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Concurrent Writing* 

Susanne AlbersU Torben Hagerupt 

Abstract 

We show that n integers in the range 1 . . n can be stably sorted on an EREW PRAM 
using O(t) time and o (n(..jlognloglogn+ (logn)2jt)) operations, for arbitrary given t ~ 
lognloglogn, and on a CREW PRAM using O(t) time and O(n(..jlogn + lognj2 t / 1og,,)) 

operations, for arbitrary given t ~ log n. In addition, we are able to sort n arbitrary integers 
on a randomized CREW PRAM within the same resource bounds with high probability. In 
each case our algorithm is a factor of almost E>(.y1'Og1i) closer to optimality than an previous 
algorithms for the stated problem in the stated model, and our third result matches the 
operation count of the best known sequential algorithm. We also show that n integers in the 
range 1 .. m can be sorted in O((logn)2) time with O(n) operations on an EREW PRAM 
using a nonstandard word length of o (log nloglog n log m) bits, thereby greatly improving 
the upper bound on the word length necessary to sort integers with alinear time-processor 
product, even sequentially. Our algorithms were inspired by, and in one case directly use, 
the fusion trees of Ftedman and Willard. 

1 Introduction 

A parallel algorithm is judged primarily by its speed and its efficiency. Concerning speed, a 

widely accepted criterion is that it is desirable for a parallel algorithm to have a running time 

that is polylogarithmic in the size of the input. The efficiency of a parallel algorithm is evaluated 
by comparing its time-processor product, i.e., the total number of operations executed, with the 

running time of an optimal sequential algorithm for the problem under consideration, the parallel 

algorithm having optimal speedup or simply being optimal if the two agree to within a constant 

factor. A point of view often put forward and forcefully expressed in (Kruskal et al. 1990b) is 

that the efficiency of a parallel algorithm, at least given present-day technological constraints, 

is far more important than its raw speed, the reason being that in all prob ability, the algorithm 

must be slowed down to meet a smaller number of available processors anyway . 

• A pre1i.minary version of this paper was presented at the 3rd An.nual ACM-SIAM Symposium Oll Discrete 

Algorithms (SODA '92) in Or1ando, FlOlida in January 1992. 
t Max-Planck-Institut für Informatik, D-66123 Saarbrücken, Germany. Supported in part by the Deutsche 

Forschungsgemeinschaft, SFB 124, TP B2, VLSI Entwunsmethoden und Parallelität, and in part by the ESPRIT 
Basic Research ActiollS Program of the EU under contracts No. 3075 and 7141 (projects ALCOM and ALCOM II). 

: Part of this work was done whlle the author was a student at the Graduiertenkolleg Informatik, Univer­

sität des Saarlandes, D-66041 Saarbrücken, Germany, and supported by a graduate fellowship of the Deutsche 
Forschungsgemeinschaft. 
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The problem of integer sorting on a PRAM has been studied intensively. While re cent 

research has concentrated on algorithms for the CRCW PRAM (Rajasekaran and Reif, 1989; 

Rajasekaran and Sen, 1992; Bhatt et al., 1991; Matias and Vishkin, 1991a, 1991b; Raman, 

1990, 1991a, 1991b; Hagerup, 1991; Gi! et al., 1991; Hagerup and Raman, 1992, 1993; Bast 

and Hagerup, 1993; Goodrich et al., 1993, 1994), in this paper we are interested in getting the 

most out of the weaker EREW and CREW PRAM models. Consider the problem of sorting n 

integers in the range 1 .. m. In view of sequential radix sorting, which works in linear time if 
m = nO(l), a parallel algorithm for this most interesting range of m is optimal only if its time­

processor product is O(n). Kruskal et al. (1990a) showed that for m ~ n and 1 ~ P ~ n/2, the 

problem can be solved using p processors in time 0 (~'10~(:7p))' Le., with a time-processor 

product of 0 (l::~! /;) ). The space requirements of the algorithm are e (pne + n), for arbitrary 

fixed E > 0, which makes the algorithm impractical for values of p close to n. Algorithms that 

are not afBicted by this problem were described by Cole and Vishkin (1986, remark following 

Theorem 2.3) and by Wagner and Han (1986). For n/m ~ p ~ n/logn, they use O(n) space 

and also sort in 0 (~'10~(:7p)) time with p processors. All three algorithms are optimal if 

m = (n/p)O(l). However, let us now focus on the probably most interesting case of m ~ n 
combined with running times of (logn)O(l). Since the running time is at least 0(n/p), it is 

easy to see that the time-processor product of the above algorithms in this case is bounded only 

by O(nlogm/loglogn), Le., the integer sorting algorithms are more efficient than algorithms 

for general (comparison-based) sorting, which can be done in O(logn) time using O(nlogn) 

operations (Ajtai et al., 1983; Cole, 1988), by a factor of at most 0(10glogn), to be compared 
with the potential maximumgain of 0(10gn). This is true even of a more re cent EREW PRAM 

algorithm by Rajasekaran and Sen (1992) that stably sorts n integers in the range 1 .. n in 

o (log n log log n) time using 0 ( n log n flog log n) operations and 0 (n) space. 

We describe an EREW PRAM algorithm for stably sorting n integers in the range 1 .. n that 
exhibits a tradeoffbetween speed and efficiency. The minimum running time is 0(10g n log log n), 
and for this running time the algorithm essentially coincides with that of Rajasekaran and 

Sen (1992). Allowing more time, however, we can sort with fewer operations, down to a minimum 

of 0( n00g n log log n), reached for a running time of 0 ((log n )3/2/ 00g log n). In general, for 

any gi yen t ~ log n log log n, the algorithm can sort in 0 (t) time using 0 ( n( 00g n log log n + 
(log n)2 /t)) operations. Run at the slowest point of its tradeoff curve, the algorithm is more 

efficient that the algorithms discussed above by a factor of 0(0ogn/(10glogn)3/2). 

On the CREW PRAM, we obtain a much steeper tradeoff: For all t ~ log n, our algorithm 
sorts n integers in the range 1 .. n in 0 (t) time using 0 ( n( Jlog n + log n / 2t/logn)) operations; the 

mjnimum number of operations of 0 (n.y'IOg1i) is reached for a running time of o (log n log log n). 
We also consider the problem of sorting integers of arbitrary size on the CREW PRAM and 

describe a reduction of this problem to that of sorting n integers in the range 1 .. n. The reduction 

is randomized and uses 0 (log n) time and 0 ( nv'log n) operations with high prob ability. It is 
based on the fusion trees of Fredman and Willard (1990) and was discovered independently by 

Raman (1991a). 
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The algorithms above all abide by the standard convention that the word length available to 

sort n integers in the range 1 .. m is 0(log(n+m)) bits, Le., that unit-time operations on integers 

of size (n + m)O(l) are provided, but that all integers manipulated must be of size (n + m)O(l). 

A number of papers have explored the implications of allowing a larger word length. Paul and 

Simon (1980) and Kirkpatrick and Reisch (1984) demonstrated that with no restrictions on 

the word length at all, arbitrary integers can be sorted in linear sequential time. Hagerup and 

Shen (1990) showed that in fact a word length of ab out O(nlognlogm) bits su:ffi.ces to sort n 

integers in the range 1 .. m in O(n) sequential time or in O(logn) time on an EREW PRAM with 

O( njlog n) processors. The practical value of such results is doubtful because of the unrealistic 

assumptions: Hardly any computer has a word length comparable to typical input sizes. We 

show that n integers in the range 1 .. m can be sorted with a linear time-processor product in 

O( (log n)2) time on an EREW PRAM with a word length of 0 (log n log log n log m) bits. At the 

price of a moderate increase in the running time, this greatly improves the known upper bound on 

the word length necessary to sort integers with a linear time-processor product, even sequentially. 

Another, perhaps more illuminating, perspective is obtained by noting that providing a PRAM 

with a large word length amounts to adding more parallelism of a more restrictive kind. A single 

register of many bits is akin to a whole SIMD machine, but without the important ability to 

let individual processors not participate in the current step. As suggested by this view, using 

a word length that allows k integers to be stored in each word potentially could decrease the 

rllnning time by a factor ofup to 0(k). What our algorithm actually achieves is a reduction in 

the running time by a factor of 0(kjlogk) (curiously, it does so by calling a sequential version 

of an originally parallel algorithm as a subroutine ). This can be interpreted as saying that if 

one happens to sort integers of which several will fit in one word, then advantage can be taken 

of this fact. Our result also offers evidence that algorithms using a nonstandard word length 

should not hastily be discarded as unfeasible and beyond practical relevance. 

