
MAX-PLANCK-INSTITUT
••

FUR
INFORMATIK

Improved Parallel Integer Sorting

without Concurrent Writing

Susanne Albers and Torben Hagerup

MPI-I-94-137 August 1994

o

mpn
__________ IN F 0 R M AT I K _________ _

Im Stadtwald

66123 Saarbrücken

Germany

Improved Parallel Integer Sorting

without Concurrent Writing

Susanne Albers and Torben Hagerup

MPI-I-94-137 August 1994

Improved Parallel Integer Sorting without

Concurrent Writing*

Susanne AlbersU Torben Hagerupt

Abstract

We show that n integers in the range 1 . . n can be stably sorted on an EREW PRAM
using O(t) time and o (n(..jlognloglogn+ (logn)2jt)) operations, for arbitrary given t ~
lognloglogn, and on a CREW PRAM using O(t) time and O(n(..jlogn + lognj2 t / 1og,,))

operations, for arbitrary given t ~ log n. In addition, we are able to sort n arbitrary integers
on a randomized CREW PRAM within the same resource bounds with high probability. In
each case our algorithm is a factor of almost E>(.y1'Og1i) closer to optimality than an previous
algorithms for the stated problem in the stated model, and our third result matches the
operation count of the best known sequential algorithm. We also show that n integers in the
range 1 .. m can be sorted in O((logn)2) time with O(n) operations on an EREW PRAM
using a nonstandard word length of o (log nloglog n log m) bits, thereby greatly improving
the upper bound on the word length necessary to sort integers with alinear time-processor
product, even sequentially. Our algorithms were inspired by, and in one case directly use,
the fusion trees of Ftedman and Willard.

1 Introduction

A parallel algorithm is judged primarily by its speed and its efficiency. Concerning speed, a

widely accepted criterion is that it is desirable for a parallel algorithm to have a running time

that is polylogarithmic in the size of the input. The efficiency of a parallel algorithm is evaluated
by comparing its time-processor product, i.e., the total number of operations executed, with the

running time of an optimal sequential algorithm for the problem under consideration, the parallel

algorithm having optimal speedup or simply being optimal if the two agree to within a constant

factor. A point of view often put forward and forcefully expressed in (Kruskal et al. 1990b) is

that the efficiency of a parallel algorithm, at least given present-day technological constraints,

is far more important than its raw speed, the reason being that in all prob ability, the algorithm

must be slowed down to meet a smaller number of available processors anyway .

• A pre1i.minary version of this paper was presented at the 3rd An.nual ACM-SIAM Symposium Oll Discrete

Algorithms (SODA '92) in Or1ando, FlOlida in January 1992.
t Max-Planck-Institut für Informatik, D-66123 Saarbrücken, Germany. Supported in part by the Deutsche

Forschungsgemeinschaft, SFB 124, TP B2, VLSI Entwunsmethoden und Parallelität, and in part by the ESPRIT
Basic Research ActiollS Program of the EU under contracts No. 3075 and 7141 (projects ALCOM and ALCOM II).

: Part of this work was done whlle the author was a student at the Graduiertenkolleg Informatik, Univer­

sität des Saarlandes, D-66041 Saarbrücken, Germany, and supported by a graduate fellowship of the Deutsche
Forschungsgemeinschaft.

1

The problem of integer sorting on a PRAM has been studied intensively. While re cent

research has concentrated on algorithms for the CRCW PRAM (Rajasekaran and Reif, 1989;

Rajasekaran and Sen, 1992; Bhatt et al., 1991; Matias and Vishkin, 1991a, 1991b; Raman,

1990, 1991a, 1991b; Hagerup, 1991; Gi! et al., 1991; Hagerup and Raman, 1992, 1993; Bast

and Hagerup, 1993; Goodrich et al., 1993, 1994), in this paper we are interested in getting the

most out of the weaker EREW and CREW PRAM models. Consider the problem of sorting n

integers in the range 1 .. m. In view of sequential radix sorting, which works in linear time if
m = nO(l), a parallel algorithm for this most interesting range of m is optimal only if its time­

processor product is O(n). Kruskal et al. (1990a) showed that for m ~ n and 1 ~ P ~ n/2, the

problem can be solved using p processors in time 0 (~'10~(:7p))' Le., with a time-processor

product of 0 (l::~! /;)). The space requirements of the algorithm are e (pne + n), for arbitrary

fixed E > 0, which makes the algorithm impractical for values of p close to n. Algorithms that

are not afBicted by this problem were described by Cole and Vishkin (1986, remark following

Theorem 2.3) and by Wagner and Han (1986). For n/m ~ p ~ n/logn, they use O(n) space

and also sort in 0 (~'10~(:7p)) time with p processors. All three algorithms are optimal if

m = (n/p)O(l). However, let us now focus on the probably most interesting case of m ~ n
combined with running times of (logn)O(l). Since the running time is at least 0(n/p), it is

easy to see that the time-processor product of the above algorithms in this case is bounded only

by O(nlogm/loglogn), Le., the integer sorting algorithms are more efficient than algorithms

for general (comparison-based) sorting, which can be done in O(logn) time using O(nlogn)

operations (Ajtai et al., 1983; Cole, 1988), by a factor of at most 0(10glogn), to be compared
with the potential maximumgain of 0(10gn). This is true even of a more re cent EREW PRAM

algorithm by Rajasekaran and Sen (1992) that stably sorts n integers in the range 1 .. n in

o (log n log log n) time using 0 (n log n flog log n) operations and 0 (n) space.

We describe an EREW PRAM algorithm for stably sorting n integers in the range 1 .. n that
exhibits a tradeoffbetween speed and efficiency. The minimum running time is 0(10g n log log n),
and for this running time the algorithm essentially coincides with that of Rajasekaran and

Sen (1992). Allowing more time, however, we can sort with fewer operations, down to a minimum

of 0(n00g n log log n), reached for a running time of 0 ((log n)3/2/ 00g log n). In general, for

any gi yen t ~ log n log log n, the algorithm can sort in 0 (t) time using 0 (n(00g n log log n +
(log n)2 /t)) operations. Run at the slowest point of its tradeoff curve, the algorithm is more

efficient that the algorithms discussed above by a factor of 0(0ogn/(10glogn)3/2).

On the CREW PRAM, we obtain a much steeper tradeoff: For all t ~ log n, our algorithm
sorts n integers in the range 1 .. n in 0 (t) time using 0 (n(Jlog n + log n / 2t/logn)) operations; the

mjnimum number of operations of 0 (n.y'IOg1i) is reached for a running time of o (log n log log n).
We also consider the problem of sorting integers of arbitrary size on the CREW PRAM and

describe a reduction of this problem to that of sorting n integers in the range 1 .. n. The reduction

is randomized and uses 0 (log n) time and 0 (nv'log n) operations with high prob ability. It is
based on the fusion trees of Fredman and Willard (1990) and was discovered independently by

Raman (1991a).

2

The algorithms above all abide by the standard convention that the word length available to

sort n integers in the range 1 .. m is 0(log(n+m)) bits, Le., that unit-time operations on integers

of size (n + m)O(l) are provided, but that all integers manipulated must be of size (n + m)O(l).

A number of papers have explored the implications of allowing a larger word length. Paul and

Simon (1980) and Kirkpatrick and Reisch (1984) demonstrated that with no restrictions on

the word length at all, arbitrary integers can be sorted in linear sequential time. Hagerup and

Shen (1990) showed that in fact a word length of ab out O(nlognlogm) bits su:ffi.ces to sort n

integers in the range 1 .. m in O(n) sequential time or in O(logn) time on an EREW PRAM with

O(njlog n) processors. The practical value of such results is doubtful because of the unrealistic

assumptions: Hardly any computer has a word length comparable to typical input sizes. We

show that n integers in the range 1 .. m can be sorted with a linear time-processor product in

O((log n)2) time on an EREW PRAM with a word length of 0 (log n log log n log m) bits. At the

price of a moderate increase in the running time, this greatly improves the known upper bound on

the word length necessary to sort integers with a linear time-processor product, even sequentially.

Another, perhaps more illuminating, perspective is obtained by noting that providing a PRAM

with a large word length amounts to adding more parallelism of a more restrictive kind. A single

register of many bits is akin to a whole SIMD machine, but without the important ability to

let individual processors not participate in the current step. As suggested by this view, using

a word length that allows k integers to be stored in each word potentially could decrease the

rllnning time by a factor ofup to 0(k). What our algorithm actually achieves is a reduction in

the running time by a factor of 0(kjlogk) (curiously, it does so by calling a sequential version

of an originally parallel algorithm as a subroutine). This can be interpreted as saying that if

one happens to sort integers of which several will fit in one word, then advantage can be taken

of this fact. Our result also offers evidence that algorithms using a nonstandard word length

should not hastily be discarded as unfeasible and beyond practical relevance.

2 Preliminaries

A PRAM is a synchronous parallel machine consisting of processors numbered 1,2, ... and a

global memory accessible to all processors. An EREW P RAM disallows concurrent access to a

memory cell by more than one processor, a CREW PRAM allows concurrent reading, but not

concurrent writing, and a CRCW PRAM allows both concurrent reading and concurrent writing.

