjoint spans. 

The depth of a vertex v in G is the length of a longest path in G from an input 
vertex to v, and the depth of G is the maximum depth of any of its vertices. 

Note that there is a natural linear order on the set of edges entering a vertex 
v in aprefix graph. If e = (u, v) and e' = (u', v) are two such edges, e precedes 
e' if and only if the elements of the span of u are sm aller than the elements of 
the span of u' (if either span is empty, the order is undefined, but irrelevant) . 
We caH this order the eanonieal ordering of the edges entering v. 

3 Generic Prefix and Range Product Algorithms 

In the context of a fixed semigroup (5,0), the eomposition problem defined by 
n elements al, ... ,an of 5 is to compute al 0 ... 0 an. The corresponding prejix 
produet problem is to compute all the prefix products al, al 0 a2, ... , al 0 ... 0 

an, and the corresponding range produet problem is to preprocess the sequence 
al, .. . , an so that in response to a range query [s, t], where 1 ~ s ~ t ~ n, one 
can quickly compute a. 0 ... 0 at. 

Prefix graphs suggest very natural and simple reductions of the prefix product 
problem to the composition problem, and of the range product problem to the 
prefix product problem. In order to solve the prefix product problem defined 
by n elements al, ... , an of a semigroup (5,0), take aprefix graph G = (V, E) 
of width n, apply al, ... ,an to the inputs of G and let values of 5 "percolate" 
through G from the inputs to the outputs, each vertex composing the values 
reaching it over its incoming edges, in the order given by the canonical ordering 
of these edges, and sen ding the resulting product over all of its outgoing edges 
(we say that the vertex solves its loeal eomposition problem). It is easy to see by 
induction on the vertex depth that each vertex with span {s, . .. , t} computes 
a.o· . ·0 at; in particular, the solution to the prefix product problem can be read 
off the output vertices. 

In order to solve the range product problem for al, ... , an, we begin by 
carrying out the same computation. Further, each ver tex in V computes all 
suffix products of the sequence of values that reached it (it solves its loeal suffix 
problem) and saves these, which ends the preprocessing. 
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For any set J of the form J = [8, tj = {8,8 + 1, ... , t} with 1 ::; 8 ::; t ::; n , 
let P(J) = a. 0 a3 +1 0 · · ·0 at. We claim that if v E V is of depth d ~ 1 in G 
and span(v) = [8,t], then for any integer m with 8 ::; m ::; t , P([m,t]) is the 
product of at most d values computed during the preprocessing. The proof is by 
induction on d, and the claim is obvious if d = 1. Otherwise choose (the unique) 
(u, v) E E such that m E span(u), apply the induction hypothesis to compute 
P(span( u) n [m, t)) and note that if J = [m, tl\(span( u) n [m, t)) "# 0, then P(J) 
is one of the suffix products stored at v . 

Applying the claim above to the output vertices, we see that if G is of depth 
d ~ 1, then the answer to any range query can be obtained as the composition 
of at most d of the values computed in the preprocessing phase. The relevant 
values can be found in O( d) sequential time du ring a backwards scan in G, as 
in the proof above; we omit the details. 

The algorithms that we will describe always just simulate the generic prefix 
and range product algorithms. The only variable parameters will be the semi
group (5,0) under consideration and the model of computation. 

4 Existence of Prefix Graphs 

Define 10 : IN = {I, 2, .. . } - IN by 1o(n) = r n/21, for all nEIN. Inductively, 
for k = 1,2, ... , define 1k : IN - IN by 1k(n) = min{i EIN: 1k~l(n) = I}, for 
all nEIN, where superscript (i) denotes i-fold repeated application. Finally, for 
all nEIN, take a(n) = min{k EIN : 1k(n) ::;k}. It can be shown that for all 
n, kEIN, 1k+l(n) ::; 1k(n) ::; 1k(n + 1) and, if n ~ 2, 1k(n) < n . 