2 Preliminaries 

A PRAM is a synchronous parallel machine consisting of processors numbered 1,2, ... and a 

global memory accessible to all processors. An EREW P RAM disallows concurrent access to a 

memory cell by more than one processor, a CREW PRAM allows concurrent reading, but not 

concurrent writing, and a CRCW PRAM allows both concurrent reading and concurrent writing. 

We assume an instruction set that inc1udes addition, subtraction, comparison, unrestricted shift 

as weil as the bitwise Boolean operations AND and OR. The shift operation takes two integer 

operands z and i and pro duces z i i = l z . 2i J . 
Our algorithms frequently need to compute quantities such as log mJ>"jlog >.., where m, >.. 2:: 2 

are given integers. Since we have not assumed machine instructions for multiplication and di­

vision, let alone extraction of logarithms and square roots, it is not obvious how to carry out 

the computation. In general, however, it su:ffi.ces for our purposes to compute the quantities 

of interest approximately, namely up to a constant factor, which can be done using negligible 

resources: Shift operations provide exponentiation, logarithms can be extracted by exponent i­

ating all candidate values in parallel and picking the right one, and approximate multiplication, 
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division and extraction of square roots reduce to extraction of logarithms, followed by addition, 
subtraction or halving (i.e., right shift by one bit), followed by exponentiation. On some oc­
casions, we need more accurate calculations, but the numbers involved are small, and we can 

implement multiplication by repeated addition, etc. The details will be left to the reader. 
Two basic operations that we shall need repeatedly are prefix summation and segmented 

broadcasting. The prejiz summation problem of size n takes as input an associative operation 0 

over a semigroup S as well as n elements Zl, ..• ,Zn of S, and the task is to compute Zl, Zl 0 

Z2,' •. , Zl 0 Z2 O· • ·0 Zn. The segmented broadcasting problem of size n is, given an array A[l. .. n] 

and a bit sequence b1 , ••• ,bn with b1 = 1, to store the value of A[max{j : 1 :$ i :$ i and bj = 1}] 
in A[i], for i = 1, ... , n. It is well-known that whenever the associative operation can be applied 

in constant time by a single processor, prefix summation problems of size n can be solved on an 

EREW PRAM using O(logn) time and O(n) operations (see, e.g., (JaJa, 1992». Segmented 

broadcasting problems of size n can be solved within the same resource bounds by casting them 
as prefix summation problems; the details can be found, e.g., in (Hagerup and Rüb, 1989). 

It can be shown that if an algorithm consists of T parts such that the ith part can be executed 

in time ti using qi operations, for i = 1, ... , T, then the whole algorithm can be executed in time 
o (tl + ... + t,.) using 0 (q1 + ... + q,.) operations, i.e., time and number of operations are 
simultaneously additive. We make extensive and implicit use of this observation. 

We distinguish between sorting and ranking. To sort a sequence of records, each with a 

key drawn from a totally ordered domain, is to rearrange the records such that in the resulting 
sequence the keys occur in nondecreasing order. The sorting is stable if nonidentica1 records 
with the same key occur in the same order in the output sequence as in the input sequence, 

i.e., if there are rio unnecessary interchanges. To (stably) rank a sequence R 1 , ••• , Rn of records 

as above is to compute a permutation i 1 , ••• ,in of 1, ... ,n such that Ri1 , ••• ,Ri .. is a possible 
result of (stably) sorting R1 , ••. , Rn. 

For records that consist of just a key with no associated information, the stability requirement 

adds nothing to the sorting problem - it is vacuously satisfied. In such cases we follow the 
tradition of using the term "stable sorting" in the sense of stable ranking. Note that any 

algorithm for (stable) ranking on a PRAM implies an algorithm for (stable) sorting with the 

same resource bounds, up to a constant factor. On the other hand, an algorithm for stable 
ranking can be derived from any sorting algorithm that can be mod.ifi.ed as follows: Let the 

sequence ofrecords to be sorted be Rh' .. , Rn, and let Zi be the key of Ri, for i = 1, ... , n. The 
mod.ifi.ed algorithm uses as the key of Ri the pair (Zi, i), for i = 1, ... , n, and orders these pairs 
lexicographically (i.e., (zi,i) < (Zj,j) {:} Zi < Zj or (Zi = Zj and i < i». We shall refer to this 
process as stabilizing the original algorithm. 

Given an element Z of a totally ordered domain U and a finite sequence L of elements of U, 
the rank of Z in L is the number of elements in L no larger than z. 

Our basic sorting algorithm is nonconservative, following the terminology of Kirkpatrick and 
Reisch (1984), i.e., the word length allowed for sorting n integers in the range 1 .. m is not 

limited to O(log(n + m» bits. More precisely, we will use a word length of 0(kl + logn) bits, 

where k is apower of 2 with 2 :$ k :$ n and I is an integer with I ~ rlog( m + k)l + 2. This word 
length enables us to store more than one number in a word, which is essential for our technique. 
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Throughout the paper we nlunber the bit positions of words and integers from right to left, 

with the least significant bit occupying position O. We assume a word length of at least 2kl 

bits and partition the rightmost 2kl bits into 2k fields of I bits each. The fields are numbered 

from right to left, starting at 0, and the number of a field is also called its address. The most 

significant bit of each field, called the test bit, is usually set to O. The remaining bits of the 

field can represent a nonnegative integer coded in binary and called an entry. A word normally 

stores k entries Zo, ... , Zk-1 in its rightmost k fields and thus has the following structure: 

-------­neId 2k - 1 

10:0·"010: Zk-1 1 ----------------field k field k - 1 

10: Zo 

-------­field 0 

The fields k, ... , 2k - 1 serve as temporary storage. Two fields in distinct words correspond 

if they have the same address, and two entries correspond if they are stored in corresponding 

fields. For h ~ 1, a word that contains the test bit bi and the entry Zi in its field number i, for 

i = 0, . . . , h - 1, and whose remaining bits are all 0 will be denoted [bh-1 : Zh-1, •.. , bo : zo]. H 
bo = ... = bh-1 = 0, we simplify this to [Zh-1, • •• , zo]. Bya sorted word we mean a word of the 

form [Zk-1, ... ,Zo], where Zo ~ Zl ~ . .. ~ Zk-1. A sequence Zl, ... ,Zn ofn integers is said to 

be given in the word representation (with parameters k and I) if it is given in the form of the 

words [Zk, • .. , Zl], [Z2k, ... , ZkH], ... , [zn, ... , ZUn/kl-1)k+1]. 
The remainder of the paper is structured as follows: We first study algorithms for the EREW 

PRAM. Section 3 tack1es the humble but nontrivial task of merging (the sequences represented 

by) two sorted words. Based on this, Section 4 develops a nonconservative parallel merge sorting 

algorithm, from which the conservative algorithm that represents our main result for the EREW 

PRAM is derived in Section 5. Section 6 describes our algorithms for the CREW PRAM. 

3 Merging two words 

In this section we describe how a single processor can merge two sorted words in 0 (log k) time. 

We use the bitonic sorting algorithm of Batcher (1968) and need only describe how bitonic 

sorting can be implemented to work on sorted words. 

A sequence of integers is bitonic if it is the concatenation of a nondecreasing sequence and a 

nonincreasing sequence, or if it can be obtained from such a sequence via a cyclic shift. E.g., the 

sequence 5,7,6,3,1,2,4 is bitonic, but 2,5,3,1,4,6 is not. Batcher's bitonic sorting algorithm 

takes as input abitonic sequence Zo, .. . , Zh-l! where his apower of 2. The algorithm simply 
returns the one-element input sequence if h = 1, and otherwise executes the following steps: 

(1) For i = 0, ... , h/2 - 1, let 7'ni = min{Zi, Zi+h/2} and Mi = max{zi, Zi+h/2}. 

(2) Recursively sort ma, . .. , mh/2-1, the sequence of minima, and Mo, ... , Mh / 2- 1 , the se­
quence of maxima, and return the sequence consisting of the sorted sequence of minima followed 

by the sorted sequence of maxima. 

Although we shall not here demonstrate the correctness of the algorithm, we note that all 

that is required is a proof that ma, ... , mh/2-1 and Mo, ... , Mh / 2- 1 are bitonic (so that the 
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recursive application is permissible), and that mi :::; Mj for all i,j E {O, ... , h/2 - 1} (so that 
the concatenation in Step (2) indeed pro duces a sorted sequence). 