We assume an instruction set that inc1udes addition, subtraction, comparison, unrestricted shift

as weil as the bitwise Boolean operations AND and OR. The shift operation takes two integer

operands z and i and pro duces z i i = l z . 2i J .
Our algorithms frequently need to compute quantities such as log mJ>"jlog >.., where m, >.. 2:: 2

are given integers. Since we have not assumed machine instructions for multiplication and di­

vision, let alone extraction of logarithms and square roots, it is not obvious how to carry out

the computation. In general, however, it su:ffi.ces for our purposes to compute the quantities

of interest approximately, namely up to a constant factor, which can be done using negligible

resources: Shift operations provide exponentiation, logarithms can be extracted by exponent i­

ating all candidate values in parallel and picking the right one, and approximate multiplication,

3

division and extraction of square roots reduce to extraction of logarithms, followed by addition,
subtraction or halving (i.e., right shift by one bit), followed by exponentiation. On some oc­
casions, we need more accurate calculations, but the numbers involved are small, and we can

implement multiplication by repeated addition, etc. The details will be left to the reader.
Two basic operations that we shall need repeatedly are prefix summation and segmented

broadcasting. The prejiz summation problem of size n takes as input an associative operation 0

over a semigroup S as well as n elements Zl, ..• ,Zn of S, and the task is to compute Zl, Zl 0

Z2,' •. , Zl 0 Z2 O· • ·0 Zn. The segmented broadcasting problem of size n is, given an array A[l. .. n]

and a bit sequence b1 , ••• ,bn with b1 = 1, to store the value of A[max{j : 1 :$ i :$ i and bj = 1}]
in A[i], for i = 1, ... , n. It is well-known that whenever the associative operation can be applied

in constant time by a single processor, prefix summation problems of size n can be solved on an

EREW PRAM using O(logn) time and O(n) operations (see, e.g., (JaJa, 1992». Segmented

broadcasting problems of size n can be solved within the same resource bounds by casting them
as prefix summation problems; the details can be found, e.g., in (Hagerup and Rüb, 1989).

It can be shown that if an algorithm consists of T parts such that the ith part can be executed

in time ti using qi operations, for i = 1, ... , T, then the whole algorithm can be executed in time
o (tl + ... + t,.) using 0 (q1 + ... + q,.) operations, i.e., time and number of operations are
simultaneously additive. We make extensive and implicit use of this observation.

We distinguish between sorting and ranking. To sort a sequence of records, each with a

key drawn from a totally ordered domain, is to rearrange the records such that in the resulting
sequence the keys occur in nondecreasing order. The sorting is stable if nonidentica1 records
with the same key occur in the same order in the output sequence as in the input sequence,

i.e., if there are rio unnecessary interchanges. To (stably) rank a sequence R 1 , ••• , Rn of records

as above is to compute a permutation i 1 , ••• ,in of 1, ... ,n such that Ri1 , ••• ,Ri .. is a possible
result of (stably) sorting R1 , ••. , Rn.

For records that consist of just a key with no associated information, the stability requirement

adds nothing to the sorting problem - it is vacuously satisfied. In such cases we follow the
tradition of using the term "stable sorting" in the sense of stable ranking. Note that any

algorithm for (stable) ranking on a PRAM implies an algorithm for (stable) sorting with the

same resource bounds, up to a constant factor. On the other hand, an algorithm for stable
ranking can be derived from any sorting algorithm that can be mod.ifi.ed as follows: Let the

sequence ofrecords to be sorted be Rh' .. , Rn, and let Zi be the key of Ri, for i = 1, ... , n. The
mod.ifi.ed algorithm uses as the key of Ri the pair (Zi, i), for i = 1, ... , n, and orders these pairs
lexicographically (i.e., (zi,i) < (Zj,j) {:} Zi < Zj or (Zi = Zj and i < i». We shall refer to this
process as stabilizing the original algorithm.

Given an element Z of a totally ordered domain U and a finite sequence L of elements of U,
the rank of Z in L is the number of elements in L no larger than z.

Our basic sorting algorithm is nonconservative, following the terminology of Kirkpatrick and
Reisch (1984), i.e., the word length allowed for sorting n integers in the range 1 .. m is not

limited to O(log(n + m» bits. More precisely, we will use a word length of 0(kl + logn) bits,

where k is apower of 2 with 2 :$ k :$ n and I is an integer with I ~ rlog(m + k)l + 2. This word
length enables us to store more than one number in a word, which is essential for our technique.

4

Throughout the paper we nlunber the bit positions of words and integers from right to left,

with the least significant bit occupying position O. We assume a word length of at least 2kl

bits and partition the rightmost 2kl bits into 2k fields of I bits each. The fields are numbered

from right to left, starting at 0, and the number of a field is also called its address. The most

significant bit of each field, called the test bit, is usually set to O. The remaining bits of the

field can represent a nonnegative integer coded in binary and called an entry. A word normally

stores k entries Zo, ... , Zk-1 in its rightmost k fields and thus has the following structure:

-------­neId 2k - 1

10:0·"010: Zk-1 1 ----------------field k field k - 1

10: Zo

-------­field 0

The fields k, ... , 2k - 1 serve as temporary storage. Two fields in distinct words correspond

if they have the same address, and two entries correspond if they are stored in corresponding

fields. For h ~ 1, a word that contains the test bit bi and the entry Zi in its field number i, for

i = 0, . . . , h - 1, and whose remaining bits are all 0 will be denoted [bh-1 : Zh-1, •.. , bo : zo]. H
bo = ... = bh-1 = 0, we simplify this to [Zh-1, • •• , zo]. Bya sorted word we mean a word of the

form [Zk-1, ... ,Zo], where Zo ~ Zl ~ . .. ~ Zk-1. A sequence Zl, ... ,Zn ofn integers is said to

be given in the word representation (with parameters k and I) if it is given in the form of the

words [Zk, • .. , Zl], [Z2k, ... , ZkH], ... , [zn, ... , ZUn/kl-1)k+1].
The remainder of the paper is structured as follows: We first study algorithms for the EREW

PRAM. Section 3 tack1es the humble but nontrivial task of merging (the sequences represented

by) two sorted words. Based on this, Section 4 develops a nonconservative parallel merge sorting

algorithm, from which the conservative algorithm that represents our main result for the EREW

PRAM is derived in Section 5. Section 6 describes our algorithms for the CREW PRAM.

3 Merging two words

In this section we describe how a single processor can merge two sorted words in 0 (log k) time.

We use the bitonic sorting algorithm of Batcher (1968) and need only describe how bitonic

sorting can be implemented to work on sorted words.

A sequence of integers is bitonic if it is the concatenation of a nondecreasing sequence and a

nonincreasing sequence, or if it can be obtained from such a sequence via a cyclic shift. E.g., the

sequence 5,7,6,3,1,2,4 is bitonic, but 2,5,3,1,4,6 is not. Batcher's bitonic sorting algorithm

takes as input abitonic sequence Zo, .. . , Zh-l! where his apower of 2. The algorithm simply
returns the one-element input sequence if h = 1, and otherwise executes the following steps:

(1) For i = 0, ... , h/2 - 1, let 7'ni = min{Zi, Zi+h/2} and Mi = max{zi, Zi+h/2}.

(2) Recursively sort ma, . .. , mh/2-1, the sequence of minima, and Mo, ... , Mh / 2- 1 , the se­
quence of maxima, and return the sequence consisting of the sorted sequence of minima followed

by the sorted sequence of maxima.

Although we shall not here demonstrate the correctness of the algorithm, we note that all

that is required is a proof that ma, ... , mh/2-1 and Mo, ... , Mh / 2- 1 are bitonic (so that the

5

recursive application is permissible), and that mi :::; Mj for all i,j E {O, ... , h/2 - 1} (so that
the concatenation in Step (2) indeed pro duces a sorted sequence).

Our implementation works in log k + 1 stages numbered log k, log k - 1, ... , 0, where a stage
corresponds to a recursive level in the above description. In the beginning of Stage t, for
t = log k, .. . ,0, there is a single word Z containing 2logk-t bitonic sequences of length 2t+1

each, each of which is stored in 2t+1 consecutive fields of Z. Furtherm.ore, if z is an element of a

sequence stored to the left of a different sequence containing an element z', then z ~ z'. Stage t,
for t = log k, . .. ,0, carries out the above algorithm on each of the 2logk-t bitonic sequences,
i.e., each sequence of 2t+l elements is split into a sequence of 2t minima and a sequence of 2t

maxima, and these are stored next to each other in the 2t +1 fields previously occupied by their

parent sequence, the sequence of maxima to the left of the sequence of minima.

Because of the elose connection to the recursive description, the correctness of this im­

plementation is obvious. In order to use the algorithm for merging, as opposed to bitonic

sorting, we introduce a preprocessing step executed before the first phase. Given words X =
[Zk-t. ... , zo] and Y = [Yk-l, ... , YO], the preprocessing step pro duces the single word Z =
[YO, ... , Yk-l, Zk-l, ... , zo]. The important thing to note is that if Zo, ... , Zk-l and Yo, ... , Yk-l

are sorted, then Zo, ... , Zk-l, Yk-l, ... , Yo is bitonic.