An important fact about prefix graphs is that for all n, kEIN , there is a 
prefix graph Gn ,k of width n , depth at most 2k and O(nkh(n)) edges. The 
simplest demonstration of this fact proceeds by simultaneous induction on n 
and k . We hence describe Gn,k in terms of graphs Gn, ,k', where (n', k') precedes 
(n , k) lexicographically. Let m = 1k-l(n). We will assurne that m divides n. The 
construction of Gn,k is shown in Fig. 1. We take n input vertices and n output 
vertices and partition both input and output vertices into groups of size m. The 
vertices in corresponding groups are connected via copies of Gm,k. Furthermore 
we create a new vertex for each input or output group and add edges from each 
input to the new vertex associated with its group and from each vertex associated 
with an output group to all vertices in its group. Finally, if k > 1, we connect 
the n/m new vertices on the left with the n/m new vertices on the right via a 
copy of Gn/m,k-l. If k = 1, we have n/m = 2, and we instead identify the upper 
new vertex on the left with the lower new vertex on the right, i.e., we connect 
the new vertices via aprefix graph of depth zero and with no edges. 

It is easy to see that the resulting graph is aprefix graph of depth at most 2k . 
Assurne that for all (n', k') that precede (n, k) lexicographically, Gn , ,k' contains 
at most 2n' k' 1k' (n') edges. Then the copies of Gm ,k contribute a total of at most 
2nkh(m) = 2nk(h(n) - 1) edges, the copy of Gn/m,k-b if present, contributes 
at most 2(n/m)(k-l)1k_l(n/m)::; 2n(k-l) edges , and with the remaining 2n 
edges this yields a grand total of at most 2nkl k (n) edges. 

3 



Fig. 1. A doubly-recursive construction of the prefix graph Gn.k. 

The construction above, suitably modified if m does not divide n, suffices for 
all our applications, except those in Section 5.5. We now describe an alterna
tive, but similar construction that suffices for all our applications, incorporates 
rounding and leads more directly to a fast parallel construction algorithm, one 
recursion of depth 8(log n) having been converted to iteration. The vertices in 
the graph will be classified as either front or back vertices as they are intro
duced; input vertices are always front vertices, and output vertices that are not 
also input vertices are back vertices. 

The induction now is only on k. Without loss of generality we will assurne 
that n is apower of 2. Take / = Ik(n) - 1 and let mo ? ml ? ... ? ml ? ml+l 
be a sequence of powers of 2 with mo = n, ml = 0(1) and ml+l = 1; the exact 
values will be specified later. Gn.k consists of / + 1 "layers", illustrated in Fig. 2. 
Layer i, for i = 0, ... , /, partitions both input and output vertices of Gn,k into 
groups of mi+l consecutive vertices, joins all input vertices in each group to a 
new front vertex, joins one new back vertex for each group to all output vertices 
in the group, and finally connects every set of m;fmö+l consecutive front vertices 
to the corresponding back vertices via a copy of Gm;/m;+l,k-l' 

1t is easy to see that the graph Gn,k thus constructed is indeed aprefix 
graph (cf. Fig. 2): For every input vertex x and every higher-numbered output 
vertex y, exactly one of the layers contains a path from x to y (for this it is 
essential that the groups in layer / are trivial, i.e., of size 1). We still need to 
choose ml," ., ml, which will depend on a constant parameter q EIN. lf k = 1, 
take mi = Iai

)( n) = n/2i , for i = 1, ... , /. The recursive construction then 
depends only on G2,o, which we take to be the prefix graph of width 2 with no 
edges. lf k ? 2, we will assurne for convenience that ((2q + 1)h(n))2q ~ n; this 
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Fig.2. An itera.tive-recursive construdion of tlte prefix gra.ph Gn,~. 

exeludes oDly a finite set of values of Tl. We then take mj as the smaJlest power 
of2 no sma!!er than ((2q + 1)I11~1(n))2q, for i = 1

"
, .,1; ODe can show that 

[~~f")-1)(n) = 2 for all n,k ~ 2, so that indeed ml = 0(1), as required. 

Let VF and VB be the sets of front and back vertices, respectively, in G",J: I, 
and denote by deg(v) the indegree of each ver tex v. We are interested in the 
quantity 

R.q(o, k) = 2:: Jdeg(v)lspan(v)1 + 2:: (deg(v))q, 
vEVI' 