Our implementation works in log k + 1 stages numbered log k, log k - 1, ... , 0, where a stage 
corresponds to a recursive level in the above description. In the beginning of Stage t, for 
t = log k, .. . ,0, there is a single word Z containing 2logk-t bitonic sequences of length 2t+1 

each, each of which is stored in 2t+1 consecutive fields of Z. Furtherm.ore, if z is an element of a 

sequence stored to the left of a different sequence containing an element z', then z ~ z'. Stage t, 
for t = log k, . .. ,0, carries out the above algorithm on each of the 2logk-t bitonic sequences, 
i.e., each sequence of 2t+l elements is split into a sequence of 2t minima and a sequence of 2t 

maxima, and these are stored next to each other in the 2t +1 fields previously occupied by their 

parent sequence, the sequence of maxima to the left of the sequence of minima. 

Because of the elose connection to the recursive description, the correctness of this im­

plementation is obvious. In order to use the algorithm for merging, as opposed to bitonic 

sorting, we introduce a preprocessing step executed before the first phase. Given words X = 
[Zk-t. ... , zo] and Y = [Yk-l, ... , YO], the preprocessing step pro duces the single word Z = 
[YO, ... , Yk-l, Zk-l, ... , zo]. The important thing to note is that if Zo, ... , Zk-l and Yo, ... , Yk-l 

are sorted, then Zo, ... , Zk-l, Yk-l, ... , Yo is bitonic. 

We now describe in full detail the single steps of the merging algorithm. We repeatedly use 
the two constants 

K 1 = L1 : 0,1 : 0, ... ,1 : 0) 
... 

2k neIds 

and 

K 2 = [2k -1,2k- 2, ... ,2,1,0]. 

It is easy to compute K 1 and K 2 in O(log k) time. This is accomplished by the program fragment 
below. 

K 1 := 1 i (1- 1); 
for t:= ° to logk do 

(* K 1 = ll.: 0,1: 0, ... ,1: 0) *) 
... 

2' neIds 
K 1 := K 1 OR (K1 i (2t ·1)); 

K2 := (K1 i (-I + 1)) - 1; 

for t:= ° to logk do 
(* K 2 = L2t , ... , 2t

, 2t
, 2t 

- 1,2t 
- 2, .. . ,2,1,0) *) 

... 
2k neIds 

K 2 := K 2 + «K2 i (2t ·1)) AND CopyTestBit(K1 )); 

The function CopyTestBit, used in the last line above to remove spurious bits by truncating 

the shifted copy of K 2 after field number 2k - 1, takes as argument a word with the rightmost 

I - 1 bits in each field and all bits to the left of field number 2k - 1 set to ° and returns the 
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word obtained from the argument word by copying the value of each test bit to al.l other bits 

within the same field and subsequently setting al.l test bits to o. It can be defined as follows: 

CopyTestBit(A) == A - (A i (-1 + 1)). 

We next describe in detail the preprocessing step of our merging algorithm. The central problem 

is, given a word Y = [Yk-l, ... , YO], to produce the word 

[Yo, ... , Yk-l,?, 0,: .. ,0)­
k fields 

In other words, the task is to reverse a sequence of 2k numbers. First observe that if we identify 

addresses of fields with their binary representation as stri,ngs of log k + 1 bits and denote by a 
the address obtained from the address a by complementing each of its log k + 1 bits, then the 

entry in the field with address a, for a = 0, ... , 2k - 1, is to be moved to address a. To see 

this, note that the entry under consideration is to be moved to address a' = 2k - 1 - a. Since 
k is apower of 2, a' = a. By this observation, the preprocessing can be implemented by stages 

numbered O, . . . ,logk, executed in any order, where Stage t, for t = O, ... ,logk, swaps each 

pair of entries whose addresses differ precisely in bit number t. In order to implement Stage t, 
we use a mask M to separate those entries whose addresses have a 1 in bit number t from the 

remaining entries, shifting the former right by 2t fields and shifting the latter left by 2t fields. 

The complete preprocessing can be programmed as follows: 

for t:= ° to logk do 
begin (* Complement bit t *) 

M := CopyTestBit((K2 i (1- 1 - t)) AND K1 ); 

(* Mask away fields with ° in position t of their address *) 
Y:= ((Y AND M) i (_2 t ·1)) OR 

((Y - (Y AND M)) i (2t ·1)); 
end; 

Z:= X OR Y; 

Let us now turn to the bitonic sorting itself, one stage of which is illustrated in Fig. 1. In 
Stage t of the bitonic sorting, for t = log k, ... ,0, we first extract the entries in those fields whose 

addresses have a 1 in bit position t and compute a word A containing these entries, moved right 

by 2t fields, and a word B containing the remaining entries in their original positions. Numbers 

that are to be compared are now in correspondingpositions in A and B. We carry out al.l the 

comparisons simultaneously in a way pioneered by Paul and Simon (1980): All the test bits in 

Aare set to 1, the test bits in B are left at 0, and B is subtracted from A. Now the test bit in 
a particular position "survives" if and only if the entry in A in that position is at least at large 

as the corresponding entry in B. Using the resulting sequence of test bits, it is easy to create a 

mask M' that separates the minima ((B AND M') OR (A - (A AND M'))) from the maxima ((A 
AND M') OR (B - (B AND M'))) and to move the latter left by 2t fields. The complete program 

for the bitonic sorting follows. 
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7 2 4 9 12 15 10 8 

I : 1 : 1 : 1 : 11: 7 11: 2 11: 4 11: 9 I A 

I : 1 : 1 : 1 : 10: 12 10: 15 10: 10 10: 8 I B 

= 1 : 1 : 1 : 1 : 10: 10: 10: I( 

-L __ L...-_...I-_.....I....-_--'-_--1._---JL.-_..I--.;::.8---L_ BAND M' 

OR I 7 I 2 I 4 A - (A AND M') 

OR 1 9 1 1 1 (A AND M') T (2 t ·1) 

OR 12 15 10 1 (B - (B AND M')) T (2 t ·1) 

= 12 15 10 9 7 2 4 8 

Fig. 1. One stage of bitonic sorting. 

for t := log k downto 0 do 
begin 

M := CopyTestBit«K2 T (1- 1- t)) AND K1 ); 

(* Mask away fields with 0 in position t of their address *) 
A := (Z AND M) T (_2 t ·1); 
B := Z - (Z AND M); 
M' := CopyTestBit«(A OR Kt} - B) AND Kt}; 
Z:= (B AND M') OR 

end; 

(A - (A AND M')) OR 

«A AND M') T (2 t ·1)) OR 

«B - (B AND M')) T (2 t ·1)); 

This completes the description of the algorithm to merge two sorted words. If the input 

numbers :1:0, ..• , :l:1e-l and Yo, ... ,Y1e-l are drawn from the range 1 .. m, a field must be able to 
store nonnegative integers up to max{ m, 2k - I}, in addition to the test bit; a field length of 

[log( m + k)l + 2 bits therefore suffices. The running time of the algorithm clearly is o (log k). 
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4 Nonconservative sorting on the EREW PRAM 

Given the ability to merge two sorted words, it is easy to develop a procedure for merging two 

sorted sequences given in word representation. Let X and Y be such sequences, each comprising 

r words. Although the sequences X and Y may contain repeated values, we will consider the 

elements of X and Y to be pairwise distinct, and we impose a total order on these elements 

by declaring an element Z of X or Y to be smaller than another element z' of X or Y exactly 

if its value is smaller, or if it precedes z' in the same input sequence, or if z and z' have the 
same value, z belongs to X, and z' belongs to Y (Le., ties are broken by considering elements 

in X to be smaller). Defi.ne a representative as the first (smallest, rightmost) entry in a word 

of either X or Y and begin by extracting the representative of each word of X (y, respectively) 

to form a sorted sequence :1:1, ••• ,:I:,. (Yb"" Y,., respectively). Merge :1:1, ••• ,:I:,. and Yb ... , Y,., 
according to the total order defi.ned above, by means of a standard algorithm such as the one 

described by Hagerup and Rüb (1989), which uses O(log r + 1) time and O( r) operations, and let 

Zl, ••• , Z2,. be the resulting sequence. For i = 1, ... , 2r, associate a processor with Zi. The task 

of this processor is to merge the subsequences of X and Y comprising those input numbers z 

with Zi :::; z < Zi+1 (take Z2,.+1 = 00). One ofthese subsequences is part ofthe sequence stored in 

the word containing Zi, while the second subsequence is part of the sequence stored in the word 

containing Zj, where i is the maximal integer with 1 :::; i < i such that Zi and Zj do not belong 

to the same input sequence; if there is no such i, the second subsequence is empty. Segmented 

broadcasting using 0 (log r + 1) time and 0 (r) operations allows each processor associated with 
an element of Zl, ••• , Z2,. to obtain copies of the at most two words containing the subsequences 

that it is to merge, after which the processor can use the algorithm described in the previous 

section to merge its words in O(logk) time. For i = 1, ... ,2r, the processor associated with Zi 

then locates Zi and Zi+1 in the resulting sequence by means of binary search, which allows it 

to remove those input numbers Z that do not satisfy Zi :::; Z < Zi+1' Finally the pieces of the 
output produced by different processors must be assembled appropriately in an output sequence. 