We now describe in full detail the single steps of the merging algorithm. We repeatedly use
the two constants

K 1 = L1 : 0,1 : 0, ... ,1 : 0)
...

2k neIds

and

K 2 = [2k -1,2k- 2, ... ,2,1,0].

It is easy to compute K 1 and K 2 in O(log k) time. This is accomplished by the program fragment
below.

K 1 := 1 i (1- 1);
for t:= ° to logk do

(* K 1 = ll.: 0,1: 0, ... ,1: 0) *)
...

2' neIds
K 1 := K 1 OR (K1 i (2t ·1));

K2 := (K1 i (-I + 1)) - 1;

for t:= ° to logk do
(* K 2 = L2t , ... , 2t

, 2t
, 2t

- 1,2t
- 2, .. . ,2,1,0) *)

...
2k neIds

K 2 := K 2 + «K2 i (2t ·1)) AND CopyTestBit(K1));

The function CopyTestBit, used in the last line above to remove spurious bits by truncating

the shifted copy of K 2 after field number 2k - 1, takes as argument a word with the rightmost

I - 1 bits in each field and all bits to the left of field number 2k - 1 set to ° and returns the

6

word obtained from the argument word by copying the value of each test bit to al.l other bits

within the same field and subsequently setting al.l test bits to o. It can be defined as follows:

CopyTestBit(A) == A - (A i (-1 + 1)).

We next describe in detail the preprocessing step of our merging algorithm. The central problem

is, given a word Y = [Yk-l, ... , YO], to produce the word

[Yo, ... , Yk-l,?, 0,: .. ,0)­
k fields

In other words, the task is to reverse a sequence of 2k numbers. First observe that if we identify

addresses of fields with their binary representation as stri,ngs of log k + 1 bits and denote by a
the address obtained from the address a by complementing each of its log k + 1 bits, then the

entry in the field with address a, for a = 0, ... , 2k - 1, is to be moved to address a. To see

this, note that the entry under consideration is to be moved to address a' = 2k - 1 - a. Since
k is apower of 2, a' = a. By this observation, the preprocessing can be implemented by stages

numbered O, . . . ,logk, executed in any order, where Stage t, for t = O, ... ,logk, swaps each

pair of entries whose addresses differ precisely in bit number t. In order to implement Stage t,
we use a mask M to separate those entries whose addresses have a 1 in bit number t from the

remaining entries, shifting the former right by 2t fields and shifting the latter left by 2t fields.

The complete preprocessing can be programmed as follows:

for t:= ° to logk do
begin (* Complement bit t *)

M := CopyTestBit((K2 i (1- 1 - t)) AND K1);

(* Mask away fields with ° in position t of their address *)
Y:= ((Y AND M) i (_2 t ·1)) OR

((Y - (Y AND M)) i (2t ·1));
end;

Z:= X OR Y;

Let us now turn to the bitonic sorting itself, one stage of which is illustrated in Fig. 1. In
Stage t of the bitonic sorting, for t = log k, ... ,0, we first extract the entries in those fields whose

addresses have a 1 in bit position t and compute a word A containing these entries, moved right

by 2t fields, and a word B containing the remaining entries in their original positions. Numbers

that are to be compared are now in correspondingpositions in A and B. We carry out al.l the

comparisons simultaneously in a way pioneered by Paul and Simon (1980): All the test bits in

Aare set to 1, the test bits in B are left at 0, and B is subtracted from A. Now the test bit in
a particular position "survives" if and only if the entry in A in that position is at least at large

as the corresponding entry in B. Using the resulting sequence of test bits, it is easy to create a

mask M' that separates the minima ((B AND M') OR (A - (A AND M'))) from the maxima ((A
AND M') OR (B - (B AND M'))) and to move the latter left by 2t fields. The complete program

for the bitonic sorting follows.

7

7 2 4 9 12 15 10 8

I : 1 : 1 : 1 : 11: 7 11: 2 11: 4 11: 9 I A

I : 1 : 1 : 1 : 10: 12 10: 15 10: 10 10: 8 I B

= 1 : 1 : 1 : 1 : 10: 10: 10: I(

-L __ L...-_...I-_.....I....-_--'-_--1._---JL.-_..I--.;::.8---L_ BAND M'

OR I 7 I 2 I 4 A - (A AND M')

OR 1 9 1 1 1 (A AND M') T (2 t ·1)

OR 12 15 10 1 (B - (B AND M')) T (2 t ·1)

= 12 15 10 9 7 2 4 8

Fig. 1. One stage of bitonic sorting.

for t := log k downto 0 do
begin

M := CopyTestBit«K2 T (1- 1- t)) AND K1);

(* Mask away fields with 0 in position t of their address *)
A := (Z AND M) T (_2 t ·1);
B := Z - (Z AND M);
M' := CopyTestBit«(A OR Kt} - B) AND Kt};
Z:= (B AND M') OR

end;

(A - (A AND M')) OR

«A AND M') T (2 t ·1)) OR

«B - (B AND M')) T (2 t ·1));

This completes the description of the algorithm to merge two sorted words. If the input

numbers :1:0, ..• , :l:1e-l and Yo, ... ,Y1e-l are drawn from the range 1 .. m, a field must be able to
store nonnegative integers up to max{ m, 2k - I}, in addition to the test bit; a field length of

[log(m + k)l + 2 bits therefore suffices. The running time of the algorithm clearly is o (log k).

8

4 Nonconservative sorting on the EREW PRAM

Given the ability to merge two sorted words, it is easy to develop a procedure for merging two

sorted sequences given in word representation. Let X and Y be such sequences, each comprising

r words. Although the sequences X and Y may contain repeated values, we will consider the

elements of X and Y to be pairwise distinct, and we impose a total order on these elements

by declaring an element Z of X or Y to be smaller than another element z' of X or Y exactly

if its value is smaller, or if it precedes z' in the same input sequence, or if z and z' have the
same value, z belongs to X, and z' belongs to Y (Le., ties are broken by considering elements

in X to be smaller). Defi.ne a representative as the first (smallest, rightmost) entry in a word

of either X or Y and begin by extracting the representative of each word of X (y, respectively)

to form a sorted sequence :1:1, ••• ,:I:,. (Yb"" Y,., respectively). Merge :1:1, ••• ,:I:,. and Yb ... , Y,.,
according to the total order defi.ned above, by means of a standard algorithm such as the one

described by Hagerup and Rüb (1989), which uses O(log r + 1) time and O(r) operations, and let

Zl, ••• , Z2,. be the resulting sequence. For i = 1, ... , 2r, associate a processor with Zi. The task

of this processor is to merge the subsequences of X and Y comprising those input numbers z

with Zi :::; z < Zi+1 (take Z2,.+1 = 00). One ofthese subsequences is part ofthe sequence stored in

the word containing Zi, while the second subsequence is part of the sequence stored in the word

containing Zj, where i is the maximal integer with 1 :::; i < i such that Zi and Zj do not belong

to the same input sequence; if there is no such i, the second subsequence is empty. Segmented

broadcasting using 0 (log r + 1) time and 0 (r) operations allows each processor associated with
an element of Zl, ••• , Z2,. to obtain copies of the at most two words containing the subsequences

that it is to merge, after which the processor can use the algorithm described in the previous

section to merge its words in O(logk) time. For i = 1, ... ,2r, the processor associated with Zi

then locates Zi and Zi+1 in the resulting sequence by means of binary search, which allows it

to remove those input numbers Z that do not satisfy Zi :::; Z < Zi+1' Finally the pieces of the
output produced by different processors must be assembled appropriately in an output sequence.

By computing the number of smaller input numbers, each processor can determine the precise

location in the output of its piece, which spreads over at most three (in fact, two) output words.

The processors then write their pieces to the appropriate output words. In order to avoid write

conflicts, this is done in three phases, devoted to processors writing the first part of a word, the

last part of a word, and neither (Le., a middle part), respectively. To see that indeed no write

conflict can occur in the third phase, observe that if two or more processors were to write to the

same word in the third phase, at least one of them would contribute a representative coming
from the same input sequence as the representative contributed by the processor writing the last

part ofthe word (in the second phase); this is impossible, since no output word can contain two

or more representatives !rom the same input sequence. We have proved

Lemma 1 For all given integers n, m, k and I, where k is apower 0/ 2 with 2:::; k :::; n, m ~ 1

and 1 ~ flog(m + k)l + 2, two sorted sequences 0/ n integers in the range 1 .. m each, given
in the word representation with parameters k and I, can be merged on an EREW PRAM using

O(logn) time, O((n/k) logk) operations, O(n/k) space and a word length 0/ O(kl + logn) bits.

9

Theorem 1 FOt' all given integers n, k and m with 2 ~ k ~ n and m ~ 2 such that Lloglogmj
is known, n integers in the range 1 .. m can be sorted on an EREW PRAM using O«logn)2)

time, O«n/k) log klogn + n) operations, O(n) space and a ward length 01 O(klogm + logn)
bits.