called the order-q rooi-span of Gn,J:. We will show that Rq( n , k) = O(nk(h, (n))q). 
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If k ~ 2, assurne by induction that Rq(m, k - 1) :$ rm(k - l)(Ik-l(n))q for 
some constant rand for all mEIN, and reconsider the construction of Gn,k' 
Input vertices of Gn ,k contribute nothing to Rq(n, k), whereas the output (back) 
vertices have indegree 1 + 1 = Ik(n) and thus contribute a total of n(Ik(n))q. 
For i = 0, . . . , 1, layer i contains n/mi copies of Gm;jmi+l ,k-l' The (front) input 
vertices of these copies contribute exactly n to Rq(n, k) . We will determine the 
remaining contribution of layer i to Rq(n, k). Consider three cases. (1) k = 1: 
The remaining contribution is zero. (2) k ~ 2 and i = I: Since m/ = 0(1), the 
remaining contribution is O(n). (3) k ~ 2 and i < I : Since the size of the span 
of every vertex in the copies of Gm;jmi+l,k-l increases by a factor of mi+l when 
the copies are incorporated into Gn,k, the remaining contribution of layer i to 
Rq ( n, k) is at most 

n ~R (/ k 1) rn(k - l)(Ik-l(m;jmi+.))q 
-ymi+l q mi mi+l, - :$ . 
mi v'mi+l 

We have m;jmi+l :$ 2 (Iki2 1 (n))2q (the factor of 2 is due to the rounding to the 
nearest power of2). One can show that for all mEIN, Ik_1(2m 2q ) :$ (2q + 
1)Ik_1(m) . Hence Ik- 1(m;j17li+l):$ (2q + 1)Ik-l(Iii21(n)) = (2q + 1)It:-l1)(n). 
But then the contribution of layer i to Rq(n , k) is at most 

Putting the cases together and observing that the number of layers is 1 + 1 = 
h(n), we altogether obtain Rq(n, k) :$ n(Ik(n))q + O(n) + Ik(n)(n + rn(k -1)), 
which, for the constant r chosen sufliciently large, is bounded by rnk(Ik(n))q . 

We summarize the results of this section as follows. 

Theorem 2. For all n, kEIN and all jixed q EIN, there is a prejix graph of 
width n, depth at most 2k and order-q root-span O( nk(Id n))q). In particular, 
for all nEIN and all jixed q EIN, there is a prejix graph of width n, depth 
O(a(n)) and order-q root-span O(n(a(n))q+l). 

The lesson to be learned from Theorem 2 is that if we allocate resources (such 
as time or processors) proportional to Jdeg(v)lspan(v)1 to each front vertex v of 
aprefix graph, and proportional to any fixed power of deg( v) to each back vertex 
v, then the total amount of resources used will be only slightly superlinear. In 
most cases it suffices to allocate resources proportional to deg( v) to each ver tex v 
(ifv is a front vertex, deg(v) :$ Ispan(v)I and hence deg(v) :$ Jdeg(v)lspan(v)l) ; 
this can be viewed as placing a constant amount ofresources (e.g., one processor) 
at each edge of the prefix graph. 

Assuming constant-time access to a few tables, most notably one that gives 
the value of Iki)(m) for all positive integers m, k and i with m :$ n, k :$ a(n) 
and i :$ log n , a suitable representation of aprefix graph with the properties 
described in Theorem 2 can be computed in constant time on a CREW PRAM 
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with nk(h(n))q processors, and hence in O(nk(h(n))q) sequential time. Suitable 
tables can be constructed in constant time on an n-processor CRCW PRAM, 
and hence in linear sequential time, whereas the best construction known for 
the CREW PRAM needs O(log(log* n)) time and O( n) operations. We omit the 
details due to lack of space, referring the reader to (4] and (5] for some of the 
arguments. 

5 Applications of Prefix Graphs 

In this section we describe a number of concrete instances of the generic al
gorithms introduced in Section 3. In each case Theorem 2 is used to bound 
the resource requirements of the resulting algorithms; We give algorithms with 
slightly superlinear processor-time products; simple arguments presented in Sec
tion 6 reduce this quantity to O( n) in each case. Our examples span sequential 
computation, unbounded-fanin circuits and PRAMs. 

5.1 Sequential Range Products 

Assuming that the operator 0 of the semigroup (5,0) can be evaluated in con
stant sequential time, it is trivial to verify that each vertex v of aprefix graph 
can solve its local composi tion and suffix problems in linear time O( deg( v)). By 
the generic prefix and range product algorithms and Theorem 2, we obtain the 
following result of Alon and Schieber [2]. 

Theorem 3. For all n, kEIN, instances 0/ size n 0/ the range product problem 
can be solved with preprocessing time O(nkIk(n)) and query time O(k). 