By computing the number of smaller input numbers, each processor can determine the precise 

location in the output of its piece, which spreads over at most three (in fact, two) output words. 

The processors then write their pieces to the appropriate output words. In order to avoid write 

conflicts, this is done in three phases, devoted to processors writing the first part of a word, the 

last part of a word, and neither (Le., a middle part), respectively. To see that indeed no write 

conflict can occur in the third phase, observe that if two or more processors were to write to the 

same word in the third phase, at least one of them would contribute a representative coming 
from the same input sequence as the representative contributed by the processor writing the last 

part ofthe word (in the second phase); this is impossible, since no output word can contain two 

or more representatives !rom the same input sequence. We have proved 

Lemma 1 For all given integers n, m, k and I, where k is apower 0/ 2 with 2:::; k :::; n, m ~ 1 

and 1 ~ flog( m + k)l + 2, two sorted sequences 0/ n integers in the range 1 .. m each, given 
in the word representation with parameters k and I, can be merged on an EREW PRAM using 

O(logn) time, O((n/k) logk) operations, O(n/k) space and a word length 0/ O(kl + logn) bits. 
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Theorem 1 FOt' all given integers n, k and m with 2 ~ k ~ n and m ~ 2 such that Lloglogmj 
is known, n integers in the range 1 .. m can be sorted on an EREW PRAM using O«logn)2) 

time, O«n/k) log klogn + n) operations, O(n) space and a ward length 01 O(klogm + logn) 
bits. 

Proof: Assume that n and k are powers of 2. For m ~ (logn)2, the result is implied by the 

standard integer sorting results mentioned in the introduction. Furthermore, if k ~ (log n)2 ~ 2, 
we can replace k by (log n)2 without weakening the claim. Assume therefore that k ~ m, in 

which case an integer I with I ~ rlog( m + k ) 1 + 2, but I = 0 (log m) can be computed in constant 
time, using the given value of Llog log m j. We use the word representation with parameters 

k and I and sort by repeated merging of ever longer sorted sequences, as in sequential merge 
sorting. During a first phase of the merging, consisting of log k merging rounds, the number of 

input numbers per word doubles in each round, altogether increasing from 1 to k. The remaining 

O(1ogn) rounds operate with k input numbers per word throughout. Both phases ofthe merging 
are executed according to Lemma 1. For i = 1, ... ,logk, the ith merging round inputs n/2i - 1 

words, each containing a sorted sequence of 2i - 1 input numbers, and merges these words in 

pairs, storing the result in n/2i words of 2i input numbers each. By Lemma 1, the cost of the 

first phase of the merging, in terms of operations, is On::~lk( n/2i - 1)( i - 1» = O( n). The cost 
of the second phase is O«n/k) log klog n), and the total time needed is O«logn)2). 0 

Corollary 1 FOt' all integers n, m ~ 4, il Lloglogmj is known, then n integers in the range 

1 .. m can be sorted with a linear time-processor product in O«logn)2) time on an EREW PRAM 

with a word length oI O(lognloglognlogm) bits. 

5 Conservative sorting on the EREW PRAM 

The sorting algorithm in the previous section is inherently nonconservative, in the sense that 
in most interesting cases, the algorithm can be applied only with a word length exceeding 

0(log(n + m» bits. In this section we use a cascade of several different simple reductions to 
derive a conservative sorting algorithm. In general terms, a reduction allows us to replace an 

original sorting problem by a collection of smaller sorting problems, a1.l of which are eventually 

solved using the algorithm of Theorem 1. 

The first reduction is the well-known radix sorting, which we briefiy describe. Suppose 

that we are to stably sort records whose keys are tuples of w components with respect to the 
lexicographica1. order on these tupies. Having at our disposal an algorithm that can sort with 

respect to single components, we can carry out the sorting in w successive phases. In the first 

phase, the records are sorted with respect to their least significant components, in the second 
phase they are sorted with respect to the second-Ieast significant components, etc. Provided that 

the sorting in each phase is stable (so that it does not upset the order established by previous 

phases), after the wth phase the records will be stably sorted, as desired. We shall apply 
radix sorting to records with keys that are not actually tuples of components, but nonnegative 

integers that can be viewed as tuples by considering some fixed number of bits in their binary 

representation as one component. 

10 



For the problem of sorting n integers in the range 1 .. m, define n as the size and m as the 

height of the sorting problem. For arbitrary positive integers n, m and w, where m is apower 

of 2, radix sorting can be seen to allow us to reduce an original sorting problem of size n and 

height mtD to w sorting problems of size n and height m each that must be solved one after 

the other (because the input of one problem depends on the output of the previous problem). 

The requirement that m should be apower of 2 ensures that when input numbers are viewed 

as w-tuples of integers in the range 1 .. m, any given component of a tuple can be accessed in 

constant time (recall that we do not assume the availability ofunit-time multiplication). 

Our second reduction, which we call group sorting, allows us to reduce a problem of sorting 

integers in a sublinear range to several problems of sorting integers in a linear range. More 

precisely, if n and m are powers of 2 with 2 ~ m ~ n, we can, spending O(logn) time and 

O(n) operations, reduce a sorting problem of size n and height m to njm sorting problems of 

size and height m each that can be executed in parallel. The method is as follows: Divide the 

given input numbers into r = njm groups of m numbers each and sort each group. Then, for 

i = 1, ... , m and j = 1, ... , r, determine the number ~,j of occurrences of the value i in the 

jth group. Because each group is sorted, this can be done in constant time using O(rm) = 
O(n) operations. Next compute the sequence Nl,l,"" Nt,,., N2,t, ... , N2 ,,., ••• , Nm,t, ... , Nm,,. 
of prefix sums of the sequence nl,b"" nl,,., n2,1I" ., n2,,.,.· ., nm,l, ... , nm,,. (the associative 
operation being usual addition), which takes O(logn) time and uses O(n) operations. For 

i = 1, ... , m and j = 1, ... , r, the last occurrence of i in (the sorted) jth group, if any, can now 

compute its position in the output sequence simply as Ni,j, after which all remaining output 

positions can be assigned using segmented broadcasting, an occurrence of i in the jth group d 
positions before the last occurrence of i in the jth group being placed at output position Ni,j - d. 

We now describe an algorithm to sort n integers in the range 1 .. n with a word length 

of 0 (~) bits, where ~ 2:: log n. Our approach is to sort numbers in arestricted range 1 .. 28
, 

where s is a positive integer, and to apply the principle of radix sorting to sort numbers in 

the larger range 1 .. n in O(lognjs) phases, s bits at a time. Within each radix sort phase, n 

numbers in the range 1 .. 28 are sorted using the method of group sorting, where the algorithm 

of Theorem 1 is applied as the basic algorithm to sort each group. Hence each radix sort phase 

takes O(s2+logn) time and uses O((njk)slogk+n) operations. Employedin a straightforward 

manner, the algorithm of Theorem 1 is able to sort only s-bit keys. Extending each key by 

another s bits and stabilizing the algorithm as described in Section 2, however, we can assume 

that the algorithm stably sorts the full input numbers (in the range 1 . . n) by their s-bit keys 

within each group, a necessary prerequisite for the use of radix sorting. 

Lemma 2 Por all given integers n 2:: 4, s 2:: 1 and ~ 2:: log n, n integers in the range 1 .. n can 

be stably sorted on an EREW PRAM using 

o (IOgn (s + lo:n)) time, 

o (nlogn (Sl~g~ +~) + n) operations, 

O(n) space and a word length of O(~) bits. 
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Proof: If 8 > LlognJ, we can rep1ace 8 by L10gnJ, and if A > 83 , we can replace A by 83 , in 
each case without weakening the claim. Assume therefore that 1 $ 8 $ log n, in which case we 

can use the algorithm sketched above, and that A $ 83 • Choose k as an integer with 2 $ k =:; n 

such that k = 9( AI 8), which causes the necessary word length to be O( k8 + log n) = O( A) bits, 
as required. The time needed by the algorithm is O((lognI8)(82 + logn», as claimed, and the 
number of operations is 

o co
:

n 
(n8l;gk + n)) 

= o (nlogn co:
k +~)) 

= o (n log n ( 8 l~g A + ~) ) . 0 

We obtain our best conservative sorting algorithm by combining Lemma 2 with a reduction 

due to Rajasekaran and Sen (1992), who showed that when n is a perfect square, a sorting 

problem of size and height n reduces to two batches of sorting problems, each batch consisting 
of ..;n problems of size and height ..;n. The sorting problems comprising a batch can be executed 

in parallel, whereas the first batch must be comp1eted before the processing of the second batch 
can start, and the reduction itself uses O(logn) time and O(n) operations. The reduction is 
simple: Using the princip1e of radix sorting, the original sorting problem of size and height n is 

reduced to two sorting problems of size n and height ..;n, each of which in turn is reduced, using 
the principle of group sorting, to a collection of ..;n sorting problems of size and height ..;n. 