Proof: Assume that n and k are powers of 2. For m ~ (logn)2, the result is implied by the

standard integer sorting results mentioned in the introduction. Furthermore, if k ~ (log n)2 ~ 2,
we can replace k by (log n)2 without weakening the claim. Assume therefore that k ~ m, in

which case an integer I with I ~ rlog(m + k) 1 + 2, but I = 0 (log m) can be computed in constant
time, using the given value of Llog log m j. We use the word representation with parameters

k and I and sort by repeated merging of ever longer sorted sequences, as in sequential merge
sorting. During a first phase of the merging, consisting of log k merging rounds, the number of

input numbers per word doubles in each round, altogether increasing from 1 to k. The remaining

O(1ogn) rounds operate with k input numbers per word throughout. Both phases ofthe merging
are executed according to Lemma 1. For i = 1, ... ,logk, the ith merging round inputs n/2i - 1

words, each containing a sorted sequence of 2i - 1 input numbers, and merges these words in

pairs, storing the result in n/2i words of 2i input numbers each. By Lemma 1, the cost of the

first phase of the merging, in terms of operations, is On::~lk(n/2i - 1)(i - 1» = O(n). The cost
of the second phase is O«n/k) log klog n), and the total time needed is O«logn)2). 0

Corollary 1 FOt' all integers n, m ~ 4, il Lloglogmj is known, then n integers in the range

1 .. m can be sorted with a linear time-processor product in O«logn)2) time on an EREW PRAM

with a word length oI O(lognloglognlogm) bits.

5 Conservative sorting on the EREW PRAM

The sorting algorithm in the previous section is inherently nonconservative, in the sense that
in most interesting cases, the algorithm can be applied only with a word length exceeding

0(log(n + m» bits. In this section we use a cascade of several different simple reductions to
derive a conservative sorting algorithm. In general terms, a reduction allows us to replace an

original sorting problem by a collection of smaller sorting problems, a1.l of which are eventually

solved using the algorithm of Theorem 1.

The first reduction is the well-known radix sorting, which we briefiy describe. Suppose

that we are to stably sort records whose keys are tuples of w components with respect to the
lexicographica1. order on these tupies. Having at our disposal an algorithm that can sort with

respect to single components, we can carry out the sorting in w successive phases. In the first

phase, the records are sorted with respect to their least significant components, in the second
phase they are sorted with respect to the second-Ieast significant components, etc. Provided that

the sorting in each phase is stable (so that it does not upset the order established by previous

phases), after the wth phase the records will be stably sorted, as desired. We shall apply
radix sorting to records with keys that are not actually tuples of components, but nonnegative

integers that can be viewed as tuples by considering some fixed number of bits in their binary

representation as one component.

10

For the problem of sorting n integers in the range 1 .. m, define n as the size and m as the

height of the sorting problem. For arbitrary positive integers n, m and w, where m is apower

of 2, radix sorting can be seen to allow us to reduce an original sorting problem of size n and

height mtD to w sorting problems of size n and height m each that must be solved one after

the other (because the input of one problem depends on the output of the previous problem).

The requirement that m should be apower of 2 ensures that when input numbers are viewed

as w-tuples of integers in the range 1 .. m, any given component of a tuple can be accessed in

constant time (recall that we do not assume the availability ofunit-time multiplication).

Our second reduction, which we call group sorting, allows us to reduce a problem of sorting

integers in a sublinear range to several problems of sorting integers in a linear range. More

precisely, if n and m are powers of 2 with 2 ~ m ~ n, we can, spending O(logn) time and

O(n) operations, reduce a sorting problem of size n and height m to njm sorting problems of

size and height m each that can be executed in parallel. The method is as follows: Divide the

given input numbers into r = njm groups of m numbers each and sort each group. Then, for

i = 1, ... , m and j = 1, ... , r, determine the number ~,j of occurrences of the value i in the

jth group. Because each group is sorted, this can be done in constant time using O(rm) =
O(n) operations. Next compute the sequence Nl,l,"" Nt,,., N2,t, ... , N2 ,,., ••• , Nm,t, ... , Nm,,.
of prefix sums of the sequence nl,b"" nl,,., n2,1I" ., n2,,.,.· ., nm,l, ... , nm,,. (the associative
operation being usual addition), which takes O(logn) time and uses O(n) operations. For

i = 1, ... , m and j = 1, ... , r, the last occurrence of i in (the sorted) jth group, if any, can now

compute its position in the output sequence simply as Ni,j, after which all remaining output

positions can be assigned using segmented broadcasting, an occurrence of i in the jth group d
positions before the last occurrence of i in the jth group being placed at output position Ni,j - d.

We now describe an algorithm to sort n integers in the range 1 .. n with a word length

of 0 (~) bits, where ~ 2:: log n. Our approach is to sort numbers in arestricted range 1 .. 28
,

where s is a positive integer, and to apply the principle of radix sorting to sort numbers in

the larger range 1 .. n in O(lognjs) phases, s bits at a time. Within each radix sort phase, n

numbers in the range 1 .. 28 are sorted using the method of group sorting, where the algorithm

of Theorem 1 is applied as the basic algorithm to sort each group. Hence each radix sort phase

takes O(s2+logn) time and uses O((njk)slogk+n) operations. Employedin a straightforward

manner, the algorithm of Theorem 1 is able to sort only s-bit keys. Extending each key by

another s bits and stabilizing the algorithm as described in Section 2, however, we can assume

that the algorithm stably sorts the full input numbers (in the range 1 . . n) by their s-bit keys

within each group, a necessary prerequisite for the use of radix sorting.

Lemma 2 Por all given integers n 2:: 4, s 2:: 1 and ~ 2:: log n, n integers in the range 1 .. n can

be stably sorted on an EREW PRAM using

o (IOgn (s + lo:n)) time,

o (nlogn (Sl~g~ +~) + n) operations,

O(n) space and a word length of O(~) bits.

11

Proof: If 8 > LlognJ, we can rep1ace 8 by L10gnJ, and if A > 83 , we can replace A by 83 , in
each case without weakening the claim. Assume therefore that 1 $ 8 $ log n, in which case we

can use the algorithm sketched above, and that A $ 83 • Choose k as an integer with 2 $ k =:; n

such that k = 9(AI 8), which causes the necessary word length to be O(k8 + log n) = O(A) bits,
as required. The time needed by the algorithm is O((lognI8)(82 + logn», as claimed, and the
number of operations is

o co
:

n
(n8l;gk + n))

= o (nlogn co:
k +~))

= o (n log n (8 l~g A + ~)) . 0

We obtain our best conservative sorting algorithm by combining Lemma 2 with a reduction

due to Rajasekaran and Sen (1992), who showed that when n is a perfect square, a sorting

problem of size and height n reduces to two batches of sorting problems, each batch consisting
of ..;n problems of size and height ..;n. The sorting problems comprising a batch can be executed

in parallel, whereas the first batch must be comp1eted before the processing of the second batch
can start, and the reduction itself uses O(logn) time and O(n) operations. The reduction is
simple: Using the princip1e of radix sorting, the original sorting problem of size and height n is

reduced to two sorting problems of size n and height ..;n, each of which in turn is reduced, using
the principle of group sorting, to a collection of ..;n sorting problems of size and height ..;n.

In general, we cannot assume that n is a perfect square, and the reduction above needs
unit-time division, which is not part of our instruction repertoire. Without 10ss of generality,
however, we can assume that n is apower of 2, and we can modify the argument to show
that in this case a sorting problem of size and height n reduces, using O(1ogn) time and O(n)
operations, to two batches of sorting problems, each batch comprising sorting problems of total
size n and individual size and height 2 [logn/21. Iterating this reduction i ~ 1 times yields a

procedure that re duces a sorting problem of size and height n to 2i batches of sorting problems,
each batch comprising sorting problems of total size n and individual size and height 2[logn/2'1.

The reduction itself uses O(i10gn) time and O(2i n) operations; the latter quantity is always

dominated by the number of operations needed to solve the subproblems resulting from the .

reduction, so that we need not ac count for it in the following. Our plan is to solve the small
subproblems generated by the reduction using the aIgorithm of Lemma 2, with i chosen to make
the total running time come out at a pre-specified value. This gives rise to a tradeoff between
rllnning time and work: Increasing i has the effect of lowering the running time, but raising the
total number of operations.

In the case m > n we appeal to yet another reduction. Suppose that we are given a sorting
problem of size n and height m > n, where n is apower of 2, and view each input number as
written in the positional system with basis nasa sequence of w = 9(logm/10gn) digits. As
stated earlier, radix sorting can be thought of as reducing the original problem of size n and
height m to w sorting problems of size and height n each that must be solved one after the

12

other. Vaidyanathan et al. (1991) gave a different reduction that also results in a collection of

O(w) sorting problems of size and height n each. The difference is that the sorting problems

resulting from the reduction ofVaidyanathan et al. can be partitioned into o (log(2+w)) batches

such that all subproblems in the same batch can be solved in parallel. Moreover, the number

of subproblems in the ith batch, for i = 1,2, ... , is at most 21- i / 3w. The reduction works as

follows: Suppose that we sort the input numbers just by their two most significant digits (to

basis n). This is one sorting problem of size n and height n 2, or (using radix sorting) two sorting

problems of size and height n each. Mter the sorting we can replace each pair of first two digits

by its rank in the sorted sequence of pairs without changing the relative order of the input

numbers. The rank information can be obtained via segmented broadcasting within resource

bounds dominated by those needed for the sorting, and since the ranks are integers in the range

1 .. n, we have succeeded in rep1acing two digit positions by just one digit position. We can

do the same in parallel for the 3rd and 4th digit position, for the 5th and 6th position, and so

on; if the total number of digit positions is odd, we sort the last digit position together with

the two positions preceding it. This involves a total of w sorting problems of size and height n

divided into three batches (one for each radix sorting phase), and it reduces the number of digit

positions to at most w /2. We now simply proceed in the same way until the input numbers have

been sorted by a single rema;ning digit.