5.2 Addition on Unbounded-Fanin Circuits 

In this section we consider unbounded-fanin circuits with AND, OR and NOT 

gates. The size of a circuit is defined to be the total number of gates and wires 
in the circuit, and the depth is the longest path from an input to an output. 
The find-first problem of size n is, given n bits UI, ... , U n , to compute the n bits 
VI,"" Vn with Vi = 1 iff Ui = 1 and UI = U2 = ... = Ui-l = 0, for i = 1, ... , n. 
As shown in [6, Theorem 3.4], find-first problems of size n can be solved by a 
circuit of constant depth and size O(n). 

Consider the problem of computing the (n + 1)-bit sum Zn+l .. 'Zl of two 
n-bit numbers X n ... Xl and Yn ... YI. There is a well-known reduction of this 
problem to that of computing prefix sums of elements of the semigroup with 
three elements, S, Rand P, and the operator 0 defined as folIows: For all u, V E 
{S,R,P}, uov = v ifv E {S,R}, and uoP = u. For i = 1, ... ,n, let ai = S 
if Xi = Yi = 1, ai = R if Xi = Yi = 0 and ai = P otherwise. S, Rand P 
are "set", "reset" and "propagate" indicators for the carry bit. It is easy to see 
that there is a carry into bit position i + 1 iff CHI = S, for i = 1, ... , n, where 
Ci+l = al 0 ... 0 ai, so that adding X n ... Xl and Yn ... YI essentially boils down 

7 



to computing C2 , ... , Cn+l. For this , imagine that the edges of aprefix graph 
can carry the values S, Rand P and that the vertices can compute the product 
(with operator 0) of the values on their incoming edges. Then the outputs of the 
prefix graph on input al , . .. , an are C2, ... , Cn+l. The computation at a vertex 
ofthe prefix graph is essentially a find-first problem, since the value obtained by 
composing the values in its input sequence is simply the rightmost non-P value 
in the sequence, or P if there is no such value. Using the circuit of [6] mentioned 
above, we can simulate the computation at v with a boolean circuit of constant 
depth and size O( deg( v)) . An edge in the prefix graph can be simulated with 
two parallel wires, so that we altogether obtain a circuit of size and depth within 
constant factors of the size and depth of the prefix graph. Applying Theorem 2, 
we get the following result of [7, Corollary 3.5] . 

Theorem 4. For al/ n, kEIN, two n-bit numbers can be added with a circuit 0/ 
depth O(k) and size O(nkIk(n)). 

As an alternative to the theorem above, two n-bit numbers can also be added 
with a circuit of depth O( a(n)) and size O(n). This follows by choosing k = a(n), 
using prefix-product circuits of [10] oflogarithmic depth and linear size to reduce 
the problem size by a factor of 8((a(n))2) and using Theorem 4 to solve the 
reduced problem, much in the spirit of Section 6. 

In the remainder of Section 5 we describe PRAM algorithms in which the 
local composition and suffix problems are solved in parallel at each vertex of a 
prefix graph. 

5.3 Segmented Broadcasting 

The segmented broadcasting problem of size n is, given an array A of n cells, some 
of which contain significant objects, while others do not, to replace each insignif
icant object by the nearest significant object to its left, if any. If we let S be the 
set of objects and denote an insignificant object by 'O, the segmented broadcast
ing problem is the prefix product problem associated with the semigroup (S, 0), 
where for all a , b E S, a 00 = a and a 0 b = b if b "# O. Instances of size n of 
the corresponding composition problem can be solved in constant time on an 
n-processor CRCW PRAM by a straightforward simulation of the find-first cir
cuits of [6] mentioned in the previous subsection. By the generic prefix product 
algorithm and Theorem 2, we therefore obtain the following result of Berkman 

. and Vishkin [4] and Ragde [11 , Theorem 4], who solved versions of segmented 
broadcasting called al/ nearest zero bits and ordered chaining, respectively. 

Theorem 5. For al/ n, kEIN, segmented broadcasting problems 0/ size n can 
be solved in time O(k) on a CRCW PRAM with nkIk(n) processors. 

5.4 Linear-Range Merging 

An instance of the linear-range merging problem of size n is to merge two sorted 
sequences, each containing n elements in the range 1 .. n . A linear-range merging 
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problem of size n reduces to a segmented broadcasting problem of size 2n. To see 
this, multiply each input element by 2 and subtract 1 from each element in one 
input sequence only. This ensures that no value occurs in both input sequences. 
It now suffices to determine for each input element x its rank in the opposite 
input sequence, i.e., the number of elements::::; x in that sequence, since the 
position of the element in the output sequence can be taken as its rank in the 
opposite input sequence plus its position in its own sequence. 