In general, we cannot assume that n is a perfect square, and the reduction above needs 
unit-time division, which is not part of our instruction repertoire. Without 10ss of generality, 
however, we can assume that n is apower of 2, and we can modify the argument to show 
that in this case a sorting problem of size and height n reduces, using O(1ogn) time and O(n) 
operations, to two batches of sorting problems, each batch comprising sorting problems of total 
size n and individual size and height 2 [logn/21. Iterating this reduction i ~ 1 times yields a 

procedure that re duces a sorting problem of size and height n to 2i batches of sorting problems, 
each batch comprising sorting problems of total size n and individual size and height 2[logn/2'1. 

The reduction itself uses O(i10gn) time and O(2i n) operations; the latter quantity is always 

dominated by the number of operations needed to solve the subproblems resulting from the . 

reduction, so that we need not ac count for it in the following. Our plan is to solve the small 
subproblems generated by the reduction using the aIgorithm of Lemma 2, with i chosen to make 
the total running time come out at a pre-specified value. This gives rise to a tradeoff between 
rllnning time and work: Increasing i has the effect of lowering the running time, but raising the 
total number of operations. 

In the case m > n we appeal to yet another reduction. Suppose that we are given a sorting 
problem of size n and height m > n, where n is apower of 2, and view each input number as 
written in the positional system with basis nasa sequence of w = 9(logm/10gn) digits. As 
stated earlier, radix sorting can be thought of as reducing the original problem of size n and 
height m to w sorting problems of size and height n each that must be solved one after the 
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other. Vaidyanathan et al. (1991) gave a different reduction that also results in a collection of 

O(w) sorting problems of size and height n each. The difference is that the sorting problems 

resulting from the reduction ofVaidyanathan et al. can be partitioned into o (log(2+w)) batches 

such that all subproblems in the same batch can be solved in parallel. Moreover, the number 

of subproblems in the ith batch, for i = 1,2, ... , is at most 21- i / 3w. The reduction works as 

follows: Suppose that we sort the input numbers just by their two most significant digits (to 

basis n). This is one sorting problem of size n and height n 2, or (using radix sorting) two sorting 

problems of size and height n each. Mter the sorting we can replace each pair of first two digits 

by its rank in the sorted sequence of pairs without changing the relative order of the input 

numbers. The rank information can be obtained via segmented broadcasting within resource 

bounds dominated by those needed for the sorting, and since the ranks are integers in the range 

1 .. n, we have succeeded in rep1acing two digit positions by just one digit position. We can 

do the same in parallel for the 3rd and 4th digit position, for the 5th and 6th position, and so 

on; if the total number of digit positions is odd, we sort the last digit position together with 

the two positions preceding it. This involves a total of w sorting problems of size and height n 

divided into three batches (one for each radix sorting phase), and it reduces the number of digit 

positions to at most w /2. We now simply proceed in the same way until the input numbers have 

been sorted by a single rema;ning digit. 

Theorem 2 Let n, m ~ 4 be integers and take h = min {n, m}. Then, tor all given integers 

t ~ logn + log h log log hlog(2 + log m/log n) and A ~ log(n + m), n integers in the range 1 .. m 

can be stably sorted on an EREW PRAM using O(t) time, 

o (n(IOgmVIO~A + logh:ogm + 1)) 

operations, O(n) space and a word length O/O(A) bits. 

Proof: Assume that A ~ (logm)3, since otherwise we can replace A by 23l1oglogmJ without 

weakening the claim. Assume further that n and m are powers of 2 and consider first the case 

m ~ n. Using the principle of group sorting and spending O(logn) time and O(n) operations, 

we can reduce the given problem to a batch of sorting problems of total size n and individual size 

and height m. We then compute positive integers rand i with r = 0(min{t,logmVA/logA}) 

and 2i = 0((logm)3/r 2 + 1), carry out the i-level reduction described above and solve the 

resulting subproblems using the algorithm of Lemma 2 with s = 0(r/logm). What remains is 

to analyze the time and the number of operations needed. First note that 

and that 

2i = O((logm)2/r + 1). 

Since i = O(loglogm), the time needed for the i-level reduction is O(ilogm) = O(t), and the 

time needed for the processing of 2i batches of sub problems of size 2[logm/2il each is 

o (2 i flogm/2il (s + flog ;/2
i1 ) ) 
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= 0 (lOgmCo;m + T2:)~:::)2)) = O(T) = O(t). 

The number of operations needed for the processing of 2i batches of subproblems, each batch 
consisting of subproblems of total size n, is 

o (2 i (n rtog m/2il (Sl:g>. + ~) + n)) 
( ( 

T1og>. lOgm) . ) 
= 0 n10gm >'logm + -T- + 2'n 

= o (n(Tl:g>.+ (logTm )2 +1)) 

= 0 (n(lOgmV10~>' + (logT
m

)2 + 1)) 

O ( (1 
V10g>. logh1ogm )) = n ogm T+ t +1. 

This proves Theorem 2 in the case m ::; n. Consider now the case m > n and suppose 

first that min{>./Llog>'J,t} ::; (logn)2. We then use the reduction of Vaidyanathan et 81. to 
reduce the original problem of size n and height m to 0(log(2 + w» batches of subproblems 
of size and height n each, where w = 0(logm/1ogn), such that the ith batch comprises at 
most 21- i/ 3w subproblems. Each of the resulting subproblems is solved using the algorithm of 
Theorem 2 for the case m = n. The minimum time needed is 0(logn1og1ogn1og(2 + w» = 
o (log h1og1og h1og(2 + w», as claimed. In order to achieve a total time of 0(t), we spend 0(t) 
time on each of the six first batches, and from then on we spend only half as much time on 
each group of six successive batches as on the previous group. This clear1y does indeed yie1d 
an overall time bound of O(t). Since the number of subproblems in each group of six successive 
batches is at most 2-6/ 3 = 1/4 of the number of subproblems in the previous group, while the 
availab1e time is half that availab1e to the previous group, it can be seen that the total number 

of operations executed is within a constant factor of the number of operations needed by the 
first batch, i.e., the total number of operations is 

o (~:~: (n(10gnv10~ >. + (lo~n)2 + 1)) ) 
O ( (1 

V10g>. logn1ogm lOgm)) = n ogm --+ +--
>. t logn 

o (n (10gmV10~ >. + log h:ogm) ), 

where the last transformation uses the upper bounds on >. and t assumed above. 
On the other hand, if min {>' / L log>. J , t} > (log n)2, we use the algorithm of Theorem 1 with 

k = 0(>.f1ogm). The time needed is 0«logn)2) = O(t), the word 1ength is 0(>'), and the 

number of operations is 

o (~logk1ogn + n) 
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o (nl~m log'\logn + n) 
= 0 (n(IOgmJIO~'\ . JIO~'\ logn + 1)) 
= 0 (n(IOgmJIO~'\ + 1)). 0 

Theorem 2 exhibits a general tradeoffbetween time, operations and word length. Specializing 

to the case of conservative sorting of integers in a linear range, we obtain 

Corollary 2 For all given integers n ~ 4 and t ~ log n log log n, n integers in the range 1 .. n 

can be stably sorted on an EREW PRAM using O(t) time, O(n(y1ognloglogn + (logn)2jt)) 

operations, 0 ( n) space and a standard word length of 0 (log n) bits. 

Another interesting consequence of Theorem 2 is given in Corollary 3 below. A result corre­

sponding to Corollary 3 was previously known only for m = (logn)O(l), even for the stronger 

CRCWPRAM. 

Corollary 3 For all integers n ~ 4 and m ~ 1, if m = 20 (v'lognjloglogn), then n integers in 

the range 1 .. m can be stably sorted on an EREW PRAM using O(logn) time, O(n) operations, 

o (n) space and a standard word length of 0 (log n) bits. 