Theorem 2 Let n, m ~ 4 be integers and take h = min {n, m}. Then, tor all given integers

t ~ logn + log h log log hlog(2 + log m/log n) and A ~ log(n + m), n integers in the range 1 .. m

can be stably sorted on an EREW PRAM using O(t) time,

o (n(IOgmVIO~A + logh:ogm + 1))

operations, O(n) space and a word length O/O(A) bits.

Proof: Assume that A ~ (logm)3, since otherwise we can replace A by 23l1oglogmJ without

weakening the claim. Assume further that n and m are powers of 2 and consider first the case

m ~ n. Using the principle of group sorting and spending O(logn) time and O(n) operations,

we can reduce the given problem to a batch of sorting problems of total size n and individual size

and height m. We then compute positive integers rand i with r = 0(min{t,logmVA/logA})

and 2i = 0((logm)3/r 2 + 1), carry out the i-level reduction described above and solve the

resulting subproblems using the algorithm of Lemma 2 with s = 0(r/logm). What remains is

to analyze the time and the number of operations needed. First note that

and that

2i = O((logm)2/r + 1).

Since i = O(loglogm), the time needed for the i-level reduction is O(ilogm) = O(t), and the

time needed for the processing of 2i batches of sub problems of size 2[logm/2il each is

o (2 i flogm/2il (s + flog ;/2
i1))

13

= 0 (lOgmCo;m + T2:)~:::)2)) = O(T) = O(t).

The number of operations needed for the processing of 2i batches of subproblems, each batch
consisting of subproblems of total size n, is

o (2 i (n rtog m/2il (Sl:g>. + ~) + n))
((

T1og>. lOgm) .)
= 0 n10gm >'logm + -T- + 2'n

= o (n(Tl:g>.+ (logTm)2 +1))

= 0 (n(lOgmV10~>' + (logT
m

)2 + 1))

O ((1
V10g>. logh1ogm)) = n ogm T+ t +1.

This proves Theorem 2 in the case m ::; n. Consider now the case m > n and suppose

first that min{>./Llog>'J,t} ::; (logn)2. We then use the reduction of Vaidyanathan et 81. to
reduce the original problem of size n and height m to 0(log(2 + w» batches of subproblems
of size and height n each, where w = 0(logm/1ogn), such that the ith batch comprises at
most 21- i/ 3w subproblems. Each of the resulting subproblems is solved using the algorithm of
Theorem 2 for the case m = n. The minimum time needed is 0(logn1og1ogn1og(2 + w» =
o (log h1og1og h1og(2 + w», as claimed. In order to achieve a total time of 0(t), we spend 0(t)
time on each of the six first batches, and from then on we spend only half as much time on
each group of six successive batches as on the previous group. This clear1y does indeed yie1d
an overall time bound of O(t). Since the number of subproblems in each group of six successive
batches is at most 2-6/ 3 = 1/4 of the number of subproblems in the previous group, while the
availab1e time is half that availab1e to the previous group, it can be seen that the total number

of operations executed is within a constant factor of the number of operations needed by the
first batch, i.e., the total number of operations is

o (~:~: (n(10gnv10~ >. + (lo~n)2 + 1)))
O ((1

V10g>. logn1ogm lOgm)) = n ogm --+ +--
>. t logn

o (n (10gmV10~ >. + log h:ogm)),

where the last transformation uses the upper bounds on >. and t assumed above.
On the other hand, if min {>' / L log>. J , t} > (log n)2, we use the algorithm of Theorem 1 with

k = 0(>.f1ogm). The time needed is 0«logn)2) = O(t), the word 1ength is 0(>'), and the

number of operations is

o (~logk1ogn + n)
14

o (nl~m log'\logn + n)
= 0 (n(IOgmJIO~'\ . JIO~'\ logn + 1))
= 0 (n(IOgmJIO~'\ + 1)). 0

Theorem 2 exhibits a general tradeoffbetween time, operations and word length. Specializing

to the case of conservative sorting of integers in a linear range, we obtain

Corollary 2 For all given integers n ~ 4 and t ~ log n log log n, n integers in the range 1 .. n

can be stably sorted on an EREW PRAM using O(t) time, O(n(y1ognloglogn + (logn)2jt))

operations, 0 (n) space and a standard word length of 0 (log n) bits.

Another interesting consequence of Theorem 2 is given in Corollary 3 below. A result corre­

sponding to Corollary 3 was previously known only for m = (logn)O(l), even for the stronger

CRCWPRAM.

Corollary 3 For all integers n ~ 4 and m ~ 1, if m = 20 (v'lognjloglogn), then n integers in

the range 1 .. m can be stably sorted on an EREW PRAM using O(logn) time, O(n) operations,

o (n) space and a standard word length of 0 (log n) bits.

6 Algorithms for the CREW PRAM

H concurrent reading is allowed, we can use table lookup to merge two sorted words in time

0(1), rather than O(logk). This possibility was pointed out to us by Richard Anderson. A
table that maps two arbitrary sorted words given in the word representation with parameters

k and l to the words obtained by merging these has at most 221eZ entries, each of which can be

computed sequentially in o (log k) time using the algorithm of Section 3. Similarly, a table that

maps each pair consisting of a sorted word and an I-bit integer to the rank of the given integer

in the given word contains at most 221el entries, each of which can be computed in 0 (log k) time

by means of binary search. These tables can therefore be constructed using o (log k) time and

o (221eZ log k) operations. In the following we wish to distinguish between the resources needed

to construct such tables and those consumed by merging or sorting proper, the reason being

that if an original problem is reduced to a collection of subproblems with the same parameters
(size, height, etc.), then all subproblems can be solved using the same tables, so that the cost

of constructing the tables can be amortized over the subproblems. We choose to use the term

"preprocessing" to denote the resources needed to construct and store tables that depend only

on the size parameters of the input problem, but not on the actual numbers to be merged or

sorted.

Lemma 3 For all given integers n, m, k and I, where k is apower of 2 with 2 :::; k :::; n, m ~ 8

and I ~ flog(m + k)l + 2, and for all fized € > 0, two sorted sequences of n integers in the range
1 .. m each, given in the word representation with parameters k and I, can be merged on a CREW

15

PRAM using O(logn) preprocessing time, o (22/d log k + n) preprocessing operations and space,

O(logloglogm) time, O(n/k) operations, O(nm~/k) space and a word length of O(kl + logn)

bits. M oreover, if m = 0 (n / (k log n)), the merging time and space can be reduced to 0 (1) and
o (n), respectively.

Proof: We use an algorithm similar to that of Lemma 1, the main item of interest being how to

merge the two sequences of O(n/k) representatives. By a process ofrepeated squaring, executed

during the preprocessing, we can either compute llog log log m J or determine that m 2': 2",

in both cases without ever creating an integer of more than o (log(n + m)) bits. H m 2': 2",

the representatives can be merged in O(1oglogn) = O(1ogloglogm) time with the algorithm.

of Kruskal (1983). Otherwise the representatives can be merged in O(logloglogm) time with

the algorithm of Berkman and Vishkin (1993), which is responsible for the superlinear space

requirements. H m = O(n/ (k log n)), finally, the representatives can be merged in constant time

and linear space, as noted by Chaudhuri and Hagerup (1994); the latter result assumes the

availability of certain integer values that can be computed during the preprocessing. In each

case the number of operations needed is O(n/k).

When the representatives have been merged, each processor associated with a representative

can access the two words that it is to merge directly, without resorting to segmented broadcast­

ing. The merging itself and the removal of input numbers outside of the interval of interest is

done in constant time using table lookup, the relevant tables having been constructed during

the preprocessing as described above. The remainder of the computation works in constant time

using O(n/k) operations even on the EREW PRAM. 0

The remain;ng development for the CREW PRAM parallels that for the EREW PRAM, for

which reason we provide a somewhat terse description. We refrain from developing a series of

nonconservative CREW PRAM algorithms that employ fast merging, but not table lookup.

Theorem 3 FOT all given integers n, k and m with 2 ~ k ~ n and m 2': 8 such that lloglogmJ

is known and fOT all fized E > 0, n integers in the range 1 .. m can be sorted on a CREW
PRAM using O(logn) preprocessing time, O(20 (lclogm) + n) preprocessing operations and space,

O(lognlogloglogm) time, O«n/k)logn + n) operations, O(nm~) space and a word length of

O(klogm + logn) bits. Moreover, if m = O(n), the time and space bounds for the sorting can

be reduced to O(logn) and O(n), respectively.

Proof: We can assume that n and k are powers of 2 and that k ~ log n ~ m, so that an

integer I 2': rtog(m + k)l + 2 with I = O(logm) can be computed in constant time. We use

the word representation with parameters k and I and sort using repeated merging as in the

algorithm of Theorem 1. Each round of merging is executed using the algorithm of Lemma 3,

and the complete sorting can be carried out in 0 (log n log log log m) time using 0 ((n / k) log n)

operations.