The remaining task therefore is , given a sorted sequence X = (Xl, . . . , Xn) 
of n integers in the range 1 .. 2n , to compute a table Rank[1 . . 2n] such that 
for j = 1, . . . , 2n , Rank(j] is the rank of j in X (this task is carried out twice, 
once for each input sequence). Suppose that we begin by computing preliminary 
ranks as follows: Initialize Rank(j] to 0, for j = 1, ... , 2n, and take Xn+l = 00, 

where 00 is an integer larger than 2n. Then, for i = 1, . .. , n, if Xi i= Xi+l , then 
set Rank[Xi] = i . This computes the correct rank of every value that occurs in 
X. Furthermore, the correct value to be stored in each entry in the rank table is 
the maximum of the preliminary ranks stored in the entries to its left (including 
the entry under consideration), so that the problem at hand is the segmented 
broadcasting problem defined by the preliminary ranks. 

By Theorem 5 and the discussion above, linear-range merging problems can 
be solved very efficiently on a CRCW PRAM. Exploiting additional information 
furnished by the reduction from merging to segmented broadcasting, however , 
we can solve linear-range merging problems equally efficiently on the CREW 
PRAM: For j = 1, .. . , 2n, initialize Rank(j] to (j, 0, 0), rather than to O. Then , 
for i = 1, .. . , n , instead of setting Rank[xi] = i if Xi i= Xi+l, set Rank[Xi] = 
(Xi, Xi+l, i) if Xi i= Xi+l . The third component of each tripie is the actual rank 
information, the second component is apointer to the next tri pie with a non zero 
third (or second) component, and the first component is just the position of the 
tripie itself. Let 5 be the set of tripies of integers and define the semigroup (5,0) 
as follows: For all (al , bl , cd, (a2, b2, C2) E 5, (al. bl, Cl) 0 (a2, b2, C2) = (al, bl , Cl) 
if C2 = 0, and (al, bl , Cl) 0 (a2 ' b2, C2) = (a2 , b2, C2) otherwise. 

Let (al , bl, Cl) ' . .. , (an, bn , Cn) be the set of tripies generated for an instance 
of the linear-range merging problem. For such a sequence, it is easy to see that 
for any integers sand t with 1 ::::; s ::::; t ::::; n, (a., b., c.)o .. . o(at, bt , Ct) is (ai, bi , Ci) 
for the unique i E {s, ... , t} with bi > at, or (a., b., c.) ifthere is no such i . As a 
consequence, if we execute the associated instance of the generic prefix product 
algorithm on aprefix graph G, the local composition problem occurring at each 
vertex v in G can be solved in constant time even on a CREW PRAM with 
deg( v) processors. 

The final rank table can be obtained from the prefix products, computed 
above, of the preliminary rank table by replacing each tri pie by its third com
ponent, which is the actual rank information. Using Theorem 2, we therefore 
obtain the following result, due to Berkman and Vishkin [5] . 

Theorem 6. For all n , kEIN, linear-range merging problems 0/ size n can 
be solved in O(k) time on a CRCW PRAM or a CREW PRAM with nkIk(n) 
processors. In the case 0/ the CREW PRAM, an appropriate prefix graph must 
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be supplied as part of the input. 

Using a slightly sm aller prefix graph, we obtain the following new result . 

Theorem 7. For all n , kEIN , two sorted sequences of length n each of integers 
drawn from a range of size O(n/Ik(n)) can be merged in O(k) time using O(n) 
operations on a CRCW PRAM or a CREW PRAM. In the case of the CREW 
PRAM, an appropriate prefix graph must be supplied as part of the input. 

5.5 Prefix and Range Maxima of c-Bounded Sequences 

A sequence al, . .. , an ofintegers is called c-bounded, for cE IN, if lai-ai+ll :::; c, 
for i = 1, ... , n - 1. In this section we develop algorithms for the prefix max
ima and range maxima problems for c-bounded input sequences. These results 
were first proved by Berkman and Vishkin [4] . The following simple fact is a 
consequence of [8, Theorem 4(c)). 

Lemma 8. For all n, mEIN, the maximum of n integers al, . .. , an with 
maxlSiSiSn lai-ail < m can be computed in constant time on a CRCW PRAM 
with O( n + Vm) processors. 