6 Algorithms for the CREW PRAM 

H concurrent reading is allowed, we can use table lookup to merge two sorted words in time 

0(1), rather than O(logk). This possibility was pointed out to us by Richard Anderson. A 
table that maps two arbitrary sorted words given in the word representation with parameters 

k and l to the words obtained by merging these has at most 221eZ entries, each of which can be 

computed sequentially in o (log k) time using the algorithm of Section 3. Similarly, a table that 

maps each pair consisting of a sorted word and an I-bit integer to the rank of the given integer 

in the given word contains at most 221el entries, each of which can be computed in 0 (log k) time 

by means of binary search. These tables can therefore be constructed using o (log k) time and 

o (221eZ log k) operations. In the following we wish to distinguish between the resources needed 

to construct such tables and those consumed by merging or sorting proper, the reason being 

that if an original problem is reduced to a collection of subproblems with the same parameters 
(size, height, etc.), then all subproblems can be solved using the same tables, so that the cost 

of constructing the tables can be amortized over the subproblems. We choose to use the term 

"preprocessing" to denote the resources needed to construct and store tables that depend only 

on the size parameters of the input problem, but not on the actual numbers to be merged or 

sorted. 

Lemma 3 For all given integers n, m, k and I, where k is apower of 2 with 2 :::; k :::; n, m ~ 8 

and I ~ flog( m + k)l + 2, and for all fized € > 0, two sorted sequences of n integers in the range 
1 .. m each, given in the word representation with parameters k and I, can be merged on a CREW 
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PRAM using O(logn) preprocessing time, o (22/d log k + n) preprocessing operations and space, 

O(logloglogm) time, O(n/k) operations, O(nm~/k) space and a word length of O(kl + logn) 

bits. M oreover, if m = 0 ( n / (k log n)), the merging time and space can be reduced to 0 (1) and 
o (n), respectively. 

Proof: We use an algorithm similar to that of Lemma 1, the main item of interest being how to 

merge the two sequences of O(n/k) representatives. By a process ofrepeated squaring, executed 

during the preprocessing, we can either compute llog log log m J or determine that m 2': 2", 

in both cases without ever creating an integer of more than o (log( n + m)) bits. H m 2': 2", 

the representatives can be merged in O(1oglogn) = O(1ogloglogm) time with the algorithm. 

of Kruskal (1983). Otherwise the representatives can be merged in O(logloglogm) time with 

the algorithm of Berkman and Vishkin (1993), which is responsible for the superlinear space 

requirements. H m = O( n/ (k log n)), finally, the representatives can be merged in constant time 

and linear space, as noted by Chaudhuri and Hagerup (1994); the latter result assumes the 

availability of certain integer values that can be computed during the preprocessing. In each 

case the number of operations needed is O(n/k). 

When the representatives have been merged, each processor associated with a representative 

can access the two words that it is to merge directly, without resorting to segmented broadcast­

ing. The merging itself and the removal of input numbers outside of the interval of interest is 

done in constant time using table lookup, the relevant tables having been constructed during 

the preprocessing as described above. The remainder of the computation works in constant time 

using O(n/k) operations even on the EREW PRAM. 0 

The remain;ng development for the CREW PRAM parallels that for the EREW PRAM, for 

which reason we provide a somewhat terse description. We refrain from developing a series of 

nonconservative CREW PRAM algorithms that employ fast merging, but not table lookup. 

Theorem 3 FOT all given integers n, k and m with 2 ~ k ~ n and m 2': 8 such that lloglogmJ 

is known and fOT all fized E > 0, n integers in the range 1 .. m can be sorted on a CREW 
PRAM using O(logn) preprocessing time, O(20 (lclogm) + n) preprocessing operations and space, 

O(lognlogloglogm) time, O«n/k)logn + n) operations, O(nm~) space and a word length of 

O(klogm + logn) bits. Moreover, if m = O(n), the time and space bounds for the sorting can 

be reduced to O(logn) and O(n), respectively. 

Proof: We can assume that n and k are powers of 2 and that k ~ log n ~ m, so that an 

integer I 2': rtog(m + k)l + 2 with I = O(logm) can be computed in constant time. We use 

the word representation with parameters k and I and sort using repeated merging as in the 

algorithm of Theorem 1. Each round of merging is executed using the algorithm of Lemma 3, 

and the complete sorting can be carried out in 0 (log n log log log m) time using 0 ( ( n / k ) log n) 

operations. 

H m = O(n), we can use radix sorting to replace the original sorting problem of size n and 

height m by two sorting problems of size n and height O(n/(klogm)) each. 0 
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Lemma 4 For all given integers n ~ 2, s ~ 1 and A ~ logn, n integers in the range 1 .. n 

can be stably sorted on a CREW PRAM using O(logn) preprocessing time, 2°(:>') preprocessing 

operations and space, 

o ((10:n)2 + 10gn) time, 

o (nlogn (~+ ;) + n) operations, 

O(n) space and a word length O/O(A). 

Proof: We can assume that s ::; log n and that A ::; s2. We use radix sorting and group sorting 

to reduce the original problem to O(log n/ s) batches, each comprising sorting problems of total 

size n and individual size and height 2-. We solve each subproblem using the algorithm of 

Theorem 3 with k chosen as an integer with 2 ::; k ::; n such that k = 0( A/ s). The total time 

needed is 0 ((log Ti / s ) log n), and the number of operations is 

The theorem below is our main result for the CREW PRAM. Since it describes a stand-alone 
algorithm, the cost of table construction is not indicated separately, but incorporated into the 

overall resource bounds. We fix the word length at the standard O(log(n + m» bits, since 

otherwise the preprocessing cost would be so high as to make the result uninteresting. 

Theorem 4 Letn, m ~ 2 be integers and take h = min{n,m} andt' = loghlog(2+logm/logn). 

Then, tor all given integers t ~ t' + log n, n integers in the range 1 .. m can be stably sorted on 

a CREW PRAM using O(t) time, 

o (n ( log m + log h log ~ + 1)) 
00g n log n . 2t / t 

operations, O(n) space and a standard word length 0/ O(log(n + m» bits. 

Proof: Assume that n and m are powers of 2 and consider first the case m ::; n. U sing group 

sorting, we begin by reducing the given problem to a batch of sorting problems of total size n 

and individual size and height m. We then compute positive integers a, s and i with a ~ t/logm, 

but a = O(t/logm), s = 0(00gn + logm/(a· 24 » and 2i = 0(logm/s + 1), use the i-level 
reduction of Rajasekaran and Sen and solve all the resulting subproblems using the algorithm 

ofLemma4. 

Recall that, used with a word length of A, the algorithm of Lemma 4 needs 2°(:>') preprocessing 

operations and space. We choose A = 0(log n) sufficiently small to make the preprocessing cost 

O(n). For this we must ensure that the algorithm of Lemma 4 is applied to inputs of size at 
most 2:>'. But since the input size is 2 [logm/2il ::; 2 [logn/2il, this is simply a matter of always 

choosing i larger than a fixed constant. 

Since 2i = 0 (a . 24
), the time needed for the i-level reduction is 0 ( i log m) = 0 ( a log m) = 

O( t). Furthermore, since [log m/2i l = O( s), the time needed for the processing of 2i batches of 
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subproblems of size 2[logm/2'1 each is 

o (2i (flog :j2
iP 

+ flog m j 2il)) = O(2i s) = O(logm + Vlog n) = O(t). 

The number of operations needed for the processing of 2i batches of subproblems, each batch 
consisting of subproblems of total size n, is 

o (2i 
(nflog m j 2il (lo;n + ~) + n)) 

= 0 ( n log m Co; n + ~) + n) 

O ( I (
yTOgn + logmj(a. 24

) 1) ) = nogm I +~+n ogn v~ogn 

= o(nIOgm(~ + \IOgm?) + n) 
ogn t ogn· 24 

= 0 (n( logm + loghlog~ + 1)). 
y10gn logn· 2t/t 

This proves Theorem. 4 in the case m ::; n. In the case m > n we use the reduction of 

Vaidyanathan et aI. to reduce the original problem to O(log(2 + logmjlogn)) batches of sub­
problems of size and height n each and solve each subproblem using the algorithm of Theorem 4 
for the case m = n, with 9(tlognjt') time allotted to each batch. This gives a total time of 

O(t), and the total number of operations needed is 

(
IOgm ( (~ logn ))) o logn n V logn + 2t / t ' + 1 

= o( nIOgm(~ + 2t~t')) 
= 0 (n( logm + loghlog~ + 1)). 0 

y10g n log n . 2t / t 

Corollary 4 For all given integers n ~ 2 and t ~ log n, n integers in the range 1 .. n can be 
sorted on a CREW PRAM using O(t) time, O(n(y1ogn+log nj2 t /

1ogn)) operations, O(n) space 
and a standard word length o/O(logn) bits. 