H m = O(n), we can use radix sorting to replace the original sorting problem of size n and

height m by two sorting problems of size n and height O(n/(klogm)) each. 0

16

Lemma 4 For all given integers n ~ 2, s ~ 1 and A ~ logn, n integers in the range 1 .. n

can be stably sorted on a CREW PRAM using O(logn) preprocessing time, 2°(:>') preprocessing

operations and space,

o ((10:n)2 + 10gn) time,

o (nlogn (~+ ;) + n) operations,

O(n) space and a word length O/O(A).

Proof: We can assume that s ::; log n and that A ::; s2. We use radix sorting and group sorting

to reduce the original problem to O(log n/ s) batches, each comprising sorting problems of total

size n and individual size and height 2-. We solve each subproblem using the algorithm of

Theorem 3 with k chosen as an integer with 2 ::; k ::; n such that k = 0(A/ s). The total time

needed is 0 ((log Ti / s) log n), and the number of operations is

The theorem below is our main result for the CREW PRAM. Since it describes a stand-alone
algorithm, the cost of table construction is not indicated separately, but incorporated into the

overall resource bounds. We fix the word length at the standard O(log(n + m» bits, since

otherwise the preprocessing cost would be so high as to make the result uninteresting.

Theorem 4 Letn, m ~ 2 be integers and take h = min{n,m} andt' = loghlog(2+logm/logn).

Then, tor all given integers t ~ t' + log n, n integers in the range 1 .. m can be stably sorted on

a CREW PRAM using O(t) time,

o (n (log m + log h log ~ + 1))
00g n log n . 2t / t

operations, O(n) space and a standard word length 0/ O(log(n + m» bits.

Proof: Assume that n and m are powers of 2 and consider first the case m ::; n. U sing group

sorting, we begin by reducing the given problem to a batch of sorting problems of total size n

and individual size and height m. We then compute positive integers a, s and i with a ~ t/logm,

but a = O(t/logm), s = 0(00gn + logm/(a· 24 » and 2i = 0(logm/s + 1), use the i-level
reduction of Rajasekaran and Sen and solve all the resulting subproblems using the algorithm

ofLemma4.

Recall that, used with a word length of A, the algorithm of Lemma 4 needs 2°(:>') preprocessing

operations and space. We choose A = 0(log n) sufficiently small to make the preprocessing cost

O(n). For this we must ensure that the algorithm of Lemma 4 is applied to inputs of size at
most 2:>'. But since the input size is 2 [logm/2il ::; 2 [logn/2il, this is simply a matter of always

choosing i larger than a fixed constant.

Since 2i = 0 (a . 24
), the time needed for the i-level reduction is 0 (i log m) = 0 (a log m) =

O(t). Furthermore, since [log m/2i l = O(s), the time needed for the processing of 2i batches of

17

subproblems of size 2[logm/2'1 each is

o (2i (flog :j2
iP

+ flog m j 2il)) = O(2i s) = O(logm + Vlog n) = O(t).

The number of operations needed for the processing of 2i batches of subproblems, each batch
consisting of subproblems of total size n, is

o (2i
(nflog m j 2il (lo;n + ~) + n))

= 0 (n log m Co; n + ~) + n)

O (I (
yTOgn + logmj(a. 24

) 1)) = nogm I +~+n ogn v~ogn

= o(nIOgm(~ + \IOgm?) + n)
ogn t ogn· 24

= 0 (n(logm + loghlog~ + 1)).
y10gn logn· 2t/t

This proves Theorem. 4 in the case m ::; n. In the case m > n we use the reduction of

Vaidyanathan et aI. to reduce the original problem to O(log(2 + logmjlogn)) batches of sub­
problems of size and height n each and solve each subproblem using the algorithm of Theorem 4
for the case m = n, with 9(tlognjt') time allotted to each batch. This gives a total time of

O(t), and the total number of operations needed is

(
IOgm ((~ logn))) o logn n V logn + 2t / t ' + 1

= o(nIOgm(~ + 2t~t'))
= 0 (n(logm + loghlog~ + 1)). 0

y10g n log n . 2t / t

Corollary 4 For all given integers n ~ 2 and t ~ log n, n integers in the range 1 .. n can be
sorted on a CREW PRAM using O(t) time, O(n(y1ogn+log nj2 t /

1ogn)) operations, O(n) space
and a standard word length o/O(logn) bits.

It is instructive to compare the tradeoff of Corollary 4 with that of the algorithm of Kruskal et

aI. (1990a). Put in a form analogous to that of Corollary 4, the result of Kruskal et aI. states that
for all t ~ 2 log n, n integers in the range 1 .. n can be sorted in 0 (t) time with a time-processor

product of 0 COg(:;!; n) + n). Our algorithm and that of Kruskal et aI. therefore pairs the

same minjmum time of 9(logn) with the same operation count of 9(nlogn), i.e., no savings
relative to comparison-based sorting. Allowing more time decreases the number of operations in

both cases, but the number of operations of our algorithm decreases doubly-exponentially faster

than the corresponding quantity for the algorithm of Kruskal et aI. and reaches its minimum of

9(ny'logn) already for t = 9(lognloglogn). H we allow still more time, our algorithm does
not become any cheaper, and the algorithm of Kruskal et al. catches up for t = 20Cv'logn) and

is more effi.cient from that point on.

18

Placed in a similar context, our EREW PRAM sorting algorithm of Corollary 2 exhibits a

tradeoff that is intermediate between the two tradeoffs discussed above. As the time increases,

the number of operations decreases exponentially faster than for the algorithm of Kruskal et al.

Corollary 5 For all integers n :2: 2 and m :2: 1, i/ m = 20 (y'Iogn) , then n integers in the range

1 .. m can be stably sorted on a CREW PRAM using O(logn) time, O(n) operations, O(n) space

and a standard word length 0/ 0 (log n) bits.

Allowing randomization and assuming the availability of unit-time multiplication and integer

division, we can extend the time and processor bounds of Corollary 4 to integers drawn from an

arbitrary range. Suppose that the word length is A bits, where A :2: log n, so that the numbers

to be sorted come from the range 0 .. 2). -1. Following Fredman and Willard (1990), we assume

the availability of a fixed number of constants that depend only on A. U sing an approach very

similar to ours, Raman (1991a) recently showed that n integers of arbitrary size can be sorted

on a CREW PRAM in O(1ognloglogn) time using O(nlognjloglogn) operations with high

prob ability.

The basic idea is very simple. First we choose a random sampie V from the set of input

elements, sort V by standard means and determine the rank in V of each input element. We

then use the algorithm of Corollary 4 to sort the input elements by their ranks and finally

sort each group of elements with a common rank, again by a standard sorting algorithm. H
each group is relatively small, the last step is not too expensive. The other critical step is the

computation of the rank in V of each input element. An obvious way to execute this step is to

store the elements in V in sorted order in a search tree T, and then to carry out n independent

searches in T, each using a different input element as its key. Since we aim for an operation

count of O(nyllogn), however, T cannot be a standard balanced binary tree, and we have to

resort to more sophisticated data structures, namely the fusion tree of Fredman and Willard

(1990) and the priority queue of van Emde Boas (1977). Building on an approach outlined in

Section 6 of (Fredman and Willard, 1990), we use a fusion tree that is a complete d-ary tree,

where d :2: 2 and d = 20 (y'logn), with the elements of the sampie V stored in sorted order in

its leaves. The distinguishing property of a fusion tree is that in spite of its high node degree,

a search can proceed from a parent node to the correct child node in constant time. Since the

depth of our fusion tree is O(y10g n), it allows the rank of all input elements to be determined

using O(ny1ogn) operations, which precisely matches what we have to pay for sorting the input

elements by their ranks.

The fusion tree makes crucial use of very large integers. Specifically, the constraint is that

we must be able to represent numbers of dO(l) bits in a constant number of words. It follows

that we can use the fusion tree if A :2: 2 L y'Iogn J. HA< 2 L y'Iogn J, we replace the fusion tree

as our search structure by a van Emde Boas (vEB) structure (van Emde Boas, 1977). The

latter supports sequential search operations in 0 (log A) time. Since we use a v EB structure only

if A < 2y'Iogn, this is again sufficient for our purpose. The main outstanding difficulty is the

construction offusion trees and vEB structures, for which we use randomized algorithms. When

discussing randomized algorithms below, we always intend these to "fall gracefully", Le., if they

19

cannot carry out the task for which they were designed, they report faUure without causing
concurrent writing or other error conditions.

A fusion tree node contains various tables that can be constructed sequentially in 0 (er) time.

The sequential algorithm can be parallelized to yield a randomized algorithm that constructs a
fusion tree node with probability at least 1/2 and uses O(logd) time, ~(1) operations and ~(1)

space; we present the details in an appendix. Letting this algorithm be executed in parallel

by [log v 1 + 2 independent processor teams, for v ~ 1, we can reduce the probability that a
fusion tree node is not constructed correctly to at most 1/(4v). Hence the entire fusion tree for
a sorted set of v elements, which has fewer than 2v nodes, can be constructed in O(logv) time
using cJO(1)vlogv operations and dO(1)V log v space withprobability at least 1/2. As concems the

construction of a vEB structure for a sorted set of v elements, Raman (1991a) gives a randomized
algorithmfor this task that uses o (log v) time, O(v) operations and O(v) space and works with

probability at least 1/2 (in fact, with a much higher probability). We now give the remaining

details of the complete sorting algorithm.