If a c-bounded sequence al, . . . , an is applied to the inputs of aprefix graph 
and each ver tex computes the maximum of the values entering it, the maximum 
difference between two values ente ring a vertex v will be at most c(lspan( v) 1- 1). 
A front vertex v can therefore execute the algorithm of Lemma 8 with O( deg( v)+ 
J clspan( v) I) processors; a back vertex v can use the trivial brute-force algorithm 
requiring (deg(v))2 processors. By Theorem 2, we obtain : 

Theorem 9. For all n,k,c E IN , the prefix maxima of a c-bounded sequence 
of length n can be computed in O(k) time on a CRCW PRAM with 
O(JCnk(h(n))2) processors. 

We will solve the range maxima problem for c-bounded sequences by exe
cuting the algorithm of Theorem 9 (or, rather , the corresponding suffix max
ima algorithm) at each vertex of aprefix graph G = (V, E). For this we must 
establish an upper bound c( v) on the difference between successive values en
tering each vertex v E V. Let r-(v) = {u E V : (u , v) E E} and note that 
2 max{clspan(u) 1 : u E r-(v)} is such an upper bound (in fact, the factor of 2 
is not needed). By induction, one can show that Ispan(u)1 = Ispan(u')1 for all 
u, u' E r-(v) , provided that v is a front vertex, i.e., in this case we can take 
c(v) = 2clspan(v)I/lr-(v)1 = 2clspan(v)l/deg(v) . 

Plugging the value for c(v) determined above into the processor count of 
Theorem 9, we see that the number of processors needed at a front vertex v 
is O( J2clspan( v)l/deg(v) deg( v)k(Ik(n))2) = O( Jc deg( v)lspan( v)lk(Ik( n))2). 
By Theorem 2, this sums over all front vertices to O(JCnk2(Ik(n))3). Since suffix 
maxima problems are simple to solve in constant time with a cubic number of 
processors, the same number of processors suffices for the back vertices. Noting 
that once the prefix product problem has been solved , the local suffix problem 
can be solved for all vertices in parallel , we have: 
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Theorem 10. For all n, k, c EIN, the preprocessing of a c-bounded sequence 
of length n for subsequent sequential range queries in O(k) time can be done in 
O(k) time on a CRCW PRAM with O(.JCnk2(h(n))3) processors. 

5.6 Randomized Prefix and Range Maxima 

The algorithm in the previous subsection was able to deal only with c-bounded 
sequences because maxima of general sequences cannot be computed determinis
tically in constant time. The situation changes if we allow randomization . How
ever, since the randomized algorithm is applied to many small inputs, namely 
once at each vertex, we have to cope with the failure of the execution at some 
vertices. The number of affected vertices being small, we can subsequently allo
cate enough resources to each such vertex, by me ans of an algorithm for so-called 
interval allocation [9], to let it run a deterministic algorithm. We now provide 
the details. 

Lemma 11. Let f,g,h : IN -+ IN satisfy n ~ f(n) ~ g(n) for all nEIN 
and suppose that instances of size n of a composition problem can be solved in 
constant time both with nh( n) processors and failure probability at most 1/ g( n) 
and deterministically with f(n) processors. Then, for every kEIN, instances of 
size n of the corresponding prefix product problem can be solved with probability 
at least 1 - 1/ g(l-1 (...Ji0) - 2-fo using O( k) time and nh( n) processors plus 
the resources needed for solving k successive interval allocation problems of size 
n1k(n). Here r 1(y'n) is to be understood as min{m EIN: f(m) 2:: y'n}. 

Proof. We allocate h( n) processors to each edge of aprefix graph of width n and 
depth 2k with at most rn1k(n) edges, where r 2:: 1 is a constant, and proceed level 
by level from the input vertices to the output vertices. At each level, each ver tex 
first carries out five attempts to solve its local composition problem using the 
given randomized algorithm. Subsequently each vertex v at which all trials failed 
requests f( deg( v)) processors and applies the given deterministic algorithm, after 
which we proceed to the next level. 