It is instructive to compare the tradeoff of Corollary 4 with that of the algorithm of Kruskal et 

aI. (1990a). Put in a form analogous to that of Corollary 4, the result of Kruskal et aI. states that 
for all t ~ 2 log n, n integers in the range 1 .. n can be sorted in 0 (t) time with a time-processor 

product of 0 COg( :;!; n) + n ). Our algorithm and that of Kruskal et aI. therefore pairs the 

same minjmum time of 9(logn) with the same operation count of 9(nlogn), i.e., no savings 
relative to comparison-based sorting. Allowing more time decreases the number of operations in 

both cases, but the number of operations of our algorithm decreases doubly-exponentially faster 

than the corresponding quantity for the algorithm of Kruskal et aI. and reaches its minimum of 

9(ny'logn) already for t = 9(lognloglogn). H we allow still more time, our algorithm does 
not become any cheaper, and the algorithm of Kruskal et al. catches up for t = 20Cv'logn) and 

is more effi.cient from that point on. 
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Placed in a similar context, our EREW PRAM sorting algorithm of Corollary 2 exhibits a 

tradeoff that is intermediate between the two tradeoffs discussed above. As the time increases, 

the number of operations decreases exponentially faster than for the algorithm of Kruskal et al. 

Corollary 5 For all integers n :2: 2 and m :2: 1, i/ m = 20 (y'Iogn) , then n integers in the range 

1 .. m can be stably sorted on a CREW PRAM using O(logn) time, O(n) operations, O(n) space 

and a standard word length 0/ 0 (log n) bits. 

Allowing randomization and assuming the availability of unit-time multiplication and integer 

division, we can extend the time and processor bounds of Corollary 4 to integers drawn from an 

arbitrary range. Suppose that the word length is A bits, where A :2: log n, so that the numbers 

to be sorted come from the range 0 .. 2). -1. Following Fredman and Willard (1990), we assume 

the availability of a fixed number of constants that depend only on A. U sing an approach very 

similar to ours, Raman (1991a) recently showed that n integers of arbitrary size can be sorted 

on a CREW PRAM in O(1ognloglogn) time using O(nlognjloglogn) operations with high 

prob ability. 

The basic idea is very simple. First we choose a random sampie V from the set of input 

elements, sort V by standard means and determine the rank in V of each input element. We 

then use the algorithm of Corollary 4 to sort the input elements by their ranks and finally 

sort each group of elements with a common rank, again by a standard sorting algorithm. H 
each group is relatively small, the last step is not too expensive. The other critical step is the 

computation of the rank in V of each input element. An obvious way to execute this step is to 

store the elements in V in sorted order in a search tree T, and then to carry out n independent 

searches in T, each using a different input element as its key. Since we aim for an operation 

count of O(nyllogn), however, T cannot be a standard balanced binary tree, and we have to 

resort to more sophisticated data structures, namely the fusion tree of Fredman and Willard 

(1990) and the priority queue of van Emde Boas (1977). Building on an approach outlined in 

Section 6 of (Fredman and Willard, 1990), we use a fusion tree that is a complete d-ary tree, 

where d :2: 2 and d = 20 (y'logn), with the elements of the sampie V stored in sorted order in 

its leaves. The distinguishing property of a fusion tree is that in spite of its high node degree, 

a search can proceed from a parent node to the correct child node in constant time. Since the 

depth of our fusion tree is O( y10g n), it allows the rank of all input elements to be determined 

using O(ny1ogn) operations, which precisely matches what we have to pay for sorting the input 

elements by their ranks. 

The fusion tree makes crucial use of very large integers. Specifically, the constraint is that 

we must be able to represent numbers of dO(l) bits in a constant number of words. It follows 

that we can use the fusion tree if A :2: 2 L y'Iogn J. HA< 2 L y'Iogn J, we replace the fusion tree 

as our search structure by a van Emde Boas (vEB) structure (van Emde Boas, 1977). The 

latter supports sequential search operations in 0 (log A) time. Since we use a v EB structure only 

if A < 2y'Iogn, this is again sufficient for our purpose. The main outstanding difficulty is the 

construction offusion trees and vEB structures, for which we use randomized algorithms. When 

discussing randomized algorithms below, we always intend these to "fall gracefully", Le., if they 
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cannot carry out the task for which they were designed, they report faUure without causing 
concurrent writing or other error conditions. 

A fusion tree node contains various tables that can be constructed sequentially in 0 ( er) time. 

The sequential algorithm can be parallelized to yield a randomized algorithm that constructs a 
fusion tree node with probability at least 1/2 and uses O(logd) time, ~(1) operations and ~(1) 

space; we present the details in an appendix. Letting this algorithm be executed in parallel 

by [log v 1 + 2 independent processor teams, for v ~ 1, we can reduce the probability that a 
fusion tree node is not constructed correctly to at most 1/( 4v). Hence the entire fusion tree for 
a sorted set of v elements, which has fewer than 2v nodes, can be constructed in O(logv) time 
using cJO(1)vlogv operations and dO(1)V log v space withprobability at least 1/2. As concems the 

construction of a vEB structure for a sorted set of v elements, Raman (1991a) gives a randomized 
algorithmfor this task that uses o (log v) time, O(v) operations and O(v) space and works with 

probability at least 1/2 (in fact, with a much higher probability). We now give the remaining 

details of the complete sorting algorithm. 

Theorem 5 For every fo:ed integer Cl ~ 1 and for all given integers n ~ 2 and t ~ logn, n (ar­

bitrary) integers can be sorted on a CREW PRAM using O(t) time, 0(n(J1ogn+logn/2t/logn)) 

operations and 0 ( n) space with probability at least 1 - 2-2"~ . 

Proof: Let :1:1, ••• ,:l:n be the input elements, assume these to be pairwise distinct and let ß ~ 1 
be an integer constant whose value will be fixed below. Execute the following steps. 

1. Draw v = r n/2ßLylognJ1 independent integers il, ... , i ll from the uniform distribution over 

{I, ... , n}. Construct the set V = {:l:i1 ,"" :l:i,,} and sort it. 

2. Construct a search structure T for the set V. If A ~. 2Lv'lognJ let T be a fusion tree; 

otherwise let T be a vEB structure. In order to obtain T with sufficiently high probability, 
carry out 2( a+1)f ylogn 1 independent attempts to construct T, each attempt succeeding 

with probability at least 1/2. By the discussion before the statement of Theorem 5, this 
can be done in O(logn) time using 2(a+1)fylognl . dO(1)V log v = 20 (ylogn) . v operations 

and space. For ß chosen sufficiently large, the bound on operations and space is O( n), and 
the prob ability that T is not constructed correctly is at most 2_2(a+lh/lo,P'. 

3. U se T to compute the rank of :I: j is V, for j = 1, ... , n. This uses 0 ( 00g n) time and 

o (n.Jlog n) operations. 

4. U se the algorithm of Corollary 4 to sort the input elements :1:1, ••• , :l:n with respect to their 
ranks. This uses O(t) time and O(n( v'logn + log n/2t/logn)) operations. For i = 0, ... , v, 

let Xi be the set of those input elements whose rank in V is i. Step 4 moves the elements 

in Xi to consecutive positions, for i = 0, ... , v. 

5. Sort each of Xo, ... , X" using, e.g., Cole's merge sorting algorithm (Cole, 1988). If 

M = max{/Xi! : 0 $ i $ v}, this takes O(logn) time and 0(2:::::0 !Xi!log(!Xi! + 1)) = 
O(nlogM) operations. 
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The resources used by Step 1 are negligible. Hence all that remains is to show that with 

sufficiently high prob ability, logM = O(y'logn). But if logM > 'U + 1, where 'U = 2ßv1ogn, 
the sampling in Step 1 misses at least 2u consecutive elements in the sorted sequence of input 
elements, the probability of which is at most 

_22fJ.,flog n-~ _2fJ.,flog n 
$n·e =n·e. 