Theorem 5 For every fo:ed integer Cl ~ 1 and for all given integers n ~ 2 and t ~ logn, n (ar­

bitrary) integers can be sorted on a CREW PRAM using O(t) time, 0(n(J1ogn+logn/2t/logn))

operations and 0 (n) space with probability at least 1 - 2-2"~ .

Proof: Let :1:1, ••• ,:l:n be the input elements, assume these to be pairwise distinct and let ß ~ 1
be an integer constant whose value will be fixed below. Execute the following steps.

1. Draw v = r n/2ßLylognJ1 independent integers il, ... , i ll from the uniform distribution over

{I, ... , n}. Construct the set V = {:l:i1 ,"" :l:i,,} and sort it.

2. Construct a search structure T for the set V. If A ~. 2Lv'lognJ let T be a fusion tree;

otherwise let T be a vEB structure. In order to obtain T with sufficiently high probability,
carry out 2(a+1)f ylogn 1 independent attempts to construct T, each attempt succeeding

with probability at least 1/2. By the discussion before the statement of Theorem 5, this
can be done in O(logn) time using 2(a+1)fylognl . dO(1)V log v = 20 (ylogn) . v operations

and space. For ß chosen sufficiently large, the bound on operations and space is O(n), and
the prob ability that T is not constructed correctly is at most 2_2(a+lh/lo,P'.

3. U se T to compute the rank of :I: j is V, for j = 1, ... , n. This uses 0 (00g n) time and

o (n.Jlog n) operations.

4. U se the algorithm of Corollary 4 to sort the input elements :1:1, ••• , :l:n with respect to their
ranks. This uses O(t) time and O(n(v'logn + log n/2t/logn)) operations. For i = 0, ... , v,

let Xi be the set of those input elements whose rank in V is i. Step 4 moves the elements

in Xi to consecutive positions, for i = 0, ... , v.

5. Sort each of Xo, ... , X" using, e.g., Cole's merge sorting algorithm (Cole, 1988). If

M = max{/Xi! : 0 $ i $ v}, this takes O(logn) time and 0(2:::::0 !Xi!log(!Xi! + 1)) =
O(nlogM) operations.

20

The resources used by Step 1 are negligible. Hence all that remains is to show that with

sufficiently high prob ability, logM = O(y'logn). But if logM > 'U + 1, where 'U = 2ßv1ogn,
the sampling in Step 1 misses at least 2u consecutive elements in the sorted sequence of input
elements, the probability of which is at most

_22fJ.,flog n-~ _2fJ.,flog n
$n·e =n·e.

For ß chosen sufficiently large, the latter prob ability and the failure probability of 2-2(Cl+1)~
• 2Cl.,flogn m Step 2 add up to at most 2- . 0

For t 2: log n log log n, the algorithm of Theorem 5 exhibits optimal speedup relative to the

sequential randomized algorithm described by Fredman and Willard (1990).

Acknowledgment

We are gratefu.l to Christine Rüb and Richard Anderson, whose suggestions allowed us to improve
our results and to simplify the exposition.

References

Ajtai, M., KomMs, J., and Szemeredi, E. (1983), An O(nlogn) sorting network, in Proc. 15th
Annual ACM Symposium on Theory of Computing, pp. 1-9.

Bast, H., and Hagerup, T. (1993), Fast parallel space allocation, estimation and integer sorting
(revised), Tech. Rep. no. MPI-I-93-123, Max-Planck-Institut für Informatik, Saarbrücken.

Batcher, K. E. (1968), Sorting networks and their applications, in Proc. AFIPS Spring Joint
Computer Conference, 32, pp. 307-314.

Berkman, 0., and Vishkin, U. (1993), On parallel integer merging, Morm. and Comput. 106,
pp. 266-285.

Bhatt, P. C. P., Diks, K., Hagerup, T., Prasad, V. C., Radzik, T., and Saxena, S. (1991),
Improved deterministic parallel integer sorting, Morm. and Comput. 94, pp. 29-47.

Chaudhuri, S., and Hagerup, T. (1994), Prefix graphs and their applications, in Proc. 20th In­
ternational Workshop on Graph-Theoretic Concepts in Computer Science, Springer Lecture
Notes in Computer Science, to appear.

Cole, R. (1988), Parallel merge sort, SIAM J. Comput. 17, pp. 770-785.

Cole R., and Vishkin, U. (1986), Deterministic coin tossing with applications to optimal parallel
list ranking, Morm. and Control 70, pp. 32-53.

Fredman, M. L., and Willard, D. E. (1990), BLASTING through the information theoretic barrier

with FUSION TREES, in Proc. 22nd Annual ACM Symposium on Theory of Computing,
pp. 1-7.

21

Gil, J., Matias, Y., and Vishkin, U. (1991), Towards a theory of nearly constant time parallel

algorithms, in Proc. 32nd Annual Symposium on Foundations of Computer Science, pp.

698-710.

Goodrich, M. T., Matias, Y., and Vishkin, U. (1993), Approximate parallel prefix computation

and its applications, in Proc. 7th International Parallel Processing Symposium, pp. 318-325.

Goodrich, M. T., Matias, Y., and Vishkin, U. (1994), Optimal parallel approximation for prefi.x

sums and integer sorting, in Proc. 5th Annual ACM-SIAM Symposium on Discrete Algo­

rithms, pp. 241-250.

Hagerup, T. (1991), Constant-time parallel integer sorting, in Proc. 23rd Annual ACM Sympo­

sium on Theory of Computing, pp. 299-306.

Hagerup, T. and Raman, R. (1992), Waste makes haste: Tight bounds for loose parallel sorting,

in Proc. 33rd Annual Symposium on Foundations of Computer Science, pp. 628-637.

Hagerup, T. and R.aman, R. (1993), Fast deterministic approximate and exact parallel sorting, in

Proc. 5th Annual ACM Symposium on Parallel Algorithms and Architectures, pp. 346-355.

Hagerup, T., and Rüb, C. (1989), Optimal merging and sorting on the EREW PRAM, Inform.

Process. Lett. 33, pp. 181-185.

Hagerup, T., and Shen, H. (1990), Improved nonconservative sequential and parallel integer

sorting, Inform. Process. Lett. 36, pp. 57-63.

JaJa., J. (1992), An Introduction to Parallel Algorithms, Addison-Wesley, Reading, Mass.

Kirkpatrick, D., and Reisch, S. (1984), Upper bounds for sorting integers on random access

machines, Tb.eoret. Comput. Sei. 28, pp. 263-276.

Kruskal, C. P. (1983), Searching, merging, and sorting in parallel computation, IEEE 1rans.

Comput. 32, pp. 942-946.

Kruskal, C. P., Rudolph, L., and Snir, M. (1990a), Efficient parallel algorithms for graph prob­

lems, Algoritb.mica 5, pp. 43-64.

Kruskal, C. P., Rudolph, L., and Snir, M. (1990b), A complexity theory of effi.cient parallel

algorithms, Tb.eoret. Comput. Sei. 71, pp. 95-132.

Matias, Y., and Vishkin, U. (1991a), On parallel hashing and integer sorting, J. Algoritb.ms 12,
pp. 573-606.

Matias, Y., and Vishkin, U. (1991b), Converting high probability into nearly-constant time -

with applications to parallel hashing, in Proc. 23rd Annual ACM Symposium on Theory of

Computing, pp. 307-316.

Paul, W. J., and Simon, J. (1980), Decision trees and random access machines, in Proc. Inter­

national Symposium on Logic and Algorithmic, Zürich, pp. 331-340.

Rajasekaran, S., and Reif, J. H. (1989), Optimal and sublQgarithmic time randomized parallel

sorting algorithms, SIAM J. Comput. 18, pp. 594-607.

22

Rajasekaran, S., and Sen, S. (1992), On parallel integer sorting, Acta Inform. 29, pp. 1-15.

Raman, R. (1990), The power of collision: Randomized parallel algorithms for chaining and inte­

ger sorting, in Proc. 10th Conference on Foundations of Software Technology and Theoretical

Computer Science, Springer Lecture N otes in Computer Science, Vol. 472, pp. 16.1-175.

Raman, R. (1991a), The power of collision: Randomized parallel algorithms for chaining and

integer sorting, Tech. Rep. no. 336, Computer Science Department, University ofRochester,

New York, March 1990 (revised January 1991).

Raman, R. (1991b), Optimal sub-logarithmic time integer sorting .on the CRCW PRAM, Tech.

Rep. no. 370, Computer Science Department, University of Rochester, New York, January

1991.

Vaidyanathan, R., Hartmann, C. R. P., and Varshney, P. K. (1991), Optimal parallelle:rico­

graphie sorting using a fine-grained decomposition, Tech. Rep. no. SU-CIS-91-01, School

of Computer and Information Science, Syracuse University, Syracuse, NY.

van Emde Boas, P. (1977), Preserving order in a forest in less than logarithmic time and linear

space, Inform. Process. Lett. 6, pp. 80-82.