The analysis must bound the probability that too many processors are re
quested. Assurne that n is large enough to make rh(n) ~ n. Take no = f-1(y'n) 
and say that a vertex v is of high degree if deg( v) 2:: no · Since g( no) 2:: f( no) 2:: 
y'n, the prob ability that all five trials fail for so me high-degree vertex is at 
most rnlk(n)(1/g(no))5 ~ 1/g(no). The number of processors requested by the 
low-degree vertices is a weighted sum X = L., W.,X., of independent Bernoulli 
variables, where w., = f(deg(v)) ~ f(no - 1) ~ y'n and E(X.,) = 1/g(deg(v)) 
for all v. We have E(X) = L., w.,E(X.,) ~ L., f(deg(v))/g(deg(v)) ~ rn1k(n). 
By the Chernoff bound of Raghavan for weighted sums [12, Theorem 1], Pr(X 2:: 
6rn1k(n)) ~ 2-6rnh(n)/..;n ~ 2- fo . 

Abstractly speaking, the argument above shows how to solve an instance of 
a certain problem at each vertex of aprefix graph, given a randomized and a 
(more wasteful) deterministic algorithm for the problem under consideration. 
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The analysis of Lemma 11 applies, in particular, when the problem at each 
vertex is its local suffix problem, and the randomized algorithm used is the prefix 
product algorithm of Lemma 11. Recalling that all the local suffix problems can 
be solved in parallel, we obtain an algorithm for the range product problem. 

A CRCW PRAM with n processors can compute the maximum of n numbers 
in constant time with prob ability 1 - 2- nO

(I) [1, Theorem 3.9], and a determin
istic algorithm for the problem that uses n 2 processors and constant time is 
obvious. Furthermore, interval allocation problems of size n can be solved in 
O(log*n) time on an n-processor CRCW PRAM with probability 1-2-nO

(I) [9, 
Theorem 5.l], while processor allocation is free in the parallel comparison-tree 
(PCT) model of Valiant [13]. Using these facts in the general framework, we 
obtain the following results of [3]. 

Theorem 12. For all n, kEIN, range maxima preprocessing problems of size n 
can be so/ved (a) in O(k log*n) time on.a CRCW PRAM and (b) in O(k) time 
on a peT, so that in each case the number of processors needed is nkI/c(n), the 
resu/ting sequentia/ query time is O(k), and the fai/ure probabi/ity is 2-nO

(I). 

6 Making the algorithms work-optimal 

In this section we show how to make all of the algorithms work-optimal without 
affecting the time performance. For any operator 0 such that aob can be evaluated 
in constant sequential time (which is the case in all our applications), it is easy 
to see that range product problems of size n can be preprocessed in O(log n) 
time with O( n) operations for a su bsequent query time of O(log n) by means of 
a balanced binary tree. 

Proposition 13. If a range product prob/em of size n can be preprocessed in 
time t(n) with O(n2t (n)) operations, yie/ding query time O(t(n)), then it can be 
preprocessed in time O(t(n)) with O(n) operations, yie/ding query time O(t(n)). 

Proo! Partition the input elements into O(nj2t (n)) groups of size O(2t (n)) each, 
preprocess each group using the optimallogarithmic-time algorithm above and 
preprocess the group products using the nonoptimal algorithm assumed in the 
proposition, each of which uses O(t(n)) time and O(n) operations. Since each 
range is the disjoint union of two ranges within groups and one range spanning a 
number ofwhole groups, we can subsequently answer any range query in O(t(n)) 
time. 

Proposition 14. If a range product prob/em can be preprocessed in time t(n) 
with O(n) operations, yie/ding query time O(t(n)), then the corresponding prefix 
product prob/em can be so/ved in time O(t(n)) with O(n) operations. 

Proo! First preprocess the input for range queries. Then partition the input 
elements into O(njt(n)) groups of size O(t(n)) each, compute the prefix prod
ucts for the first elements of all groups by means of range queries, which needs 
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O( t (n)) time and O( n) operations, and then compute all remaining prefix prod
ucts sequentially within each group, which also needs O(t(n)) time and O(n) 
operations. 

Theorems 3, 5, 6, 12(b) and, for constant c, Theorems 9 and 10 imply that 
each ofthe respective problems can be solved in O( 0'( n)) time using O( n( 0'( n ))q) 
operations, for some fixed q. Theorem 12(a) implies that the problem can be 
solved in O(Iog"n) time using O(n log"n) processors. Applying Propositions 13 
and 14, we obtain 

Corollary 15. The problems of Theorems 3, 5, 6, 12(b) and, for constant c, 
Theorems 9 and 10 can all be solved optimally in O( 0'( n)) time; for the range 
product problems, both the preprocessing time and the sequential query time is 
O(O'(n)). The problem of Theorem 12(a) can be solved optimally in O(log*n) 
time, yielding constant sequential query time. 
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