For ß chosen sufficiently large, the latter prob ability and the failure probability of 2-2(Cl+1)~ 
• 2Cl.,flogn m Step 2 add up to at most 2- . 0 

For t 2: log n log log n, the algorithm of Theorem 5 exhibits optimal speedup relative to the 

sequential randomized algorithm described by Fredman and Willard (1990). 
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Appendix: Constructing a fusion-tree node in parallel 

In this appendix we show that if A and d are positive integers with 2 $ f16 $ A, then a fusion­

tree node for d -1 given integers Yl"",Yd-l drawn from the set U = {0, ... ,2A -1} can 
be constructed on a CREW PRAM with a word length of A bits using O(logd) time, dO(l) 

operations and ~(l) space with prob ability at least 1/2. Our algorithm is a straight forward 

parallelization of the corresponding sequential algorithm of Fredman and Willard (1990). 

For any integer z and any finite set S of integers, denote by rank ( z, S) the rank of zinS, and 

let Y = {Yt. ... , Yd-d. Recall that the purpose ofthe fusion-tree node is to enable rank ( z, Y) to 

be determined in constant time by a single processor, for arbitrary given z E U. If Yl,·.·, Yd-l 

are numbers of just O(A/d) bits, this can be done essentially as described in Section 3: Create 

a word B of O( A) bits containing Yl, ... , Yd-l in separate fields, with test bits set to zero, and 
another word A containing d - 1 copies of z, with test bits set to one, then subtract B from A 

and dear all bit positions, except those of the test bits, in the resulting word C. The test bits 

of C can be added and their sum placed in a single field by means of a suitable multiplicationj 

this number is rank(z, Y). In the following we will reduce the general rank computation to two 
such rank computations in sequences of small integers. 

For arbitrary z, Y E U, define msb(z, y) as -1 if z = y, and otherwise as the largest number 

of a bit position in which z and Y differ. Fredman and Willard demonstrated that msb(z, y) 
can be determined in constant time by a single processor, for arbitrary given z, Y E U. Without 

loss of generality assume that 0 < Yl < ... < Yd-l < 2A - 1. In order to avoid special cases, we 

introduce the two additional keys Yo = 0 and Yd = 2A - 1. Let P = {msb(Yi-t. Yi) : 1 $ i $ d} 
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and write P = Uh, ... 'P1'} with PI < ... < P1'j clearly r ~ d. Define f : U -+ {O, ... , 21' - 1} 
as the function that extracts the bit positions in P and packs them tightly, Le., bit number 

i in f(y) is bit number Pi+1 in Y, for i = 0, ... , r - 1 and for all Y EU, while bits number 

r, ... , >. - 1 are zero in f(y). It is important to note that f(YI) < ... < f(Yd-I)' We write f(Y) 
for {f(YI), . .. , f(Yd-I)}' 

Let .06. = {O, ... , d} x {O, ... , r} X {O,l} and define a function 4> : U -+ .06. as follows: For 

Z E U, let i = rank(f(z), f(Y)) and choose j E {i, i + 1} to minimize msb(f(z), f(Yj)), resolving 

ties by taking j = i. Note that this means that among all elements of f(Y u bo, Yd}), f(Yj) 
is one with a longest prefi.x in common with f( z) (the longest-preji:z property). Furthermore 

take 1 = rank(msb(z,Yj),P) and let a = 1 if z ? Yj, a = Ootherwise. Then 4>(z) = (j,/,a). 
Fredman and Willard showed that for z E U, rank(z, Y) depends onlyon 4>(z). (This is easy to 

see by imagining a digital search tree T for the bit strings Yo, ... , Yd. The root-to-leafpath in T 

corresponding to Yj is a continuation of the path taken by ausual search in T fqr z, and P is 

the set of heights of children of nodes in T of degree 2, so that 1 determines the maximal path 

in T of nodes of degree ~ 1 on which the search for z terminates.) As a consequence, once 4>( z ) 
is known, rank(z, Y) can be determined in constant time as R[4>(z)], where R is a precomputed 

table with 2(d + l)(r + 1) entries. 

Since both images under f and bit positions are sufficiently small integers, the two rank 

computations in the algorithm implicit in the definition of 4> can be carried out in constant 

sequential time as described earlier in the appendix. As a consequence, we are left with two 

problems: How to construct the table R, and how to evaluate f in constant time. 

As rank(z, Y) can be determined in O(logd) sequential time for any given z E U, it suffices 

for the construction of R to provide a set X ~ U of ~(I) "test values" that "exercise" the whole 

table, Le., such that 4>(X) = 4>(U). This is easy: Take Po = -1 and P1'+1 = >. and define Z"I,G' 
for all (j, I, a) E .06., as the integer obtained from Y, by complementing the highest-numbered 

bit whose number is smaller than PI+! and whose value is 1 - aj if there is no such bit, take 

Z"I,G = Yj. We will show that if (j,/,a) E 4>(U), then 4>(Z"I,G) = (j,/,a), which proves that 
X = {Zj,I,G : (j, I, a) E A} is a suitable "test set". It may be he1pful to visualize the following 

arguments as they apply to the digital search tree mentioned above. 

Fix (j, I, a) E .06. and let 5 = {z EU: PI ~ msb(z, Yj) < PI+! and (z ? Yj {} a = 1)}. 
Elements of 5 are the only candidates for being mapped to (j, I, a) by 4>. 

Suppose first that msb(Z"I,G' y,) > PI. Then f(Z"I,G) = f(Y,), so that choosing i = j clearly 
achieves the unique minimum of -1 of msb(f(Zj,I,G)' f(Yi)}. By the longest-prefu: property and 

the fact that Z"I,G E 5, it now follows that 4>(Zj,I,G) = (j,/,a). 
If msb(Z"I,G' y,) < Pli it is easy to see that 5 = 0, so that (j, I, a) ~ 4>(U). 
If msb(Z"I,G'Y') = PI, finally, it can be seen that msb(z,Yj) = PI for all Z E 5. Consider two 

cases: If msb(Z"I,G' Yi) < PI for some i E {O, ... , d}, then msb(f(z), f(Yi)) < msb(f(z), f(Y,)) for 
all Z E 5. Then, by the longest-prefix property, no Z E 5 is mapped to (j, I, a), Le., (j, I, a)t4>(U). 

If msb(Z"I,G' Yi) ? PI for all i E {O, ... , d}, on the other hand, 4>( z) = 4>(Zj,I,G) for all Z E 5, so 
that 4>(Z"I,G) = (j, I, a) if (j, I, a) E 4>(U). Sl1mming up, the useful part of R can be constructed 
in o (log d) time with ,p. processors. 

We actually do not know how to evaluate f efficiently, and Fredman and Willard employ a 
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different function 9 that still extracts the bit positions in P, but packs them less tightly. More 

precise1y, for nonnegative integers ql,'." q.,. of size O(A) to be determined below, bit number Pi 

in y is bit number Pi + qi in g(y), for i = 1, ... , r and for all y EU, while all other bits in g(y) 
are zero. The integers ql, ... ,q.,. will be chosen to satisfy the following conditions. 

(1) PI + ql < P2 + q2 < '" < P.,. + q.,.j 

(2) (p.,. + q.,.) - (PI + ql) ::; 2r5j 

(3) The r2 sums Pi + qj, where 1 ::; i,j::; r, are all distinct. 

Condition (1) ensures that rank(g(z), g(Y)) = rank(f(z) , f(Y)) and that minimizing 

msb(g(z),g(y;)) is equivalent to minimizing msb(f(z), f(Yj)) , for all z E U, so that substi­

tuting, 9 for f leaves the algorithm correct. Condition (2) ensures that images under 9 are still 

sufficiently small, following a fixed right shift by PI + ql bit positions, to allow constant-time 

computation of rank(g(z),g(Y)), and Condition (3) implies that 9 can be implemented as a 

multiplication by ~i=l 2Q
, followed by the application of a bit mask that clears all bits outside 

of the positions PI + qI, .•. ,P.,. + q.,. of interest. 
Fredman and Willard described a deterministic procedure for computing ql, ... ,q.,.. We ob­

tain ql, ... ,q.,. through a randomized but faster procedure that essentially amounts to choosing 

ql, ... ,q.,. at random. More precise1y, choose Zl, ... ,Z.,. independently from the uniform distri­

bution over {1, ... , 2r4
} and take qi = A - Pi + 2(i - 1)r4 + Zi, for i = 1, ... , r. It is easy to 

see that qI, .. . , q.,. are nonnegative and that Conditions (1) and (2) are satisfied. Condition (3) 

may be violated, but we can check this in o (log d) time with d?- processors. For fixed i, j, k, I 
with 1 ::; i,j,k,l::; r and (i,j):/; (k,l), the condition Pi + qj :/; Pie + qz is violated with prob­

ability at most 1/(2r4 ), so that altogether Condition (3) is violated with probability at most 

r4 /(2r 4
) = 1/2. 
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