Wagner, R. A., and Ban, Y. (1986), Parallel algorithms for bucket sorting and the data dependent

prefix problem, in Proc. 1986 International Conference on Parallel Processing, pp. 924-930.

Appendix: Constructing a fusion-tree node in parallel

In this appendix we show that if A and d are positive integers with 2 $ f16 $ A, then a fusion­

tree node for d -1 given integers Yl"",Yd-l drawn from the set U = {0, ... ,2A -1} can
be constructed on a CREW PRAM with a word length of A bits using O(logd) time, dO(l)

operations and ~(l) space with prob ability at least 1/2. Our algorithm is a straight forward

parallelization of the corresponding sequential algorithm of Fredman and Willard (1990).

For any integer z and any finite set S of integers, denote by rank (z, S) the rank of zinS, and

let Y = {Yt. ... , Yd-d. Recall that the purpose ofthe fusion-tree node is to enable rank (z, Y) to

be determined in constant time by a single processor, for arbitrary given z E U. If Yl,·.·, Yd-l

are numbers of just O(A/d) bits, this can be done essentially as described in Section 3: Create

a word B of O(A) bits containing Yl, ... , Yd-l in separate fields, with test bits set to zero, and
another word A containing d - 1 copies of z, with test bits set to one, then subtract B from A

and dear all bit positions, except those of the test bits, in the resulting word C. The test bits

of C can be added and their sum placed in a single field by means of a suitable multiplicationj

this number is rank(z, Y). In the following we will reduce the general rank computation to two
such rank computations in sequences of small integers.

For arbitrary z, Y E U, define msb(z, y) as -1 if z = y, and otherwise as the largest number

of a bit position in which z and Y differ. Fredman and Willard demonstrated that msb(z, y)
can be determined in constant time by a single processor, for arbitrary given z, Y E U. Without

loss of generality assume that 0 < Yl < ... < Yd-l < 2A - 1. In order to avoid special cases, we

introduce the two additional keys Yo = 0 and Yd = 2A - 1. Let P = {msb(Yi-t. Yi) : 1 $ i $ d}

23

and write P = Uh, ... 'P1'} with PI < ... < P1'j clearly r ~ d. Define f : U -+ {O, ... , 21' - 1}
as the function that extracts the bit positions in P and packs them tightly, Le., bit number

i in f(y) is bit number Pi+1 in Y, for i = 0, ... , r - 1 and for all Y EU, while bits number

r, ... , >. - 1 are zero in f(y). It is important to note that f(YI) < ... < f(Yd-I)' We write f(Y)
for {f(YI), . .. , f(Yd-I)}'

Let .06. = {O, ... , d} x {O, ... , r} X {O,l} and define a function 4> : U -+ .06. as follows: For

Z E U, let i = rank(f(z), f(Y)) and choose j E {i, i + 1} to minimize msb(f(z), f(Yj)), resolving

ties by taking j = i. Note that this means that among all elements of f(Y u bo, Yd}), f(Yj)
is one with a longest prefi.x in common with f(z) (the longest-preji:z property). Furthermore

take 1 = rank(msb(z,Yj),P) and let a = 1 if z ? Yj, a = Ootherwise. Then 4>(z) = (j,/,a).
Fredman and Willard showed that for z E U, rank(z, Y) depends onlyon 4>(z). (This is easy to

see by imagining a digital search tree T for the bit strings Yo, ... , Yd. The root-to-leafpath in T

corresponding to Yj is a continuation of the path taken by ausual search in T fqr z, and P is

the set of heights of children of nodes in T of degree 2, so that 1 determines the maximal path

in T of nodes of degree ~ 1 on which the search for z terminates.) As a consequence, once 4>(z)
is known, rank(z, Y) can be determined in constant time as R[4>(z)], where R is a precomputed

table with 2(d + l)(r + 1) entries.

Since both images under f and bit positions are sufficiently small integers, the two rank

computations in the algorithm implicit in the definition of 4> can be carried out in constant

sequential time as described earlier in the appendix. As a consequence, we are left with two

problems: How to construct the table R, and how to evaluate f in constant time.

As rank(z, Y) can be determined in O(logd) sequential time for any given z E U, it suffices

for the construction of R to provide a set X ~ U of ~(I) "test values" that "exercise" the whole

table, Le., such that 4>(X) = 4>(U). This is easy: Take Po = -1 and P1'+1 = >. and define Z"I,G'
for all (j, I, a) E .06., as the integer obtained from Y, by complementing the highest-numbered

bit whose number is smaller than PI+! and whose value is 1 - aj if there is no such bit, take

Z"I,G = Yj. We will show that if (j,/,a) E 4>(U), then 4>(Z"I,G) = (j,/,a), which proves that
X = {Zj,I,G : (j, I, a) E A} is a suitable "test set". It may be he1pful to visualize the following

arguments as they apply to the digital search tree mentioned above.

Fix (j, I, a) E .06. and let 5 = {z EU: PI ~ msb(z, Yj) < PI+! and (z ? Yj {} a = 1)}.
Elements of 5 are the only candidates for being mapped to (j, I, a) by 4>.

Suppose first that msb(Z"I,G' y,) > PI. Then f(Z"I,G) = f(Y,), so that choosing i = j clearly
achieves the unique minimum of -1 of msb(f(Zj,I,G)' f(Yi)}. By the longest-prefu: property and

the fact that Z"I,G E 5, it now follows that 4>(Zj,I,G) = (j,/,a).
If msb(Z"I,G' y,) < Pli it is easy to see that 5 = 0, so that (j, I, a) ~ 4>(U).
If msb(Z"I,G'Y') = PI, finally, it can be seen that msb(z,Yj) = PI for all Z E 5. Consider two

cases: If msb(Z"I,G' Yi) < PI for some i E {O, ... , d}, then msb(f(z), f(Yi)) < msb(f(z), f(Y,)) for
all Z E 5. Then, by the longest-prefix property, no Z E 5 is mapped to (j, I, a), Le., (j, I, a)t4>(U).

If msb(Z"I,G' Yi) ? PI for all i E {O, ... , d}, on the other hand, 4>(z) = 4>(Zj,I,G) for all Z E 5, so
that 4>(Z"I,G) = (j, I, a) if (j, I, a) E 4>(U). Sl1mming up, the useful part of R can be constructed
in o (log d) time with ,p. processors.

We actually do not know how to evaluate f efficiently, and Fredman and Willard employ a

24

different function 9 that still extracts the bit positions in P, but packs them less tightly. More

precise1y, for nonnegative integers ql,'." q.,. of size O(A) to be determined below, bit number Pi

in y is bit number Pi + qi in g(y), for i = 1, ... , r and for all y EU, while all other bits in g(y)
are zero. The integers ql, ... ,q.,. will be chosen to satisfy the following conditions.

(1) PI + ql < P2 + q2 < '" < P.,. + q.,.j

(2) (p.,. + q.,.) - (PI + ql) ::; 2r5j

(3) The r2 sums Pi + qj, where 1 ::; i,j::; r, are all distinct.

Condition (1) ensures that rank(g(z), g(Y)) = rank(f(z) , f(Y)) and that minimizing

msb(g(z),g(y;)) is equivalent to minimizing msb(f(z), f(Yj)) , for all z E U, so that substi­

tuting, 9 for f leaves the algorithm correct. Condition (2) ensures that images under 9 are still

sufficiently small, following a fixed right shift by PI + ql bit positions, to allow constant-time

computation of rank(g(z),g(Y)), and Condition (3) implies that 9 can be implemented as a

multiplication by ~i=l 2Q
, followed by the application of a bit mask that clears all bits outside

of the positions PI + qI, .•. ,P.,. + q.,. of interest.
Fredman and Willard described a deterministic procedure for computing ql, ... ,q.,.. We ob­

tain ql, ... ,q.,. through a randomized but faster procedure that essentially amounts to choosing

ql, ... ,q.,. at random. More precise1y, choose Zl, ... ,Z.,. independently from the uniform distri­

bution over {1, ... , 2r4
} and take qi = A - Pi + 2(i - 1)r4 + Zi, for i = 1, ... , r. It is easy to

see that qI, .. . , q.,. are nonnegative and that Conditions (1) and (2) are satisfied. Condition (3)

may be violated, but we can check this in o (log d) time with d?- processors. For fixed i, j, k, I
with 1 ::; i,j,k,l::; r and (i,j):/; (k,l), the condition Pi + qj :/; Pie + qz is violated with prob­

ability at most 1/(2r4), so that altogether Condition (3) is violated with probability at most

r4 /(2r 4
) = 1/2.

25

	94-1370001
	94-1370002
	94-1370003
	94-1370004
	94-1370005
	94-1370006
	94-1370007
	94-1370008
	94-1370009
	94-1370010
	94-1370011
	94-1370012
	94-1370013
	94-1370014
	94-1370015
	94-1370016
	94-1370017
	94-1370018
	94-1370019
	94-1370020
	94-1370021
	94-1370022
	94-1370023
	94-1370024
	94-1370025
	94-1370026
	94-1370027
	94-1370028
	cover-hinten_2099-2897-300dpi

